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Abstract

The paper considers the problem of rejecting disturbances with two sinusoidal components

in the case where the frequencies are unknown and closely spaced. A natural approach con-

sists in cancelling the components using two separate adaptive algorithms combined in a single

scheme. However, experiments in active noise control applications have shown that conver-

gence using such an approach could be very slow. The alternative approach of this paper

consists in representing the disturbance signal as a single sinusoid with time-varying magni-

tude and phase. The theoretical basis and the limitations of such a representation are first

discussed. Then, an adaptive disturbance rejection algorithm is proposed and the resulting

nonlinear system is analyzed using some approximations. Active noise control experiments

demonstrate that the proposed algorithm has better convergence properties than an algorithm

designed to cancel the two frequency components separately. In some cases, however, the cost

is a small residual error on the output signal.

Keywords: active noise control, adaptive control, frequency estimation, magnitude phase-locked

loop, periodic disturbance rejection.

1 Introduction

Periodic disturbances are encountered in many applications. In this paper, we focus on active

noise control (ANC), which is a method for eliminating or attenuating noise by the destructive

interference of controlled ‘secondary’ sources with the disturbance from the ‘primary’ source [4].

ANC is especially effective against low-frequency noise (below 500 Hz), which is hard to reduce by

passive methods [7]. When a so-called reference signal is available, feedforward control methods
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are widely used and can attenuate broadband noise as well as narrowband noise [6]. However, this

approach requires that the reference signal be well correlated with the primary source and, in some

situations, it is difficult or undesirable to obtain such a reference signal. Then, feedback control is

necessary, which means that the error signal must be used alone to attenuate the noise.

While feedback control of periodic disturbances is well understood when the frequency of the

disturbance is known, practically viable techniques to handle unknown frequencies have only re-

cently emerged. A natural approach to reject a sinusoidal disturbance with unknown frequency is

to construct a frequency estimator and use the estimated frequency in a disturbance cancellation

scheme for known frequency. This concept is called an indirect approach in [3] [11], in analogy to

the indirect methods of adaptive control. In contrast, direct methods attempt to design a stable

adaptive controller for the rejection of the disturbance in a single and integrated algorithm. The

direct algorithm of [3] is an extension of the concept of phase-locked loop (PLL) that has been called

amagnitude phase-locked loop (MPLL). The MPLL algorithm was expanded to manage cases where

the disturbance contained several harmonic components [1] and cases with multivariable plants [10].

A discrete-time MPLL was presented in [2], and an averaging analysis was given in [5], where the

algorithm was also extended to handle the case of multiple uncorrelated sinusoidal components.

The algorithm of this paper is based on the discrete-time MPLL concept of [5], with a focus on

the case where two frequencies are very close. Advantages of the MPLL disturbance compensator

are its relative simplicity and the ability to design easily a system with pre-specified closed-loop

dynamics. In pure disturbance rejection problems such as active noise control, the algorithm can

also handle high-order plants with complicated dynamics and significant delay without requiring

an estimate of the plant transfer function. The algorithm uses the frequency response of the plant,

which can be directly measured through sinusoidal excitation in a training stage.

Recently, researchers have considered frequency estimation and disturbance rejection problems

where the frequencies of two independent sinusoidal signals must be tracked, including cases where

the two frequencies were very close. Note that frequency tracking and signal reconstruction can be

viewed as special cases of the disturbance rejection problem where the plant transfer function is the

unity operator. [9] describes a problem where a sensor must be developed to measure mass flow in

an agricultural machine. The spectrum of the sensor data shows a peak at 13.2 Hz, corresponding to

the mass flow, together with a parasitic signal at 11.6 Hz, corresponding to the resonance frequency

of the sensor. In [13], the problem of pitch tracking for automatic music transcription is considered.

When multiple notes are played together (polyphonic case), the algorithm must track more than

one sinusoidal component. The paper reports data for notes at 262 Hz and 392 Hz, but closer

spacing may be encountered and could be as little as 6 percent. In [12], a disturbance rejection

problem was considered in a web transport application. Experiments on the testbed showed that

the spectrum of the tension had large disturbance components at the frequencies of rotation of the

winding and unwinding rolls and that these frequencies could become identical.

This paper considers the problem of rejecting disturbances having two sinusoidal components
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with close, unknown frequencies, and using feedback control. A natural approach to such problem

consists in using two adaptive schemes such as MPLL’s combined in parallel [5]. However, a problem

with this approach is that convergence may be slow when the frequencies get very close to each

other. It is known, from communications theory, that a sinusoid that is amplitude-modulated by

a sinusoid of lower frequency has a spectrum reflecting the presence of two sinusoids with close

frequencies. This paper is based on the reverse property that a pair of sinusoids can be represented

as a single sinusoid with time-varying magnitude and phase. The observation is used to develop an

adaptive disturbance rejection scheme, and its advantages and limitations over two parallel MPLL’s

are investigated on an ANC testbed.

