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Abstract— The paper discusses a class of symmetric systems
that can be reduced to systems with half the dimension and
order, but with complex coefficients. Symmetric systems include
doubly-fed induction machines, self-excited induction genera-
tors, three-phase converters, and three-phase active filters. The
paper reviews general properties of symmetric systems in the
state-space and frequency domains. Although complex models
have been used in the literature in the past, few papers have
considered their practical use, in particular for the direct design
of controllers in the complex domain. The paper illustrates such
a design in the case of a doubly-fed induction machine.

I. INTRODUCTION

For many years, researchers have recognized that cer-

tain systems encountered in energy applications could be

transformed into equivalent systems of lower dimension but

with complex parameters [19]. Such systems include several

examples of electric machines and power electronic systems.

More recently, researchers have discovered that the complex

models could be used for estimation and control design with

some advantages. In [17], for example, an extended complex

Kalman filter (ECKF) was developed for sensorless induction

motor control. In [1], a three-phase active power filter

was constructed in the complex domain using H∞ theory.

In [18], an ECKF was developed with some advantages

for the estimation of sinusoids. [15] similarly focused on

frequency estimation, with applications in power systems. [6]

obtained analytic conditions for spontaneous self-excitation

of induction generators, and in [8], a controller was designed

in the complex domain for a three-phase converter.

Dynamic systems with complex parameters have been

considered in other fields, although to a limited extent as

well. In [14], adaptation laws were developed for complex

neural networks. In [2], a bandpass sigma delta modulator

was developed in the complex domain, and performance

improvements were shown over a modulator of the same

order using real transfer functions. In [13], the use of com-

plex polynomials in mobile communications was reviewed.

The paper explains how the baseband representation of

a received signal is nonsymmetric around the modulation

frequency even if the transmitted sequence is real-valued.

This fact explains why the transfer function of the channel

has complex coefficients.

A limited number of control theoretical results have also

been extended to systems with complex coefficients. In

[4], [16], robust control theoretical results were extended

to complex models, although without specific applications.

Examples in power systems constitute possible applications

M. Bodson is with the Department of Electrical and Computer Engineer-
ing, University of Utah, 50 S Central Campus Dr Rm 3230, Salt Lake City,
UT 84112, U.S.A (e-mail: bodson@eng.utah.edu).

to such results. The paper reviews general definitions and

properties of systems that can be transformed into a complex

representation. Then, the example of a doubly-fed induction

machine is used to demonstrate how certain stability proper-

ties can be obtained more easily in the complex framework.

The paper concludes with the design of a power control law

for a doubly-fed induction machine using root locus plots of

a system with complex parameters.

II. COMPLEX REPRESENTATION OF SYMMETRIC SYSTEMS

A. Symmetric systems

Definition - Symmetric system: a system that is described

by the state-space model

ẋ = Ax+Bu, y = Cx (1)

is called symmetric if the state, input, and output vectors can

be divided into two vectors of equal dimensions such that

x =

(
x1(t)
x2(t)

)
, u =

(
u1(t)
u2(t)

)
, y =

(
y1(t)
y2(t)

)

(2)

and the associated submatrices of A, B, and C have the

structure

A =

(
A11 −A21
A21 A11

)
, B =

(
B11 −B21
B21 B11

)
,

C =

(
C11 −C21
C21 C11

)
(3)

Note that the submatrices of A must be square, but the

submatrices of B and C may have different numbers of

rows and columns. We adopt here the name of symmetric

system following [12]. In [7], such systems were referred

to as isotropic, or rotational-invariant. Indeed, consider the

following property.

