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Design of controllers for electrical power systems

using a complex root locus method
Arnau Dòria-Cerezo, and Marc Bodson, Fellow, IEEE

Abstract—A large class of three-phase electrical power systems
possess symmetry conditions that make it possible to describe
their behavior using single-input single-output transfer functions
with complex coefficients. In such cases, an extended root locus
method can be used to design control laws, even though the
actual systems are multi-input multi-output. In this paper, the
symmetric conditions for a large class of power systems are
analyzed. Then, the root locus method is revisited for systems with
complex coeffcients and used for the analysis and control design
of power systems. To demonstrate the benefits of the approach,
the paper includes two examples: a doubly-fed induction machine
and a three-phase LCL inverter.

Index Terms—Root-locus rules, complex coefficients, power
systems.

I. INTRODUCTION

The root locus method was developed by W.R. Evans in the

40’s [1][2]. It is a fundamental tool that is taught in most, if

not all, introductory courses on feedback systems. Root locus

rules are commonly used by engineers when designing control

systems and many references can be found in the literature

for electrical and electronic applications. Examples include

electronic power converters connected to the grid [3][4],

STATCOMs [5], multilevel systems for renewable applications

[6] or current-source inverters [7], and electrical machines

such as permanent-magnet synchronous machine drives [8] or

doubly-fed induction generators connected to the grid [9].

The use of a conventional root locus method implies that

one considers either a single-input single-output system, or

a multivariable system that is decoupled (possibly through

feedforward or feedback action) so that it can be controlled

as a set of single-input single-output systems. In the approach

of this paper, a root locus approach is used for a broader

class of systems. To achieve the result, a balanced three-phase

system is first reduced to a two-phase system through a 3-

2 transformation, and then into a single-phase system using a

real to complex transformation. The last transformation is valid

if the system satisfies symmetry conditions that are often appli-

cable for electrical power systems [10]. Using this approach,

applications were found where the analysis of the systems

could be simplified considerably. The systems included an

induction motor [11], a self-excited induction generator [12],

a doubly-fed induction machine with active/reactive power

control [13] and microgrids [14].
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Because physical systems are described by state-space mod-

els or transfer functions with real parameters, the theory of

systems and control concerns almost exclusively systems with

real coefficients. Few examples of dynamic systems having

transfer functions with complex coefficients can be found in

asymmetric bandpass and band-rejection filters [15], mobile

radio communication filtering algorithms [16], whirling shafts

[17], and some mechanical systems [18]. Control theory tools

for systems with complex coefficients are also very limited.

For example, the paper [19] provides a Hurwitz test for com-

plex polynomials and has been applied in [12][13] (see also

[20][21][22][23]). Also, extended versions of Kharitonov’s

criterion for polynomials with uncertain complex coefficients

were studied in [17][24][25][26][27][28].

Recently, the root locus rules were derived for systems for

complex coefficients [29] and general principles of symmetric

systems were discussed in [30]. In this paper, we show through

two examples how the complex root locus rules can be used for

the design of controllers for power systems. The results are non

trivial because, although the design is performed on a single-

input single-output system, the actual feedback system is a

2x2 multivariable system. As a result, the root locus exhibits

characteristics not found in a conventional design, and offers

possibilities that are not available in the real case.

The paper is organised as follows. In Section II the systems

with symmetric properties and their complex representation

are introduced. Then, in Section III, symmetric properties are

used to describe power systems as systems with complex

coefficients and the root locus rules for those kind systems

are described in Section IV. Finally, sections V and VI include

two examples (a doubly-fed induction machine and an LCL

inverter, respectively), where the root locus rules are used

to analyze the stability of already known controllers and to

propose new algorithms that improve the performance and

robustness with respect to the existing ones.

II. COMPLEX REPRESENTATION OF SYMMETRIC SYSTEMS

Linear systems with a special type of symmetry property

were described in [10]. A symmetric system is defined as a

system having a state-space representation

dx

dt
= Ax+Bu, y = Cx (1)

where the state, input, and output vectors can be divided into

two vectors of equal dimensions such that

x =

(

x1(t)
x2(t)

)

∈ R
2n, u =

(

u1(t)
u2(t)

)

∈ R
2(n−m),

y =

(

y1(t)
y2(t)

)

∈ R
2(n−m) (2)
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and the associated submatrices of A, B, and C have the

structure

A =

(

A11 −A21

A21 A11

)

, B =

(

B11 −B21

B21 B11

)

,

C =

(

C11 −C21

C21 C11

)

. (3)

An important property of a symmetric system is that it can

be represented as a complex system

dxc

dt
= Acxc +Bcuc, yc = Ccxc (4)

where the complex vectors are

xc = x1 + jx2, uc = u1 + ju2, yc = y1 + jy2 (5)

and the complex matrices are

Ac = A11 + jA21, Bc = B11 + jB21, Cc = C11 + jC21.

