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Routh’s treatise [1] was a landmark in the analysis of stability of dynamic systems and became

a core foundation of control theory. The remarkable simplicity of the result was in stark contrast2

with the challenge of the proof. Efforts were devoted by many researchers to extend the result

to singular cases, with some of the earlier techniques shown to be inadequate [2]. Together with4

the extensions to singular cases, shorter proofs were also proposed. Noteworthy is the proof of

[3], which followed the root locus arguments of [4]. A key feature of the proof is a continuity6

argument that had been used in an earlier derivation [5]. In [6], the more conventional approach

using Cauchy’s principle of the argument is followed. A relatively simple proof is proposed,8

considering the extension to complex polynomials and to singular cases.

Control textbooks describe the Routh-Hurwitz criterion, but do not explain how the result10

is obtained. Consequently, the procedure remains mysterious to many students and their teachers.

The paper shows that the interpretation of the Routh array is straightforward, and that two proofs12

of the criterion can be completed shortly. The first proof is based on [3] and the second is inspired

from [6], but using the Nyquist criterion instead of Cauchy’s principle. The second proof is also14

similar to the one found in [7]. Small changes are made to the proofs to remove some technical

steps and further simplify them. The derivations require only standard knowledge available from16

textbooks on feedback systems.

Given the computing power available today, the Routh-Hurwitz criterion has lost some of18

its importance, but it remains valuable in practical problems. The procedure makes it possible to

obtain analytic stability conditions for specific applications involving multiple plant and controller20

parameters. In any case, the Routh-Hurwitz criterion remains a remarkable result of historical

significance.22
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The Routh-Hurwitz criterion

Consider a polynomial2

p(s) = ans
n + an−1s

n−1 + · · ·+ a0. (1)

The first two rows of the Routh array are obtained by copying the coefficients of p(s) using the

pattern shown below.
sn

sn−1

sn−2

...

����������

an an−2 an−4 an−6 · · ·

an−1 an−3 an−5 · · · · · ·

x1 x2 x3 · · · · · ·
...

...
...

...
. . .

When a0 is reached in one of the first two rows, blanks are left in the remaining slots, which

are equivalent to zeros. The first two rows are labelled sn and sn−1, respectively. The third row4

is labelled sn−2 and has elements

x1 =
an−1an−2 − anan−3

an−1
, x2 =

an−1an−4 − anan−5
an−1

, · · · (2)

The computation is repeated for subsequent rows until the row labelled s0 is reached. The case6

is called regular if no coefficient of the first column (also called a leading coefficient) is zero.

Otherwise, the case is called singular and the algorithm stops prematurely.8

If the case is regular, the Routh-Hurwitz criterion states that the number of right half-plane

(RHP) roots of the polynomial p(s) is equal to the number of sign changes in the first column10

of the array. The right half-plane (or left half-plane) is taken to be the part of the plane such

that Re(s) > 0 (or Re(s) < 0). It turns out that there can be no root on the imaginary axis (such12

that Re(s) = 0) in the regular case. Conversely, if the roots are in the left half-plane (LHP), the

case must be regular. Therefore, the Routh-Hurwitz criterion implies that the roots of p(s) are14

in the LHP if and only if all the elements of the first column are nonzero and have the same

signs.16

Explanation of the Routh array

The first two rows of the array contain the coefficients of the polynomials18

p1(s) = ans
n + an−2s

n−2 + . . . (3)

p2(s) = an−1s
n−1 + an−3s

n−3 + . . . (4)

where the elements that are zero by construction are omitted from the array. One of the

polynomials p1(s) and p2(s) is even (that is, only has even powers of s, including s0), and20
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the other polynomial is odd (only has odd powers of s). A polynomial p3(s) is defined that is

the remainder of the division of polynomial p1(s) by p2(s), so that2

p1(s) = q1(s)p2(s) + p3(s), (5)

where q1(s) = an s/an−1 is the quotient. The third row of the array contains the coefficients of

the remainder4

p3(s) = (an−2 − an−3 an/an−1)s
n−2 + (an−4 − an−5 an/an−1)s

n−4 + . . . (6)

