
  

  

Abstract—In self-excited induction machines, a power 

generating mode of operation can often be attained only by pre-

charging at least one of the capacitors connected to the windings. 

The paper shows how a carefully derived state-space model with 

nonlinear magnetic characteristics enables the assessment of all 

possible operating regimes including their stability properties. In 

particular, the analysis reveals the possible existence of an 

unstable operating regime, which creates a barrier that must be 

overcome through pre-charged capacitors. In such case, the 

analytical results of the paper yield a simple formula that predicts 

the voltage needed to trigger self-excitation. Close to the 

boundary, voltages can be generated for extended periods of time 

before growing to a stable operating regime, or collapsing to zero. 

Experimental results validate the results of the paper on the 

transient properties of self-excited induction generators. 

 
Index Terms—induction generator, self-excitation, nonlinear 

dynamic model, renewable energy, electric machines. 

I. INTRODUCTION 

nduction generators  have found applications in renewable 

energy (wind and hydro), due to their ability to generate 

electric power at frequencies that are not exactly tied to their 

frequency of rotation. Although wound-rotor induction 

machines are often used, squirrel-cage generators have 

significant benefits in terms of cost and robustness. They can 

generate power off-grid as self-excited induction generators 

(SEIG’s), with capacitors placed in parallel with the loads.  

Steady-state operation of the SEIG can be analyzed using 

the steady-state equivalent circuit of the induction generator, 

where the total loop impedance [1]-[4] or the total node 

admittance at the magnetizing branch [5]-[7] is equated to 

zero. Such condition is necessary because the zero state is 

always a possible steady-state of the system, and power 

generation is only possible if another, non-zero periodic 

steady-state exists in the nonlinear magnetic saturation region. 

The transient response of the SEIG is more complicated to 

analyze. A standard approach uses the generalized model of 

the induction machine [8]-[11] to search for parameters such 

that the system of differential equations describing the SEIG 

becomes unstable around the zero state. We refer to this 

condition as spontaneous self-excitation. In this case, the 
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generator voltages diverge from the zero state exponentially, 

starting from arbitrarily small initial conditions, and converge 

to sinusoidal voltages with magnitude and frequency 

depending on the system parameters. Analytic conditions 

replacing the extensive numerical computations of the 

eigenvalues of the 6x6 matrix associated with the linearized 

model of the SEIG were derived in [12].  

Experiments, however, show that a non-zero operating 

regime can exist even when the zero state is stable and is often 

the most common mode of operation of the SEIG. In this case, 

the induction generator needs to be “kicked” in order to 

transfer operation to the non-zero steady-state. Typically, this 

is achieved by starting the machine with pre-charged 

capacitors at sufficiently high voltages, a condition that we 

refer to as triggered self-excitation. 

The available theory of self-excitation leaves open many 

questions related to triggered self-excitation. In particular, how 

many steady-states are possible? How does one know whether 

a computed steady-state is stable? How does one explain the 

need for pre-charged capacitors, or compute the capacitor 

voltage needed to trigger self-excitation? 

To provide answers to these questions, the paper starts by 

developing a state-space model of the induction generator with 

nonlinear magnetic characteristics. Consistent with some of the 

research on SEIG [13]-[15], the model takes into account the 

non-linearity of the magnetizing inductance not only in the 

high current region (magnetic saturation), but also in the low 

current region. As opposed to many studies of the SEIG which 

only incorporate magnetic nonlinearities in the steady-state 

model, the paper carefully integrates the nonlinearity in the 

state-space model using the approach of [16], [17]. This 

approach enables the analysis of the stability properties of the 

operating points. In particular, it is found that a non-zero, 

unstable operating steady-state of the SEIG is possible. The 

unstable steady-state creates the barrier that must be overcome 

by triggered self-excitation. With this understanding, the paper 

shows that it is possible to compute simply and precisely the 

value of the capacitor voltage required.  

The paper includes results presented in conferences 

[12][15][18][19], while providing a unified and concise 

presentation of the new contributions to the theory of self-

excited induction generators. For clarity of presentation, all the 

theoretical results are first presented, and are then followed by 

the experimental results validating the analysis and illustrating 

interesting characteristics of the SEIG. Contributions of the 

paper include an analysis of the number of possible operating 

steady-states and of their stability, a justification of the 
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possible need for triggered self-excitation based on the 

existence of an unstable operating steady-state, an explicit 

formula predicting the continuous dependency of the minimum 

speed on the initial capacitor voltage, and an explanation of 

the slow growth/collapse of voltages observed under certain 

conditions. 

II. ANALYTICAL RESULTS 

A. Mathematical Model of an Induction Generator 

The standard model of a two-phase induction generator in an 

arbitrary coordinate frame consists of the vector differential 

equations 

S
S S S e S

d
U R i J

dt
ω

Ψ
= − − Ψ , 

0 1

1 0
J

− 
=  
 
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 ( )R
R R p e R

d
R i n J

dt
ω ω

Ψ
= − + − Ψ , (1) 

where [ ]
T

S SF SG
Ψ = Ψ Ψ , [ ]

T

R RF RG
Ψ = Ψ Ψ are vectors of 

stator and rotor total flux linkages, [ ]
T

S SF SG
i i i= , 

[ ]
T

R RF RG
i i i=  are vectors of stator and rotor 

currents, [ ]
T

S SF SG
U U U=  is a vector of stator voltages, RS and 

RR are the stator and rotor resistances, np is the number of pole 

pairs, ω is the angular velocity of the rotor, and ωe is the 

angular velocity of the arbitrary coordinate frame. Resistive 

loads are connected in parallel with capacitors to the stator 

windings, resulting in the additional vector equation 

 S
S L S e S

dU
C i Y U CJU

dt
ω− = + + , (2) 

where YL is the admittance of the resistive load and C  is the 

value of the capacitor (both added to each phase).  

