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1 IntroductionIn this paper, we consider the problem of attenuating an output signal y(t) that, in theLaplace domain, is given by y(s) = P (s)(u(s)� d(s)); (1)where u(s) and d(s) are the Laplace transforms of the controller output and disturbancesignals, respectively, and P (s) is the Laplace transform of the impulse response of the plant.The plant is assumed to be linear, time-invariant, and stable. The goal of the control systemis to generate u(t) such that y(t)! 0 as t!1. We assume that the disturbance d(t) is asinusoid of �xed magnitude �1� and �xed frequency !1 such thatd(t) = �1� cos(�d(t));_�d(t) = !1: (2)In this task, the parameters �1�, !1, and �d(0) are all unknown.Algorithms for solving the above problem have use in a wide range of applications. Ofparticular interest is the problem of active noise and vibration control, in which d(t) isan o�ending noise or vibration source and P (s) is the transfer function of the output-actuator-to-error-sensor propagation path. Often, the noise source consists mainly of peri-odic components due to rotating machinery generating the undesired noise signal. Examplesof such noises include engine noise in turboprop aircraft (Emborg and Ross, 1993), enginenoise in automobiles (Shoureshi and Knurek, 1996), and ventilation noise in HVAC systems(Eriksson, 1988). In practice, the frequency of the disturbance is usually not known and mayeven vary during operation. In these cases, it is desirable to place an encoder or tachometeron the rotating machine that is at the origin of the disturbance to measure the frequency ofthe disturbance. Alternatively, if a sensor can be placed near the source of the disturbancesuch that d(t) can be accurately characterized, then the control task reduces to that of adap-tive feedforward control (AFC) (see Nelson and Elliott, 1992). However, it is impossible touse such a sensor in applications where the addition of the sensor is too costly or reduces2



the reliability of the overall system due to strong vibrations, high temperatures, or dirtyconditions within the environment.In this paper, we present two adaptive control algorithms for the rejection of sinusoidaldisturbances with unknown frequency. These systems only require a single sensor locatedat the output of the plant for their operation. The �rst approach combines an AFC schemefor attenuating sinusoidal disturbances with known frequency as described and analyzed inBodson et. al. (1994) and Sacks et. al. (1996), together with an algorithm to estimate thefrequency of the disturbance. This approach is called indirect because the frequency of thedisturbance is estimated independently of the cancellation scheme. The second approachconsists in extending the AFC scheme of Bodson et. al. (1994) and Sacks et. al. (1996) byintegrating a phase-locked loop within the scheme so that disturbances with unknown fre-quency can be directly cancelled. Our analyses of these two methods enable the design of thesystems to provide useful rejection of sinusoidal disturbances, and simulations validate thetheoretical results. Our results indicate that the direct algorithm has superior convergenceproperties locally about the optimum convergent point of the controller, whereas the indirectalgorithm provides a wider capture region for the system's adaptive parameters.2 Indirect Approach2.1 Frequency EstimationOur development of the indirect algorithm relies on a method for the estimation of the fre-quency of a signal. Here, we consider an adaptive notch �lter developed in Regalia (1991)that is designed to eliminate one (or more) periodic component(s) from a measured signal.This adaptive notch �lter estimates the frequency of the unknown signal as part of its op-eration. In our work, we transpose Regalia's algorithm to continuous-time so that standardaveraging methods can be used to analyze the system's equations. It is relatively straight-forward to transfer the results of our control system design back to the discrete-time domainfor implementation purposes.Consider the problem of estimating the frequency ! of a signal y(t), where �f is the3



