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ABSTRACT

The problem of designing robust control systems for the safe landing
of VIOL aircrafts on small ships is addressed for the lateral motions.
A precise ship model is derived, using hydrodynamic data for the DD963
destroyer. The issues of estimation and prediction of ship motions are
discussed, using optimal linear estimation techniques. The roll motion
is the most important of the lateral motions, and it is found that it
can be predicted for up to 10 seconds in perfect conditions.

The automatic landing of the VTOL aircraft is considered, and a
lateral controller, defined as a ship motion tracker, is designed, using
optimal control techniques. The tradeoffs between the tracking errors and
the control authority are obtained. The important couplings between the
lateral motions and controls are demonstrated, and it is shown that the
adverse couplings between the sway and the roll motion at the landing pad
are significant constraints in the tracking of the lateral ship motions.

The robustness of the control system, including the optimal estimator,
is studied, using the singular values analysis. Through a robustification
procedure, a robust control system is obtained, and the usefulness of the
singular values to define stability margins that take into account general
types of unstructured modelling errors is demonstrated. The minimal desta-
bilizing perturbations indicated by the singular values analysis are
interpreted and related to the multivariable Nyquist diagrams.

Thesis Supervisor: Michael Athans
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CHAPTER 1

INTRODUCTION

1.1 Introduction‘and Motivation

The landing of small VTOL aircraft on destroyers is an extremely
challénging problem if it is to be realized under high sea state conditions
and zero visibility. Without special aids, this task is almost impossible
for a human pilot. |

There are basically two possible strategies in the solution of this
problem. The first is to leave to the pilot the complete control of the
aircraft, but help him with advanced displays. These give him information

‘about the aircraft position and attitude, as well as those of the ship
(and possibly some prediction of the ship motions). They may also indicate
some desirable flight path (flight director). Advanced controls may be
provided to partly relieve the pilot from the high load of controlling the
VIOL aircraft.

The second strategy is to leave the task of landing the aircraft
completely to an automatic controller. The role of the pilot is then to
supervise the correct landing of the aircraft. This would allow him to
take care of other tasks he might not have been able to carry out other-
wise.

Note that both strategies could be mixed. For example, the tracking
of the lateral ship motions may be left to an automatic controller/tracker,

while the task of vertical tracking and landing would be left to the pilot,

-14-



possibly with the help of some display indicating him the present and
future ship vertical position.

In this thesis, the emphasis is focused on the design of an automatic
controller. A previous study [l] has addressed the problem of the longitu-
dinal motions, i.e. the motions in the vertical plane. The most significant
ship motion in this plane is the vertical motion, called heave. The pitch
motion is not very significant, except for the heave motion it induces at
the landing pad (which is significantly behind the ship center of rotation).
The present study addresses the ship motion tracking problem for the lateral
case. Then, the most‘signifiCant motion is the ship roll metion, which can
be very large. The lateral translation motion, called sway, is also impor-
tant, especially due to the large sway componth induced by the roll at the
landing pad (located above the ship center of rotatibn).

The challenge of the tracking of thé ship motions by the VTOL lies in
the strong limitations of the control authority available, in the high
level of the perturbations (wind disturbances, ground effects, ship airwake),
in the strong couplings present in the system, and in the need for a highly
robust control systemn.

Usually, studies of this problem use loop-by-loop control system
designs, using classical control theories [2], [31, [4], [5], [6]. In this
case, the controller ignores the internal couplings of the system. Similarly,
the issue of robustness is often addressed on a loop-by-loop basis, but
almost never in a real multivariable sense (although individual loop sta-

bility margins may not represent at all the overall system stability
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margins). The design process used in this thesis does not suffer from
such limitations.

The limitations on the available control authority justify the use
of some optimization criterion, and of related modern control theories
(LQ/LQG) . These methods have the advantage of naturally handling multi-
variable systems, and of recognizing the coupling present in such systems.
Some recent results in the analysis of the robustness of multivariable
systems (and its improvement for LQG based designs) are also important
tools in the cesign of control systems operating under critical condi-
tions.

The purpose of this thesis is not to produce an engineering design.
Nor does it provide new theoretical results. It illustrates how modern
control theories and related recent results can be used to design a
control system for such an advanced aéplication, and evaluate the
controller performahce and robustness. This work also analfzes the physi-
cal constraints of the tracking process of the lateral ship motions.
These constraints are independent of the control system design methodo-
logy adopted. The requirements and physical limitations related to the
VTOL landing problem are studied.

Although this thesis mainly details the design of an automatic
controller, the accuracy achievable in the prediction of ship motions is

also assessed, as it is a key element in any piloted VTOL landing.
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1.2 Contributions of the Research

The main contributions of the research are:

- the derivation of an accurate ship model that retains the stochastic
nature of the ship motions, and the couplings amongst them

- the analysis of an optimal predictor of the ship motions for
applications in piloted landings, and the assessment of lower bounds on
the prediction errors

~ the design of an optimal controller/tracker for applications in
automatic landings, the indication of the tradeoffs between tracking errors
and control authority, and the analysis of the importént couplings and
physical constraints related to the tracking of the lateral ship motions

- the demonstration.of the use of the singular values analysis, and

the robustification procedure, to obtain a robust control system.

1.3 Thesis Overview

Chapter 2 indicates the general problems of the landing of VTOL
aircraft, and introduces the methodology used to design the control system,
as well as some aspects specific to this particular application.

Chapter 3 details the derivation of the ship model frbm'hydrodynamic
data, and indicates the important characteristics of the model.

Chapter 4 is an analysis of the issues of estimation and prediction of
the ship motion, using the model derived in chapter 3.

Chapter 5 summarizes the aircraft model obtained from [11, and gives

‘a brief description of this model, and of the important couplings present

=] P



between the motions and controls.