2 Representing Two Sinusoids as a Single Time-Varying

Sinusoid

Consider a signal with two sinusoidal components

d(k) = m1 cos(ω1k + φ1) +m2 cos(ω2k + φ2) (1)

where m1, m2 are the magnitudes of the two components, ω1, ω2 are their frequencies, and φ1, φ2
are their initial phases. Let

αf(k) =
(ω1 + ω2)k + φ1 + φ2

2

αs(k) =
(ω1 − ω2)k + φ1 − φ2

2
(2)

and define the associated frequencies

ωf =
ω1 + ω2
2

, ωs =
ω1 − ω2
2

(3)

Note that, if ω1 and ω2 are close to each other, ωs is much smaller than ωf . Accordingly, we will

call ωf the fast frequency and ωs the slow frequency. The fast frequency is the average of the two

original frequencies.

To lighten the notation in the following presentation, we will drop the time index k from αf

and αs. However, the reader should remember that they remain functions of time. The following

fact forms the basis of the paper.

Fact: the signal in (1) can be represented as a time-varying sinusoid of the form

d(k) = md(k) cos(αd(k))

αd(k) = αf(k) + φ(k) (4)
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where

md(k) =
q
m2
1 +m2

2 + 2m1m2 cos(2αs) (5)

φ(k) = arctan ((m1 −m2) sinαs, (m1 +m2) cosαs) (6)

The parameters md and φ of (5), (6) will be called the nominal parameters. An alternative expres-

sion is

md(k) =
q
m2
1 +m2

2 + 2m1m2 cos(2αs)sign(cosαs) (7)

φ(k) = arctan ((m1 −m2) sinαs, (m1 +m2) cosαs)

−1− sign(cosαs)

2
π (8)

The parameters md and φ of (7), (8) will be called the alternative parameters.

Proof: from the definitions of αf , αs, the signal in (1) can be written as

d(k) = m1 cos(αf + αs) +m2 cos(αf − αs) (9)

Therefore

d(k) = (m1 +m2) cosαs cosαf

−(m1 −m2) sinαs sinαf (10)

Eq. (4) is obtained if md(k) and φ(k) are chosen such that

(m1 +m2) cosαs = md(k) cos(φ(k))

(m1 −m2) sinαs = md(k) sin(φ(k)) (11)

Indeed, for md(k) as defined in (5) and for φ(k) as defined in (6), (11) holds. Therefore, (5) and

(6) are valid. The alternative expression with (7), (8) follows directly from this result. ¤
The fact indicates that a signal composed of two sinusoids can be represented as a single sinusoid

with time-varying parameters. The expression for md in (5) shows that it depends on time through

cos(2αs), so that md is a periodic function with frequency 2ωs. Thus, if the frequencies of the two

components are sufficiently close, the magnitude md varies at a frequency that is lower than the

primary (fast) frequency ωf . The following examples will show that a similar property holds true

for the phase φ in (6), where φ is a periodic function with frequency ωs. Fig. 1 shows a case where

m1 = 2 and m2 = 1. The figure shows both the magnitude and the phase of the time-varying

sinusoid as a function of αs. If the frequencies are ω1 = 0.01× 2π rad/sample and ω2 = 0.011× 2π
rad/sample, the fast frequency is ωf = 0.0105×2π rad/sample (corresponding to a period of about
95 samples) and the slow frequency is ωs = 0.0005× 2π rad/sample (corresponding to a period of

4



Figure 1: Example with m1 = 2 and m2 = 1 and nominal parameters

Figure 2: Example with m1 = 1.1 and m2 = 1 and nominal parameters

2000 samples). The oscillations in the magnitude is about 10.5 times slower than the fast frequency

ωf , and the oscillations in the phase of the time-varying sinusoid is about 21 times slower than ωf .

Unfortunately, while the magnitude and the phase parameters are periodic at the slow frequency,

they may exhibit rapid changes, so they cannot always be assumed to be slowly-varying. At a time

of rapid change, a system designed to track the parameters (such as a phase-locked loop) will have

difficulties maintaining a small error. Rapid changes occur especially when m1 ' m2. Fig. 2 shows

an example where m1 = 1.1 and m2 = 1 and the parameters of the time-varying sinusoid are

specified by (5) and (6). The phase φ shows abrupt changes near αs = π/2, 3π/2, and 5π/2. In the

extreme case where m1 = m2, the magnitude parameter becomes the absolute value of a sinusoid

of frequency ωs and the phase is a staircase signal that jumps by π when the magnitude is zero

and is constant otherwise.