(6)

Note that the complex system (4) has the half of the number

of states, inputs, and outputs of the original system (1), i.e.,

xc ∈ Rn, and uc, yc ∈ Rn−m. In addition, it is proved in [12]

that each root of det(sI−Ac) = 0 is a root of det(sI−A) = 0
and each root of det(sI−A) = 0 is represented in the roots of

det(sI −Ac) = 0, either as itself or as its complex conjugate.

Thus, knowledge of eigenvalues of the complex matrix Ac is

equivalent to knowledge of the eigenvalues of the real matrix

A, which implies that the poles of the original system (1) can

be obtained from the poles of the complex system (4), and

vice-versa.

Additionally, a similar relationship appears between the

transfer function matrices of the original system

H(s) = C (sI −A)−1
B =

(

H11(s) −H21(s)
H21(s) H22(s)

)

(7)

and the one corresponding to the complex system (4),

Hc(s) = Cc (sI −Ac)
−1

Bc = H11(s) + jH21(s). (8)

See [29] for further details.

The root locus method is usually applied to closed-loop

systems. Similarly to the general case for systems with real

coefficients, the rules can be used for systems with complex

description. To illustrate the approach, let us consider that

system (1) is controlled by an static output feedback. The root

locus rules presented in Section IV can be used in systems

with the form (1) having 2 inputs and 2 outputs and the output

feedback control law

u(t) = −k

(

kR −kI
kI kR

)

y(t) (9)

where k, kR, kI are adjustable gains. Using a complex notation

uc(t) = −kkCyc(t) (10)

where kC = kR+jkI . Then, the closed loop poles of (1) with

the feedback law (9) can be obtained from the poles of (4)

together with (10). Letting

Hc(s) =
NOL(s)

DOL(s)
, (11)

the poles can also be determined from the roots of the

polynomial

DCL(s) = DOL(s) + kkCNOL(s). (12)

III. SYMMETRIC PROPERTIES AND COMPLEX

REPRESENTATION OF POWER SYSTEMS

Many balanced three-phase electrical systems satisfy the

symmetric property introduced in the previous section. This

fact implies that such systems can be represented using com-

plex coefficients and, consequently, are suited for applying

the tools presented in the next sections. This section shows

how any three-phase RLC circuit can be represented in the

symmetric form (1) with the property (3), or as a complex

system as in (4). A simple example is included, and some

applications are given in Sections V and VI.

Consider a set of balanced electrical variables, (fa, fb, fc) =
F
(

cos(ωt), cos(ωt− 2π
3 ), cos(ωt+ 2π

3 )
)

, and apply an abc to

αβ transformation1





fα(t)
fβ(t)
f0(t)



 =

√

2

3







1 − 1
2 − 1

2

0
√
3
2 −

√
3
2

1√
2

1√
2

1√
2











fa(t)
fb(t)
fc(t)



 . (13)

Since the signals are balanced, the homopolar component

is zero (f0(t) = 0) and the α and β components are in

quadrature. Then, the α and β components can be represented

as a complex signal [31] as

fαβ = fα + jfβ = Fαβe
jωt (14)

where ejωt = cosωt + j sinωt and Fαβ =
√

2
3F . The dq-

components can be defined as,

fdq = e−jθfαβ (15)

where dθ
dt

= ω. Note that the representation of the three-phase

variables as a single complex variable fαβ or fdq is possible

for arbitrary variables provided that the homopolar component

is zero.

Three-phase RLC electrical circuits can generally be de-

scribed as

[M ⊗ I3]
dx

dt
= [(J −D)⊗ I3]x+ [G⊗ I3]u (16)

where xT = (x1, x2, . . . , xp) ∈ R3p and xi = (xia, xib, xic),
are the set of voltage capacitors and inductor currents, ⊗
denotes the Kronecker’s product and I3 is the 3 × 3 iden-

tity matrix. The M matrix contains the capacitances and

inductances values, J describes the interconnection among

the different three-phase components, D matrix corresponds to

the dissipative elements (resistance and conductances) of the

circuit and u contain the voltage and current sources which

are connected through the G matrix. For simplicity, assume

that mutual inductances are neglected, so that the M matrix is

diagonal, J is skew-symmetric (J = −JT ), D is symmetric

and positive-definite (D = DT > 0).

1As example, we take in (13) a power-preserving transformation.
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Fig. 1. Three-phase circuit example.