The F and G indices denote the components associated with 

the rotating coordinate frame. For the stator currents, 

 
cos( ) sin( )

sin( ) cos( )

SF e e SA

SG e e SB

i i

i i

θ θ

θ θ

    
=    

−    
, (3) 

where ,
SA SB

i i are the currents in the windings A and B and θe is 

the angle of the coordinate frame with respect to the A 

winding. A similar expression applies for the voltages. For the 

rotor variables, θe is replaced by θe–nP θ, where θ is the 

angular position of the rotor. The angular velocities are given 

by ωe=dθe/dt and ω=dθ/dt. In the case of a three-phase 

generator, a three-phase to two-phase transformation should be 

used to apply the results. 

The magnetizing current of the induction generator is the 

sum of the stator current and the rotor current. The amplitude 

of the magnetizing current is 

 
2 2

M MF MG
i i i= + ,

MF SF RF
i i i= + ,

MG SG RG
i i i= + . (4) 

Following the approach of [16], [17], the stator and rotor 

flux linkages are assumed to be of the form 

 ( )
S S S M S R

L i L i iσΨ = + + , ( )
R R R M S R

L i L i iσΨ = + + , (5) 

where LσS and LσR are the stator and rotor leakage inductances, 

and LM is the stator-rotor mutual inductance, also called 

magnetizing inductance. Saturation of the leakage inductances 

is neglected on the basis that they constitute a small fraction of 

the overall inductances, and the magnetizing inductance is 

solely considered a nonlinear function of the magnetizing 

current with 

 /
M M M

L i= Ψ , (6) 

where ΨM denotes the amplitude of the main magnetic flux 

linkage. We have 

 
( )M MM M

M M M

d idL L L

di di i

Ψ −
= = , (7) 

where we defined 

 / /
M M M M M M

L d di L i dL di= Ψ = + , (8) 

as the dynamic magnetizing inductance. The magnetizing 

inductance and the dynamic magnetizing inductance are equal 

for a linear magnetic circuit, but not otherwise.  

The time-derivative of the magnetizing current amplitude is 

 
2 2

( )1

2

MF MG MG MGM MF MF

M M M

d i i i didi i di

dt i dt i dt i dt

+
= = + , (9) 

so that the time-derivative of the magnetizing inductance 

becomes 

 
2

( ) MGM M M M MF
MF MG

M M

didL dL di L L di
i i

dt di dt i dt dt

−  
= = + 

 
. (10) 

Using these expressions in the time-derivatives of the stator 

and rotor flux linkages, one obtains 

 ( ) ( )S S R M

S M M S R

d di di dL
L L L i i

dt dt dt dt
σ

Ψ
= + + + + ,  

 ( ) ( )SR R M

R M M S R

did di dL
L L L i i

dt dt dt dt
σ

Ψ
= + + + + , (11) 

and then, the model of the induction generator in the form of 

the implicit nonlinear differential matrix equation 

 EX FX=� , (12) 

where 
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and 
2 2( ) /

MF M M MF M
L L L L i i= + − , 2 2( ) /M G M M M G ML L L L i i= + − , 

 2( ) /
MFG M MF MG M

L L L i i i= − . (14) 

Note that E and F are nonlinear functions of X through LM, 

LMF, LMG, and LMFG. Equation (12) can be transformed into the 

standard explicit form 

 X AX=� , (15) 

by defining 1
A E F

−= . In this form, standard numerical 

integration methods can be used. However, the system remains 

a nonlinear system, since A is a function of X.  

An interesting alternative representation of the model can 

be obtained by using the following equalities 

( ) SF SG RGRF
MF M MFG

di di didi
L L L

dt dt dt dt

   
− + + +   

   
 

      ( ) MF M
M

M

i di
L L

i dt
= − , (16) 

( ) SG RG SF RF
MG M MFG

di di di di
L L L

dt dt dt dt

   
− + + +   

   
 

     ( ) MG M
M

M

i di
L L

i dt
= − . (17) 

Substituting (16) and (17) into (12) and (13) gives the matrix 

equation 

 M M
L M

M

L L di
E X FX X

i dt

−
= −� , (18) 

where [ ]0 0
T

M MF MF MG MG
X i i i i=  and 
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0 0 0 0 0

0 0 0 0

0 0 0 0

S M M

M R M
L

S M M

M R M

C

L L L

L L L
E

C

L L L

L L L

σ

σ

σ

σ

− 
 +
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 =

− 
+ 

 + 

. (19) 

Note that 

 
L

E X FX=�  (20) 

is the model of the induction generator with linear magnetics, 

which is indeed verified since 
M

L L= in that case. However, 

the second term of (18) also drops out if diM/dt=0. In other 

words, if a solution of (20) is obtained for which the 

magnetizing current is constant, it is also a solution of the 

nonlinear system (18). This justifies the use of the linear model 

(19)-(20) with LM a function of iM to obtain steady-state 

responses, but one should remember that the general dynamic 

model is more complicated. 

B. Determination of Possible Operating Modes 

The determination of an operating mode can be performed by 

finding a periodic steady-state solution to the induction 

generator model in the stator frame of reference (ωe=0). 