The limiting case where m1 = m2 is the motivation for the alternative parameters of (7) and

(8). This formulation lets the magnitude parameter change sign, so that the phase parameter is

equal to zero for all time. Both parameters are much smoother functions of time. When m1 and

m2 are close but not equal, the alternative parameters are not as smooth as when m1 = m2, but

nevertheless smoother than the nominal parameters. Fig. 3 shows the alternative parameters when

m1 = 1.1 and m2 = 1. Note that md is discontinuous when αs = π/2, 3π/2, and 5π/2, but the

jumps are small because m1 ' m2 (between |m1 −m2| = 0.1 and − |m1 −m2| = −0.1) and the
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Figure 3: Example with m1 = 1.1 and m2 = 1 and alternative parameters

Figure 4: Adaptive algorithm for the rejection of a sinusoidal disturbance with time-varying mag-
nitude and phase

slope of the signal is smoother. The phase parameter exhibits rapid changes, but instead of a large

jump, one finds a glitch of short duration. Further, the glitch occurs when the signal has small

magnitude. Therefore, a system with limited bandwidth, such as a phase-locked loop, will “ride

through” the glitch, with only a small impact on performance.

3 Two-As-One Disturbance Rejection Scheme

3.1 Adaptive Algorithm

We propose a new disturbance rejection algorithm based on the MPLL algorithm in [5] and the

above representation of two sinusoids with close frequencies. In particular, we show how the

algorithm can track a pair of sinusoidal disturbances as a single, time-varying sinusoid, and how

the algorithm can be modified to improve performance when m1 ' m2. The structure of the

proposed disturbance rejection system is shown in Fig. 4.

The plant is described by

y(z) = P (z)(d(z)− ud(z)) (12)
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where P (z) is the plant transfer function and is assumed stable, d(z) is the z-transform of the input

disturbance, and ud(z) is the z-transform of the disturbance compensation signal.

The disturbance d has the form of (1) with two sinusoidal components. Considering the alter-

native time-varying sinusoidal representation in (4), we can obtain the instantaneous frequency of

d as

ωd(k) = αd(k)− αd(k − 1)
= ωf + φ(k)− φ(k − 1) (13)

where ωf is defined in (3) and φ in (6) or (8). The disturbance compensation signal has the form

ud(k) = m(k) cos(α(k)) (14)

where the signalm is the estimate of the magnitudemd and the signal α is the estimate of the phase

αd. The signal ω is an estimate of ωd, where ωd is the instantaneous frequency of the disturbance

(13). The goal of the algorithm is to obtain a good tracking performance despite the influence of

the sinusoidal disturbance d(k).

The equations of the algorithm in Fig. 4 are"
x1

x2

#
=

"
1 0

0 sign(m)

#
G−1

"
y cos(α)

−y sin(α)

#
ud = m cos(α) (15)

where G is a 2× 2 matrix

G =
1

2

"
PR −PI

PI PR

#
(16)

and PR and PI are the real and imaginary parts of the plant frequency responses, evaluated at the

nominal frequency ωd, that is

PR = Re[P (e
jωd)], PI = Im[P (e

jωd)] (17)

The remaining signals are given in the z-domain by

m(z) =
gm(z − zm)

(z − 1)2 x1(z)

ω(z) =
gω

z − 1x2(z)

α(z) =
kα(z − zα)

z − 1 ω(z) (18)

The parameter kα is chosen so that, for constant frequency ω, the phase α is the integral of the
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frequency. Thus, kα = 1/(1 − zα). The significant difference between this algorithm and the

algorithm of [2], [5] is the presence of the sign(m) term, which was inserted in the algorithm to

allow the magnitude estimate to change sign. A pole was also added in the magnitude loop to

improve the tracking of the time-varying magnitude parameter.

3.2 Approximate Analysis and Parameter Selection

We propose an analysis of the system based on a series of approximations inspired from the theory

of phase-locked loops (it may be noted that the results can also be justified by the application

of averaging theory for discrete-time systems [5]). The analysis assumes that m, md, ω and ωd

vary slowly. The adaptive parameters m and ω can be made to vary slowly by choosing small

controller gains. The signal parameters md and ωd vary slowly for large relative difference between

m1 and m2, and for m1 = m2. In other cases, the approximation is valid, except around the

discontinuity points. However, the jumps in md are relatively small and the short duration glitches

in φ occur when the signal has small magnitude, so that the approximation is still useful. The

next step is to assume that the response of the plant to d and ud can be approximated by its

sinusoidal steady-state response. Thus, the outputs can be computed based on the frequency

response of the closed-loop system. Then, as is commonly in the theory of phase-locked loops, only

the low-frequency components resulting from multiplication of two sinusoidal signals are kept in

the equations. Finally, it is assumed that the instantaneous frequencies ω and ωd are close enough

that P (ejω) can be replaced by P (ejωd).