Using (13), the balanced three-phase system (16) can be

reduced to an αβ equivalent representation

M
dxαβ

dt
= (J −D)xαβ +Guαβ (17)

where xαβ ∈ Cp, the matrix Mαβ is diagonal, Jαβ is skew-

symmetric, and Dαβ symmetric and positive-definite, and each

phase is represented by a real coefficient. The dq-coordinates

can be obtained defining

xαβ = Txdq (18)

with

T (θ1, θ2, . . . , θp) = diag
{

ejθ1 , ejθ2 , . . . , ejθp
}

(19)

where θ1, θ2, . . . , θp are the instantaneous phase of each three-

phase signal. For simplicity, consider the case where all the

signals have the same frequency, θ1, θ2, . . . , θp = θ, and

T (θ) = ejθIp (20)

where Ip is the p× p identity matrix. Then, using (18) and its

the time derivative in (17)

M

(

ejθ
dxdq

dt
+

∂ejθ

∂θ
ωxdq

)

= (J −D)ejθxdq +Gdqe
jθudq

(21)

and, premultiplying by e−jθ the dq-system yields

M
dxdq

dt
= (J −D − jωM)xdq +Gdqudq (22)

where the fact that e−jθ ∂ejθ

∂θ
= j has been used.

Note that when the transformation (18) is applied in (16),

complex parameters appear in the system.

The dq-representation in (22) is still valid for non-linear

systems and, in that case, matrices would not be longer con-

stant. However, the transfer function representation proposed

in II will be only valid for linear ones. In addition, using the

decoupling of symmetric components for unbalanced systems,

the presented methodology can be applied to unbalanced

power systems, through the use of two complex models

corresponding to the positive and negative sequences [10][31].

See example in Subsection VI-D.

Example: Consider the three-phase circuit shown in Fig. 1.

Its model can be written in the form (16) with

M =

(

L 0
0 C

)

, J =

(

0 −1
1 0

)

(23)

D =

(

RL +RC 0
0 0

)

, G =

(

1 −RC

0 1

)

(24)

where x = (iL, vC)
T , iL and vC are the three-phase inductor

currents and capacitor voltages, and u = (v, i)T are the

three-phase voltage and current sources. Then, the space-state

description with complex coefficients is given by

dxdq

dt
=

(

−RL+RC

L
− jω − 1

L
1
C

−jω

)

xdq +

(

1
L

−RC

L

0 1
C

)

udq

(25)

which follows the form of (4). The system can be described

by

AOL(s)

(

iL
vC

)

=

(

v −RCi

i

)

(26)

where

AOL(s) =

(

RL +Rc + (s+ jω)L −1
1 (s+ jω)C

)

. (27)

IV. ROOT LOCUS RULES FOR SYSTEMS WITH COMPLEX

COEFFICIENTS

The root locus rules characterize the movement of the

closed-loop poles of a system as a function of a varying

parameter, k. In the case of a system with complex coefficients,

the polynomial under consideration is of the from

DCL(s) = DOL(s) + kkCNOL(s) (28)

where k > 0 is the variable gain and kC = kR + jkI .

In general, the polynomials DOL(s) and NOL(s) can be

represented as

DOL(s) = (s− p1)(s− p2) . . . (s− pn) = (29)

= sn + a1s
n−1 + . . .+ an−1s+ an (30)

NOL(s) = (s− z1)(s− z2) . . . (s− zm) = (31)

= sm + b1s
m−1 + . . .+ bm−1s+ bm. (32)

Note that, because the coefficients of the polynomials are

complex, the poles pi and zeros zi do not have to appear

as complex pairs.

By definition, the root locus is the locus of the roots of the

characteristic equation DCL(s) = 0

DOL(s) + kkCNOL(s) = 0. (33)

as k varies from 0 to infinity. For convenience, we will refer to

the real root locus as the locus of a system with polynomials

NOL(s) and DOL(s) having real coefficients and kC = 1,

and to the complex root locus when either of the polynomials

NOL(s), DOL(s) has complex coefficients, and/or kC is an

arbitrary complex number.

The root locus rules for system with complex coefficients

were introduced in [29] and are summarized here:

1) Number of branches: The number of branches of the

root locus is equal to the degree of the characteristic polyno-

mial, n.
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2) Starting points of the root locus: The root locus of

DCL(s) starts at the open-loop poles, DOL(s) = 0.