Repeating the procedure, polynomials pk(s) are constructed so that

pk+2(s) = pk(s)− qk(s)pk+1(s) for k = 1, · · · , n− 1. (7)

The polynomials pk(s) are of the form6

pk(s) = cks
n−k+1 + . . . (8)

where ck is the leading coefficient of row k, with c1 = an and c2 = an−1. The quotient

polynomials are given by8

qk(s) =
ck
ck+1

s for k = 1, · · · , n− 1. (9)

The polynomials pk(s) alternate as even and odd polynomials of decreasing order. The

Routh array contains the coefficients of these polynomials, omitting the coefficients that are10

always equal to zero due to the even/odd property. The labels on the left of the array give the

highest power of s of the polynomials. If no ck is equal to zero, the last two polynomials of the12

sequence are pn(s) = cns and pn+1(s) = cn+1.

Together with the polynomials pk(s), the procedure also produces a sequence of polynomi-14

als pk(s)+pk+1(s), starting from the original polynomial p(s) = p1(s)+p2(s). The Routh-Hurwitz

criterion originates from a key property that applies to these polynomials at every step of the16

procedure.

Key property: assuming that c1, · · · ck+1 �= 0, the number of roots of pk(s) + pk+1(s) with18

Re(s) < 0 (or Re(s) > 0) is equal to the number of roots of (1 + qk(s)) (pk+1(s) + pk+2(s))

with Re(s) < 0 (or Re(s) > 0). The roots with Re(s) = 0 are identical in both polynomials,20

including their multiplicity.

Note that the last polynomial in the sequence is pn(s) + pn+1(s) = cns + cn+1. Given that22

1 + qk(s) = (cks + ck+1)/ck+1, the Routh-Hurwitz criterion follows from the key property in a

straightforward manner. One can also conclude that:24
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• a case where p(s) has imaginary roots must be singular. Indeed, 1 + qk(s) and cns + cn+1
can only have real roots, so that the procedure must stop before the last step if there are2

imaginary roots.

• a case with ck+1 = 0 for some k has roots with Re(s) � 0. Indeed, ck+1 = 0 if and only4

if the second coefficient of pk(s) + pk+1(s) is zero. The second coefficient is the sum of

the roots of pk(s) + pk+1(s), which implies that some roots must be on the imaginary axis6

or in the right half-plane. The original polynomial must have at least the same number of

roots with Re(s) � 0.8

• conversely, a case where p(s) has all roots with Re(s) < 0 must be regular.

First proof of the key property using continuity10

The proof relies on the even/odd nature of the polynomials and properties that are straightforward

to prove. An even polynomial pe(s) is such that pe(jω) is purely real. With pe(s) = pe(−s), its12

roots must be pairs of imaginary roots (s = ±jb), pairs of real roots (s = ±a), or quadruples of

complex roots (s = ±a± jb). An odd polynomial po(s) is such that po(jω) is purely imaginary14

and po(s) = s pe(s), where pe(s) is an even polynomial. Its roots must include a root at s = 0,

plus the same types of roots as an even polynomial. The sum of two even/odd polynomials is16

even/odd. The product of two even or two odd polynomials is even, and the product of an even

polynomial with an odd polynomial is odd.18

The proof presented here is mostly the same as to the one found in [3], with a small

simplification obtained by considering a different polynomial in the analysis. The polynomial is20

dk,g(s) = pk(s) + pk+1(s) + g qk(s) pk+2(s) (10)

= pk+2(s) + qk(s)pk+1(s) + pk+1(s) + g qk(s) pk+2(s). (11)

where g ∈ [0, 1]. For g = 0, dk,0(s) = pk(s) + pk+1(s), while for g = 1

dk,1(s) = (1 + qk(s))(pk+1(s) + pk+2(s)). (12)

The polynomial dk,g(s) in (10) is the sum of pk(s) and two polynomials of lower degree.22