Substituting (4) and (14) into (12), we obtain

y ' PRmd cos(αd)− PImd sin(αd)

−PRm cos(α) + PIm sin(α) (19)

After discarding of the high-frequency terms sin(2α), cos(2α), sin(α + αd), and cos(α + αd), we

have

y cos(α) ' 1

2
PRmd cos(α− αd)−

1

2
PRm

+
1

2
PImd sin(α− αd)

−y sin(α) ' −1
2
PRmd sin(α− αd)−

1

2
PIm

+
1

2
PImd cos(α− αd) (20)

The discarding is justified both bymd andm varying sufficiently slowly and by the low-pass filtering
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Figure 5: Linear approximation of the frequency loop (top) and magnitude loop (bottom)

occurring in the algorithm. A vector form of (20) is given by"
y cos(α)

−y sin(α)

#
' G

"
md cos(α− αd)−m

−md sin(α− αd)

#
(21)

For small phase error, cos(α− αd) ' 1, sin(α− αd) ' α− αd, and we obtain"
x1

x2

#
'
"

md −m

sign(m)md(αd − α)

#
(22)

If the magnitude estimate tracks the magnitude signal well, sign(m)×md ' |md| and"
x1

x2

#
'
"

md −m

|md| (αd − α)

#
(23)

Therefore, the dynamics of the system become decoupled, and the decoupled linear approximations

of the frequency loop and of the magnitude loop are shown in Fig. 5. Note that G−1 in Fig. 4

cancels the phase shift induced by the closed-loop transfer function.

For the approximate frequency loop in Fig. 5 (top), the poles of the closed-loop system can be

placed by appropriate choice of the controller parameters. If zd,ω is some desired location in the

z plane for the closed-loop poles of the approximate adaptive system (inside the unit circle), the

following parameters will result in poles at that location

gω =
(1− zd,ω)

2

|md|
, zα =

1 + zd,ω
2

(24)

For the magnitude loop, if zd,m is the desired location of the poles, it is possible to place the two

closed-loop poles at zd,m by letting

gm = 2(1− zd,m), zm =
1 + zd,m
2

(25)
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To implement the algorithm, initial estimates of the magnitude and the frequency of the distur-

bance are needed to set the initial parameters gω and G−1, which may then be updated as functions

of m and ω, or be kept unchanged during the adaptation if the prior estimates are sufficiently pre-

cise. Since md is unknown and time-varying, a good solution consists in using an upper bound.

The root locus of the frequency loop in Fig. 5 shows that the system is stable for all parameters

md less than the upper bound. The response of the closed-loop system will simply be slower if the

disturbance is lower than the upper bound.

It should be noted that the algorithm cannot achieve zero error in the presence of two sinusoids,

even in the ideal case (where no measurement noise or plant uncertainty is added to the system).

This is due to the fact that the disturbance parameters are not constant. However, the error will be

small if the parameter variation is slow. The worst case occurs when m1 and m2 are close to each

other but not equal. Simulations show that, even in this worst case, the algorithm can suppress

most of the disturbance.

4 Active Noise Control Results

Experimental ANC Testbed: The algorithms for the rejection of two sinusoidal signals with
close frequencies were implemented on an experimental ANC system developed at the University of

Utah. The algorithm was coded in C language on a dSPACE DS1104 R&D controller board hosted

in a PC. The sampling rate was 8 kHz. A single bookshelf speaker, located about 2 ft away from

the error microphone, generated a signal constituting the noise source. The microphone signal was

passed through an antialiasing filter and sent to the dSPACE system through an A/D converter.

The controller output signal was passed through a D/A converter and a smoothing filter, then sent

to a noise cancelling speaker placed approximately 1.5 ft away from the microphone. Both the

speakers and the microphone were set in a horizontal plane at about 4 ft in height. For ANC, the

plant consists in the dynamics of sound propagation from the noise cancelling speaker to the mi-

crophone together with the response of data converters and filters. The adaptive algorithms of this

paper require knowledge of the frequency response of the plant P (ejω), which was estimated rapidly

and reliably in a training stage, using an empirical transfer function estimate (ETFE [8]) method

[11]. After the training, the estimated model P̂ (ejω) was fixed and used in the implementation of

the algorithms. The real and imaginary parts of the frequency response were obtained at 91 fre-

quencies, equally spaced between 50 Hz and 500 Hz, and the results were saved in a look-up table.