3) End points of the root locus: m of the branches of the

root locus converge to the roots of NOL(s), while the other

n−m roots converge to infinity along asymptotes whose angles

with respect to the real axis are defined by the n−m complex

roots of

si =
n−m
√

−kC , i = 1, . . . , n−m. (34)

The center of the asymptotes is located at

c =
1

n−m

(

n
∑

i=1

pi −
m
∑

i=1

zi

)

. (35)

4) Break-away points: A break-away point s0 must be a

root of (33) that also fulfills

dDOL(s)
ds

∣

∣

∣

s=s0

dNOL(s)
ds

∣

∣

∣

s=s0

=
DOL(s)|s=s0

NOL(s)|s=s0

. (36)

5) Angle of departure from complex poles: The angle of

departure from a complex pole, pj , of DOL(s) is given by

θdj = π + ∠kC +

m
∑

i=1

∠(pj − zi)−

n
∑

i=1,i6=j

∠(pj − pi). (37)

6) Angle of arrival at complex zeros: The angle of arrival

at a complex zero, zj , of NOL(s) is given by

θaj = π − ∠kC −

m
∑

i=1,i6=j

∠(zj − zi) +

n
∑

i=1

∠(zj − pi). (38)

7) Imaginary axis crossing: The intersection of the root

locus with the imaginary axis can be found by separating the

equation

DOL(jω) + kkCNOL(jω) = 0 (39)

into real and imaginary parts and finding values of k for which

real solutions exist for ω. Alternatively, the values for k can

be obtained from the complex Hurwitz test given in [19].

Overall, the complex root locus exhibits striking similarities

with the real root locus. However, peculiar differences are also

observed, namely:

• the root-locus, including the asymptotes, is not necessar-

ily symmetric with respect to the real axis;

• the center of the asymptotes does not have to be real;

• break-away points are less common than in the real

root locus, because no portion of the real axis typically

belongs to the root locus;

These differences in properties are possible because the

complex root locus is, in general, associated with a multi-input

multi-output feedback system.

V. EXAMPLE: A DOUBLY-FED INDUCTION MACHINE

In this section, the complex root locus rules are applied

for the analysis of a feedback-linearizing current controller

for a DFIM and then used to modify the control algorithm

improving the performance and robustness of the resulting

closed loop system. The dq transformation for a DFIM is

applied for the stator and rotor variables independently, i.e.,

the angle in (15) is different for the stator, θs, and rotor

transformation, θr. The so-called synchronous reference frame

eliminates the dependency of the model on the rotor position

by taking θs, θr such that dθs
dt

= ωs and dθr
dt

= ωs−ωm, where

ωs is the stator voltage frequency and ωm is the mechanical

speed. See further details in [32]. Then, similarly to (22), the

dq-current dynamics of the DFIM can be described as

M
dx

dt
=

(

−Rs − jωsLs −jωsLsr

−j(ωs − ωm)Lsr −Rr − j(ωs − ωm)Lr

)

x+Gu

(40)

where x = (is, ir)
T = (isd + jisq, ird + jirq)

T are the

dq-currents in the stator and rotor (subindices s and r, re-

spectively), u = (vs, vr)
T = (vsd + jvsq, vrd + jvrq)

T are

the stator and rotor voltages, Rs, Rr are is the stator and

rotor resistances, Ls, Lr and Lsr are the stator and rotor

self-inductances and mutual inductance, respectively, and the

matrices M and G are

M =

(

Ls Lsr

Lsr Lr

)

, G =

(

1 0
0 1

)

. (41)

All the parameters are positive.

The stator voltage, vs is assumed to be set by the power grid,

and the rotor voltage vr is used as a control input to regulate

the active and reactive powers produced. Assuming a fixed

stator voltage, the regulation of the two powers is equivalent

to the tracking of a complex stator current reference iref
s .

A. Feedback linearizing control law

In this section we use the feedback linearizing control law

for the DFIM proposed in [13]. The main benefit of using

an algorithm that linearizes the closed loop system is that the

resulting one is linear and the root locus method presented

in Section IV can be used. This control law in [13] is, in a

complex notation,

vr = j(ωs − ωr)Lsris + (Rr + j(ωs − ωr)Lr) ir + v̂r (42)

v̂r = jkP (i
ref
s − is) + jkP

1

Ti

∫ t

t0

(iref
s − is)dτ (43)

where kP and Ti are control gains. The closed-loop system

(40) with (42)-(43) can be described by

ACL(s)





is
ir
v̂r



 =





vs
0

jkP (s+
1
Ti
)iref

s



 (44)

where the matrix ACL(s) is given by

ACL(s) =





Lss+Rs + jωsLs Lsrs+ jωsLsr 0
Lsrs Lrs −1

jkP (s+
1
Ti
) 0 s



 .