Alternatively, one can use the (equivalent) approach that 

consists in finding a frequency *

e
ω  such that a constant 

solution exists in a rotating frame of reference. With either 

(12) or (18), the condition for such a constant solution is that 

there exists a vector *
X  such that 

 * * 0F X = , (21) 

where F
*
 is the function F evaluated at the equilibrium X

*
 and 

at the frequency *

e
ω  to be determined. The matrix F

* 
has the 

special structure 

 
* *

* 1 2
* *

2 1

F F
F

F F

 −
=  
 

, (22) 

so that, for X
*
 partitioned similarly as 

* * *

1 2

T

X X X =   , 

equation (21) becomes 

 * * * * * * * *

1 1 2 2 2 1 1 2
0, 0.F X F X F X F X− = + =  (23) 

The existence of a nonzero vector X
*
 such that (21) is 

satisfied is thus equivalent to the existence of a nonzero 

complex vector * * *

1 2
Z X jX= + such that 

 ( )* * *

1 2 0F jF Z+ = , (24) 

which occurs if and only if * *

1 2det( ) 0F jF+ = . Using (13), 

( )

*

* * * *

1 2
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1

1 ( )

0

L e

S e S M

p e M

Y jC

F jF R j L L

j n L

σ

ω

ω

ω ω

 +


+ = − − +
 −
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0

( )

e M

R p e R M

j L

R j n L Lσ

ω

ω ω




− 
− + − + 

, (25) 

so that the real and imaginary parts of * *

1 2det( ) 0F jF+ =  are 

equal to 

 
( )( )
( )( )

* * *

1 2 1 2

* * *

1 2 3 4

Re det 0,

Im det 0,

M

M

F jF c L c

F jF c L c

+ = + =

+ = + =
 (26) 

where c1, c2, c3 and c4  are given by  
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( )

( ) ( )

( ) ( )( )

( ) ( )

*2 * *

1
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2

* *
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3

* *

4

* *2

,

1

,

1 ,

.

e R e e p L S L R S

R L S e R S

e e p R L S S

e L R e p e S R L S

e S R e L R S

e p e S R L S R R

c CR n Y L Y L CR

c R Y R CR L

n L Y L CR

c Y R n C L L Y R

c CR R Y R L
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σ σ

σ
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σ σ

σ
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ω
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ω ω ω
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− − +
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= +

− − − −

(27) 

The two unknowns that must be determined using the two 

conditions in (26) are the frequency *

e
ω  and the magnetizing 

inductance *

M
L  (which, in turn, gives the magnetizing current 

*

M
i  corresponding to the steady-state). One way to solve the 

equations is to eliminate *

M
L   from (26), which results in a 5

th
 

order polynomial equation in *

e
ω   



  

 

( ) ( )

( )(
) (

)

( ) ( )( )

2 2 2 *5 2 2 2 *4

2
2 2 2 2 2 2

2 2 2 2 2 *3 2 2

2 2 2 2 2 *2

2
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σ σ σ σ

σ σ
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σ
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ω
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ω
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+ − +
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− ( )
2

1 0.p R L Sn R Y Rω + =

(28) 

Although up to five solutions are possible, computations with 

realistic motor parameters typically yield at most one real 

positive solution *

e
ω . Substitution of *

e
ω  in either equation of 

(26) then gives *

M
L . One or more values of  *

M
i  may be 

possible for a given *

M
L , depending on the shape of the 

magnetizing curve. 

It remains to characterize the solutions in terms of X
*
, so 

that stability of the equilibrium points can be assessed. With 
* * *

S SF SG
U U jU= + , * * *

S SF SG
i i ji= + , * * *

R RF RG
i i ji= + , and 

* * * *
, ,

T

S S RZ U i i =   , the first two rows of (24)-(25) give 

( )* * *

S L e S
i Y jC Uω= − + , 

 
( ) ( )( )* * *

* *

* *

1 ( )L e S e S M

R S

e M

Y jC R j L L
i U

j L

σω ω

ω

+ + + +
= . (29) 

The third row of (24) is linearly dependent on the first two 

rows, due to * *

1 2det( ) 0F jF+ = , and does not give any 

additional condition. On the other hand, the fact that 
* * *

M S Ri i i= + implies, using (29), that  

 
* * *

*

*2 2 *2 2
(1 ) ( )

e M M
S

L S e s e L s S

L i
U

Y R C L Y L CRσ σ

ω

ω ω
=

+ − + +
. (30) 

An equilibrium vector X
*
 is characterized by a voltage *

S
U  of 

arbitrary angle and magnitude given by (30), and currents *

S
i , 

*

R
i  given by (29). There are an infinite number of equilibrium 

states, which are all identical except for a shift in angle of the 

generated voltages and currents (the relative phases remain the 

same). 

C. Stability of Operating Modes 

It would be tempting to assume that the stability of the system 

linearized around an equilibrium point X
* 

is determined by the 

eigenvalues of the matrix A
*
=(E

*
)

-1
F

*
. However, this is not 

correct if * 0X ≠ . The stability of the nonlinear system in the 

vicinity of *
X  can be determined by considering small 

perturbations Xδ with *
X X Xδ= + . For such perturbations 

around the equilibrium, a first-order description is  

( )
*

* *E
E X X X

X
δ δ

 ∂ 
+ +   ∂  

� �  

 ( )
*

* *
,

F
F X X X

X
δ δ

 ∂ 
= + +   ∂  

 (31) 

where *
E  and *

F  are the values of the matrices E and F at the 

equilibrium and 

 

**

1

n

k

k k

E E
X X

X X
δ δ

=

 ∂ ∂ 
=   ∂ ∂   
∑ . (32) 

The term in the second bracket is the matrix obtained by taking 

the partial derivative of the matrix E with respect to the k
th

 

element of X and evaluating the elements of the resulting 

matrix at the equilibrium values. The summation is performed 

over the n elements of Xδ . A similar definition applies for F. 

