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Abstract: A multivariable adaptive scheme is proposed that is designed to reject periodic distur-

bances of unknown frequency at multiple sensor locations. The case of square systems is considered,

as well as the common case where there are more sensors than actuators (overdetermined systems).

The disturbances are assumed to contain multiple harmonics associated with a single fundamental

frequency, as is the case if the source of the disturbances is a rotating machine. Accordingly, the

control inputs are selected to be periodic signals with a frequency determined by a single frequency

estimate. Although the adaptive scheme is highly nonlinear, approximations yield an analysis that

enables a linear time-invariant design of the algorithm. The analysis also gives useful information

about the dynamic behavior of the system and the selection of the design parameters. Experimental

results show that the proposed scheme is able to significantly reduce acoustic noises with constant

or time-varying frequency at multiple locations in an enclosure.

∗This material is based upon work supported by the National Science Foundation under Grant No. ECS0115070.
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1. Introduction

An active disturbance control system rejects or reduces disturbances by introducing signals that

are opposite in sign to the disturbance signals. There are two basic types of active control systems:

feedforward and feedback control systems. The effectiveness of feedforward control methods de-

pends on the availability of reference signals that are highly correlated with the disturbance signals.

It is suitable for applications where a reference signal may be obtained from a non-acoustic sensor

such as a tachometer or an accelerometer, or from a detection sensor placed upstream of the control

sources [1]. However, it is not always feasible to obtain a reference signal that is well correlated

with the disturbance signals, giving time-advanced information. In such cases, feedback control is

needed, where the signals driving the control actuators are obtained directly from the error sensors,

rather than from an independent reference sensor.

The general block diagram of a multivariable feedback disturbance control system is shown in

Fig. 1. In the figure, n(t) is the vector composed of the disturbance signals at multiple sensor

locations, u(t) is the vector of the control signals applied to actuators, and e(t) is the vector of the

error signals measured by the sensors. The physical dynamics of the control signals propagating

from the actuators to the sensors together with the response of data converters and anti-aliasing

and reconstruction filters constitutes the plant P(s). The controller is often made adaptive to track

the slowly time-varying properties of the disturbances and to compensate for slow changes in the

plant response.
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Figure 1: A multivariable feedback disturbance control system.
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The emphasis of this paper is on multivariable feedback control of periodic disturbances which

contain multiple harmonics of a single fundamental frequency. Examples of periodic disturbances

are acoustic noise and vibration originating from the rotation of an engine, compressor, fan, or pro-

peller. The frequency of the disturbance is not known a priori and may be slowly time-varying due

to slow changes in rotational speed. The amplitudes of the constituent sinusoids of the disturbances

may also be varying slowly.

A multivariable control system is needed to effectively control sound over extended regions of

space. Another reason for the development of a multivariable disturbance control system is to deal

with possible singularities of a single control channel. If the frequency response of a single channel

plant P (jω) at some frequency is zero, the system is ineffective at controlling the signal component

at that frequency, regardless of the control structure or algorithm. This problem may be overcome

by using multiple control sources and channels that do not have common zeros in their transfer

functions.

There is a relatively large volume of literature on active noise control with a reference signal

(feedforward control) and on the feedback control of periodic sources of known frequency. Few

algorithms exist for the rejection of periodic disturbances of unknown frequency using feedback,

including applications to multi-channel active noise control systems. An early reference is the patent

of Chaplin & Smith [2], which describes in broad terms the concept of an active noise control system

where the frequency of the disturbance is estimated using a phase-locked loop. An analysis of one of

the possible implementations was presented in [3]. In adaptive control, the terminology “indirect”

usually applies to an algorithm where the parameters of the system are estimated, and inserted

in a control algorithm using a design procedure that assumes that the estimates are exact. In

analogy, approaches where the frequency of the disturbance is estimated, and then applied in a

scheme for the cancellation of disturbances of known frequency are called indirect in this paper,

as in [4]. Recently, there have been a few attempts at implementing indirect algorithms in active

noise control. References [5], [6], [7] and [8] report on experimental results obtained with adaptive

notch filters for frequency estimation.
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The approach used in this paper is significantly different from the indirect algorithms and

originates from [4]. The scheme is called direct because a nonlinear update law is designed to

directly adjust all the parameters of the disturbance cancellation signal so that they converge

towards the desired values. The scheme may be viewed as an extension of a phase-locked loop,

where the plant (the system originating from the propagation of sound from the speaker to the

microphone) is placed inside the phase-locked loop. One of the advantages of this approach is

that, although the overall system is highly nonlinear, an approximate analysis around the nominal

parameters yields a linear time-invariant system, so that the parameters of the system can be

adjusted to produce predictable transient behavior.