resulting estimate. The continuous-time version of Regalia's algorithm has three states �f ,x1, and x2, that satisfy the di�erential equations_x1 = x2; (3)_x2 = �2��fx2 � �f2x1 + ky; (4)_�f = �g1(ky � 2��fx2)x1: (5)Note that this system of equations is highly nonlinear. The three parameters of the systemare the adaptation gain g1, the damping factor �, and a �lter gain k, all of which are positive-valued. The algorithm's behavior can be explained through an averaging analysis, justi�edfor small values of g1 and for a periodic signal y (t) (c.f. Sastry and Bodson (1989)). For �fconstant, x1 = kD(s; �f ) [y]; x2 = ksD(s; �f ) [y]; (6)where D(s; �f ) = s2 + 2��fs+ �f 2. Furthermore,ky � 2��fx2 = k(s2 + �f2)D(s; �f ) [y]: (7)By application of averaging theory, the evolution of the state �f can be approximated by thesolution of the averaged system, which is given by_�av = �g1 AV G "k(s2 + �2av)D(s; �av) [y] : kD(s; �av) [y]# : (8)Assuming that y(t) =Pni=1 ri sin(!it+ �i), the averaged system is given by_�av = �g12 nXi=1 k2r2i (�2av � !2i )(�2av � !2i )2 + (2��av!i)2 : (9)If the signal y(t) has a single sinusoidal component, the analysis indicates that the averagedsystem has a pair of equilibrium points at �av = �!1. Around !1, the linearized system isexponentially stable, with dynamics_�av = �g1k2r124�2!13 (�av � !1) (10)In other words, the algorithm is able to identify the frequency of the signal !1. Even in thepresence of multiple sinusoids, the algorithm is able to lock onto a main frequency component4



despite the presence of competing tones. Typically, the averaged system will exhibit multipleequilibrium points. If the parameter � is small, the �rst term in the sum of (9) will dominatethe others when �av is close to !1. Therefore, in the neighborhood of �av = !1, the right-handside of (9) will be approximately the same as that of the system with only one sinusoidalcomponent. The same argument can be repeated for the other frequencies, so that therewill be an equilibrium point associated with each of the sinusoidal components of the signaly(t). The initial value of �f and the magnitudes of the frequency components ri a�ect thefrequency towards which �f will converge.2.2 Indirect Adaptive AlgorithmThe algorithm for frequency estimation can be combined with the adaptive feedforward con-trol scheme in Sacks et. al. (1996) to produce an algorithm capable of attenuating periodicdisturbances with unknown frequency. The control law is given byu(t) = �c(t) cos(�(t))� �s(t) sin(�(t));_�(t) = �f(t); (11)where the two adaptive parameters �c and �s are updated asddt " �c�s # = �g2 G�1 " y cos(�)�y sin(�) # ; (12)and G = 12 " PR �PIPI PR # ; PR = Re[P (j!1)]; PI = Im[P (j!1)]: (13)The parameter g2 > 0 is an arbitrary adaptation gain. The averaging analysis of (12){(13) shows that, for small values of the gain g2, the dynamics of this adaptive system areapproximately the same as those of two decoupled, �rst-order systems, with their poleslocated at �g2 (rad/s).Note that the algorithm in (12){(13) uses the value of the frequency response of the plantat the frequency of the disturbance !1. However, the stability of (12) for small gain g2 isguaranteed so long as the phase of the frequency response is correct to within �90 degrees.5



Therefore, a rough estimate of !1 in (12) will be adequate in most cases. If desired, !1 mayalso be replaced by �f in (13).2.3 Simulations of the Indirect AlgorithmWe now present simulations of the indirect algorithm for a plant given by P (s) = 100=(s +100) and a sinusoidal disturbance d(t) = cos(100t). In the frequency estimation algorithm,we choose the initial states to be equal to zero, and we choose � = 0:1, k = 100, andg1 = 1000. With these parameter choices, the pole of the linearized system in (10) is at�125 rad/s. In the AFC scheme, the initial states of the system are set to zero, and wechoose g2 = 10. Such a parameter choice yields an averaged system with two real poles at�10 rad/s, as predicted by the analysis in Sacks et. al. (1996).