Using the fact that * 0X =� and * * 0F X = , and neglecting 

second-order terms, one obtains the linearized description of 

the system around the equilibrium 

 

*

* * *F
E X F X X X

X
δ δ δ

∂ 
= +  ∂ 

� . (33) 

Equation (33) can be put in the form 

 ( )* * *
E X F F Xδ δ δ= +� , (34) 

where the (i,j)
th

 element of  the matrix *
Fδ  is given by 

 

*
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n
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X
δ

=

 ∂
=  

∂  
∑ . (35) 

Thus, the equilibrium vector X
*
 is stable if and only if all the 

eigenvalues of the matrix 

 ( ) ( )
1

* * * *
A E F Fδ

−

= +  (36) 

are in the open left-half plane. 

For the induction generator, E
*
 and F

*
 are obtained by 

replacing the inductances LM, LMF, LMG, and LMFG in (13) by 

the equilibrium values and by replacing 
e

ω  by *

e
ω  . δF

* 
is 

given by 
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where 
*

*
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i
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L
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i
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, 

*

*
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L
i

i
δ

 ∂
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*

*

5

M

MG

SF

L
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i
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*

*

6

M

MG
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*

*

7

M

MF

SG

L
i

i
δ

 ∂
=  

∂ 
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*

*

8

M
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L
i

i
δ

 ∂
=  
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The terms in parentheses can be determined using 

 

* ** *
* * *

* *

M M M M M MF

SF M SF RF M M

L dL i L L L i

i di i i i i

      ∂ ∂ ∂ −
= = =      

∂ ∂ ∂      
, (39) 

and similarly for iSG, iRG.  

Note that an arbitrary equilibrium vector can be 

transformed through a shift of angle in the FG reference frame 

into an equilibrium vector with * *=
MF M

i i , * 0=
MG

i .  In this 

case, E
*
 and F

*
 are obtained by setting 

* *

MF
L L= , 

* *

MG M
L L= , 

* 0
MFG

L =  while, in (37), 

 * *

1 2 M
L Lδ δ= = − , 3 4 5 6 7 8 0δ δ δ δ δ δ= = = = = = . (40) 

Because all the equilibrium vectors X
* 

associated with some 
*

e
ω  and *

M
i  can be transformed into the same equilibrium 

vector by a rotation of the reference axes, the systems 

linearized around all equilibrium vectors must have the same 

eigenvalues. For this reason, we will talk about “the” 

equilibrium state associated with a given  *

e
ω  and *

M
i , even 

though there are technically infinitely many (all equivalent) 

such equilibrium states. 

D. General Characteristics of Operating Modes 

Fig. 1 shows the general shape of a magnetizing inductance as 

a function of the magnetizing current. The curve includes an 

ascending part rising from LMO to LMAX, a (more or less) flat 

part at LMAX corresponding to a linear magnetic regime, and a 

descending part corresponding to magnetic saturation. Often, 

the ascending part of the curve is neglected (LMO=LMAX). 

However, several works [13]-[15] have shown the need to 

represent this nonlinearity at low currents to accurately model 

self-excitation in induction generators.  

 
Fig. 1.  Magnetization curve and three possible cases of steady-state values. 

 

Three cases are shown on the figure: 

• Case 1: with
*

M MAX
L L> , the generator has only one 

equilibrium state corresponding to 
* 0
M

i = . 

• Case 2: with 
*

0MAX M M
L L L> > , the generator has three 

equilibrium states: 
* 0
M

i = , 
*

M
i

+
 corresponding to the ascending 

part of the curve, and  
*

M
i

−
 corresponding to the descending 

part of the curve. 

• Case 3: with 
*

0M M
L L> , the generator has two equilibrium 

states 
* 0
M

i =  and  
*

M
i

−
 corresponding to the descending part of 

the curve. 

Computations and experimental results to be presented 

hereafter have shown the following properties: 

• Case 1: the equilibrium corresponding to 
* 0
M

i =  is stable. 

• Case 2: the equilibrium corresponding to 
* 0
M

i =  and 
*

M
i

−
 are 

stable. The equilibrium corresponding to 
*

M
i

+
 is unstable.  

• Case 3: the equilibrium state corresponding to 
* 0
M

i =  is 

unstable and the equilibrium corresponding to 
*

M
i

−
 is stable.  

In case 1, a power generating mode of self-excitation is not 

possible. In case 3, a power generating mode of self-excitation 

is possible and will naturally develop, due to the instability of 

the zero state. We refer to this condition as spontaneous self-

excitation. In case 2, two power generating modes exist. The 

one associated with the lower magnetizing current is unstable, 

and cannot be sustained indefinitely (although experiments 

show that it may be for some extended periods of time). If the 

unstable state is reached, small perturbations will either make 

the magnetizing current grow, resulting in the equilibrium state 

with higher magnetizing current to be reached, or to decay, 

resulting in a collapse of the voltage. Since, the zero state is 

stable: the generator will not naturally leave this state.  

Simulations and experiments have shown that, to reach the 

stable power generating mode, the magnetizing current must 

be brought to a value greater than or equal to 
*

M
i

+
. This 

condition can be achieved, for example, by applying 

sufficiently large initial voltages to the capacitors. We refer to 

this condition as triggered self-excitation. Sometimes, it is also 

possible for residual magnetization to produce the result, but it 

is not a triggering mechanism that one can reliably depend 

upon. 