The direct approach of [4] was modified to control periodic noise with multiple harmonics in [9]

and experimental results were presented. In this paper, the algorithm is extended to a multivariable

disturbance control system. A modified feedback design is also proposed for the adaptation of the

frequency and phases of the control signals, resulting in improved transient behavior. The control

algorithm is applied to the reduction of periodic acoustic noise in a small room, and experimental

results demonstrate excellent practical performance of the system for constant and time-varying

noise frequency.

2. Multivariable Disturbance Control

2.1 Problem Statement

Assume that the effect of the disturbances is additive and that the channels from the actuators to

the sensors can be described by stable, linear time-invariant systems with transfer functions Pli(s),

where l = 1, ..., L stands for control input #1, ..., L, and i = 1, ..., I stands for residual error #1,

2, ..., I. It is assumed that the number of error sensors is greater than or equal to the number of

control inputs in the system, i.e., I ≥ L. This is a typical situation in active noise control systems

and many other applications where sensors are cheaper than actuators. Adjustments may be made

to solve the case I < L, but are not considered in this paper.

The system transfer function matrix P(s) has elements Pli(s), where l specifies the column and
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i specifies the row. It is assumed that suitable locations for the control sources and the sensors

are chosen, so that the system frequency response matrix is of full rank (i.e., P(jω) has L linearly

independent rows) at the frequencies of the disturbance signals. Fig. 2 shows the structure of the

multi-channel disturbance control system, where L control actuators are used to control disturbance

signals at I sensor locations. The symbols ul(t), ei(t), and ni(t) are, respectively, the control signals,

the sensor signals (or the plant outputs), and the disturbance signals at the sensor locations. The

symbol pli(t) for l = 1, ..., L and i = 1, ..., I is the impulse response of the channel transfer function

Pli(s). Defining the vector of error signals e(t), we have

e(t) =






e1(t)

...

eI(t)






=






p11(t) . . . pL1(t)

...
...

...

p1I(t) . . . pLI(t)






∗






u1(t)

...

uL(t)






+






n1(t)

...

nI(t)






, (1)

where ∗ denotes linear convolution. The disturbances ni(t) with i = 1, ..., I for different sensor

locations are assumed to contain multiple harmonics associated with a single fundamental frequency,

as is the case if the source of the disturbances is a rotating machine. The disturbance signals are

represented by

ni(t) =
K�

k=1

�
πci,k cos [kαd(t)]− πsi,k sin [kαd(t)]

	
, i = 1, 2, ..., I (2)

where αd(t) = ωd · t, and ωd is the fundamental frequency of the disturbances. The initial phases

and the amplitudes of the disturbance components are parameterized as the amplitude parameters

πci,k and πsi,k. For the purpose of analysis, ωd, π
c
i,k, and π

s
i,k are assumed constant. In practice,

the parameters may be slowly-varying. The order of the highest harmonic to be cancelled, K, is

assumed to be finite and known.

The objective of the control system is to generate control signals ul(t) such that the effects of

the disturbance signals at the sensor locations are cancelled through destructive interference. If

there are more sensors than actuators (i.e., I > L, and the system is said to be overdetermined),

and exact cancellation may not be possible even under ideal conditions.

2.2 Optimal Solution and Problem Reformulation
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Figure 2: Multivariable disturbance control problem.

The optimal solution depends on the cost function to be minimized. In this paper, the time-averaged

sum of the squared errors is considered as a cost function: J(t) = AVG


eT (t)e(t)

�
. Given that

the plant P(s) is assumed to be linear, the control inputs are selected to contain every frequency

component of the disturbances, with

ul(t) =
K�

k=1

�
θcl,k cos [kα(t)]− θsl,k sin [kα(t)]

	
, l = 1, 2, ..., L, (3)

where α(t) = ωt, and the fundamental frequency of the control signals ω = ωd for optimal operation.

The optimal amplitude parameters θcl,k and θsl,k depend on the plant response at the disturbance

frequencies and on the amplitude parameters πci,k and π
s
i,k of the disturbances.