Fact - Rotational invariance: consider the transformation

Un =

(
cos(θ) In − sin(θ) In
sin(θ) In cos(θ) In

)
(4)

where the angle θ is arbitrary and In denotes the identity

matrix of dimension n. Define transformed variables

x′ = Un x, u′ = Um u, y′ = Up y (5)

where n is the dimension of x1 and x2, m is the dimension

of u1 and u2, and p is the dimension of y1 and y2. Then,

the transformed variables are related through the same state-

space model as the original system, i.e.,

ẋ′ = Ax′ +Bu′, y′ = Cx′ (6)

Proof: the transformed matrices are given by

A′ = UnAU−1n , B′ = UnBU−1m , C ′ = UpCU−1

n (7)



Given that U−1
n = UT

n , it is straightforward to verify that

A′ = A, B′ = B, and C ′ = C.�

B. Complex representation of symmetric systems

For symmetric systems, a representation with half the

number of states, inputs, and outputs can be obtained by

defining complex vectors

xc = x1 + jx2, uc = u1 + ju2, yc = y1 + jy2 (8)

Indeed,

ẋc = Acxc+Bcuc, yc = Ccxc (9)

where

Ac = A11 + jA21, Bc = B11 + jB21, Cc = C11 + jC21
(10)

We refer to this system as the complex system, while the

original state-space model is called the real system. The

following fact relates the poles of the real and complex

systems.

Fact - Poles of the real and complex systems: any root

of det (sI −Ac) = 0 is a root of det (sI −A) = 0. On the

other hand, if s0 is a root of det (sI −A) = 0, then either s0
or its complex conjugate s∗0 is a root of det (sI −Ac) = 0.

The fact is proved in [6]. It implies that, due to the special

structure of the state-space model, the roots of det(sI−A) =
0 must be either complex pairs or double real pairs. In other

words, there cannot be single real roots. Further, each root of

det (sI −Ac) = 0 is a root of det (sI −A) = 0, and each

root of det (sI −A) = 0 is represented in det (sI −Ac) =
0, either as itself or as its complex conjugate. Thus, knowl-

edge of the eigenvalues of Ac is equivalent to knowledge of

the eigenvalues of A: all the poles of the real system can

be obtained from the poles of the complex system and vice-

versa.

C. Transfer function of the complex representation

As found in the following fact, the partitioning of the state-

space model implies a similar partitioning of the transfer

function matrix, as well as a simple relationship between the

transfer function matrices of the real and complex systems.

Fact - Transfer function matrices of the real and complex

systems: the transfer function matrix from u to y can be

partitioned similarly to the state-space model, with

H(s) = C(sI −A)−1B =

(
H11(s) −H21(s)
H21(s) H11(s)

)
(11)

The transfer function matrix from uc to yc of the complex

system is

Hc(s) = Cc(sI −Ac)
−1Bc (12)

where Ac, Bc, and Cc are given in (10). Hc(s) is also equal

to

Hc(s) = H11(s) + jH21(s) (13)

where H11(s) and H21(s) are the sub-matrices of (11).

The fact is proved in [8]. Note that the denominators of

H11(s) and H22(s) originate from the same polynomial

det(sI−A) which is of order 2n. However, the denominator

of Hc(s) also originates from det(sI − Ac) and can be

at most of order n. Therefore, n poles must be cancelled

either in the computation of H11(s) and H12(s), or in the

computation of Hc(s) = H11(s) + jH21(s).

D. Systems with 2 inputs and 2 outputs

Systems with 2 inputs and 2 outputs consititute a special

case where the complex system becomes a single-input

single-output system. In particular, one can write the transfer

function Hc(s) as Hc(s) = Nh(s)/Dh(s), where Nh and

Dh are the numerator and denominator polynomials of

Hc(s), which have complex coefficients. For control, it is

not unreasonable to restrict oneself to control systems that

are symmetric, so that they can also be represented in the

complex formulation

uc(s) = Gc(s)(rc(s)− yc(s)) (14)

where rc is the complex reference input. The closed-loop

poles are then given by the roots of the polynomial with

complex coefficients

Dg(s)Dh(s) +Ng(s)Nh(s) = 0 (15)

where Gc(s) = Ng(s)/Dg(s).