E. Boundaries of Self-Excitation 

As Fig. 1 shows, critical changes occur when 
*

M MAX
L L=  and 

*

0M M
L L= . For a given 

*

M
L , 

*

e p
nω ω−  can be eliminated from 

the two equations of (26), yielding the quartic equation in *

e
ω  

given by 

 *4 *2

1 2 3
0

e e
f f fω ω+ + = , (41) 

where 
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f L Y R

= − >

= − + − −

= + >

 (42) 

with 
* *

S S M
L L Lσ= + , 

* *

R R M
L L Lσ= + . The quartic equation is a 

quadratic equation in *2

e
ω , which has a real positive solution if 

and only if 

 
2 1 32f f f< − . (43) 

If (43) is satisfied, there are two real positive solutions to 

the quadratic equation, and we denote the two square roots of 



  

these solutions 
*

,mine
ω  and 

*

,maxe
ω . These are the solutions of the 

quartic equation. The velocity ω  can be determined from *

e
ω  

using either equation of (26). Specifically, the first equation 

gives 

 
( )( )

*2 *
*

* * * *2 *

1 L S R e R S R

e

P e L S R M S R

Y R R CR L R

n Y L L L R L C

ω
ω ω

ω

 − + = −
 − +
 

. (44) 

From 
*

,mine
ω  and 

*

,maxe
ω , velocities 

min
ω  and 

max
ω  can be 

determined in this manner. The velocities constitute the 

boundaries where self-excitation is possible. If the procedure 

is applied with 
*

M MAX
L L= , the boundaries of self-excitation 

(which may require triggering to be reached) are obtained. If 
*

0M M
L L=  is used, the boundaries of spontaneous self-

excitation are obtained. 

F. Triggered Self-Excitation 

An unstable equilibrium state creates a barrier that can be 

overcome by reaching a magnetizing current greater than 
*

M
i

+
, 

the magnetizing current associated with the unstable 

equilibrium state. In practice, the magnetizing current cannot 

be directly controlled, but a sufficiently large initial capacitor 

voltage on one of the phases can transfer the zero state to a 

state with the required magnetizing current, thus triggering 

self-excitation. Although the exact relationship between the 

initial capacitor voltage and the magnetizing current depends 

on the highly nonlinear dynamics of the system, a simple 

approximation based on the linear system has been found to 

give surprisingly accurate results. 

Specifically, Fig. 2 shows the results of a simulation of the 

system linearized around 0X =  (with the matrix ( )
c

A s  

describing the system, as shown below), and with zero initial 

conditions, except for one of the capacitor voltages. Notice the 

short period of time on the time axis, which is much shorter 

than the time associated with the build-up or collapse of self-

excitation. The response of the magnetizing current is shown 

for three speeds. The curve in the middle is the response at the 

critical speed where the system has a pole at s=0. Above and 

below are the responses at higher and lower speeds, 

respectively, which correspond to systems with unstable and 

stable poles.  
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Fig. 2. Growth of the magnetizing current in three cases 

As can be seen on the figure, the magnetizing current 

reaches a peak value at about 2.5ms and then, what we will 

call a temporary steady-state value at about 10ms. The 

currents 
M

i  at 10ms are nearly identical, and the temporary 

steady-state value is the actual steady-state value for the 

system with a pole at s=0.  Of course, the currents at the initial 

peak value of the response are also nearly identical, and it 

would be intuitive to assume that this value would be the 

critical factor in determining the success in triggering self-

excitation. However, it was found that a more accurate 

predictor was whether the temporary steady-state value was 

greater than 
*

M
i

+
.  

It remains to determine how the initial capacitor voltage 

relates to the temporary steady-state current. Linearizing the 

system around the zero state, 
* 0Fδ =  and X Xδ = . 

Applying the Laplace transform, (34) becomes  

 ( )* *

0( )sE F X s X− = , (45) 

where, with some abuse of notation, ( )X s  is the Laplace 

transform of ( )X t  and 0X  is the initial condition of X . 

Analysis can be simplified by defining a complex vector 
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c SF SG

c c SF SG

RF RGc

X U jU

X X i ji

i jiX

  + 
   = = +
   +   

. (46) 

Reorganizing the equations, (45) becomes  
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c
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where 
*

*

0

*

0 0

( ) 1

( ) 1 ( )
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e L

C e S S

e M p M

s j C Y
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s j L

s j L R jn L

ω

ω ω


+ 
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, 

and
,1
(0)

c
X  denotes the initial value of 

,1c
X , while 

0 0S M S
L L Lσ= +  and 

0 0R M R
L L Lσ= + . ,1(0)c CX U= , the 

initial voltage applied to the capacitor if only one capacitor is 

pre-charged (or the magnitude of the complex vector 

otherwise), and iM(t)=|Xc,2(t)+Xc,3(t)|. 

Solving the system of equations (47) gives 

 

*

0 0,1,2

*
,3 0 0

( )(0)

(( ) )det( ( ))

e R R p Rcc

c e M p MC

s j L R jn LCXX
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ω ω

ω ω
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, (48) 

and therefore 
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c
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C

e R M R p R M
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X X
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 (49) 

Generally, two of the three roots of det(AC(s)) are stable. 

Depending on whether the third root of det(AC(s))=0 is stable, 



  

unstable, or zero, the time function iM(t) decays, grows, or 

converges to a steady-state as shown in Fig. 2.  When there is a 

root at s=0, ( )det ( )cA s  can be factored as 

 det( ( )) ( )
C

A s sp s=  (50) 

and the final value theorem allows us to conclude that the 

steady-state value is given by 
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 (51) 

The denominator p(0) can be determined from 
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where  
2

0 0 0 0
( )

S R M
a C L L L= − ,  

2

1 0 0 0 0 0
( ) ( )

L S R M S R R S
a Y L L L C L R L R= − + + , 

2 0 0 0
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L S R R S S R R
a Y L R L R CR R L= + + + , 

2

3 0 0 0 0
( )

L S R M S R
a Y L L L CR L= − + . 

As a result, the steady-state value of the magnetizing 

current is 

 ( ) ( )*
0 0lim ( ) ,
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c
M R e p R M
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p
ω ω
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and the value of the capacitor voltage needed to reach a 

magnetizing current equal to 
*

M
i

+
 is 

*2 * 2 * 2*
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2 * 2 2
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 (54) 

This is the capacitor voltage needed to trigger self-excitation. 