To present the analysis in a compact form, we group the cos and sin amplitude parameters of

the control signals in a vector for each harmonic

θk =

�

θc1,k ... θcL,k θs1,k ... θsL,k

T
, k = 1, 2, ...,K. (4)

Similarly, the amplitude parameter vector of the disturbance signals is defined as

πk =

�

πc1,k ... πcI,k πs1,k ... πsI,k

T
, k = 1, 2, ...,K. (5)

For constant amplitude parameters of the control signals, the response of the plant to the signals

ul(t) may be replaced by its steady-state counterpart, since transient components do not affect the
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cost function. In this case, the sensor signals are given by

e(t) =
K�

k=1

[Qk(t)(2Gkθk +πk)] , (6)

where the I × 2I matrix Qk(t) is defined to be

Qk(t)=

�

cos[kα(t)]II×I − sin[kα(t)]II×I



, (7)

and II×I is an I × I identity matrix. The 2I × 2L matrices Gk are given by

Gk =
1

2






PRek −PImk

PImk PRek





, (8)

where PRek and PImk are the real and imaginary parts of the plant response at the frequency of the

kth harmonic of the control signals, i.e.,

P(jkω) = PRek + jPImk =






P11(jkω) · · · PL1(jkω)

...
...

...

P1I(jkω) · · · PLI(jkω)






. (9)

Using the above definitions, one may compute the cost function given by

J =
K�

k=1

�
1

2
π
T
kπk + π

T
kGkθk + θ

T
kG

T
kπk + 2θTkG

T
kGkθk

�
. (10)

The derivatives of J with respect to θk are set to zero, which leads to the optimal amplitude

parameters of the control signals

θ
0
k = −

1

2
(GTkGk)

−1
GTkπk, (11)

with

θ
0
k =

�

θc01,k ... θc0L,k θs01,k ... θs0L,k

T
, (12)

for k = 1, 2, ...,K, and the optimal control inputs are defined accordingly.

The above result shows that the control of each frequency component of the disturbances is

independent of the others in steady-state. With the optimal control inputs, the error signals in
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steady-state are

e(t) =
K�

k=1

�
Qk(t)



−Gk(GTkGk)

−1
GTk + I2I×2I

�
πk

	
, (13)

where I2I×2I is a 2I × 2I identity matrix. For overdetermined systems, exact cancellation of the

disturbances is generally not possible, even under ideal conditions. However, for fully-determined

systems (I = L), the residual error signals are zero in steady-state, since the matrix Gk is non-

singular due to the full-rank assumption of P(jω). In this case, the disturbances are completely

rejected (similar results were also reported in [10]).

We model the disturbance signals n(t) as the sum of two sets of disturbances, one that is reflected

at the input of the plant and can be rejected completely, the other containing the disturbances at

the plant output (sensor locations). The reflected disturbance sources are

dl(t) =
K�

k=1

�
θc0l,k cos [kαd(t)]− θs0l,k sin [kαd(t)]

	
, for l = 1, 2, ..., L. (14)

The disturbances modeled at the output of the plant are equivalent to the residual disturbances in

steady-state with the optimal control input. The vector of the output disturbances is given by

r(t) =
K�

k=1

�
Qk(t)



−Gk(GTkGk)

−1
GTk + I2I×2I

�
πk

	
.

Fig. 3 shows the reformulated control problem. By reformulating the disturbance signals in this

way, we will be able to show in Section 3 that the output disturbances r(t) for overdetermined

systems do not affect the convergence of the adaptive parameters of the proposed control scheme,

and that the input disturbances d(t) are canceled using the proposed feedback design.

3. Direct Adaptive Scheme

3.1 Overall Scheme

We consider a control scheme that iteratively adjusts the control signals in order to minimize the

cost function. Adaptation is needed, as the amplitudes and frequency of the disturbances are

unknown and may change slowly with time. The disturbance sources reflected at the plant inputs

are assumed to be

dl(t) =
K�

k=1

md,l,k cos [αd,l,k(t)] , l = 1, 2, ..., L, (15)
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Figure 3: Reformulated multivariable disturbance control problem.

where α̇d,l,k(t) = kωd. Note that for the purpose of the adaptive scheme to be discussed, it is

useful to reformulate the disturbances in terms of their amplitude/phase parameters rather than

the cos/sin components used earlier. The control signals contain every frequency component of the

disturbance signals and are given by

ul(t) =
K�

k=1

ml,k(t) cos [αl,k(t)] , l = 1, 2, ..., L, (16)

where the amplitudes and angles have nominal values m0l,k = −md,l,k and α0l,k = αd,l,k.

Fig. 4 shows the structure of the direct scheme for multivariable control of periodic disturbances.