Therefore, dk,g(s) has degree n− k + 1 for all g ∈ [0, 1], and continuous branches connect the

roots of dk,0(s) to the roots of dk,1(s).24

Next, note that a root of dk,g(s) belongs to the imaginary axis if and only if, for some ω0,

pk+2(jω0) + qk(jω0)pk+1(jω0) + pk+1(jω0) + g qk(jω0) pk+2(jω0) = 0. (13)
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Due to the even/odd alternation of the polynomials pk(s) and with qk(s) being an odd polynomial,

the equation can be split into real and imaginary parts to give2

pk+2(jω0) + qk(jω0)pk+1(jω0) = 0 (14)

pk+1(jω0) + g qk(jω0) pk+2(jω0) = 0. (15)

It follows that
�
1− g q2k(jω0)

�
pk+2(jω0) = 0. (16)

With 1− g q2k(jω0) = 1+ g (ck ω0/ck+1)
2
� 1, pk+2(jω0) = 0, and pk+1(jω0) = 0 as well. This4

result is true for all g ∈ [0, 1], so that any root of dk,g(s) on the imaginary axis for some g is a

root of pk(s) + pk+1(s), a root of pk+1(s) + pk+2(s), and a root of dk,g(s) for all g. Imaginary6

roots remain at their location, and no root of dk,g(s) can move from the right half-plane or the

left half-plane to the imaginary axis. Therefore, no root can also move from the right half-plane8

to the left half-plane and vice-versa. The key property follows.

Second proof of the key property using the Nyquist criterion10

The key property can also be proved by using the Nyquist criterion, and we assume that pk(s)+

pk+1(s) and pk+1(s) + pk+2(s) have no roots on the imaginary axis to keep the proof simple.12

Consider the open-loop transfer function

Gk(s) =
−qk(s)pk+2(s)

(1 + qk(s))(pk+1(s) + pk+2(s))
. (17)

The poles of this transfer function are the roots of14

pol(s) = (1 + qk(s))(pk+1(s) + pk+2(s)), (18)

while the poles of the closed-loop transfer function Gk(s)/(1 +Gk(s)) are the roots of

pcl(s) = (1 + qk(s))(pk+1(s) + pk+2(s))− qk(s)pk+2(s) (19)

= pk(s) + pk+1(s). (20)

The Nyquist criterion specifies that the number of RHP roots of pcl(s) is equal to the16

number of RHP roots of pol(s) plus the number of clockwise encirclements of (-1, 0) by the

curve Gk(s) computed along the Nyquist contour. Because Gk(s) has more poles than zeros,18

limω→∞Gk(jω) = limω→−∞Gk(jω) = 0. Also, Gk(0) = 0 because qk(s) has a zero at s = 0.

With no pole on the imaginary axis, the Nyquist curve is a bounded and closed curve that reaches20

the origin for ω = 0 and for ω → ±∞. Note that, with ck+1 �= 0,
����
qk(jω)

1 + qk(jω)

���� =
����

jckω

ck+1 + jckω

���� < 1 for all ω. (21)
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Similarly, pk+1(jω) is real and pk+2(jω) is imaginary, or vice-versa, so that

����
pk+2(jω)

pk+1(jω) + pk+2(jω)

���� � 1 for all ω. (22)

It follows that |Gk(jω)| < 1 for all ω, including as ω → ±∞. As a result, there can be no2

encirclements of (-1,0) by the Nyquist curve and the key property follows.

Singular cases4

The regular procedure stops when the leading coefficient ck+1 = 0. Two singular cases can be

defined:6

• Singular case #1: the leading coefficient is zero, but the row is not identically zero.

Polynomial division could proceed, but would produce an odd polynomial qk(s) of degree8

3 (or higher if the next coefficient is also zero). The sum of the roots of 1 + qk(s) would

be equal to zero, so that some roots would not be in the left half-plane.10

• Singular case #2: the row of the Routh array is identically zero, so that pk+2(s) = 0 and

pk+1(s) + pk+2(s) = pk+1(s), which is either even or odd. Some roots of pk+1(s) + pk+2(s)12

would not be in the left half-plane.