Although the result was obtained using several approximations 

of questionable validity, (54) gives a value that can easily be 

computed, is remarkably accurate in practice, and shows the 

impact of various parameters on the capacitor voltage needed 

to trigger self-excitation. 

III. EXPERIMENTAL RESULTS 

A. Operating Modes 

Experimental results were obtained for a small two-phase 

induction motor (Bodine KCI-22A1, with rated values 7.5W, 

24V, 60 Hz, and 3350 rpm). The parameters and analytical 

approximations of LM=f(iM) and L=f(iM) were determined in 

[15] and are summarized in Appendix. The induction motor 

was tested as a generator by coupling it to a DC 

motor/tachometer under closed-loop velocity control. A 

DS1104 data acquisition and control board from dSPACE was 

used to implement the PID control law for the DC motor and 

to collect the data.  

Fig. 3 shows the frequency of generation * / 2=
e

f ω π  as a 

function of capacitance for different speeds, as well as for 

different loading conditions, all obtained using the theoretical 

analysis and compared to experimental data. The computed 

steady-state voltage amplitude as a function of the capacitance 

and velocity was also found to be in good agreement with 

experimental results. When two values of  *

M
i  were possible, 

the one corresponding to the descending part of the 

magnetizing curve was used for computation. 
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Fig. 3.  Steady-state frequency as a function of capacitance for different 

velocities and loading conditions. 

 

B. Stability of Operating Modes 

The eigenvalues of the matrix *
A  in (36) (with the specific 

choice of (40)) were computed in the velocity range from 

424.5 rad/s to 925.1 rad/s, where *

M
L  did not exceed 

MAX
L , 

and for the unloaded generator with 30.5 µF capacitor. The 6 

eigenvalues always had the following characteristics: four 

were a pair of complex conjugates with negative real parts, one 

had a non-zero real value and one had a zero value. The zero 

eigenvalue is associated with the infinite number of 

equilibrium states and does not affect stability in a substantial 

way: there is no mechanism to lock the phase of the voltages 

and currents to an arbitrary time reference as in a grid-

connected generator. A drift in phase also does not cause any 

problem. It was found that the complex eigenvalues did not 

change greatly with velocity, and were well into the stable side 

of the plane. The main factor influencing the stability was 

therefore the real eigenvalue (referred to as #5), which was 

closer to the imaginary axis. 
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Fig. 4.  Eigenvalue 5 and magnetizing current as function of velocity for the 

descending and the ascending parts of the magnetizing inductance curve. 

 

Fig. 4 shows the possible solutions *

M
i  and their associated 

eigenvalue 5 over a range of speeds. One finds that eigenvalue 

5 is stable for 
*

M
i

−
 (descending part) and for all velocities. 

Eigenvalue 5 for the ascending part only exists in a smaller 

range and is always unstable. Overall, one finds that there are 

five speed regions with boundaries labeled ω1, ω2, ω3, and ω4. 

Referring to the discussion of section II.D, the velocity ranges 

correspond to the following cases: 

• ω <ω1 and ω >ω4 correspond to case 1: there is no stable 

steady-state magnetizing current other than zero. 

• ω1<ω <ω2 and ω3<ω <ω4 correspond to case 2: there is a 

large stable magnetizing current, but also a smaller unstable 

magnetizing current. Self-excitation must be triggered to reach 

a magnetizing current greater than or equal to 
*

M
i

+
. 

• ω2<ω <ω3 corresponds to case 3: there is a single stable 

magnetizing current. Spontaneous self-excitation will occur in 

this range due to small initial conditions such as residual flux. 

Note that the speed range of Fig.4 extends well beyond the 

rated speed of the motor. Operating limits may restrict 

generation to the leftmost side of the range. For some values of 

capacitance and load, cases were found where the velocity 

range from ω2 to ω3 did not exist. In such cases, only triggered 

self-excitation is possible. 

C. Boundaries of Self-Excitation 

The boundaries of self-excitation were computed for the 

generator with no load, 700Ω, and 500Ω loads using the 

procedure of section II.E with 
*

M MAX
L L= . The experimental 

validation of these boundaries was performed by determining 

collapse regions. Specifically, the generator was spun at a high 

velocity and an initial voltage was applied to the capacitor in 

one of the phases, triggering self-excitation. Then, the velocity 

was reduced until the voltage collapsed. The result defined the 

experimental boundary for self-excitation. The results are 

plotted in Fig. 5, which shows good agreement between the 

self-excitation boundaries and the experimental collapse 

boundaries. 
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Fig. 5.  Self-excitation boundaries. 

 

Spontaneous self-excitation was experimentally observed in 

the velocity range from 620 to 670 rad/s for capacitors 30.5, 

22.1 and 15µF and no load. Triggered self-excitation was 

observed at much lower speeds, closer to the normal operating 

speed of the motor. In the experiments of triggered self-

excitation, various values of capacitors were tested by placing 

capacitors in parallel. For practical reasons, only one of the 

capacitors in one of the windings, C1 with a value of 10µF, 

was pre-charged with some voltage UC1. At the initial time, the 

capacitor was either connected to the winding, or connected in 

parallel with the other capacitors already connected to the 

winding. The charge associated with the voltage UC1 was 

immediately redistributed to all the capacitors of the winding, 

so that the equivalent voltage applied to the capacitors was 

UC=UC1 C1/C, where C was the total capacitor value of each 

phase.  

Fig. 6 shows the experimental boundaries for triggered self-

excitation with different UC1 and loads. The computed 

boundaries for self-excitation and spontaneous self-excitation 

are shown on the same graph. Generally, one would expect 

that the triggered self-excitation boundaries would be 

delimited by the boundary of spontaneous self-excitation 

(associated with a zero voltage, which means no triggering) 

and the general self-excitation boundary (associated with the 

value of 
1C

U  needed to produce the magnetizing current 

corresponding to LMAX). The data is consistent with this 

assumption (curves 2 to 5 are between curves 1 and 6, and 

curves 8 to 10 are between curves 7 and 11). 
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Fig. 6.  Computed and experimental self-excitation boundaries. 
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Fig. 7.  Velocity needed to trigger self-excitation as a function of the initial 

capacitor voltage UC1. 