(45)

Due to the feedback linearization terms, ACL(s) does not de-

pend on the mechanical speed, ωm. The complex polynomial

DCL(s) = detACL(s) is

DCL(s) = a0s
3+(a1+ jb1)s

2+(a2+ jb2)s+a3+ jb3 (46)
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where

a3 =
kP

Ti

ωsLsr b3 = 0

a2 = kPωsLsr b2 = −
kP

Ti

Lsr

a1 = LrRs b1 = ωsµ− kPLsr

a0 = µ (47)

and µ = LsLr − L2
sr > 0. The complex polynomial can be

written as (28) with

DOL(s) = µs3 +
(

LrRs + jωsµ
)

s2

NOL(s) = s2 +

(

1

Ti

+ jωs

)

s+ j
1

Ti

ωs

k = kP

kC = −jLsr, (48)

where n = 3 and m = 2. Following the root locus rules from

Section IV, we get:

1) Number of branches: From DOL(s) in (48), the number

of branches is n = 3.

2) Starting points of the root locus: The starting points are

the roots of DOL(s) in (48),

p1 = p2 = 0, p3 = −
LrRs

µ
− jωs. (49)

3) End points of the root locus: As k → ∞, two roots

converge to the roots of NOL(s) in (48), that are

z1 = −
1

Ti

, z2 = −jωs, (50)

and the other root converges to ∞ along an asymptote with

an angle

θ∞ =
π

2
, (51)

and a centroid

c = −
LrRs

µ
+

1

Ti

. (52)

4) Break-away points: From (36), the following complex

equation is obtained

0 =µTis
3 + 2µ(1 + jωsTi)s

2

+ (LrRs − ω2
sµTi + jωs(TiLrRs + 4µ))s

− 2ω2
sµ+ 2jLrRsωs. (53)

Consequently, break-away points exist for those values of

Rs, Lr, µ, ωs and Ti that satisfy (53) together with (46).

5) Angles of departure from the complex poles: The angles

of departure from p1, p2, p3 are

θd1 =
π

2
+

1

2
arctan

(

ωsµ

LrRs

)

θd2 =
1

2
arctan

(

ωsµ

LrRs

)

θd3 =
π

2
+ arctan

(

ωsµTi

LrRsTi − µ

)

− 2 arctan

(

ωsµ

LrRs

)

(54)

6) Angles of arrival at the complex zeros: The angles of

arrival at z1 and z2 are

θa1 = −
π

2
+ arctan(ωsTi) + arctan

(

ωsµTi

LrRsTi − µ

)

θa2 =
π

2
+ arctan(ωsTi). (55)

7) Imaginary axis crossing: From (39), the following two

conditions are obtained

ω2LrRs −
kPLsr

Ti

(ωs + ω) = 0

µω2 + ω(ωsµ− kPLsr)− kPLsrωs = 0. (56)

For Ti >
µ

LrRs
, the conditions imply that the root locus crosses

the imaginary axis for

kP =
ωsµ

2

(LrRsTi − µ)Lsr

, ω =
ωsµ

LrRsTi − µ
. (57)

The value of kP for crossing the imaginary axis corresponds

to the stability condition given in [13].

z1

p1, p2

p3

−LrRs

µ

−jωs

θd1
θa1

θd3

π
2

c

z2

θa2

θd2
− 1

Ti

Fig. 2. Root-locus simplified scheme.

The results of the root locus rules are summarized in Fig. 2.

The rules are applied to the specific DFIM parameter values

given in [13]: Rs = 4.92, Rr = 4.42, Ls = 0.725, Lr =
0.715, Lsr = 0.71 and ωs = 314. For those values and using

(46) and (53), two break-away points appear for specific values

of the parameter Ti. One occurs for a negative value of kP
and does not belong to the (positive) root locus, and the other

appears at s = −148.5 − j177.58 for Ti = T BK
i = 0.0049.

The break-away point corresponds to kP = 4.82. From the

conditions obtained in Rule 7, the root locus crosses the

imaginary axis for values Ti = T IAC
i = 0.0041. Fig. 3 shows

the root locus for several Ti’s such that scenarios with different

break-away points and imaginary axis crossings occur. In

Fig. 4, a zoom of the root locus allows to clearly identify

the break-away point for Ti = T BK
i at the expected location

in the complex plane.

Conclusions from the root locus are as follows:

• one of the poles at s = 0 moves to infinity along an

asymptote parallel to the jω axis. The asymptote is in

the open left-half plane for Ti > 0.0041.
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Fig. 3. Root locus of the DFIM example. The Ti parameter takes the value:
Ti = 0.7TBK

i (blue line), Ti = T IAC
i (green line), Ti = TBK

i (red line),

Ti = 1.5T IAC
i (magenta line) and Ti = 5T IAC

i (cyan line).