The error signal vector e(t) is first multiplied by cos [αl,k(t)] and − sin [αl,k(t)], where αl,k(t) is the

angle of the kth harmonic of the lth control input, for l = 1, 2, ..., L, and k = 1, 2, ...,K. In the

figure, plant compensation removes the effect of the plant frequency response on the measured

signals and consists of the following matrix multiplication






yc,l,k(t)

ys,l,k(t)





=






Hk,l

Hk,(L+l)











e(t) cos [αl,k(t)]

−e(t) sin [αl,k(t)]





, with l = 1, 2, ..., L, and k = 1, 2, ...,K. (17)

9



The row vectors Hk,l and Hk(L+ l) are the lth and (L+ l)th rows of the (2L× 2I) matrix Hk

Hk =






Hk,1

Hk,2

...

Hk,2L






= (ĜTk Ĝk)
−1ĜTk . (18)

The (2I × 2L) matrix Ĝk is the estimate of the plant matrix Gk, which is defined in Section 2.2.

In practice, Gk is estimated during a preliminary training phase using appropriate input signals.
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Figure 4: Direct scheme for multivariable disturbance cancellation.

The variables yc,l,k(t) and ys,l,k(t) (l = 1, 2, ..., L, and k = 1, 2, ...,K) are used in the feedback

design to calculate the amplitudes, the fundamental frequency ω, and the relative phases φl,k of the

control signals, where l = 2, ...L for k = 1, and l = 1, 2, ...L for k = 2, ...,K. The feedback design

is given in Section 3.3.

3.2 Approximate Analysis
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The analysis of the system is similar to that in [4] and [9], and inspired by analysis techniques used

for phase-locked loops. We first assume that the output disturbances ri, with i = 1, 2, ..., I are zero.

The responses of the plant to the control signals and the disturbance sources are approximated by

their steady-state outputs, and the high-frequency components resulting from the multiplication

are discarded. Under these assumptions, we have





e(t) cos [αl,k(t)]

−e(t) sin [αl,k(t)]





=Gk






mk(t)⊙ cos [αk(t)− αl,k(t)]−m0
k ⊙ cos

�
α
0
k(t)− αl,k(t)

�

mk(t)⊙ sin [αk(t)− αl,k(t)]−m0
k ⊙ cos

�
α
0
k(t)− αl,k(t)

�





, (19)

with

mk(t) = [m1,k(t), ...,mL,k(t)]
T , αk(t) = [α1,k(t), ..., αL,k(t)]

T ,

m0
k = [m01,k, ...,m

0
L,k]

T , α0k(t) = [α01,k(t), ..., α
0
L,k(t)]

T , (20)

and the operator ⊙ is defined to be such that

mk(t)⊙ cos [αk(t)− αl,k(t)] =






m1,k(t) cos [α1,k(t)− αl,k(t)]

...

mL,k(t) cos [αL,k(t)− αl,k(t)]






. (21)

Then

Hk






e(t) cos [αl,k(t)]

−e(t) sin [αl,k(t)]





=HkGk






mk(t)⊙ cos [αk(t)− αl,k(t)]−m0
k ⊙ cos

�
α
0
k(t)− αl,k(t)

�

mk(t)⊙ sin [αk(t)− αl,k(t)]−m0
k ⊙ cos

�
α
0
k(t)− αl,k(t)

�





.

(22)

If there is no modeling error and the frequency estimate is equal to the true value, Ĝk = Gk.

Consequently, HkGk becomes the identity matrix, and

Hk






e(t) cos [αl,k(t)]

−e(t) sin [αl,k(t)]





=






mk(t)⊙ cos [αk(t)− αl,k(t)]−m0
k ⊙ cos

�
α
0
k(t)− αl,k(t)

�

mk(t)⊙ sin [αk(t)− αl,k(t)]−m0
k ⊙ cos

�
α
0
k(t)− αl,k(t)

�





. (23)

The variables yc,l,k(t) and ys,l,k(t) are given by





yc,l,k(t)

ys,l,k(t)





=






ml,k(t)−m0l,k cos


α0l,k(t)− αl,k(t)

�

md,l,k sin


α0l,k(t)− αl,k(t)

�





≃






ml,k(t)−m0l,k

−md,l,k


αl,k(t)− α0l,k(t)

�






(24)
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for l = 1, 2, ..., L, and k = 1, 2, ...,K. Equation (24) shows that the variables yc,l,k(t) and ys,l,k(t)

contain information about the amplitude and angle parameters of the disturbance sources. The

information is free of the multivariable plant response effects. The paths from the parameters

ml,k(t) and αl,k(t) to the variables yc,l,k(t) and ys,l,k(t) are decoupled from one another and are

independent for each harmonic. The relationship is approximately linear when αl,k(t) is close to

the nominal value α0l,k(t), as is shown by the second equation of (24).