 

Fig. 7 shows the remarkable accuracy of the simple formula 

(54) in predicting the success of a given voltage in triggering 

self-excitation. The case with no load and C=30.5 µF was 

considered. The figure shows the velocity needed to trigger 

self-excitation as a function of the voltage UC1 applied to the 

capacitor C1. As may be expected, increases of UC1 lead to a 

decrease in the minimum velocity necessary to trigger self-

excitation. The computed curve based on equation (54) is 

close to the experimental one, except in the low voltage range. 

This part of the plot is associated with the nonlinearity of the 

magnetizing inductance at very low current. It is possible that 

the difficulty in measuring this part of the characteristic is the 

source of the error, although other causes are not excluded.  

The plot also shows the speeds that were needed in 

simulations using the dynamic model. It was found that 

substitution of *

M
L , *

S
L  and *

R
L  corresponding to *

M
i

+  into 

equations (52)-(54) (instead of 
0M

L , 
0S

L  and 
0R

L ) made the 

simulation and computational results match better. Simulations 

show that the prediction of the analytical formula is accurate 

for the lower curve of the speed range as well as the higher 

curve, where mechanical constraints did not permit 

experiments. 

D. Transient Responses Close to the Boundary 

Interesting transient responses are observed for initial 

conditions close to the self-excitation boundary. The voltage 

built-up caused by triggering is shown in Fig. 8. The velocity 

is slightly greater than the minimum for self-excitation 

specified by Figs. 6 or 7. The synchronous frequency is 72 Hz 

and the frequency of the voltage is 62 Hz. 

In Fig. 8, a temporary steady-state is visible for about 0.2 s. 

The magnetizing inductance and the log of the magnitude of 

the voltage vector are shown as subplots of Fig. 8. If 

divergence from the unstable equilibrium state was 

exponential, the growth of the log plot would be linear. This is 

clearly not the case, but when 
M

L  reaches 
MAX

L , the 

logarithmic curve of the RMS phase voltage has a linear part 

(from about 0.7 to 1 s).  

The subplot for the log of the voltage also shows the result 

of the simulation, which is in very good agreement with the 

experiment. It was found that, when the operating conditions 

were farther from the triggered self-excitation border, the 

voltage build-up occurred faster and the initial growth of the 

log of the voltage was close to linear. 
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Fig. 8.  The process of voltage built-up of the unloaded generator with 452 

rad/s velocity, 30.5 µF capacitors and UC1=45 V. 

 

Fig. 9 shows the result of an experiment where the speed 

was 450 rad/s, slightly below the triggered self-excitation 

border.  The initial capacitor charge was sufficient to trigger a 

generating condition lasting for many cycles, followed by a 

voltage collapse. Experiments have also shown that if the 

velocity was lower than 450 rad/s, the voltage collapse 

occurred faster. 
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Fig. 9.  The process of the unsuccessful voltage built-up of the unloaded 

generator with 450 rad/s velocity, 30.5 µF capacitors and UC1=45 V. 

 

The simulation shown in the subplot of Fig. 9 for the log of the 

voltage is not as close as in the previous plot, but correctly 

predicts the voltage collapse. It was also found that, if the 

velocity remained 452 rad/s but the initial voltage dropped 

from 45V to 40V, voltage collapse would also result. So, not 

only a tiny difference in velocity, but also a small change in 

initial capacitor voltage can make the difference between a 

sustained, power generating mode, and a useless steady-state 

with zero voltages and currents.  

In practice, triggered self-excitation requires an additional 

circuit and a battery to pre-charge the capacitors. The benefit 

is that self-excitation can be started from lower velocities. If 



  

the speed of the generator is reduced after self-excitation, 

power production will continue until the general boundary of 

self-excitation is reached (regardless of how self-excitation 

was obtained originally). If, however, the speed is so reduced 

that voltages collapse, self-excitation can again be restarted for 

a lower speed with triggered self-excitation than with 

spontaneous self-excitation. 

IV. EXTENSIONS 

A. Resistive/inductive loads 

For loads modeled as a resistive component with admittance 

YL connected in series with an inductance LL, the state-space 

model is obtained by replacing equation (2) by 

 

S

S L e S

L
L L L S L e L L L

dU
C i i CJU

dt

di
Y L Y U i Y L Ji

dt

ω

ω

− = + +

= − −

, (55) 

where iL is the current flowing in the load. This extension adds 

two differential equations defining iL  to the state-space model. 

While the analysis of the paper would need to be extended 

to consider such case, preliminary simulations show that 

similar properties hold for the resistive/inductive case. Fig. 10 

shows the relationship between the speed of the generator and 

the capacitor voltage needed to trigger self-excitation. The 

figure shows the simulation results for the purely resistive load 

(with the experimental results presented earlier), as well as two 

cases of resistive/inductive loads. One sees that the trends are 

similar in all cases although, perhaps surprisingly, an increase 

in load inductance reduces the speed needed to trigger self-

excitation. 
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Fig. 10.  Velocity needed to trigger self-excitation as a function of the initial 

capacitor voltage UC1 in the case of a resistive/inductive load. 

 

B. Model of core losses 

An approximate model of core losses consists of a resistance 

connected in parallel with the magnetizing inductance [20]. 