Chapter 6 details the design of an optimal control system based on
LQ theory to track the ship motions. Important characteristics such as
~root-locus, step responses, and tracking errors versus control authority
are analyzed, with their relation to the couplings amongst the motions
and controls.

Chapter 7 shows the design of an optimal estimator for the aircraft
motions, and indicates the degradation of performance due to the presence
of noise in the sensor measurements.

Chapter 8 addresses the important issues of robustnesé of the control
system to modelling errors, and demonstrate the usefulness of the singular
values analysis and of the robustification procedure.

Chapter 9 concludes with some general comments and suggestions for

further research.
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CHAPTER 2

OVERVIEW : OBJECTIVES AND METHODOLOGY

2.1 Introduction

The landing of VTOL aircrafts on small platforms is a delicate
operation that interests civilians (oil platforms) as well as military
(destroyers). In this research, we consider a moving platform, specifi-
cally the landing pad of a destroyer, type DD-963, in sea state 5. Such
sea state corresponds to ﬁaves of heights around 10ft, and winds around
20 kts. Until now, this is still a goal, and it justifies studieé as
this to assess the navigation systems, the aircraft performance, and
the control system required to perform such an operation.

A previous study by McMuldroch [1] has addressed the VTOL landing
problem for longitudinal motions. These are called heave (vertical
motion), surge (fore and aft motion), and pitch. The aircraft considered
in this work (as in the present work) is the Lift/Fan Cruise Research
Technology Aircraft (RTA). More details about this alrcraft can be found
in [1] and in chapter 4. The specific aircraft studied is not really of
great importance, as most VTOL's have the same kind of limitations and
poésibilities. The main characteristic of an RTA-type of VTOL aircraft
- which makes it different from a helicopter for example - is the possi-
bility of deflecting’the engine thrusts to produce translation motions
without_rotating the aircraft. In other words, this kind of VTOL has as

many controls as it has degrees of freedom, so that, to the limit,
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perfect tracking of the landing pad motion can be acheived.

in the present work, we use the model derived in [1] for the RTA
aircraft. Our goal is to complete McMuldroch's work with a study of the
controls needed for the lateral motions. The lateral motions are called
sway (lateral translation), roll and yaw. The longitudinal and lateral
motions can be decoupled to a good approximation for the ship motions.
This does not mean that they are independent: in fact, they are strongly
correlated because they are generated by the same wave. However, except
for this commcn excitation force the dynamic equations for longitudinal
and lateral motions can be decoupled to first order and can be anhalyzed
separately. The decoupling of longitudinal ana lateral motions for the
aircraft is a little less obvious, due mainly to gyroscopic cross-cou-
pling terms f7] . These terms can be quite important, due to the large
size of the engines of a VIOL aircraft. To a first approximation, however,
they can be neélected, so that longitudinal and lateral motions can be
studied separately.

In fact, the issues for the longitudinal and for the lateral case
are quite different. For the longitudinal case, the important motion is
heave. Pitch is quite small and surge is negligible. Moreover, they can
be controlled easily. Heave is more critical, as it requires an increase
in the overall engine power (or thrust to weight ratio). This is a controlb
which is strongly limited in amplitude, and also in its speed of response.
The limitations are so strong that one may look for an end-point

controller, instead of a tracking controller.
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In the lateral case, twb of the three motions are about as important:
they are the sway and the roll motion. The yaw motion is almést insignifi-
cant, and can be controlled very easily. In many situations, the aircraft»
roll may be left uncontrolled, or, more precisely, stabilized to zero
(so that it does not track the ships roll). In this case, the landing gear
will simply damp the shock at the landing. However, ship roll can be as
large as 30 degrees peak to peak (even more in the case of decaying seas),
so that this strategy is not always satisfactory. Then, both ship roll and
sway motions have to be tracked.

The limitations in control authority are less severe than in the
longitudinal case. In particular, a lateral side force can be produced by a
deflection of the thrusts( and a roll moment by an exchange of power
between the engines. These controls can be generated very quickly, so
that there is no significant problem with bandwidth in the lateral case.
The probleﬁ is probably more in the adverse couplings present in the
lateral motions and in the robustness of the close&—loop system. These
two aspects will be examined in more detail later. The consequence of
these remarks is that the problems are slightly different for the longitu-
dinal and lateral cases. The lateral controller can be a tracking
controller, while the lénding itself occurs at a moment decided by the
longitudinal controller. The responsibility of the lateral controller is
then to minimize the tracking errors at impact.

As the research on the longitudinal motions had shown that precise

ship modelling was essential to obtain meaningful results, a large part
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of this thesis is devoted to accurate ship motion modelling, estimation
and prediction. The prediction part of the study is irrelevant to the
automatic controller design part, but has applications in piloted landings,
when some indication has to be given to the piiot about where the‘ship

deck is now and will be in the near future.

2.2 Control System Design Methodology

2.2.1 Introduction_

Different. methodologies have been proposed recently for the design
of multivariable control systems. Whether applied in the time doﬁain or
in the frequency domain, each method has its own advantages and limita—
tions.

For aerospace applications, the linear-quadratic-gaussian (LQ-LQG)
methodology has shown successful, especially because:

- the limited control authority available makes the optimization
imperative

- the number of states is small (with a good approximation)

- the equations of motion (and of the system in general) are quite

well known, and the state-space description is natural

- the systems are often unstable,and strongly coupled.

2.2.2 LQ Methodology

We summarize in this section the LQ methodology to specify the

notation used subsequently. More detailed descriptions can be found in [8]
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and [9].