−400 −300 −200 −100 0 100 200
−400

−300

−200

−100

0

100

200

300

400
Root locus plot

Real axis

Im
ag

in
ar

y 
ax

is

Fig. 4. Zoom of the root locus of the DFIM example. The Ti parameter takes
the value: Ti = 0.7TBK

i (blue line), Ti = T IAC
i (green line), Ti = TBK

i (red

line), Ti = 1.5T IAC
i (magenta line) and Ti = 5T IAC

i (cyan line).

• for Ti < 0.0049, the pole at s = −LrRs

µ
− jωs moves to

the zero at s = − 1
Ti

and one of the poles at s = 0 moves

to the zero at s = −jωs.

• for Ti > 0.0049, the pole at s = −LrRs

µ
− jωs moves

to the zero at s = −jωs and one of the poles at s = 0
moves to the zero at s = − 1

Ti
.

• for Ti = 0.0049, the poles at s = −LrRs

µ
− jωs and

s = 0 merge at the break-away point, then move to the

zeros at s = − 1
Ti

and s = −jωs.

• it is possible to create a stable closed-loop with the

controller and degrees of freedom available, but the

responses are expected to be oscillatory, and the speed

of response is limited.

B. Control design in the complex domain

The analysis of the previous control design exhibits two

undesirable features: the system is only conditionally stable

(it becomes unstable if the gain is reduced), and two poles are

poorly damped, independently to the selected gains. The use

of the complex root locus can help to improve the design [30].

The poorly damped poles are associated with the two poles

at s = 0, one of which comes from the integrator in the control

law and the other from the cancellation of the rotor resistance.

Setting

vr = j(ωs−ωr)Lsris+(kRRr + j(ωs − ωr)Lr) ir+v̂r (58)

where v̂r remains as in (43) and kR is a new control gain

that allows one to move one pole at the origin to the left-half

plane. The result is

DOL(s) =µs3 + (RsLr + (1− kR)RrLs + jωsµ) s
2

+ (Rs + jωsLs)(1− kR)Rrs (59)

and NOL(s) remains the same. An extreme case is obtained

by setting kR = 0 so that the denominator becomes

DOL(s) =µs3 + (RsLr +RrLs + jωsµ) s
2

+ (Rs + jωsLs)Rrs. (60)

Now, the open-loop system only has one pole at s = 0, while

the other two poles are stable. An additional degree of freedom

is obtained by exploiting the complex nature of (43) using a

complex gain kG in

v̂r = kG

(

kP (i
ref
s − is) + kP

1

Ti

∫ t

t0

(iref
s − is)dτ

)

. (61)

Note that the original controller (43) is recovered with kG =
−j. A different choice is to set kG = 1 which results in the

asymptote becoming parallel to the real axis (see red root-

locus in Fig. 5). A real gain equal to 1 corresponds to passing

the signals straight through, while a purely imaginary one

introduces a crossing of the two channels.

An improved placement of the poles can be found com-

bining (58) and (61), where one pole at s = 0 is removed,

and the angle associated with kG is adjusted between π
2 and

π. Fig. 5 compares the root locus of the original control law

(42)-(43), in blue, with the modified one in magenta (58)-

(61). Note that the controller with kR = 0, kG = −j (green

root-locus) sends one pole from s = 0 to the left side of the

plane (−64 − j147). In red, the root locus is displayed with

the choice of kG = 1 but still cancelling Rr (kR = 1). The

choices result in the asymptote at π, but the range of values

for stability is reduced when one of the poles starts at s = 0.

Finally, a combination of kR and kG offers a new scenario

with three different poles. See in magenta the root locus for

kR = 0.8 and kG = 1 − j1.5. The last set of values results

in a placement of the poles at 76 + j61, −121 − j68 and

−183− j174 for kP = 1.8 (marked with *’s in Fig. 5). Note

that the design using the root locus properties resolved the

problems found in the original design by yielding a system

that is stable for all gains and pole locations associated with

desirable transient responses.
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Fig. 5. Root locus comparing the proposed controllers for the DFIM. The
Ti parameter has been set at Ti = 0.015. The four controller are based on
(58)-(61) with: kR = 1 and kG = −j (in blue), kR = 0 and kG = −j (in
green), kR = 1 and kG = 1 (in red), and kR = 0.8 and kG = 1 − j1.5
(in magenta). Marks at *, represent the poles for kP = 1.8, kR = 0.8 and
kG = 1− j1.5.

Summing up, the use of the complex root locus method

improved the performance (response time) and the robustness

(stable for all k gains and all the poles far from the positive

real plane) of the system.