The two cases confirm that the polynomial p(s) cannot have all roots with Re(s) < 0 if some14

leading coefficient of the array is equal to zero. To continue counting the roots in the singular

case, an alternate procedure is needed. In the most recent work, the preferred approach has16

consisted in replacing pk+1(s)+ pk+2(s) by a polynomial to which the regular procedure can be

applied and to which the root locations can be related. [3] gives an approach for singular cases18

based on [8] and even provides a short Matlab code to count the roots in the right half-plane, left

half-plane, and on the imaginary axis. However, the main justification for counting the roots in20

the singular case is to determine whether a system is marginally stable. So, one needs to know

whether any root on the imaginary axis is repeated. [9] and [10] propose Routh-like procedures22

for singular cases to determine whether any imaginary root is repeated. Still, the usefulness of

procedures for singular cases is limited from a practical perspective, since a system is known to24

be bounded-input bounded-output unstable as soon as a zero leading coefficient is encountered

in the Routh array.26

Invariant roots

The key property implies that imaginary roots remain invariant at every step of the procedure.28

Interestingly, other roots are invariant as well. In [11], it was observed that the roots of the
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polynomial pk+1(s) in singular case #2 must appear in the original polynomial p(s). This property

follows from the recursion2

pk(s) = qk(s)pk+1(s) + pk+2(s). (23)

With pk+2(s) = 0, pk(s) must be a multiple of pk+1(s). Similarly, pk−1(s) must be a multiple

of pk+1(s), as well as every pj(s) for j < k. It follows that p(s) must be a multiple of the last4

nonzero polynomial pk+1(s).

Conversely, suppose that we started from a polynomial p(s) = pa(s) pm(s), where pm(s)6

is an even polynomial. Letting pa(s) = pe(s) + po(s) where pe(s) is even and po(s) is odd, p(s)

is the sum of the even polynomial pe(s)pm(s) and the odd polynomial po(s)pm(s). p1(s) and8

p2(s) are equal to these two polynomials, and are therefore multiples of pm(s). The same result

is true if pm(s) is an odd polynomial. From (23), every pk(s) is a multiple of pm(s) until the10

procedure stops.

The conclusion is that, if p(s) is the multiple of an even or odd polynomial, every12

polynomial pk(s) + pk+1(s) is a multiple of that polynomial. As a result, not only are purely

imaginary roots invariant in the procedure, but also any pair of roots that are symmetric with14

respect to the imaginary axis. The presence of such roots in the polynomial p(s) implies that

the case must be singular.16

Examples

Example 1 - Using the Routh-Hurwitz criterion to find stability conditions18

Consider the control system of Fig. 1. The plant is an electric motor with an inner torque control

loop, resulting in the equation20

θ =
1

Js2
τCOM , (24)

where θ is the angular position of the motor (in rad), J is the inertia of the motor and load (in

kg-m2), and τCOM is the torque command (in N-m). The controller is a proportional integral22

derivative (PID) control law

τCOM =

�
kP +

kI
s

�
(θREF − θ)− kD

aF s

s+ aF
θ, (25)

where θREF is the reference input for the position, and kP , kI , and kD are the PID gains. The24

derivative term is filtered by a first-order system with a pole at s = −aF to reduce the high-

frequency noise originating from the differentiation of the position measurement. The derivative26

action is not applied to the reference input to avoid large transients when step inputs are applied.