Given the system:
X =AX + Bu + £ (2.1)

‘5(0) = (2.2)

X
-0
where :

X is the state vector (mx1)

is the initial state vector (nxl)

éx

is the control vector (mxl)

=

is a white Gaussian noise vector (nxl) (driving noise)
of spectral intensity matrix (nxn) =

[aal

>

is a matrix (nxn)

B is a matrix (mxm)

One wants to minimize the quadratic optimization criterion:

J=1im E {
o0

H|=

T «"ogx + u rRu at } (2.3)
0

where:

Q is the positive semi-definite matrix. (nxn) of the state weights

R is the positive definite matrix (mxm) of the control weights
The pair (A,B) is assumed to be stabilizeable\and the pair (A,Q%)
detectible (two conditions easily satisfied).

The solution is a time-varying control law u(t) which, for large t

(far from the origin of time), becomes a linear, time-invariant,
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state feedback:

u=-_Gx (2.4)

G =R BK. (2.5)

and K is the (nxn) positive matrix solution of the matrix algebraic

Riccatti equation:

Ka + ATK - KBR ‘BT + Q=0 (2.6)

The LQG methodology is the extension of the LQ methodology when the
state x is not available for measurement but, instead, we have a measure-

ment vector y, which is a noisy linear combination of the state X:
y=¢+§9 (2.7)

where:
Y 1is a measurement vector (pxl) .
C 1is a matrix (pxn)

is a white Gaussian noise vector (pxl) (measurement noise)
of spectral intensity matrix (pxp) @

@

The optimization problem is the same and, from the separation principle,
it is known that the solution is the cascade of an optimal estimator

(Kalman filter) providing an estimate R of the state vector x, and of
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the same control law as before, acting on g_instead of x:

u=-G62% (2.8)
The Kalman filter structure is:

§.= AR + Bu + H(y-CR) (2.9)
where H is an (nxp) matrix given by:

H=pclo | (2.10)

and P is an (nxn) matrix, positive solution of the matrix algebraic

Riccatti equation:

—

PAY + AP + E - pCTO Icp = 0 (2.11)

The solution of Riccatti equations is now done routinely by the use of

a modern control system design package [10] .

In the VIOL landing problem, we are interested in the tracking,
by the aifcraft, of certain ship states (ship motions and velocities).
We have a situation in which we want to track an uncontrollable system
(the ship deck) by a controllable system (the VTOL).

For the ship, we have the following state-space description:’

55 = ASES + §S (2.12)
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ES = WSES X (2.13)

where wy are the ship states that we want to track.

For the aircraft:

= + + .
Xy T RXy Bt gy . (2.14)
wy o= Wox, (2.15)

where w, are the aircraft states corresponding to LT

The general system equations are:

X = Ax + Bu + § : (2.16)
where:

M x

x =" (2.17)
_EA
A 0

A=| S (2.18)
_o A,
o

B = (2.19)
-BAd

T

E=| ® (2.20)
Ea
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We want to minimize the tracking errors and the control authority, i.e.:

J = E(f?(w -w )TQ (W_-w_) + uTRu) dat)
o 5T Tw-os Al = =
{o.¢]
= E(I (E?Q§_+ E?RE) dt)
o
where:
T T
WO M W W
: —WTQ W WTQ W
A*w S A w A

The optimal LQG controller is:

u=-G62% =- (G , G,)

iﬁ)

S

4ﬁ>Jﬁ>

(2.21)

(2.22)

(2.23)

(2.24)

Since the ship is uncontrollable, the ship states and the gain

matrix Gq appear as a feedforward path, while the feedback path is

coming from the aircraft states only, through the gain matrix GA'

As indicated in the next paragraph, the estimation problems are also

decoupled, so that the controller structure is that of Fig. 2.l.

3N

; o
}é =S + = XA
§S ———» Ship }—s falmeni_o| * _g Aircraft Kalman
filter 5 , filter
Ga

Figure 2.1: VTOL Controller Structure
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An important remark is that the gain matrix GA is the same than the

matrix obtained by solving the optimization problem:
© T T
=: w w_ +
J E(‘j; (—AQW—A u Ru) dt) (2.25)

The gain matrix GA is then independent of the ship model.
To see this, we assume that the solution of the Riccatti equation

corresponding to (2.21) is :

K K
K = ;l 12 (2.26)
1(12 K22
Then:
G = R 18Tk (2.27)
-1_T -1_7T
(R BAKlZ + R BAK22) (2.28)
and:
-1_T
GA = R BAK22 (2.29)

depends only on K22.

The Riccatti equation is (2.6), and can be partitioned in terms of the

ship and the aircraft parts:

T -1_T T T
- + = .
KiBg + ASKll K; ,B,R BAK12 WSQst 0 (2.30)
T -1.T T 3
Kigha * BgKyy — K oBpR B Koy = WQ W, = (2.31)
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K..A +AK  -K BAR_lBTK

T
227 A 22 22 A2 WA M, = O (2.32)

The equation giving K22 is independent of the others and is actually
the same as the one corresponding to the quadratic criterion (2.25). The
same is true for the gain matrix GA' This means that the feedback gain
matrix GA is independent of the dynamics of the signal that is tracked,
namely the ship in this case. The ship only influences the feedforward gain
matrix. In other words, the closed-loop dynamic behavior of the system is
only dependent on the Q and R matrices, and is the same whether we want to
track the ship or simply to stabilize the aircraft (track a zero reference
signal). For this reason, the closed-loop behavior fo the system can be
studied independently from the ship modél (in this, we include the optimal
root-locus, the step responses; and the robustness characteristics of the
system). Note however that the ship model influences the system performance

(tracking errors) which, in turn, may influence the specific choice of the

Q and R matrices.

