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Abstract

The paper presents an algorithm for the tuning of two input shaping methods.
These methods are designed to prevent the excitation of oscillatory modes in resonant
systems. The first input shaping method produces a control signal that is the linear
combination of delayed versions of the reference input. The resulting control system
is linear time-invariant but infinite-dimensional. Its transfer function has an infinite
number of complex zeros, with some of them placed exactly at the locations of the
resonant modes of the plant. In contrast, the second input shaping method is based
on a pole/zero cancellation of the resonant modes using a finite-dimensional controller.
For both input shaping methods, tuning is useful to optimize performance and an
algorithm is developed for the automatic adjustment of the controller parameters. Ex-
perimental results are presented for a system in which a motor is used to control the
position of a flexible arm. The step response of the plant is poorly damped, but is much
improved with input shaping. The control performance is found to be comparable for
both methods, and the tuning method is found to be simple and effective.
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1 Introduction

The problem of controlling systems with poorly damped modes, i.e., resonant systems, occurs

in many applications. Space structures, flexible aircraft wings, and robotic manipulators are

important examples. Another area of interest is in disk drives, where read/write heads

mounted at the end of small but flexible assemblies must be moved rapidly to distant tracks

while being subjected to minimum residual vibrations ([3]).

There are often strong limitations to the use of feedback to control resonant modes, due

to sensor noise and unmodelled dynamics. Whenever resonant modes remain after feedback

loops are closed, the problem is to design feedforward control algorithms so that the resonant

modes are not excited by the input signals applied to the system. Such methods have recently

received attention under the name of input shaping algorithms.

Several groups of researchers have studied input shaping methods where the control input

is a linear combination of delayed versions of the reference signal. The control signal can

be viewed as the convolution of the reference signal with a sequence of impulses whose

magnitudes and time separations are appropriately selected. The idea was proposed by [6],

who referred to it as posicast control. Nonadaptive and adaptive extensions of the algorithm

were presented by [5] and [8] (among others). Recently, such methods were tested in the

Space Shuttle as part of the Middeck Active Control Experiment (see [7]). The input shaping

methods using delayed inputs produce infinite-dimensional feedforward control systems with

an infinite number of complex zeros, some of them turning out to be coincident with the

plant poles (cf. [2]). A natural question to investigate is how such methods compare to

finite-dimensional control laws based on the same principle of pole/zero cancellation. In this

paper, we perform such a comparison. The first method is referred to as the delayed input

method, and the second method as the pole/zero cancellation method.

Experimental results indicate that both methods yield comparable performance. The

simpler case of second-order compensation is considered, although the plant under testing

is far more complex than a second-order system. Because both methods rely on pole/zero

cancellation for a poorly damped system, tuning of the control laws is necessary, an operation

which is difficult to achieve by trial and error. However, we show that a simple procedure

can be applied to perform tuning and that it is effective in practice.
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2 Input Shaping Using Delayed Inputs

We consider the problem of feedforward control system design, or input shaping, so that the

system is described, in the Laplace domain, by

y(s) = P (s)u(s),

u(s) = C(s)r(s), (1)

where r(s) is the reference input, u(s) is the control input, and y(s) is the plant output. C(s)

is the (feedforward) compensator transfer function, and P (s) is the plant transfer function.

Although not a restriction of the methods discussed in this paper, the plant is assumed to

be a second-order system with transfer function

P (s) =
ω2n

s2 + 2ζωn + ω2n
. (2)

For the systems under consideration, the damping factor ζ is small (much less than 1),

leading to poles close to the jω-axis and to highly oscillatory step responses.

A controller C(s) using delayed inputs is

C(s) = K1 +K2e
−sT . (3)

Because a second-order system is considered, only one delay is necessary. The reference input

r(t) is thus delayed by a time interval T and summed with the original input using scaling

factors K1 and K2 to produce the control signal u(t). To calculate the controller parameters,

we note that the response of system (2) to a double step input

u(t) = K1 step(t) +K2 step(t− T ) (4)

is given by

y(t) =
�
K1 +

K1ωn

b
e−at sin(bt− φ)

�
step(t)

+
�
K2 +

K2ωn

b
e−a(t−T ) sin(b(t− T )− φ)

�
step(t− T ). (5)

In (5), −a and b are the real and imaginary parts of the poles of the plant, equal to

a = ζωn, b = ωn
�
1− ζ2. (6)

The phase φ = tan−1( b
−a
). By properly adjusting the magnitude and the timing of the two

steps, it is possible to produce a response of the system to the second step which cancels

exactly the response to the first step. The result is a finite-time response precisely to the
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desired value. The condition for this occurrence is that y(t) = 1 for all t ≥ T , and is satisfied

if

K1 +K2 = 1, K1 = K2e
aT , bT = π. (7)

The transfer function of the control system (3) has an infinite number of zeros located at

s = − 1

T
ln
�
K1

K2

�
± jnπ

T
, (8)

where n = 1, 3, 5, ... For the values of K1, K2, and T that solve (7), the zeros are given by

s = −a± jnb. (9)

Note that, for n = 1, the locations of the complex zeros match exactly those of the plant

poles. The fact that the plant poles are cancelled by the controller zeros ensures that the

method works for arbitrary inputs, and not only for step inputs. However, the control law

introduces far more zeros than are necessary for that purpose.