The objective is to find conditions on the PID gains so that the closed-loop system is stable. J28

and aF are positive parameters.
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The closed-loop polynomial is

p(s) = Js4 + JaF s
3 + (kP + kDaF ) s

2 + (kPaF + kI) s+ kIaF , (26)

so that the Routh array is given by

s4

s3

s2

s1

s0

������������

J kP + kDaF kIaF

JaF kPaF + kI

x1 kIaF

y1

kIaF

where2

x1 = kDaF − kI/aF , y1 = kPaF + kI −
JkIa

2
F

x1
. (27)

It follows that the conditions that the PID gains must satisfy for stability are

kI > 0, kD >
kI
a2F

, kP >
JkIa

2
F

kDa2F − kI
−
kI
aF
. (28)

Example 2 - Root locus in a regular case4

Consider the polynomial p(s) = s6 + 4s5 + 8s4 + 6s3 + s2 + 10s+ 50, with the Routh array

s6

s5

s4

s3

s2

s1

s0

�����������������

1 8 1 50

4 6 10

6.5 −1.5 50

6.92 −20.77

18 50

−40

50

Fig. 2 shows the root locus obtained through the procedure of the Routh-Hurwitz criterion. The

locus is a sequence of root loci truncated to g ∈ [0, 1], rather than a single conventional root6

locus with g ∈ [0,∞). The locations of the roots at each step are marked by red dots. The roots

of p1(s)+p2(s) are marked with the green label 1. For k > 1, the roots of (1+ qk(s))(pk+1(s)+8

pk+2(s)) are identified by the number k + 1, with the label for the root of 1 + qk(s) placed in

a box. Such a root marks the end of a branch. The procedure is repeated at every step with a10

decreasing number of roots. All roots end their journey on the real axis, and on the same side

of the imaginary axis as the side from which they started.12

Example 3 - Root locus in a singular case with imaginary roots
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Consider the polynomial p(s) = s6 + 2s5 + 3s4+ 26s3 + 26s2 + 72s+ 720. The polynomial has

a pair of imaginary roots, so that the Routh array stops before the end.

s6

s5

s4

s3

s2

s1

��������������

1 3 26 720

2 26 72

−10 −10 720

24 216

80 720

0

The example corresponds to singular case #2, with the row s1 equal to zero. The root locus

is shown on Fig. 3. One finds that the imaginary roots do not move throughout the procedure.2

The other roots find their way to the real axis, and the algorithm stops when the two imaginary

roots remain alone. The roots of p5(s)+p6(s) = 80s2+720 are the same as the original imaginary4

roots at s = ±j3.

Example 4 - Root locus in a singular case without imaginary roots6

Consider the polynomial p(s) = s5 + 2s4 + 3s3 + 2s2 + 3s+ 2, with the Routh array

s5

s4

s3

s2

���������

1 3 3

2 2 2

2 2 0

0 2 0

The procedure ends prematurely after two steps, even though there are no imaginary roots. The

example corresponds to singular case #1, with the leading coefficient of row s2 equal to zero.8

The root locus is shown on Fig. 4. The last polynomial is p3(s) + p4(s) = 2s3+2s+2 and has

roots at 0.3412± 1.1615j, and −0.6823. The sum of the roots is equal to zero. These roots are10

marked with the label 3 (without the box) on the figure

Example 5 - Nyquist diagram12

Consider the polynomial p(s) = s3 + 3s2 + 3s+ (1 + g0), with the Routh array

s3

s2

s1

s0

���������

1 3

3 (1 + g0)

(8− g0)/3

1 + g0

The Routh-Hurwitz criterion implies that no roots of p(s) lie in the RHP if −1 < g0 < 8. For

g0 > 8, there are two sign changes and therefore two roots in the RHP. Fig. 5 shows the Nyquist14

plots of Gk(s) for k = 1 and k = 2, and for g0 = 1 and g0 = 20. A third curve shows the
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Nyquist plot for k = 2 and g0 = 10 (the k = 1, g0 = 10 curve is omitted to avoid overloading

the plot). The positive and negative frequency curves for k = 2 happen to overlap exactly in2

this example.