In real-time application, the real and imaginary parts of the frequency response at the estimated

frequency were obtained by linearly interpolating the look-up table. Fig. 6 shows the estimates of

the plant frequency response. The phase response mostly consists of a linear phase associated with

the delay due to sound propagation from the speaker to the microphone. The magnitude response

shows a significant number of peaks and valleys due to acoustic resonances (such as reflections on

the wall).
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Figure 6: Frequency response of the plant: magnitude response(left), phase response (left).

ANC with Parallel Scheme: We first consider ANC experiments with a parallel scheme,
with the goal of comparing the results to those obtained with the two-as-one algorithm proposed

in this paper. The parallel scheme (please refer to Fig. 1 and Fig. 5 of [5]) consists of two replica

of the disturbance controller in Fig. 4, but without the sign(m) term, and with only one pole in

the magnitude loop. The algorithm was not engaged until 1 s (corresponding to 8000 steps), so

that the amount of noise before compensation could be visualized.

In the first experiment, the disturbance had two sinusoidal components with frequencies at

0.02 × 2π (160 Hz) and 0.03 × 2π (240 Hz). The initial estimates were ω1,0 = 0.018 × 2π, ω2,0 =
0.032 × 2π, m1,0 = m2,0 = 0, and α1,0 = α2,0 = 0. The subscript index 1, 0 means the initial

estimate for the first disturbance compensator, and 2, 0 is for the second one. The desired closed-

loop poles were zd,ω = 0.996 and zd,m = 0.99. The results can be seen in Fig. 7. They show that

the algorithm, once engaged, reduced the noise significantly within 0.3 s. In contrast, Fig. 8 shows

an experiment for a disturbance with much closer frequencies at 0.02× 2π and 0.021× 2π. All the
parameters were the same as the experiment in Fig. 7, except for ω2,0 = 0.023×2π. The two figures
show that difficulties occur for closely-spaced frequencies, even though fast convergence rate had

been achieved for widely-spaced frequencies. Fig. 9 shows that the problem with closely-spaced

frequencies can be resolved by choosing smaller adaptation gains. The experiment is the same as

Fig. 8 except that the frequency loop poles are located at 0.999 instead of 0.996. However, the

convergence time is more than 3 seconds, instead of 0.3 seconds in Fig. 7. This is due to the smaller

adaptation gains that were needed to ensure convergence in the closely-spaced case.

ANC with Two-as-One Scheme: The ANC experiment with the two-as-one scheme was
performed for the disturbance in Fig. 9 with ω0 = 0.0225×2π, zd,ω = 0.996 and the other parameters
the same as the parallel scheme in Fig. 9. In this experiment, gω was set equal to (1−zd,ω)2/2. The
results are shown in Fig. 10, where one can see that the convergence time is less than 1 second,

instead of about 3 seconds for the parallel scheme (see Fig. 9). Note that the frequency estimate

converges to the average (fast) frequency ωf = 0.0205 × 2π, as expected. The drawback is that
there is a little more residual error in the microphone than the parallel scheme, an error associated
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Figure 7: The microphone signal and two frequency estimates: widely separated frequencies and
large adaptation gains case

Figure 8: The microphone signal and two frequency estimates: closely spaced frequencies and large
adaptation gain case

with the time variation of the signal parameters.

5 Conclusions

In this paper, an adaptive algorithm was presented for the rejection of disturbances having two

sinusoidal components with close frequencies. The algorithm, called two-as-one scheme, rejected the

disturbance as a single sinusoid with time-varying magnitude and phase. Theory was provided for

the representation of the two components as a single one and the limitations of such a representation

were discussed. A design method for the choice of the parameters of the disturbance rejection

Figure 9: The microphone signal and two frequency estimates: closely spaced frequencies and small
adaptation gains case
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Figure 10: The microphone signal and frequency estimate for closely spaced frequencies: two-as-one
scheme

algorithm was suggested, based on various approximations of the original system. The poles of

an approximate, linear time-invariant closed-loop could be specified to match some desired values.

Experimental results in active noise control showed that the two-as-one scheme had some advantages

in terms of convergence, and that the sign(m) term improved performance significantly in the cases

that motivated its use. The two-as-one representation may also prove useful in other applications. It

was found that, in some cases where well-known frequency estimation methods failed to discriminate

between two close frequencies, one of the estimates that was obtained was the average frequency

used in the two-as-one representation.
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