3 Input Shaping Using Pole/Zero Cancellation

Since the principle behind the delayed input design is pole/zero cancellation, one may wonder

what success would be achieved through explicit cancellation of the two plant poles with a

finite-dimensional controller. To address this issue, we first define a desired transfer function,

called the reference model

M(s) =
ω2m

s2 + 2ζmωms+ ω2m
. (10)

Typically, ζm will be chosen greater than or equal to 0.707 to yield adequate damping. The

controller transfer function is set to

C(s) =M(s)P−1(s) =
ω2m
ω2n
.
s2 + 2ζωns+ ω

2
n

s2 + 2ζmωms+ ω2m
, (11)

so that the combined transfer function C(s)P (s) is equal toM(s). The poorly damped modes

of the plant are cancelled and replaced by those of the reference model in the cascade transfer

function. Generally, methods based on pole/zero cancellation are viewed unfavorably by

control engineers, because of sensitivity considerations. However, they can be made to work

effectively if combined with adaptive methods to provide the necessary tuning. Adaptive

feedforward control methods are attractive in cases where sensor accuracy and bandwidth

constraints severely limit the capabilities of feedback control. Such methods are sometimes

referred to as adaptive inverse control methods (see [9]). As observed in equation (11), the

principle of the control law is indeed that of plant inversion.
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The step response with the controller (11) is not a finite-time response, but rather con-

verges exponentially to the steady-state. The distinction is not significant from a practical

point of view. On the other hand, the design allows to select the speed of response of the

controlled response, in contrast to the previous method where the speed of response was

determined by the natural frequency of the original system.

4 Adaptation

Both methods require fine parameter tuning for optimal performance. In experiments, this

tuning was found to be difficult to perform by trial and error. [8] proposed a method for the

delayed input design, based on the calculation of the Fourier transform of the plant response.

The method was shown to be effective, although computationally demanding. We present

an alternative method which is simple and effective, based on a parameterization of the

pole/zero cancellation controller. First, the compensator transfer function (11) is rewritten

as

C(s) =M(s) + A(1−M(s)) +BsM(s), (12)

where

A =
ω2m
ω2n
, B = 2

ζωn − ζmωm
ω2n

. (13)

The motivation for (12) is that the expression is linear in the parameters A and B, so that

standard adaptive laws can be applied. We define the signals

x1(s) = (1−M(s))y(s),

x2(t) = sM(s)y(s),

x3(s) = M(s)u(s),

ym(s) = M(s)y(s). (14)

Note that the four signals can be reconstructed from the known signals u(t) and y(t). Because

the transfer function M(s) has relative degree two, sM(s) is strictly proper and can be

implemented without differentiation. Using (11) and (12), one finds that

(A(1−M(s)) +BsM(s))P (s) =M(s)−M(s)P (s). (15)

Applying both sides of (15) to the signal u, it follows that, in the time domain,

Ax1(t) +Bx2(t) = x3(t)− ym(t). (16)

The last equation can be used as the basis for the identification of the parameters A and

B, with a number of adaptive algorithms (see [4]). For identifiability, the signals x1(t) and
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x2(t) need to be linearly independent functions of time, a condition which will be satisfied for

most non-constant reference inputs (explicit persistency of excitation and frequency-domain

conditions for convergence can be derived using the techniques discussed in [4]).

The adaptive method may also be applied to the delayed input control method. Specifi-

cally, one estimates A and B using the same method, and then calculates

ωn =
ωm√
A
, ζωn =

Bωn
2

2
+ ζmωm. (17)

From those parameters,

T =
π

ωn
√
1− ζ2 ,

K1 =
eζωnT

1 + eζωnT
,

K2 = 1−K1. (18)

There is a difficulty with the implementation if the estimated parameters are such that

A < 0 or |ζ| ≥ 1. A simple fix to the problem consists in performing the calculations with

the estimate of A replaced by Amin > 0 if the estimate is less than Amin, and the estimate of

ζ replaced by ζmax.signζ, with 0 < ζmax < 1, if the magnitude of the estimate exceeds ζmax.

5 Experimental Results

Experiments were carried out using a testbed represented on Fig. 1. In the testbed, a flexible

beam composed of a thin metallic plate of approximately 40 cm long is attached to a brush

DC motor, model 1050-01 from Aerotech. An encoder provides position information about

the shaft of the motor and its pulses are decoded by a board from the Dynamics Research

Corporation, yielding a resolution of 2000 counts/rev. An accelerometer from Kistler is

attached at the end of the beam. However, measurements of the tip acceleration are not

used by the adaptive algorithm, which observes bending motions of the beam only through

the induced motions of the shaft. Accelerometer measurements are used later in this section

to demonstrate that damping of the shaft and of the tip motions are achieved simultaneously.

A linear current amplifier, model 4020-LS from Aerotech, ensures direct torque control.