There are no encirclements of (-1,0) by any curve because |Gk(jω)| < 1 for all k and for4

all ω. The intersection with the real axis becomes closer and closer to (-1,0) for k = 2 as g0
reaches 8, but the intersection remains to the right of (-1,0) for any g0 > 0 different from 8. The6

number of encirclements does not change regardless of the stability of the system, because the

Nyquist criterion is not used to count the number of RHP roots of the original polynomial, but8

to compare two polynomials with the same number of RHP roots.
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Conclusions

The paper gave an explanation and two short proofs of the Routh-Hurwitz criterion. The proofs2

were based on results presented in the literature after the original work of Routh. The author

hopes that this tutorial presentation will be valuable in satisfying the curiosity of motivated4

students and their teachers, while providing interesting examples of application of root locus

plots and of the Nyquist criterion.6
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Figure 1. Proportional integral derivative control scheme for an electric motor. θREF is the

reference position, τCOM is the torque command, and θ is the angular position of the motor. A

first-order filter is integrated with the derivative term.
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Figure 2. Root locus plot for a regular case. The roots move at every step but remain on the

same side of the imaginary axis. Roots in a box are roots of 1 + qk(s) and mark the end of a

branch.
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Figure 3. Root locus plot for a singular case with imaginary roots. The roots with nonzero real

parts remain on the same side of the imaginary axis. The imaginary roots stay at the same place,

eventually causing the procedure to stop with a zero leading coefficient in the Routh array.
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Figure 4. Root locus plot for a singular case without imaginary roots. The procedure stops

because the sum of the three roots labelled 3 (without the box) is equal to zero, causing a

leading coefficient of the Routh array to be equal to zero.
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Figure 5. Nyquist plots associated with the second proof. All the Nyquist curves fit strictly

inside a circle of magnitude one, implying that the number of right half-plane and left half-plane

roots are the same in the two polynomials.
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Sidebar: Summary

The Routh-Hurwitz criterion is a mathematical tool used to determine whether all the roots2

of a polynomial have negative real parts. The algorithm makes it possible to determine whether a

closed-loop system is stable, including the conditions needed on plant and controller parameters4

so that stability is achieved. The procedure of the Routh-Hurwitz criterion is relatively simple,

but the proof of the result has been elusive to students and their teachers. The paper shows6

that an explanation of the Routh-Hurwitz criterion can be presented shortly at the level of an

introductory control course.8
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Sidebar: Applications of the Routh-Hurwitz criterion

Although the roots of polynomials are easily computed numerically nowadays, the Routh-Hurwitz2

criterion remains useful to determine how stability is affected by multiple plant and controller

parameters. In [S1], a bound is derived for the gain of a DC-DC buck converter as a function of4

five system parameters. The minimum input voltage required for the stable operation of a type-3

PLL is obtained in [S2], while a condition relates the four circuit parameters of a constant-6

power load damper circuit in [S3]. Sometimes, the objective is to achieve instability, such as

in the design of an oscillator in [S4]. For the control of a remotely piloted aircraft [S5], the8

Routh-Hurwitz criterion gives a condition to be satisfied by the load parameters so that stability is

guaranteed. The condition is a function of the mass and inertia of the helicopter, the aerodynamic10

parameters, and the controller parameters. A set of inequalities is obtained in [S6] to ensure that

a fixed structure/fixed order controller using Groebner bases is stabilizing.12

Less conventional applications can be found such as the synchronization of fractional

order chaotic systems, with application to cryptography [S7]. [S8] addresses the stability of14

the dynamics of HIV infection and drug therapy, and is representative of a class of papers

where the Routh-Hurwitz criterion is used to evaluate the stability of a biological model.16

Similarly, the stability of genetic circuits is the focus of [S9]. The extension of the stability

test to systems with complex parameters is considered in [S10], but uses the version using18

Hurwitz determinants instead of the Routh array. The 6th-order model of a self-excited induction

generator is transformed into an equivalent 3rd-order system with complex coefficients, and20

analytic conditions are deduced for the instability of the zero equilibrium, a necessary condition

for generation. In [S11], a simple condition is found to ensure the stability of a two-input two-22

output proportional integral control law applied to a doubly-fed induction generator.
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