Assuming such a model and a resistance RFe with a current iFe  

flowing in the resistance, equations (4) and (5) are replaced by 

 
2 2

M MF MG
i i i= + ,

MF SF RF FeF
i i i i= + + , 

 
MG SG RG FeG

i i i i= + + , 

 ( )
S S S M S R Fe

L i L i i iσΨ = + + + ,  

 ( )
R R R M S R Fe

L i L i i iσΨ = + + + , (56) 

while (11) becomes 

 

( ) ( )S S FeR M
S M M M S R Fe

d di didi dL
L L L L i i i

dt dt dt dt dt
σ

Ψ
= + + + + + + , 

( ) ( ).S FeR R M

R M M M S R Fe

di did di dL
L L L L i i i

dt dt dt dt dt

Ψ
= + + + + + +σ

 (57) 

A new equation is also added 

 
( )

( ).

S FeR M

M M M S R Fe

Fe Fe e M S R Fe

di didi dL
L L L i i i

dt dt dt dt

R i JL i i i

+ + + + +

= − − + +ω

 (58) 

This extension adds two differential equations defining iFe to 

the state-space model. 

C. Sudden changes of load 

The state-space model and the analysis make it possible to 

consider cases where the load suddenly increases during self-

excitation. Fig. 11 shows the results of simulations where the 

generator self-excites with no load. The magnetizing current is 

shown for the no-load case as well as for two simulations 

where the load suddenly increases before self-excitation has 

reached the steady-state. The initial magnetizing current, 

triggered by a capacitor voltage, is greater than the no-load 

requirement, but smaller than for the loaded generator. The 

difference between the two additional curves is in the timing of 

the load increase. In the first case, the magnetizing current has 

not reached the value required by the higher load, while it has 

reached the minimum value in the second case. The difference 

of timing is tiny (0.34s vs. 0.37s), but makes the difference 

between sustained self-excitation and voltage collapse. 
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Fig. 11.  Magnetizing current built-up during sudden load change. 

 

D. Applications to larger machines 

Although the experiments of this paper were performed with a 

small induction machine, the principles are applicable to large 

machines as well. To illustrate this point, computations and 

simulations were performed for a three-phase generator model 



  

adapted from [14]. The rated values were 415V, 7.8A, 3.6 kW, 

50 Hz, and the parameters were RS=1.7Ω, RR=2.7Ω, 

LσS=LσR=0.0114H, np=2, LMAX=0.295H, LM0=0.23H, 

iM1=0.893A. 
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Fig. 12.  Velocity needed to trigger self-excitation as a function of the initial 

capacitor voltage UC1 for a larger machine. 

 

Fig. 12 shows the relationship between the capacitor 

voltage needed to trigger self-excitation and the speed of the 

generator. The trend is similar to the trend observed with the 

smaller generator, and the match between the computed and 

simulated data is comparable. However, the benefit of 

triggered self-excitation in terms of speed is smaller than for 

the original generator.  

V. CONCLUSIONS 

The paper proposed a nonlinear dynamic model for an 

induction generator connected to resistive loads and 

capacitors. Using the model, it was found that the induction 

generator could have a single zero equilibrium steady-state or, 

in addition, a stable nonzero steady-state, or two steady-states 

with one stable and one unstable. The operating velocity range 

was thus found to be divided into three types. The first one is 

such that self-excitation is not possible. The second is such 

that self-excitation is spontaneous, meaning that arbitrarily 

small initial conditions can trigger self-excitation. The third is 

such that self-excitation is possible, but needs to be triggered 

by reaching a magnetizing current greater than or equal to the 

current associated with the unstable steady-state. A by-product 

of the analysis is a formula that computes explicitly the voltage 

needed to trigger self-excitation. Very good agreement was 

observed between the computational, simulated, and 

experimental results. By careful choice of initial conditions, 

sustained periods of self-excitation were found possible, 

leading to either voltage growth and power production, or 

voltage collapse. The results unify and extend previous 

theories of self-excitation, in addition to providing new 

insights into its mechanisms.  

APPENDIX: ANALYTIC APPROXIMATION OF MAGNETIZING 

INDUCTANCE CURVE 

To facilitate numerical computations, an analytic 

approximation of the magnetizing curve obtained 

experimentally was used. The approximation of the 

magnetizing inductance curve was developed in [15] and 

verified experimentally. Three regions are defined, with 

breakpoints iM1 and iM2:  

• for iM<iM1 (the ascending part): the instantaneous 

magnetizing inductance is approximated by 

 2

1 1
( )

M MAX M M
L L b i i= − − , (59) 

where b1 is a coefficient to be adjusted. In this region, the 

dynamic magnetizing inductance is 

 2

1 1 1 1
(3 4 )

MAX M M M M
L L b i b i i i= − − − . (60) 

• for iM1<iM<iM2 (the flat part): both magnetizing 

inductances are constant with L=LM=LMAX. If the value 

LM0 is picked for iM=0, the coefficient b1 in the first region 

must be taken as 

 2

1 0 1
( ) /

MAX M M
b L L i= − . (61) 

• for iM >iM2 (the descending part): the magnetizing 

inductances are approximated by 

 
3 3 3

( ( ) / ) /
M M M M M

L i i b i= Ψ + − , (62) 

 
3 3

1/ 4 ( )
M M

L b i i= − , (63) 

where b3 is a coefficient to be adjusted so that 

 2

3 2 3
1/(4 )

M M MAX
i i b L= − , (64) 

 
3 2 2 3 3

( ) /
M MAX M M M

L i i i bΨ = − − , (65) 

(in this manner, for iM=iM2, LM=L=LMAX ). 

Overall, the parameters of the model of the generator were 

estimated to be RS=49.5Ω, RR=24Ω, LσS=LσR=0.027H, np=1, 

LMAX=0.305H, LM0=0.24H, b3=11A/Wb
2
, iM1=0.0477A, 

iM2=0.134A. 
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