VI. EXAMPLE: A THREE-PHASE GRID INVERTER WITH AN

LCL FILTER

Similarly to the previous example, the root locus method for

systems with complex coefficients has been used to compare

two existing controllers for an LCL inverter and to propose

an alternative control algorithm which is more robust in the

presence of variations of the grid impedance.

The equations describing the dynamics of a three-phase

inverter with an LCL filter in dq-coordinates are given in [33]

and can be put in the form (22) with

M =





L1 0 0
0 L2 0
0 0 C



 , J =





0 0 −1
0 0 1
1 −1 0



 , (62)

D =





R1 0 0
0 R2 0
0 0 0



 , G =





Vdc 0
0 1
0 0



 , (63)

where the state vector x = (i1, i2, vc)
T = (i1d + ji1q, i2d +

ji2q, vcd + jvcq)
T composed of the inverter-side currents, i1,

the grid-side currents, i2, and the capacitor voltages, vc, while

the input vector u = (uc, vg)
T = (ucd+ jucq, vgd + jvgq)

T is

composed of the duty cycles, uc (which act as a control input)

and the grid voltages, vg . The parameters R1, R2 represent the

losses at the inductors L1, L2, C is the capacitance of the filter

and Vdc is the dc input voltage.

The open loop dynamics can be written as




N1(s) 0 1
0 N2(s) −1
−1 1 Nc(s)









i1
i2
vc



 =





Vdcd

vg
0



 (64)

where

N1(s) = (s+ jω)L1 +R1 (65)

N2(s) = (s+ jω)L2 +R2 (66)

Nc(s) = (s+ jω)C. (67)

Treating vg as a disturbance (vg = 0),

vc = N2(s)i2 (68)

i1 = (N2(s)Nc(s) + 1)i2 (69)

and the (complex) transfer function of the system from the

input uc to the output i2 is

i2 =
Vdc

DOL(s)
uc (70)

where

DOL(s) = N1(s) +N2(s) +N1(s)N2(s)Nc(s), (71)

or, splitting into the real and imaginary parts

DOL(s) = Nr(s) + jNi(s). (72)

A. Conventional current controller

A classical approach for controlling the LCL three-phase

inverter [33] is

uc = j
Ni(s)

Vdc

i2 +

(

kP +
kI

s

)

(iref
2 − i2) (73)

where kP , kI are the control design parameters and iref
2 is the

grid-side dq-current references. Inserting (73) in (70), we get

i2 =
Vdc (kP s+ kI)

DCL(s)
iref
2 , (74)

where

DCL(s) = sNr(s) + Vdc (kP s+ kI) . (75)

Note that, because the transfer function is real, the closed-loop

system is decoupled. Since the number of branches of the root

locus is 4 (Rule 1), conclusions from the root locus analysis

are limited. However, using Rule 3, one finds that one of the

roots converges to − kI

kP
, the other real root goes to infinity

along the negative real axis, and two complex conjugate poles

cross into the left half plane before reaching asymptotes at

±60◦. Fig. 6 shows the root locus. To maintain the stability

of the system, the gain must be sufficiently small .

B. Weighted average current control

The so-called weighted average current control (WACC)

was proposed in [33]. The WACC scheme allows one to reduce

the LCL filter from a third-order to a first-order system under

certain assumptions. The WACC control law is

uc = jω
L1 + L2

Vdc

iw +

(

kP +
kI

s

)

(iref
2 − iw) (76)

where the weighted (complex) average current is defined by

iw =
L1

L1 + L2
i1 +

L2

L1 + L2
i2. (77)
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Detail of the root locus

Fig. 6. Root locus of the conventional controller.

Assuming
R1

L1
=

R2

L2
= α (78)

the closed-loop polynomial becomes

DCL(s) =

(

s(s+ α) +
Vdc

L1 + L2
(skP + kI)

)

×

(L1 + L2 + L1N2(s)Nc(s)). (79)

In other words, two poles are fixed at the roots of

L1 + L2 + L1N2(s)Nc(s) = 0, (80)

while two other poles are determined by

s(s+ α) +
Vdc

L1 + L2
(skP + kI) = 0. (81)

Due to the two poles fixed by (80), the root locus analysis

reduces to the study of equation (81) which has real coeffi-

cients. Starting points are located at 0,−α and one of these

poles goes to the zero at − kI

kP
, while the other pole goes

to infinity along the negative real axis. There is no limit on

the gains. The root locus shown in Fig. 7 (in green) for the

WACC algorithm includes two complex poles, but they remain

in the same position regardless of the control gain values due

to colocation with zeros.