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Figure 1: Frequency estimate for the indirect algorithm { Separate AdaptationFor our �rst simulation, frequency estimation and disturbance cancellation are performedseparately. Speci�cally, for the �rst second of the simulation, the parameters of the AFCscheme are frozen while an accurate estimate of the frequency of the disturbance is calculated.Then, the frequency estimate is �xed for t � 1 and is used by the AFC scheme to adjust theamplitudes of the cos(�) and sin(�) components of the controller to attenuate the disturbance.6
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Figure 2: Log of the plant output for the indirect algorithm { Separate Adaptation
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Figure 3: Adaptive parameters for the indirect algorithm { Separate Adaptation7



Fig. 1 shows the frequency estimate produced by the algorithm, as indicated by the solidline in the �gure. For our parameter choices, the frequency estimation algorithm in (12){(13) converges within the �rst second of the simulation to the value �f = 99:95 rad/s, avalue close to !1 = 100 rad/s. The response predicted by the nonlinear averaged systemin (8) is shown as a dashed line on this �gure and is seen to closely approximate the truesystem's transient response. Note that the frequency estimation algorithm converges to itsproper setting despite a 100% initial error in the frequency estimate, and the ability of thisalgorithm to lock onto the frequency of the unknown disturbance is useful in many practicalsituations.Fig. 2 shows the logarithm of the output of the plant, computed as log(jy(t)j+ �) where� = 10�6. The envelope of the plant output is constant during the frequency estimationphase of the controller's operation and is seen to decrease rapidly once the AFC algorithmis engaged. The system's output does not decrease signi�cantly after a period of time. Theevolutions of �c and �s are shown in Fig. 3 as a solid line and a dashed line, respectively.While the parameters appear to be drifting for t > 2 s, their variation is in fact sinusoidal at afrequency equal to the di�erence between the true and estimated frequencies of disturbance,and the sum of the squares of the parameters remains close to one over this time period.Note that continuous variations of the amplitudes of the cos(�) and sin(�) components ofthe controller output are necessary to reduce the disturbance amplitude when the frequencyestimate �f is not exact, resulting in a low residual output error in steady-state.We now explore the performance of the indirect scheme in a true adaptive mode in whichall the parameters are adjusted simultaneously. Although this implementation might beexpected to resolve the convergence problems observed with separate parameter adaptationstages, such is not the case. The log of the plant output is shown in Fig. 4. Although thisimplementation yields a more rapid decrease of the plant output, a substantial residual errorremains at the end of the simulation run. In this case, the lack of asymptotic convergencemay be attributed to the fact that the control input eliminates the signal which is used forthe frequency estimation, thus preventing accurate convergence of �f . This problem is an8
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Figure 4: Log of the plant output for the indirect algorithm { Simultaneous adaptationindication of the fact that the indirect scheme is overparameterized and can be resolved byconsidering a direct adaptive scheme in which the amplitude and phase of the sinusoidalcomponent are computed via a single combined procedure, as we now show.3 A Direct Algorithm3.1 Adaptive AlgorithmAn alternative approach to the indirect scheme of the previous section is a direct schemein which a single error signal is used to update the frequency and the magnitude estimatessimultaneously. Here, one such algorithm is presented that combines elements of the AFCscheme discussed earlier with a modi�ed version of a phase-locked loop structure commonlyused in communication systems (Hambley, 1990).This scheme is shown in Fig. 5. In the �gure, �1 is the estimate of the magnitude of thedisturbance signal, and �2 is the estimate of its instantaneous frequency. Moreover, � is theestimate of the phase of the disturbance signal and is the integral of the estimate of thefrequency �2. The equations for the control algorithm areu = �1 cos(�);9