2.3 State Estimation and Implementation Issues

The accuracy of the measurements of the ship and aircraft motions will
be a determining factor of the performance attainable in the landing of VTOL
aircraft in high sea states and poor visibility conditions. It is expected
that, in a practical realization,‘the measurement process will involve:

~ accelerometers and gyroscopes aboard the aircraft

- a combined microwave lanaing system / distance measuring equipment

(MLS/DME) giving measurements of the relative position of the ship and the

\
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the aircraft.

Theoretically, the estimation of the aircraft and of the ship motions
are coupled, in the sense that the relative position measurement would
influence the estimation of the ship motions if a Kalman filter is used -
for the overall system. In practice, the estimation of the ship motion,
and the estimation of the aircraft motion can be reasonably decoupled.

A Jjustification for this is that the instruments aboard the ship will be
of somewhat greater precision than those aboard the aircraft, and the
estimation errors obtained will be smaller than the errors on the aircraft
motion. The estimation part of the LQG algorithm can then be separated in
an estiﬁation of the ship stateé by a Kalman filter, and a similar but
independent estimation process for the aircraft.

Practically, the estimation of the ship states is done aboard the
ship, and the results are data—iinked to the aircraft. With the combined
use of the accelerometers, gyroscopes, and MLS/DME measurements, a
computer aboard the aircraft estimates the aircraft-ship relative positions
and velocities, and through tﬁé use of a Kalman filter, obtains optimal
estimates of the aircraft states. The control law is then easily obtained
aboard the aircraft.

As the computing capabilities aboard the ship can be more powerful, a
high order model can be used. In our case, it is a 16 states model (see
chapter 3). On the aircraft, the computing capabilities are more limited,
so that a low order model is desirable. The aircraft model used here is a

6 states model (see chapter 5). The importance of robustness becomes
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critical, however. While the approximations on the ship model have conse-
quences only on the performance of the controller, those on the aircraft
model come in the feedback structure, and influence the robustness as well

as the performance of the controller.

2.4 Summary

In this chapter, we discussed the genera; aspects of the VIOL landing |
problem. The decoupling between the longitudinal and lateral motions was
explained, and it was indicated that the controller for the lateral motions
cén be conceived as a ship motion tracker.

The LQ/LQG control system desigﬁ methodology was introduced, and its
use for this application was justified in view of the limited control
authority available. It was demonstrated that the application of this
hethodology to the VIOL landing problem leads to a decoupling of the ship
and of the aircraft effects, so that the ship motion and the ship dynamics
only influence the feedforward structure of the control system, whilé those
of the VIOL impact the feedback structure.

Finally, the issues of estimating the ship and aircraft states were
briefly addressed, and it was shown that the ptoblems of estimation of

ship and aircraft motions could be reasonably decoupled.
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CHAPTER 3

SHIP. MODEL DERIVATION

3.1 Introduction

The importance of accurate ship modelling in VTOL landing has been
indicated by McMuldroch in [l]. Ship motions have relatively narrow band
power spectra (between 0.2 and 2 rad/s) that require high order models
to be répresented accurately. A good ship model, that is often used in
studies of VTCL landings, is available in [1l1] . The motions are modelled
as sums of 6 to 32 sinusoids, with random phases. For simulations (espe-
cially for flight simulators), such a representation is adequate.
However, it fails to represent the random nature of ship motions for
longer periods of time, and it is not appropriate for estimation of ship
motions from noisy measurements, and for ship motion prediction.

In this chapter, we derive a ship model that retains the stochastic
~nature of the ship motions and the important couplings among the various
motions. The model is derived in state-space form, so that the powerful
techniques of linear estimation in the time domain can be applied. The
equations are obtained from hydrodynamic considerations, that lead to
linear differential equations with frequency dependent coefficients, and
infinite dimensional transfer functions. Finite dimensional approximations
are considered, and the model finally includes 16 states for the lateral
motions. The following sections indicate the structure of the model and

the approximations made. More details can be found in [12], [13] and [14].
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3.2 Ship Model Structure

The lateral ship motions, and the sign conventions used here, are
shown on Fig. 3.1. The origin of the reference system is located in the
plane of symmetry of the ship, at the level of the waterline, and at the
middle of the ship. This point is close to the center of gravity and has
‘the advantage of being independent of the ship load conditions.

The ship motions are assumed to be small, in order to derive linear
equations of motion. This assumption is justified by the fact that waves
have limited wave to length ratio (at most 1/7, and usually much smaller),
since Qaves having higher heights break and loose their energy. As a
result, the major part of the force is linear and can be obtained by a
first order perturbation expansion of the non-linear fluid eqﬁation.

The wave spectrum is’typicélly'contained in the 0.2-2 rad/s range. Given
the large mass of the vessel, the resulting motions, within this frequency
range, are of the order of a few feet and a few degrees, so that the
linearity assumption can be justified. Roll motion requires more attention
however. Due to the slender form of the ship, the roll motion may become
large and then, the non-linear damping is predominant.

The ship model is basically divided into three parts. The first part
represents the incoming waves (sea model) which are described by the wave
elevation at a reference peint located amidships. The wave elevation is
known to be a‘stOChastic process, defined by a relatively narrow band

power spectrum to which various approximations have been proposed.
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Figure 3.1 : Lateral Ship Motions
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The second and third parts of the model put together, represent the
response of the ship to the waves. Using the hypothesis of linearity, this
response can be represented by a transfer matrix from the wave height to
the ship motions. The second part of the model represents the dynamics of
the forces generated by the incoming waves, while the third part of the
model represent thebrigid body dynamics as well as the dynamics induced by
the ship motions on»the water motion resulting in additional fluid forces.
These forces are :

- the inertia force caused by the acceleration of the fluid particles
displaced by the ship (added mass)

- the damping force caused by the loss of energy carried away by waves
generated by the ship motions

- the hydrostatié force (spring constant).