Assumption (78) is a significant issue with the WACC

algorithm. More importantly, the benefits of the WACC are

severely reduced for some types of parameter error, especially

errors in the inductances L1 and L2 required for the calculation

of iw. Indeed, assume that L2 varies from its nominal value,

but we keep in the controller ((76)) the estimated (and wrong)

value L̂2. Then

uc = jω
L̂1 + L̂2

Vdc

iw +

(

kP +
kI

s

)

(iref
2 − iw) (82)

where, iw, using (69), yields

iw =
1

L+ L̂2

(

L(N2(s)Nc(s) + 1) + L̂2

)

i2. (83)
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Detail of the root locus

Fig. 7. Root locus comparing the WACC (in green) and the WACC with
wrong parameters (in red).

Fig. 7 shows how the root locus of the WACC scheme

(in red) changes with a variation L2. Unfortunately, the poles

first move towards the right-half plane in this case, yielding

a low gain limit guaranteeing stability. Note that the two

complex poles are close to being, but are not exact complex

conjugates of each other, which explains the double peaking

on the frequency domain observed in [33]. Also, one of the

real poles now has a small imaginary component, and both

real poles move slightly off the real axis.

C. Control design in the complex domain

An alternate control law based on the two previous concepts

is

uc = j
Ni(s)

Vdc

i2 − kGi1 +

(

kP +
kI

s

)

(iref
2 − i2) (84)

which results in the transfer function (74) with

DCL(s) = sM(s)+sVdckG(N2(s)Nc(s)+1)+Vdc(kP s+kI).
(85)

Fig. 8 shows (in magenta) the root locus of the alternate

control law, varying the gains kP and kI simultaneously. One

of the real poles goes to the zero at − kI

kP
, the other real

pole goes to infinity along the negative real axis, and two

complex poles cross to the left-half plane before reaching

asymptotes at ±60◦. Due to the feedback on i1, the complex

poles start at a location farther in the left-half plane than for

the conventional or WACC control law. Fig. 5 (in cyan) shows

the root locus of the alternate control law when the inverter

inductance L2 = 0.7L̂2 and L̂2 is the nominal inductance

used in the control law. Because of the difference, the poles

are slightly shifted, but because the poles start farther in the

left-half plane, the effect is not sufficient to cause instability.

The poles for both WACC and the algorithm proposed in this

section are plotted for a wrong parameter estimation of L̂2

and a control gain kP = 14.4128 in Fig. 5 with a *. Note that

the poles corresponding to the WACC algorithm turn to be

unstable, but the new controller with the same gain remains

stable.
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Fig. 8. Root locus comparing the conventional controller (in blue), the WACC
(in green), the WACC with wrong parameters (in red), the alternative controller
(in magenta) and the alternative controller with wrong parameters (in cyan).
The poles for kP = 14.4128 corresponding to the WACC and alternative
controllers with wrong parameters are plotted with *.

D. Example under unbalanced three-phase systems

The complex description proposed in Section III is most

effective for balanced three-phase systems. However, the

method proposed in the paper could be extended to unbalanced

systems by splitting the three-phase system into the positive

and negative sequence components of the voltage and current

vectors. Then, the controller extends to a double control

loop that independently controls the positive and the negative

sequences.

The simulation results for a 30kV inverter are shown

in figures 9 and 10. A Dual Second Order Generalized

Integrator-Frequency Locked Loop (DSOGI-FLL) [34], has

been implemented in order to detect the magnitude of the

symmetrical components. Then, two control loops with the

form (84) are used for controlling the positive and negative

sequences. For the simulation test the current references are

set to i+ref
2 = 20 + j0A that changes to i+ref

2 = 10 + j0A at

t = 0.05s, then the grid inductance is perturbed increasing up

to 200% at t = 0.1s, and finally a 20% grid fault in phase C

occurs at t = 0.15s. In all simulations i−ref
2 = 0 + j0A.

The simulation results show that the control design is robust

against disturbances and is still valid for unbalanced three-

phase systems if the system is split into the symmetrical

components. A further analysis on the whole unbalanced

system is possible using complex transfer functions [10].

VII. CONCLUSIONS

The symmetric properties of balanced three-phase systems

make it possible to describe their dynamics using an equivalent

transfer function with complex coefficients. In this paper, we

showed that the use of complex root locus rules could help

in the design of feedback systems. In particular, the use of

complex coefficients in the controller opens up a new range

of possibilities to shape the branches of the closed loop
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root locus. The methodology was illustrated by using two

examples: a DFIM and a three-phase LCL inverter.

Possible future works include the effect of unknown param-

eters and nonlinearities may perhaps be studied in the future

using Robust Root Locus methods [35].
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