E. Root-locus design

It is possible to design controllers for 2×2 systems using

root locus plots of the complex system. Specifically, define

Dol(s) = Dg(s)Dh(s) = (s−p1)(s−p2) . . . (s−pn) (16)

where p1, p2, . . . , pn are the poles of the open-loop system,

and

Ng(s)Nh(s) = kgkhNol(s) (17)

where kg is the complex gain of the controller, kh is the

complex gain of the plant, and

Nol(s) = (s− z1)(s− z2) . . . (s− zm) (18)

where z1, z2, . . . , zm are the zeros of the open-loop system.

For a root locus design, one inserts an additional, real gain

k > 0 so that the closed-loop poles of the complex system

are determined by the roots of

Dcl(s) = Dol(s) + kkgkhNol(s). (19)

By definition, the complex root locus is the locus of the

roots of Dcl(s) = 0 as k varies from 0 to infinity. Because

the coefficients of the polynomials are not necessarily real,

the poles do not have to appear as complex pairs. However,

the gain k appears linearly in (19). In contrast, the complex

roots of the real system appear in complex pairs, but their

patterns does not satisfy typical root locus rules because

the characteristic polynomial of the real system is typically

nonlinear in the parameter k. The real system involves a

multivariable feedback law.

In [19], poles and zeros of complex transfer functions were

computed, and root loci were plotted. However, rules were

not derived for the complex root locus. Such rules were

derived in [8], and it turns out that most of the rules of

the conventional root locus also apply to the root locus for



systmes with complex coefficients, either directly or with

minor adjustments. Yet, some peculiar differences also exist:

• the root locus is not necessarily symmetric with respect

to the real axis;

• the angles of the asymptotes do not satisfy the symmetry

conditions of the real root locus;

• no portion of the real axis typically belongs to the root

locus;

• break-away points are less common than in the real root

locus (because of the previous statement);

• with a complex gain in the controller, an additional

degree of freedom can be used in control design.

Complex root locus plots are shown in a section to follow.

The root locus of the real system can then be obtained from

the complex root locus by combining the complex root locus

with its mirror image with respect to the real axis (doubling

the multiplicity of poles on the real axis).

III. EXAMPLE A DOUBLY-FED INDUCTION MACHINE

(DFIM)

A. Real and complex models of a DFIM

Doubly-fed induction machines are often used as gen-

erators in wind farms. For convenience, a three-phase to

two-phase transformation is used to reduce the model to

a two-phase machine. For example, in a power-preserving

transformation, the three-phase currents iSĀ, iSB̄, and iSC̄
are transformed into the two-phase variables iSA, iSB plus

a homopolar current iSh (that is typically zero) using



iSA
iSB
iSh



 =

√
2

3




1 −1/2 −1/2
0

√
3/2 −

√
3/2

1/
√
2 1/

√
2 1/

√
2








iSĀ
iSB̄
iSC̄





(20)

The rotor currents, and the rotor and stator voltages are

transformed similarly.

The electrical variables describing the resulting, equivalent

two-phase machine, satisfy the equations





LS 0 M 0
0 LS 0 M
M 0 LR 0
0 M 0 LR






d

dt






iSF
iSG
iRF
iRG






=






vSF −RS iSF + ωF (LSiSG +MiRG)
vSG −RS iSG − ωF (LSiSF +MiRF )

vRF −RR iRF − (npω − ωF )(LRiRG +MiSG)
vRG −RR iRG + (npω − ωF )(LRiRF +MiSF )






(21)

The parameters of the model are LS , the self-inductance of

a stator winding (H), LR, the self-inductance of a rotor

winding (H), M , the mutual inductance between a stator

winding and a rotor winding when they are aligned (H), RS ,

the resistance of a stator winding (Ω), RR, the resistance of

a rotor winding (Ω), and nP , the number of pole pairs. The

variable ω is the mechanical speed of the rotor (rad/s) and

is also treated as a parameter in the following derivations.