For a purely sinusoldal wave, the equations of motion lead to the follo-

wing differential equation :

(M+Ah)§h-+ Bhﬁh + C]x! =F (3.1)

where

- M is the mass matrix of the ship, including mass terms, products of
inertia and coupling terms due to the difference between the center of the
axes and the center of gravity

- A, is the added mass

h

- Xy is the vector of the ship motions (sway, roll and yaw)

- Bh is the damping term
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- Ch is the hydrostatic term

- F is the vector of the forces and moments generated by the incoming
wave '

The terms F, Ah,and Bh depend on the frequency of the incoming wave, so
that the equation of motion is strictly vélid for monochromatic wa&es.

For an irregular sea elevation, equation (3.1) becomes an integro-diffe-
rential equation. An additional difficulty is due to the fact that wave
forces and moments are obtained by integrating over the ship hull the
space-varying pressure forces, so that their magnitude and phase constitute
the transfer function of an infinite dimensional system. Obtaining a finite
dimensional model of reasonable size and complexity definitely requires
several simplifying approximations that will be indicated in the subsequent
paragraphs.

The geometric and mass properties of the DD-963 wererahaiyéed by the
M.I.T. Ocean Engineering Department Seakeeping Program [ 15] . The hydrody-
namic coefficients (M,Ah,Bh and Ch) and forces were first obtéined,and
subsequently the overall ship model was defived.

The parameters of the model are : the speed of the vessel, the direc-

" tion of the waves, the significant wave height, and the modal frequency of

the wave spectrum.

3.3 Sea Modelling

" The sea waves are generated by the wind, except for very rare cases
(seismic waves). The high frequencies of the wind gusts create wavelets on

the surface of the sea, while the steady-state condition of the sea develops
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slowly through a nonlinear interaction mechanism creating waves whose
phase velocity is close to the wind speed. Since the process starts with
high frequencies, a young storm will contain a peak at high frequency. As
soon as the wind stops blowing, the water viscosity dissipates the high
frequency waves so that the so-called "swell" forms, which consists of
long waves (low frequency) which travel away from the storm that origi-
nates them. For this reason, swell can be found together with another
local storm, in which case the wave height spectrum contains two peaks.
The intensity of the storm can be described in various ways, of
which the best is probably the significant wave height H, defined as the
statistical average of the 1/3 highest waveheights. At any point, the wave
elevation is a stochastic process described by its power spectrum. This
power spectrum (if it is single-peaked) is a function primarily of two
parameters, H and wm. The Bretschneider spectrum is defined as :

"
W
S(w) = 1;125 H?

exp (-1.25 (wm/w)") (3.2)
" .

It was found to fit reasonably well in any sea location, and is strictly
valid for unidirectional seas, with unlimited fetch, infinite depth, and
no swell.

As the ship moves toward the waves, the apparent frequency of the

wave is modified, and the frequency of encounter we is :

W, =w+kU cos¢ (3.3)
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where :
- U is the ship speed

- ¢ is the angle between the x axis of the ship and the direction
of the wave propagation ’ :

- k is the wave number.

In deep water, the dispersion relation for the waves is :

w? = kg (3.4)
so that :
o7 (1)2 .
= + — -
w, =w g U cos¢ ‘3 5)

The spectrum seen from ship coordinates is then

| - | SW :
S(w,) = { (3.6)

dwe/dw} w=£ (we) _

where :

-1+/l+4me U—ﬂ

- - g
w = f(we) = - : (3.7)

U
2 — cos
g ¢

To obtain a state-space representation, the wave height is represented as
the output of a filter with rational transfer function, driven by white

noise.
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The transfer function is selected to be :

S
(a)
H (s) = /s ° ©(3.8)
a © (1+23& + 23
w w
o] (@]

where the values of So’ wo, and J are dependent on the sea state and are
given in Appendix A.
The coefficient T was introduced to match the differences in defini-

tion for the power spectrum. Here, we use :

. - —iw
sw) = [7 rm e ar (3.9)
—00
A one-sided (positive frequency) power spectrum is used in wave theory
(and for the Bretschneider spectrum):
1 (= -i
sw = = [ R e ar w>0 (3.10)
m -00
The Bretschneider spectrum and the approximation are illustrated in

Fig.3.2.

3.4 Ship Transfer Matrices

The ship transfer matrix from the wave height to the sway, roll and

yaw motions can be separated in:

- a transfer matrix from the wave height to the force and moments
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Wave height spectrum (fis2.s)

SER SPECTRUM

10.00
7.58
35.88 /
Bretschneider
2.59
9.99 Ed .
— — — o
o ul ~J = o w ~ N}
ul (] 4)] Q [\ ul (W)

We (radrss)

Figure 3.2: Bretschneider Spectrum and Approximation
(H=10ft, wm=0.72rad/s)
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generated by the incoming wave

- a transfer matrix from the force and moments to the actual motions.
These transfer matrices are obtained from the values of the forces, added
mass, damping, mass, and hydrostatic forces, using equation (3.1). For
monochromatic waves, these were obtained by the M.I.T. Ocean Engineering
Seakeeping program from the geometry of the DD-963 hull. Rational approx-
imations were made in order to obtain a standard state-space representation.

An important fact is that whatever approximations are made, they do
not influence the stability margins of the aircraft control system. The
ship model only comes in the ship Kalman filter designband in the compu-
tation of the feedforward gain matrix. The only effect of the approxima-
tions on the control system is on the performance attained in the ship

motion tracking, not on the system robustness.