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� The instantaneous frequency �2 is close to !1, such that P (j�2) can be replaced byP (j!1).Basic Fact: Considering low-frequency components only, the two signals y1(t) and y2(t) areapproximately given by" y1(t)y2(t) # = G " �1(t)� d1 cos(�(t)� �d(t))d1 sin(�(t)� �d(t)) # ; (15)where G is as de�ned in (13).Proof: Under the assumptions, the output of the plant is given byy(t) = PR�1(t) cos(�(t))� PI�1(t) sin(�(t))� PRd1 cos(�d(t)) + PId1 sin(�d(t)): (16)Keeping only the low-frequency components of the signals y1 and y2, we �nd thaty1(t) = 12PR�1(t)� 12PRd1 cos(�(t)� �d(t))� 12PId1 sin(�(t)� �d(t));y2(t) = 12PI�1(t) + 12PRd1 sin(�(t)� �d(t))� 12PId1 cos(�(t)� �d(t)); (17)and the result is obtained.Comments: The elimination of the high-frequency components within the system canbe achieved by proper low-pass �ltering of the signals y1(t) and y2(t). In the algorithmdiscussed in this paper, the signals are applied to a compensator C(s) which is low-pass innature. Although the �ltering is far from ideal, simulations show that our approximationsare satisfactory for the compensator design without the need for additional �ltering.3.3 Compensator DesignEquation (15) can be viewed as an alternative description of the plant, with two inputs �1and � and two outputs y1 and y2. Although this equation is nonlinear, a linear system is11



obtained if the phase error � � �d is small. This system is described by" y1(t)y2(t) # = G " �1(t)� d1d1(�(t)� �d(t)) # : (18)Using this linearized result, several methods for designing C(s) can be used. Our ap-proach, while not the best or the most sophisticated, yields a simple design for implementa-tion purposes. We de�ne two variables x1 and x2 as" x1(t)x2(t) # = G�1 " y1(t)y2(t) # ; (19)so that " x1(t)x2(t) # = " �1(t)� d1d1 �R t0(�2(�)� !1)d� + �(0) � �d(0)� # : (20)As a result, the dynamics of the system from the parameters �1 and �2 to the variables x1and x2 are decoupled from one another and are those of a gain of 1 and of an integrator witha gain d1, respectively. The unknown parameters d1, !1, �d(0) act as constant disturbances.The compensator C(s) may then be designed as the cascade of the transformation (19) andcontrol laws of the form �1 = C1(s)s [x1];�2 = C2(s)s [x2]; (21)where the integrators are included to reject the disturbances composed of d1 and �d(0). Thetransfer functions C1(s) and C2(s) are designed to guarantee the closed-loop stability of thetwo systems P1(s) = 1 and P2(s) = d1=s. One possible choice isC1(s) = �g1; C2(s) = �g2s+ as + b : (22)Because the magnitude of the disturbance d1 acts as a gain in the second transfer function,the parameters of the compensator C2(s) must be designed for a range of magnitudes of thedisturbance d1. Simple techniques can also be used to estimate the disturbance level beforethe system is turned on.The algorithm requires the knowledge of the matrix G, which depends on !1. Similar tothe indirect algorithm, one can resolve this problem in two ways. One may choose to design12



a compensator that works satisfactorily for a range of matrices G corresponding to a rangeof frequencies of the unknown disturbance. Often, the uncertainty in the frequency of thedisturbance is small enough such that variations in the Gmatrix are inconsequential, yieldingadequate performance for a compensator designed for a mid-range disturbance frequency.Alternatively, one could use for G the equivalent transfer function matrix corresponding tothe estimated frequency _� = �2. In either case, knowledge of the frequency response of theplant in the frequency range of interest is required.