The variables vSF , vSG and vRF , vRG are the stator and

rotor voltages (V ), respectively. Similarly, iSF , iSG and iRF ,

iRG are the stator and rotor currents (A). The variables are

expressed in an arbitrary frame of reference with axes F
and G, where the angle of the F axis with respect to the A
axis of the stator is θF . The speed of rotation of the F axis

is ωF = dθF /dt. In the FG frame of reference, the stator

currents are given by
(

iSF
iSG

)
=

(
cos(θF ) sin(θF )
− sin(θF ) cos(θF )

)(
iSA
iSB

)
(22)

where iSA, iSB are the currents in the two-phase stator

windings. The rotor currents iRF , iRG are given by
(

iRF
iRG

)
=

(
cos(δ) sin(δ)
− sin(δ) cos(δ)

)(
iRX
iRY

)
(23)

where iRX , iRY are the two-phase rotor currents, δ = θF −
nP θ, and θ is the angle of the rotor (with dθ/dt = ω). The

stator voltages vSF , vSG, and the rotor voltages vRF , vRG
are defined similarly from the physical voltages.

Several models can be obtained as special cases of (21).

In particular,

• for θF = 0, the model becomes the model in the stator

frame of reference (replacing F,G by A,B), also called

the αβ model.

• for θF = npθ, the model becomes the model in the rotor

frame of reference (rarely used, but sometimes useful).

• for θF such that ψRF = LRiRF + MiSF = 0, the

model becomes the flux-oriented DQ model.

• for θF equal to the angle of the vector (vSA, vSB), the

model becomes the model in a stator voltage reference

frame, also called grid-oriented or synchronous DQ

model. This model is most useful for a grid-connected

machine.

The equations for the doubly-fed induction machine satisfy

the symmetry conditions, so that the model can be trans-

formed into the complex representation by defining

vS = vSF + jvSG, iS = iSF + jiSG,

vR = vRF + jvRG, iR = iRF + jiRG (24)

With these definitions, the model (21) becomes
(

LS M
M LR

)
d

dt

(
iS
iR

)

=

(
vS −RSiS − jωF (LSiS +MiR)

vR −RRiR + j(nPω − ωF )(LRiR +MiS)

)
(25)

These equations are sometimes used to compute the steady-

state responses of the induction machine. For stator voltages

with constant frequency ωF , steady-state currents can be

computed by replacing d/dt by jωF . Then, vS , vR, iS , iR
can be interpreted as phasors. However, the use of (25) is

not restricted to steady-state analysis. Indeed, the real and

complex models are equivalent, and the complex model (25)

is simply a more compact representation.

B. Analysis of open-loop stability

Although complex models are frequently found in the

literature on electric machines and power systems, they are

rarely used for anything more than to simplify the notation.



However, much can be done using the complex models. For

example, suppose that we were to ask a simple theoretical

question: is the doubly-fed induction machine model stable

for all possible motor parameters and for any fixed speed?

With the real model and assuming ωF = 0 (for simplicity),

stability is determined by the values of s such that

det






sLS +RS 0 sM 0
0 sLS +RS 0 sM

sM npωM sLR +RR npωLR
−npωM sM −npωLR sLR +RR






= 0 (26)

The stability question can be answered by applying the

Routh-Hurwitz test to the polynomial of degree 4

c0s
4 + c1s

3 + c2s
2 + c3s+ c4 = 0 (27)

where

c0 = µ2, c1 = 2µ(LSRR + LRRS)

c2 = (LSRR + LRRS)
2 + 2µRSRR + (npω)

2µ2

c3 = 2RS(RR(LSRR + LRRS) + (npω)
2µLR)

c4 = R2S(R
2

R + (npωLR)
2)

µ = LSLR −M2 (28)

The Routh -Hurwitz test requires that c0 > 0, c1 > 0, c4 > 0,
c1c2 − c0c3 > 0, and c1c2c3 − c0c23 − c2

1
c4 > 0. The first

three inequalities are trivially satisfied, while the last two

are quite tedious to compute manually. Using the Matlab

Symbolic Toolbox and the function simplify (as well as the

function simple for the first term) gives

c1c2 − c0c3 = 2µ(L
3

RR
3

S + 3L
2

RLSRRR
2

S

+3LRL
2

SR
2

RRS + µLRRRR
2

S + L3SR
3

R

+µ2(npω)
2LSRR + µLSR

2

RRS)

c1c2c3 − c0c
2

3 − c21c4 = 4µRRRS

(L2RR
2

S + 2LRLSRRRS + L2SR
2

R + µ2(npω)
2)

(L2RR
2

S + µLRLS(npω)
2 + 2LRLSRRRS + L2SR

2

R) (29)

Both terms are positive, so that stability can be concluded.