3.4.1 Force Dynamics

The transfér functions between a unit amplitude reqular wave (1ft)
and the sway force (tons) and the roll and yaw moments (tons-feet) as
functions of the frequency of encounter are shown in logarithmic scale
in Figs 3.3,3.4,3.5 for the case U=0,¢=90 degrees and in Figs 3.6,3.7,3.8
for the case U=15.5ft/s and ¢=45 degrees.

The forces were approximated by simple second-order systems, for

example:

Fy s? ‘ -
= i=s,r,y (3.11)

1+ 2 Ji/u)i + (s/wi)2 for sway,roll and yaw
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Figure 3.3: Sway Force and its Approximation (U=0, ¢=90deg)
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Figure 3.4: Roll Moment and its Approximation
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Figure 3.5: Yaw Moment and its Approximation (U=0, ¢=90degq)
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Figure 3.6: Sway Force and its Approximation (U=15.5ft/s, ¢=45deq)
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Figure 3.7: Roll Moment and its Approximation (U=15.5ft/s, ¢=45deq)
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Yaw Moment and its Approximation (U=15.5ft/s, ¢=45deq)

Figure 3.8:
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In the case when U=15.5ft/s, ¢=45degrees, the higher frequency behavior
shows the infinite dimensional characteristic of the force dynamics. For
simplicity, this effect is not represented in the model, because it is
beyond the area of significant wave power.

The values of the coefficients in the transfer function, and their
dependence upon ship speed and wave heading angle, are summarized in

Appendix A.

3.4.2 Ship Dynamics

and C. .

The other ship dynamics are related to the matrices Ah' Bh’ h

As indicated earlier, the matrices Ah and Bh are dependent on the frequency

of the incoming wave, so that the order of the differential equation:

(M+Ah)§§,n + B B =P (3.12)

wXn * CpXp
is higher than 2 times the three motions.

However, the roll motion turns out to be highly concentrated around
the roll peak frequency. The sway and yaw power spectra are more widely
dispersed, but, due to the concentration of the sea spectrum in frequency,
the motions are all concentrated within a narrow frequency band.
Consequently, the added mass and damping matrices variations with frequency
are neglected, and the values of these matrices at the roll peak frequency
are used here.

Another important variation of the Ah and Bh matrices is due to the

ship speed and heading angle. These produce coupling terms between the
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motions that, again, are frequency dependent. These couplings are accounted
for but, consistently with the previous discusssion, their influence is
assumed to be constant with frequency, and their value is taken equal to
their actual value at the roll peak frequency. With these approximations,
the values of the added mass, damping, and hydrostatic terms, as well as
their variations with speed and heading angle, are contained in Appendik A.

Figures 3.9, 3.10, and 3.11 show the overall result of the approxi-
mations on the ship dynamics. The highly-tuned second-order behavior of the
roll transfer function is obvious, and the approximations appear to be
very good. The higher frequency aynamics are neglected, but the approxi-
mations are in a sense conservative.

The derivation of a state-space model from £he rational transfer
functions obtainedlforlthe éea'and ﬁhe forces is sttéightforwafd. For
the ship dynamics, some care has to be taken.

Taking the matrices Ah and Bh constant, the differential equation:

(M+A, )%, + B +Cx =F (3.13)

nth h2h
. , -1 -1
is of order 6. By selecting R = (M+Ah) , P = (M+Ah) Bh' and

-1 . . .
Q= (M+Ah) ] the following state-space representation can be obtained:

h’
X, -P -0 X, R ,
b 11+ F (3.14)
Xy I 0 X 0

The state-space representation includes 6 states (3 motions and their
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Figure 3.9: Sway Transfer Function and its Approximation
(U=15.5ft/s, ¢=45deqg)
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Roll Transfer Function and its Approximation
(U=15.5ft/s, ¢$=45deq)
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Figure 3.11:

Yaw Transfer Function and its Approximation
(U=15.5ft/s, ¢=45deg)
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-derivatives).

When combining this model with the model for the forces, two pole-zero
cancellations occur. The ship dynamics include two poles at the origin,
which are due to the zero spring constant for sway and yaw, while the forces
dynamics have each two zeros at the origin, as previously mentionned. These
pole-zero cancellations lead to a non-minimal order system, and to instabi-
lities in numerical simulations. By simple algebraic manipulations, detailed
in Appendix A, this problem can be resolved, and a 4th order model of the
ship dynamics is obtained, including thé sway, roll, yaw motions, and only

the roll derivative.

3.5 Overall Ship Model

The overall ship model is written in state-space form :

x-—-S = ASES + -FES (3.15)

The state vector contains 16 states :

wave elevation (ft)

1

X, : wave elevation derivative (ft/s)

Xq to X ¢ states related to the sea dynamics
R / sway force (tons.s)

Xg @ sway force (tons)

Xg ¢ J roll moment (tons.ft.s)

x10 : roll‘moment.(tons.ft)

X1q ¢ J/ yaw moment (tons.ft.s)
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b : yaw moment (tons.ft)

12
x13 : sway displacement (ft)
x14 : roll rate (rad/s)
x15 : roll angle (rad)

xl6 : yaw angle (rad)

The structure of the matrix AS is defined on Table 3.1, and the
numerical values for the condition : H=10ft, mm=0.72rad/s, U=15.5ft/s,
and ¢=45degrees are given in Table 3.2 and Table 3.3 (for any condition,
see Appendix A).

The vector ES is a white noise vector whose only non-zero element

is the 6th row element. Its spectral intensity is nso.

3.6 Additional Comments

Weather conditions of zero visibility and sea state 5 are considered
in this study. Sea state 5 corresponds to a significant wave height of 10ft
and a modal frequency of 0.72rad/s, for fully developed seas. The ship
speed will be assumed to be 15.5ft/s (about 10kts) and the wave heading
angle 45 degrees. A second sea condition will be sometimes used. It
corresponds to the condition numbered condition 4 in [11], with significant
wave height 12ft and modal frequency 0.4807rad/s (this is the less common
- case of decaying seas).