A Pentium-based computer, programmed in C, is used for the computation of the control

algorithm. The real-time clock of the PC is re-programmed for a 500 Hz sampling rate.

Analog interfaces are provided by a Data Translation board DT-2801, with a D/A output

connected to the power amplifier, an A/D input used to read a potentiometer position,

and another A/D input used to read the accelerometer measurement. The potentiometer is
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Figure 1: Schematic of the Experimental Testbed

adjusted by the operator to specify a reference input. An inner control loop is provided in

the form of a proportional derivative control law, which is tuned for the DC motor without

the flexible beam.

Fig. 2 shows the step response of the system with the beam. The dashed curve is the

reference input and the solid curve is the angular response of the system, which exhibits

overshoot because of the inertia and flexibility of the beam.

The performance of the adaptive input shaping methods was evaluated with the operator

applying step inputs to the system through the potentiometer. Figs. 3 and 4 show the

results with the pole/zero cancellation method. The reference model was chosen to be

M(s) = 144
(s+12)2

. The computation of the estimates was performed using a stabilized recursive

least-squares algorithm with forgetting factor discussed in [1]. The initial values of the

parameters were A = 1 and B = 0. Those parameters are such that the transfer function

of the compensator is equal to the identity (i.e., there is no compensation when the system

starts). Fig. 3 shows the response of the system, with the solid line giving the angular

position of the shaft, the dashed line giving the reference input provided by the operator,

and the dot-dashed line being the control input (that is, the filtered reference input). The

responses show that the overshoot is reduced within the first step of the reference input, and

eliminated in subsequent steps, demonstrating the effective tuning of the control law. Fig.

4 shows the responses of the two adaptive parameters, which are found to converge rapidly.

The solid line is the parameter estimate for A, and the dashed line is the parameter estimate
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Figure 2: Step Response without Input Shaping
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Figure 3: Responses with Pole/Zero Cancellation
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Figure 4: Parameters with Pole/Zero Cancellation
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Figure 5: Responses with Delayed Input
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Figure 6: Parameters with Delayed Input

for B.

Fig. 5 shows the results for the delayed input method. The overshoot in the first step is

again smaller than for the uncompensated system, and subsequent step responses are much

improved, as for the pole/zero cancellation method. The parameters, shown in Fig. 6, are

obtained through the transformation of the A, B adaptive parameters. The solid line is the

estimated time delay T , in seconds, which converges from 0.6s to 0.25s. The dashed line is

the K1 parameter. There is a visible fluctuation in this parameter, although the variation is

not detrimental to performance.

Although the adaptive algorithm does not require the use of the accelerometer measure-

ment, the signal was used to evaluate the amount of oscillation at the end of the beam.

Because of the large noise affecting the measurement, the sensor data was filtered in Matlab

using the function filtfilt and a Butterworth filter of order 5 and bandwidth of 50 Hz. On

Fig. 7, the solid line is the filtered acceleration, in g’s. The dashed line is the desired acceler-

ation at the tip of the beam. For the pole/zero cancellation method used in the experiment,

the desired acceleration is the one that would be obtained with the reference model M(s)

and a rigid beam. It is equal, in the Laplace domain, to

ad(s) = (
L

g
)s2M(s)r(s) (19)
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Figure 7: Acceleration of the Tip of the Beam

where r(s) is the reference position of the motor (in rad), L is the distance between the

axis of the motor and the position of the accelerometer (38 cm in the testbed), and g is the

acceleration of gravity. Note that the transfer function s2M(s) is proper. For step inputs

provided by the operator, the desired acceleration is seen on Fig. 7 to have the form of

doublets, as expected. Contrary to previous experiments, the adaptation was postponed

for two seconds to show the behavior of the uncompensated system. During that time,

one finds that there is a considerable excess of acceleration in the response and a large

residual oscillation. After two seconds, adaptation of the parameters produces a significant

decrease in the transient oscillation. The response to the last step input does not exhibit

any undesired oscillation and is very close to the desired response. Overall, the adaptive

algorithm is successful in reducing the oscillation of the shaft as well as of the beam. This

situation is due in part to the fact that the motor is connected to the beam without a gear

box and with little friction, so that any beam oscillation is observed on the shaft of the

motor.
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6 Conclusions

Two methods were discussed for the control of resonant systems: the first was based on

delayed inputs, and the second was based on explicit pole/zero cancellation. Both methods

actually rely on pole/zero cancellation, so that a more intrinsic distinction was the structure

of the control law, in particular the infinite vs. finite dimensionality.

A method for the automatic tuning of the control laws was presented and was proved

to be effective experimentally. An interest of the adaptation method is its simplicity, which

makes it easily implementable in real-time. With adaptation, both control methods were

found to perform comparably. Although the delayed input method has received considerable

attention in the literature, it would seem that the approach based on straighforward pole/zero

cancellation is as effective. Both methods were found to be easy to code. The delayed

input method required slightly less computations and somewhat more storage (300 memory

locations for a 0.6 secs delay at a 500 Hz sampling rate).
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