In contrast, stability is determined in the complex domain

by the roots of

det

(
sLS +RS sM

(s− jnPω)M (s− jnPω)LR +RR

)

= a0s
2 + (a1 + jb1)s+ (a2 + jb2) = 0 (30)

where

a0 = µ, a1 = LSRR + LRRS , b1 = −nPωµ,

a2 = RSRR, b2 = −nPωRSLR (31)

Stability can be determined using a Hurwitz test for a poly-

nomial of degree 2 with complex coefficients, instead of a

polynomial of degree 4 with real coefficients. Although most

control engineers are only familiar with the Routh-Hurwitz

test for real coefficients, the test for complex coefficients is

available from the literature [10]. Stability is guaranteed for

the complex polynomial if and only if a0 > 0, a1 > 0, and

∆2 =

∣∣∣∣∣∣

a1 0 −b2
a0 a2 −b1
0 b2 a1

∣∣∣∣∣∣

= RSRR
(
(LSRR + LRRS)

2 + µLSLR(nPω)
2
)
> 0

(32)

Since all three quantities are positive for physical parameter

values, one can again conclude that the model is stable for

all speeds. However, the result is obtained this way after only

a few simple computations.

While the computations required were tractable in the

real domain for the 4th order model using a symbolic

computation software, cases involving 6th order models have

been found too complicated to handle. In [3], the authors

could not find conditions on some proportional and integral

gains that would guarantee the stability of the proposed

control law. In contrast, analysis of the associated complex

third-order polynomial [5] quickly revealed the necessary

and sufficient condition for the stability of the closed-loop

system, specifically

kI <
k2PRSMLR

µ(µωS + kPM)
(33)

where kP and kI were the proportional and integral gains of

the controller. Only through the complex analysis could this

remarkably simple condition be discovered.

Conditions were also found for spontaneous self-excitation

of squirrel-cage induction generators in [6]. Self-excited

induction generators (SEIG) are useful for the production

of power from renewable sources in remote areas and in

developing countries. The results of [6] were not previously

known because the real models of dimension 6 prevented

any type of analysis of stability.

C. Control design in the complex domain

1) Control law #1: The complex analysis can be used to

design control laws in a manner similar to the conventional

root locus design, but with some interesting adjustments and

possibilities. For example, consider the control law of [3],

which consists in setting the complex rotor voltages of (25)

to

vR = αRRiR − j(nPω − ωF )(LRiR +MiS)

+jkP (iS,REF − iS) + jkI

∫ t

0

((iS,REF − iS)dτ (34)

with α = 1. The complex variable iS,REF is the reference

value for the stator currents. Assuming a direct connection

to the grid, the regulation of the current iS is equivalent to

the control of the active and reactive powers produced by

the doubly-fed induction machine. The frequency ωF is set

equal to the grid frequency, so that all variables are constant

in steady-state.



The overall system is described in the Laplace domain by



(s+ jωF )LS +RS (s+ jωF )M 0

sM + jkP sLR −jkI
1 0 s








iS
iR
xI





=




vS

jkP iS,REF
iS,REF



 (35)

where, in the time domain

xI =

∫ t

0

((iS,REF − iS)dτ (36)

The poles of the system are given by the roots of a polyno-

mial of the form (19), where

Dol(s) = s2
(
s+

RSLR
µ

+ jωF

)

Nol(s) = (s+ jωF )

(
s+

kI
kP

)

kh =
M

µ
, k = kP , kg = −j (37)
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Fig. 1. Root locus of control law #1