The ship model poles and the rms motions values (at the reference
point) are given in Table 3.4. The model poles are also shown on Fig.3.12,

for the case H=10ft, wm=0.72rad/s. Six poles correspond to the sea spectrum.

-54-



Ship Model AS Matrix
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Ship speed : U=15.5ft/s Wave heading angle : ¢=45°

SEA : H=10ft wm=0.72rad/s SEA : H=12ft mm=0.4807rad/s

Ship model poles

pl,2 = -0.754 * j 0.754 p1,2 = -0.470 *+ j 0.470
p3'4 = -0.754 + 3§ 0.754 p3’4 = -0.470 * j 9.470
p5,6 = -0.754 * j 0.754 p5,6 = -0.470 &+ 3 0.470
P7,8 = -0.223 + j 0.873
p9,10 = -0.335 + j 0.588
pll,l2 = -0.260 + j 0.440 SAME
Pl3,14 = -0.00983 ¢ j 0.484
915,16 = -0.0204 * j 0.0597
Ship model rms motions values :
osway = 0.612ft oéway = 1.36ft
Oroll = 4.56° : O 011 12.6°
Oyaw = 0.227° | O&aw = 0.373°

Table 3.4: Ship Model Poles and Rms Motions (at, the reference point)
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Six other poles correspond to the force dynamics (2 for each motion). The
four remaining poles correspond to the ship dynamics : there are in fact
six poles (two for each motion), but two pure integrators in sway and yaw
were eliminated with zeros at the origin. There is a very lightly damped
mode with frequency close to 0.5 rad/s, corresponding to the roll oscilla-
tion mode. Another lightly damped mode of low fregquency appears, but its
contribution is small, due to the presence of zeros at the origin.

For the VTIOL landing problem, the motions of interest are the motions
at the landin¢ pad. The sway motion at the landing area is composed of the
sway at the center of the axes, plus contributions from the roll and the
yaw angular motions. In the ship coordinates, the landing pad is located

at :

k]
I

sLp - 127 ft (3.16)

ZsLp

]

34 ft - . (3.17)

The sign conventions for the aircraft are also different than those for the
ship, so that the output matrix providing the sway, roll and yaw motions of

the landing pad in aircraft coordinates is :

0O 0 0OOO O 0 0O 0 0O 0O 0-1 034127

= 0 3.18
CSLP 0O 0 0O OO OO 0 0 0 0 0 0 01 ( )

0O 0 0O0OO OO O O O O O0O0OO0C O0-

-60~-



3.7  Summary

In this chapter, a ship model was derived from hydrodynamic data
obtained from the geometry of the DD963 ship hull. The ship motion model
is divided in a sea model, and a ship model. The sea spectrum appears to
be conceﬂtrated in a narrow frequency band centered around 1 rad/s, so
that all motions have relatively limited power spectra. Roll motion
especially appears to be highly concentrated in frequency, as it behaves
like a lightly damped second-order system.

‘Some approximations had to be made in order to obtain a finite
dimensional model of reasonable order. It was demonstrated that these
approximations were very goodvin the frequency range of interest.

The resulting model, expressed in state-space férm, and its salient

characteristics were discussed.
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CHAPTER 4

SHIP MOTION ESTIMATION AND PREDICTION

4.1 Ship Kalman Filter

The Kalman filter role in an LQG design was indicated in chapter 2.
Here the Kalman filter tasks are the following : |

- reconstruct the states that are not directly measurable, as for
example the sea states (this is essential to the prediction of the sh%p
motions)

- provide optimal estimates of the states, including thbée that are
‘measurable, but are affected by noise. In this sense, the estimator is
really a filter that filters the noise affecting the measurements.

The measurements of ship motions are affected by noise that is not
simply the instrument noise, but is also caused by the structural vibra-
tions. These vibrations can bequitesignificént, and we want these high
frequency motions to be filtered by the Kalman filter, and to keep the
filter poles within the range of frequencies which is significant of

"ship motions.

The measurement equation is :

Yg = CgXg * O (4.1)

It is assumed that the only measurements available are the sway displacement,

the roll angle and the yaw angle, so that :
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0O 0O 0O0O OO 0 0 O0 0O O01 100 O
c.= |0 o 0o o0 0OOO O OO OU OU O0OTU1 o0 (4.2)

0 0 06 0o 060 0 00 0 O O O0OUO0OTUO0O1

The filter is designed assuming the measurement noise spectral intensity

matrix to be

0.1 0 0
@S = 0] 0.0002 0 (4.3)
0 0 0.0002

and the filter poles are within a radius of 1.1 rad/s. The filter poles
and the predicted rms estimation errors are indicated in Table 4.1.
The rms estimation errors are the square roots of the diagonal

elements of the covariance matrix of the error :

T
P = . ' .
ee E(SS ES) (4.4)

Having :

X, = AX . + §S (4.5)

Yo = Cgxg + QS (4.6)

Ky = ASES + HS(Xs - ngs) (4.7)
The error is defined by :

s =& - % (4.8)
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SEA H=10ft wm=0.72rad/s

Kalman filter poles

pl;z = -1.067 * j 1
p3,4 = -0.457 * j 1
Py g = -1.279 * j O
p7,8 = -0.210 = 3 O
p9,10 = -0,.365 = 3 O
p11,12 = -0.087 ¥ j 0
p13’14 = ~0.159 * 3 O
P15,16 = -0.0203+ j O.