3.3 Feedback Design

The adaptive feedback can now be designed according to the linear relationship between the pa-

rameters ml,k(t) and αl,k(t) to the variables yc,l,k(t) and ys,l,k(t). The amplitudes of the control

signals are updated according to

ṁl,k(t) = −gm,l,k · yc,l,k(t), with l = 1, 2, ..., L, k = 1, 2, ...,K (25)

where gm,l,k > 0 is an arbitrary adaptation gain. As a result, the dynamics of the amplitude loops

are given by

ṁl,k(t) = −gm,l,k


ml,k(t)−m0l,k

�
, (26)

for l = 1, 2, ..., L and k = 1, 2, ...,K, and the parameter estimates ml,k(t) converge to their ideal

values as first-order systems with poles at s = −gm,l,k.

Since the disturbance signals have the same fundamental frequency ωd, it would be helpful to

have a single frequency estimate ω(t) for all the signals. In this scheme, the fundamental frequency

ω(t) is estimated using the variable ys,1,1(t), which corresponds to the fundamental component of

the plant input #1. The feedback design with an adaptation gain gω is given by

ω̇(t) = gω · ys,1,1(t), (27)

since

ys,1,1(t) = −md,1,1


α1,1(t)− α01,1(t)

�
.

The phase of the fundamental component of the control input #1 α1,1(t) is constructed via

α̇(t) = ω, α(0) = 0,

12



α1,1(t) = α(t) +Kfω, (28)

where the design parameter Kf is positive.

Fig. 5 shows the linear approximation of the fundamental frequency update loop. Note that

the phase α1,1(t) is not purely integrated from the frequency ω(t), as was done in the previous

designs of phase adaptation [4] [9]. The proportional gain Kf improves the dynamic response of

the algorithm and simplifies its design. The dynamics of the linear loop are those of a second-order

system with poles determined by the roots of

s2 + gωmd,1,1Kfs+ gωmd,1,1 = 0. (29)

Stability is guaranteed as the values of Kf and gωmd,1,1 are both positive. The estimate ω(t)

converges to its nominal value ω0 = ωd. The relative phase of the fundamental of the first control

signal is determined indirectly through the time history of ω(t). Specifically, the phase α1,1(t) is

equal to α01,1(t) = αd,1,1(t) if ω(t) = ωd at some time t (possibly infinite), and

� t

0
[ω(τ)− ωd] dτ +Kfωd = αd,1,1(0). (30)

α

α1,1 

1,1 

g

s
ω

Kf+
1
s

ωm d,1,1

0

Figure 5: Approximate frequency update loop.

The phases of other components of the control inputs are obtained from the fundamental fre-

quency estimate, taking into account the integer multiplicative relation between the fundamental

frequency and the harmonic frequencies. Specifically, we let

αl,k(t) = kα(t) + φl,k(t), (31)
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where l = 2, ...L for k = 1, and l = 1, 2, ...L for k = 2, ...,K. For these phases, the parameters to

be adapted are the relative phases φl,k(t). The nominal values for φl,k(t) are

φ0l,k = k
� t

0
[ω(τ)− ωd] dτ + αd,l.k(0). (32)

After the frequency loop converges, the linearized dynamics from the relative phases φl,k(t) to

the variables ys,l,k(t) are given by

ys,l,k(t) = −md,l,k ·


φl,k(t)− φ0l,k

�
. (33)

with l = 2, ...L for k = 1, and l = 1, 2, ...L for k = 2, ...,K. Consequently, the relative phases φl,k(t)

are updated according to

φ̇l,k(t) = gφ,l,k · ys,l,k(t), (34)

where the design parameters gφ,l,k are all positive. As a result, the linear dynamics of the relative

phase loops are given by

φ̇l,k(t) = −gφ,l,k ·md,l,k ·


φl,k(t)− φ0l,k

�
, (35)

and the parameter estimates φl,k(t) converge to their ideal values as first-order systems with poles at

s = −gφ,l,kmd,l,k. As in the frequency loop, the dynamics of the relative phase loops are determined

not only by the design parameters gφ,l,k, but also by the amplitudes md,l,k. Some prior knowledge

about the values of md,l,k is useful in the choice of the design parameters gφ,l,k, so that the poles

s = −gφ,l,kmd,l,k are placed at desirable locations.