The root locus of the system is shown in Fig. 1 for the

values of [9]: RS = 4.92Ω, RR = 4.42Ω, LS = 0.725H ,

LR = 0.715H, M = 0.71H , and ωF = 314 rad/s. Note

that there are two open-loop poles at s = 0 and one at

s = −246 − 314j. The two zeros are at s = −314j and

s = −kI/kP = −67.7. This last value was found to be

a good setting for the controller zero. The root locus plot

shows that the poles of the closed-loop system are stable

for a sufficiently large gain k, confirming the prediction of

(33). One of the poles moves towards a 90◦ asymptote. For a

system with a number of poles minus number of zeros equal

to 1, the asymptote is parallel to the complex number −khkg,

i.e., parallel to s = j. The ∗’s on the plot show pole locations

for a satsifactory control system design, corresponding to

kP = 5.

2) Control law #2: While control law #1 produces a stable

closed-loop system, it exhibits two undesirable features:

• the system is only conditionally stable (it becomes

unstable if the gain is reduced);
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Fig. 2. Root locus for control law #2

• two poles are poorly damped, no matter what gain is

chosen.

The conditional stability of the system is due to the

double pole at s = 0. One of these poles comes from

the integrator in the control law, while the other originates

from the cancellation of the rotor resistance in (34). This

cancellation removes the natural damping produced by the

rotor resistance, and the stability of the induction machine

model deduced from the earlier analysis. This observation

suggests letting α = 0 in the control law (34) so that the

effective rotor resistance is not reduced to zero. This second

control law gives a new denominator polynomial

Dol(s) = s3 +

(
RSLR +RRLS

µ
+ jωF

)
s2

+(RS + jωFLS)
RR
µ

s (38)

while Nol(s) remains the same. With this modification, the

open-loop system has only one pole at s = 0, while the other

two poles are stable.

The root locus for control law #2 is shown in Fig. 2. The

∗’s correspond to a possible design with kP = 5. Note that

the system is now stable for all gains. On the other hand, one

of the poles remains poorly damped, no matter what gain is

chosen (red line of the root locus).

The complex nature of kg gives an additional degree of

freedom that can be used in the design, but it turns out not to

be sufficient to provide adequate damping the poles. Fig. 3

shows the root locus for kg = 1 instead of kg = −j. As

expected, the asymptote becomes parallel to the real axis,

but the poorly damped pole becomes even less damped.

3) Control law #3: To improve the damping of the closed-

loop design, one must increase the damping of the open-

loop pole. One would expect that this could be achieved by

increasing the effective resistance of the rotor winding, i.e.,

but setting α < 0 in the control law (34). Surprisingly, the

reverse turns out to be true: with α < 0, the complex pole

moves even closer to the imaginary axis for α < 0. Note that

α = 1 corresponds to control law #1, which cancels the rotor
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Fig. 3. Root locus for control law #2 with kg = 1
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Fig. 4. Root locus for control law #3

resistance and is undesirable because the second pole moves

to the origin. It was found that good results were obtained

with α = 0.8, which corresponds to reducing the effective

rotor resistance to 20% of its actual value. Fig. 4 shows the

root locus for α = 0.8, and kg = 1−1.5j. The ∗’s correspond

to a possible design with kP = 1.8. The poles are then given

by −76+61j, −121− 68j, and −183−174j, which are all

adequately damped. Note that the real root locus is the union

of the complex root locus and its mirror image. The real root

locus has branches that cross each other without being break-

away points, which is not possible in the conventional root

locus. This is because the system is a multivariable system,

with a characteristic polynomial that is not linear in k.

IV. CONCLUSIONS

The paper reviewed properties of symmetric systems and

tools that can be used to analyze them through equivalent

complex systems with half the dimension or order. The

control of a doubly-fed induction machine was used as an

example. It was shown that certain stability guarantees could

be more easily obtained in the complex domain than in the

real domain. The design of a controller using root locus

plots in the complex domain was also described in detail.

No equivalent design technique exists in the real domain,

and it was shown that a satisfactory placement of closed-

loop poles could be obtained after a few iterations using an

understanding of root locus properties.
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