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Figure 6: Log of the plant output for the direct algorithm3.4 Simulations of the Direct AlgorithmWe now explore the performance of the direct algorithm via simulation. We consider thesame situation as in the indirect algorithm, in which P (s) = 100=(s + 100), !1 = 100, andd1 = 1. For the direct algorithm, the parameter g1 is set to 10, leading to a closed-looppole for the �rst system at -10 rad/s. The other parameters are set to g2 = 400, a = 5,and b = 30; leading to three closed-loop poles for the second system located at �10 rad/sand �10 � j10 rad/s. The initial states of all parameters are zero except for �1(0) = 0:9,�2(0) = 90 rad/s, and �(0) = 90 degrees. Note that, since �d(0) = 0, the system is initialized13
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Figure 7: Magnitude estimate for the direct algorithm
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Figure 8: Frequency estimate for the direct algorithm14



with a large phase error, such that the linearized analysis is less accurate.Fig. 6 shows the log of the output of the plant. The output is found to decrease tonegligible values in less than two seconds. The transient behavior of the magnitude estimate�1 is shown in Fig. 7, where the solid line is the parameter response, the dashed line is theresponse predicted using the nonlinear approximation in (15), and the dot-dashed line is theresponse predicted using the linear approximation in (18). The equivalent behaviors of theactual and theoretically-predicted values of the frequency estimate �2 are shown in Fig. 8.Note that the matches between the theoretical and actual behaviors of the estimates areparticularly good when using the nonlinear approximation, whereas the analysis using thelinear approximation is only accurate for the frequency estimate. Although the nonlineare�ects are clearly signi�cant, our design based on the linear approximation provides adequateconvergence of the system.In these simulations, the system converged despite a 10% initial error in frequency. Itwas found that the scheme was able to acquire frequencies with errors up to 30% in thiscase. It is well-known that an important characteristic of phase-locked loops is their lock-in(or pull-in) range (Hambley, 1990). Careful design of the loop transfer function can increasethe lock-in range and improve performance. Additional supervisory logic might also be usedfor acquisition, and would be part of a practical design. In addition, although the elementsof G were set to their nominal values corresponding to a disturbance frequency of 100 rad/sfor these plots, simulations with the nominal G replaced by a continuously-adjusted matrixaccording to the estimated frequency of the disturbance did not exhibit signi�cant di�er-ences in transient behaviors. Other simulations with slowly-varying disturbances and withmeasurement noises indicate that the direct algorithm performs well in these situations, andthe e�ects of these variations can be analyzed precisely using the linear approximation, asdescribed in Bodson and Douglas (1996) and Bodson (1996).
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4 ConclusionsIn this paper, we have presented two methods for the rejection of sinusoidal disturbances withunknown frequency. While disturbance rejection for signals with known frequency has beenaddressed extensively in the literature using various approaches, the analogous task for sig-nals with unknown frequency has received comparably little attention despite its importancein applications such as active noise and vibration control. Our study of an algorithm forthe determination of the frequency of an unknown signal yielded an averaging analysis thatwas useful for system design. It was shown that this frequency estimation algorithm couldbe combined with an AFC algorithm to obtain an indirect algorithm for the cancellation ofdisturbances with unknown frequency. While this system was able to lock on a sinusoidalsignal with no a priori information about the frequency of the disturbance, the convergenceproperties of the scheme were found to be less than ideal. A second algorithm incorporatinga phase-locked loop within the cancellation scheme yielded improved convergence properties,and our averaging analysis provided a precise prediction of the dynamic characteristics of thesystem. A successful scheme for sinusoidal disturbance cancellation scheme would combinethe direct algorithm presented here with an initialization scheme for providing rough initialestimates of the disturbance frequency. Simulations veri�ed the results of the analysis andindicated the usefulness of the algorithms for the sinusoidal disturbance cancellation task.ReferencesR. Shoureshi and T. Knurek, \Automotive Applications of a Hybrid Active Noise and Vi-bration Control," IEEE Control Systems, vol. 16, no. 6, pp. 72-78, 1996.M. Bodson, \Cancellation of Sinusoidal Disturbances with Unknown Frequency," Proc. of theNinth Yale Workshop on Adaptive and Learning Systems, New Haven, CT, pp. 174-179,1996.M. Bodson and S.C. Douglas, \Adaptive Algorithms for the Rejection of Periodic Distur-bances with Unknown Frequency," Proc. of the 13th World Congress of the International16
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