3.4 Effect of Output Disturbances

For overdetermined systems, the sensor signals ei(t) also contain the non-zero output distur-

bances ri(t), for i = 1, 2, ..., I. The multiplication of the disturbance vector r(t) by cos [αl,k(t)]and

− sin [αl,k(t)]leads to






r(t) cos [αl,k(t)]

−r(t) sin [αl,k(t)]





=






Qk(t) cos [αl,k(t)]

−Qk(t) sin [αl,k(t)]








−Gk(GTkGk)

−1
GTk + I2I×2I

�
πk. (36)
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We define δα(t) such that αl,k(t) = kα(t) + δα(t). Neglecting high-frequency terms, as was done in

the analysis of Section 3.2, (36) can be approximated to





r(t) cos [αl,k(t)]

−r(t) sin [αl,k(t)]





≃

1

2
T [δα(t)]



−Gk(GTkGk)

−1
GTk + I2I×2I

�
πk, (37)

where the matrix

T [δα(t)]=






II×I cos [δα(t)] II×I sin [δα(t)]

−II×I sin [δα(t)] II×I cos [δα(t)]





. (38)

The effect of the disturbances r(t) on yc,l,k(t) and ys,l,k(t) is represented by the additive term

Hk






r(t) cos [αl,k(t)]

−r(t) sin [αl,k(t)]





=

1

2
(ĜTk Ĝk)

−1ĜTkT [δα(t)]


−Gk(GTkGk)

−1GTk + I2I×2I
�
πk. (39)

If Ĝk =Gk, since G
T
kT [δα(t)]= S [δα(t)]G

T
k , where the matrix

S [δα(t)] =






IL×L cos [δα(t)] IL×L sin [δα(t)]

−IL×L sin [δα(t)] IL×L cos [δα(t)]





, (40)

we have

(GTkGk)
−1GTkT [δα(t)]



−Gk(GTkGk)

−1
GTk + I2I×2I

�

= −(GTkGk)−1S [δα(t)]GTkGk(GTkGk)
−1
GTk + (GTkGk)

−1GTkT [δα(t)]

= −(GTkGk)−1S [δα(t)]GTk + (GTkGk)
−1GTkT [δα(t)]

= −(GTkGk)−1GTkT [δα(t)] + (GTkGk)
−1GTkT [δα(t)]

= 0. (41)

In this case, we have

Hk






r(t) cos [αl,k(t)]

−r(t) sin [αl,k(t)]





= 0. (42)

In other words, the output disturbances r(t) for overdetermined systems do not affect the con-

vergence of the adaptive parameters within the assumptions of the approximate analysis of the

algorithm.
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3.5 Computational Issues

Implementation of the algorithm requires the pseudo-inverse of the non-square matrix Ĝk, which

may be computed using

(ĜTk Ĝk)
−1ĜTk = 4






(D̂k + ÊkD
−1
k Êk)

−1 (D̂k + ÊkD
−1
k Êk)

−1ÊkD
−1
k

−(D̂k + ÊkD−1k Êk)−1ÊkD
−1
k (D̂k + ÊkD

−1
k Êk)

−1





ĜTk , (43)

with

D̂k =
�
P̂Rek

�T
P̂Rek +

�
P̂Imk

�T
P̂Imk = D̂Tk , (44)

and

Êk =
�
P̂Rek

�T
P̂Imk −

�
P̂Imk

�T
P̂Rek = −ÊTk . (45)

Note that the inverse is well-defined under the assumption made earlier that the plant frequency

response matrix has full row rank at the frequency of each harmonic.

In a real-time implementation, the approximate inverse

(ĜTk Ĝk)
−1ĜTk ≃ 4






D̂k 0

0 D̂k






−1

ĜTk (46)

may be used. The inverse is exact if Êk = 0, or
�
P̂Rek

�T
P̂Imk =

�
P̂Imk

�T
P̂Rek . This property is

satisfied in particular if, for a 2×2 system, P̂11(jkω) = P̂22(jkω), and P̂12(jkω) = P̂21(jkω). These

conditions may be viewed as “symmetry” conditions, in the sense that the behavior of the system

is the same if the order of the inputs and outputs are permuted. In the experiments, the geometric

disposition of the speakers and microphones was symmetric, and the conditions were verified to be

approximately true.

4. Active Noise Control Application

The multivariable algorithm for rejection of periodic disturbances was applied to the reduction of

acoustic noise in a confined environment. The control strategy was implemented on an experimental

active noise control system developed at the University of Utah. Although the algorithm is formu-

lated in the analog domain, it can be easily converted into the digital domain by approximation of
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derivatives (or any other transformation technique as is found in [11]). The algorithm was coded in

the assembly language of Motorola’s DSP96002 32-bit floating-point digital signal processor hosted

in a PC. The sampling rate was set at 8 kHz. Fig. 6 represents the two-channel active noise con-

trol system. A single bookshelf speaker with a 4-inch low-frequency driver generated the periodic

signal constituting the noise source. The signals were collected by two microphones separated by

about 2.7 ft. These signals were passed through anti-aliasing filters and sampled by self-calibrating

16-bit analog-to-digital converters before being sent to the DSP system. The controller output

signals were sent to two noise cancelling speakers positioned symmetrically with respect to the

microphones. The whole system was set in a horizontal plane at about 2 ft in height.

DSP System

    D/A

Converter

Pre-Amplifier

Microphone 

Speaker Protection

Amplifier

Speaker

    A/D 

Converter

(

(

(

 Noise

Source

#1

#I

#1

#L

Figure 6: Diagram of the ANC testbed.

The adaptive algorithm requires knowledge of the frequency response matrix P(jω) of the plant.

Assuming that the characteristics of P(jω) are time-invariant but unknown, measurements can be

used to estimate P(jω) during an initial training stage. At the end of the training interval, the

17



estimated model P̂(jω) is fixed and incorporated in the algorithm. The frequency response at

a given frequency ω0 was determined by the empirical transfer function estimate (ETFE, [12])

method. Let the first input (produced by control speaker #1) be a pure sinusoid cos(ω0n) and the

second input (produced by control speaker #2) be zero. P̂1∗(jω0), defined to be the first column

of P̂(jω0), may be obtained through

Re
�
P̂1∗

�
=

2

N

N�

n=1

E(n) cos(ω0n),

Im
�
P̂1∗

�
= —

2

N

N�

n=1

E(n) sin(ω0n), (47)

where E(n) is the vector of plant outputs, and N = kπ/ω0 with k = 1, 2, 3.......

The second column of P̂(jω0) may be obtained similarly. In the implementation of the algo-

rithm, I = L = 2, and it was assumed that P11(jω) = P22(jω), and P12(jω) = P21(jω). This

assumption need not be made in general, but the complexity of the code is reduced if the assump-

tion is used. The real and imaginary parts of the frequency response were obtained at 64 different

frequencies, spaced between 90 Hz and 375 Hz, and the results were saved in a look-up table. In

real-time operation, the frequency response at the estimated frequency was obtained by linearly

interpolating the look-up table, and the matrices Ĝk were adjusted continuously as functions of

the frequency estimate.

Figs. 7-10 show the estimates of the plant frequency responses. Fig. 7 and Fig. 8 are the

magnitude response and the phase response of P11(jω), respectively, while Fig. 9 and Fig. 10 are

the corresponding responses of P21(jω). The phase responses mostly consist of the linear phase

associated with the delay due to sound propagation from the speakers to the microphones. The

magnitude responses show a significant number of peaks and valleys, which are due to acoustic

resonances and typical for the acoustic plant response in an enclosure.
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Figure 7: Magnitude response of P11(s).
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Figure 8: Unwrapped phase response of P11(s) (rad.).
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Figure 9: Magnitude response of P21(s).
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Figure 10: Unwrapped phase response of P21(s) (rad.).
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5. Experimental Results of Active Noise Control

5.1 Fixed Frequency Experiments

For all the experiments in this paper, the noise contains a fundamental and a 2nd harmonic. In

this set of results, the fundamental frequency of the noise was fixed at 130 Hz. The adaptation

gains for the amplitude loops were gm = 4.0 for all components of the signals, leading to closed-loop

poles at −4 rad/s for the linearized systems of the amplitude loops. The design parameters for the

frequency loop were set to Kf = 0.1 and gω = 800. The design parameters for the relative phase

loops were set to gφ,1,2 = 60, gφ,2,1 = 60, and gφ,2,2 = 250.

Fig. 11 shows the signals obtained from error microphones #1 and #2. For the purpose of

evaluation, the control system was switched on at 1 second into this recording. The figure shows that

the algorithm, once engaged, reduced both noise signals considerably within one second. In steady-

state, the fundamental components and the harmonics of the two noise signals were completely

eliminated.
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Figure 11: Microphone signals.

Fig. 12 shows the amplitudes of the fundamental component and of the 2nd harmonic for

control signals #1 and #2. The parameters converged to the steady-state values in about 1 second,

consistently with the magnitude loop poles of −4 rad/s. The poles for the relative phase loops
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were in the vicinity of −8 rad/s, with a settling time of about 0.5 seconds. The dynamics of the

linear approximation of the frequency loop were determined by the roots of s2 + 16s + 160 = 0,

i.e., −8 ± j4
√
6 rad/s. The corresponding settling time was also 0.5 seconds. Fig. 13 shows the

frequency estimate, which converged to its nominal value in about 0.5 seconds. Fig. 14 shows

the relative phases with an approximate convergence time of 1 second. This value is the sum of

the convergence time of the frequency loop and the convergence time of the relative phase loops

predicted from the linear approximation.
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Figure 12: Amplitudes of the control signals.

5.2 Varying Frequency Experiments

In the second case, the fundamental frequency of the noise was increased linearly from 130 Hz to

150 Hz in 10 seconds. The results of this section show that disturbances with varying frequencies

can also be reduced significantly. Due to the acoustic properties of the room, the amplitudes of

the noise signals at the two microphone locations changed slowly, although the amplitudes of the

components of the real noise source were constant. The adaptation gains for the update of the

control signal amplitudes were increased to gm = 8.0 for all components of the signals, in order to

improve tracking. The design parameters for the frequency and relative phase loops were set to

Kf = 0.04, gω = 1200, gφ,1,2 = 40, gφ,2,1 = 60, and gφ,2,2 = 100.
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Figure 13: Frequency estimate of the control signals.
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Figure 14: Relative phases of the control signals.

23



Figs. 15 and 16 show noise signals #1 and #2 at the microphone locations without control

(upper part) and the corresponding residual error signals when the control is engaged (lower part).

The frequency tracking performance and the frequency tracking error are shown in Fig. 17. The

frequency tracking error is about 0.2 Hz. Fig. 18 shows the amplitudes of the fundamental com-

ponent and of the 2nd harmonic for control signal #1 and #2. Fig. 19 shows that the relative

phase of the fundamental component of noise signal #2 increases linearly, with a rate of 0.08 Hz.

This variation compensates partly for the frequency tracking delay. The performance of the relative

phase estimation for the 2nd harmonic is not as good, because the amplitudes of the 2nd harmonics

are small and change fast, as shown in Fig. 18. Rapid changes of the phase estimates by 180◦ are

associated with small values of the corresponding amplitude parameters of the noise signals, which

may be attributed to (approximate) zeros of transmission from the noise source to the microphones.
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Figure 15: Noise signal #1 with and without control.

Figs. 20 and 21 show the spectra of the noise signals (solid lines) and the corresponding residual

error signals under control (dashed lines), obtained from microphones #1 and #2 (respectively).

The power spectral density of the signals are estimated using Welch’s averaged periodogram method

with non-overlapping Hanning window with a length of 800 samples (using the function spectrum.m

in Matlab). The signals after 1.0 second were used in the spectral analysis in order to demonstrate
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Figure 16: Noise signal #2 with and without control.
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Figure 18: Amplitude parameter estimates.
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the performance of the control system in steady-state. The noise signals shown in the spectra have

significant spectral content from 132 Hz to 150 Hz and from 264 Hz to 300 Hz. For error signal #1,

the contribution of the fundamental component was reduced by approximately 30 dB, and the 2nd

harmonic by 10 dB (on average). For error signal #2, the fundamental component was reduced by

approximately 34 dB, and the 2nd harmonic by 15 dB. The spectral peaks of the narrowband noise

signals are still visible against the background noise, and the noise reduction of the 2nd harmonic

is not as good as that of the fundamental. However, a considerable overall reduction of the noise

is achieved despite rapid changes in signal characteristics.
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Figure 20: Spectra of noise #1 and its residual.

6. Conclusions

An algorithm was proposed for the active control of periodic disturbances of unknown frequency at

multiple sensor locations. The nominal solution was first discussed under a full-rank assumption,

and it was shown that disturbances could be canceled exactly for square systems, while residuals

existed for overdetermined systems. The disturbances were then reformulated as the superposition

of disturbance sources at the plant input and disturbances at the plant output, which are equivalent

to the residuals.

The proposed scheme is a complex nonlinear dynamic system. However, various approximations
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Figure 21: Spectra of noise #2 and its residual.

and linearization around the nominal solution enabled a relatively straightforward linear design.

Within the assumptions, it was found that the output disturbances had no effect on the convergence

of the scheme. The analysis also gave useful information about the dynamic behavior of the system

and the selection of the design parameters. An interesting feature of the algorithm is that the

frequencies of all the components of the control signals are tied to a single frequency estimate,

reflecting the assumptions made about the source of the disturbances. The multivariable control

algorithm was applied to the reduction of periodic acoustic noise in a small room. Experimental

results showed that the proposed algorithm was able to significantly reduce acoustic noises with

constant or time-varying signal parameters.
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