.086

.312

.477

.934

.523

.446

.165

0595

Rms estimation errors

e = 0.241 ft
sway
= 0.560°
eroll 60
e = 0.0776°
yaw

Table 4.1: Ship Kalman Filter Poles and Rms Estimation Errors
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The error is governed by the differential equation :

&5 = BgmHCleg - Eg - Hgbg (4.9)

so that Pee is the solution of the 16th order Lyapunov edquation :

T T
- - + = =
(AS HSCS)Pee + Pee(AS HSCS) 2g + HSOSHS 0 (4.10)

Figures 4.1, 4.2, and 4.3 illustrate time simulations of the ship

motions and of the estimated motions by the Kalman filter.

4.2 Sensitivity of the Estimation Error to Parameter Uhcertainty

A study of the sensitivity of the estimation error to parameter
uncertainty indicates those model parameters that are important in the
estimation process.

The error equation of the Kalman filter with incorrect model is given

in [16] . Assuming the correct model to be

ES = ASES + gs (4.11)

Lo = Cgg + By (4-12)
and the filter designed with Ag and CE, so that

= * el . .

R = B§Rg ¥ Hglyg=Cgxg) (4.13)
The error equation is :

& = * * + L *_ - -

Eg (AS HSCS)ES (AS AS HS(CS CS))ES gS HSQS (4.14)
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Figure 4.1:
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Figure 4.2: Roll Actual and Estimated Motion
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Denoting :

and :

. .
Pee = E(gs.gs) (4.15)
P = E(x T) (4.16)
XX X5+ Xg ; .
P = E(x..el) ' (4.17
xe ~5'=5 <17
Pée Pie
P' = (4.18)
P P ‘
L xe XX
x * *— - x —
' AX-H C} (A%-Ag) -Hg (CE-C()
AL = (4.19)
] 0 Ay
-
E+H O H o
_ s 's’s’'s
2 = S (4.20)
S - -
L s s

The matrix P' is the solution of the 44th order Lyapunov equation

= 0 (4.21)

This provides the error covariance matrix and the actual rms estimation

errors. Table 4.2 shows the result of the sensitivity study. The most

important parameter is the sea modal frequency and this indicates the

importance of an accurate estimation of this parameter aboard the ship,

in a real-time application.

The influence of systematic measurement errors is studied by using
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SEA H=10ft  w =0.72rad/s

SWAY (ft) ROLL(°) YAW(®)
Rms motions 0.612 4.56 0.227
Nominal errors 0.241 0.56 0.0776
Parameter chanaged:
U=20ft/s 0.245 0.568 0.0963
wm=0.52rad/s 0.314 0.60 0.0858
¢=60° 0.296 0.624 0.112
Cs(sway)=0.9 0.255 0.586 0.081
Cs(roll)=0.9 0.247 0.708 0.0808
Cs(yaw) =0.9 0.242 0.56 0.0777
c (sway)=0. 'oi518 1.21 0.1408
Cs(roll)=0. 0.376 4.08 0.158
Cs(yaw) =0. 0.242 0.563 0.0785

Table 4.2: Sensitivity of the Estimation Errors to Parameter Uncertainty
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a'qalibration factor in the CS matrix. In the case of a 10% error, the
most significant influence is obtained for a roll measurement error.
Clearly, the Kalman filter uses mostly the roll measurement in the
estimation and improves its estimation of the other motions through the
known couplings between the motions. In this regard, the yaw measurement,
which for this application is very noisy, has little influence on the
filter performance. In the case of a calibration factor 0 (indicating

a disconnected measurement), significant errors result, especially fox

roll.

4.3 ship Motion Prediction

4.3.1 Introduction

Real-time prediction of ship motions is currently a subject of great
interest, with applications not only to aircraft landings (or helicopter,
or VTOL landings), but also to many other operations such as ship motion
compensation and cargo transfgr. Recently, a method has been proposed,
that uses time series analysis [17] . Such method does not require any
precise ship modelling : it considers the ship as a black box.

In this research, we chose to take advantage of the available know-
ledge on ship motions, and to derive a better model of the ship a priori,
that can be used for estimation and prediction of the ship motions.

Note that although the prediction of ship motions is of primary importance,

to any piloted landing application, it is useless to an automatic landing

using the LQ/LOG methodology, because the knowledge of the predictable part
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of future ship motions is in fact completely included in the ship states

and is fedforward by the LQ/LQG controller.

4.3.2 Prediction with Correct Model

Given the system :

= A

+
sXg

gs _E_S (4.22)

The optimal predictor is simply given by :
gs = A X, (4.23)

The error equation is

8 =% T % (4.24)
& = 2% " &g | g

The covariance matrix of the error is time-varying, and is the solution

of the linear differential matrix equation :
T -
P =AP +P A +E (4.26)

In a first approach, we assume that the state at t=0 is perfectly known,

i.e. :

‘L.‘ﬁ:)

(0) = x(0) | | (4.27)

For t>°, since AS is stable, the estimate gs goes to 0. This reflects the

fact that the ship motion is stochastic and that the knowledge of the state
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at any time does not imply any knowledge about the state at a distant
time in the future. Consequently, the error eventually reaches the rms
value of the motion.

The evolution of the rms error, normalized by the rms motion is
shown in Fig. 4.4. Roll appeérs to be the easiest motion to predict.
Under perfect conditions, good prediction could be obtained for up to
10 seconds. This reflects the highly-tuned shape of the roll power
spectrum, which is mostly a second-order very lightly damped oscillator.

The above is a significant result for landing purposes, because roll
motion is really one of the most important motions to pfedict. From the
lateral motions, the yaw motion is very small, while the sway motion
consists mostly, at the landing pad, of a roll induced motion.

Sway and yaw are much harder to predict, as shown in Fig.4.4, which
reflects the much broader power spectrum of these motions.

The oscillations in the prediction covariance can be explained by a
simple derivation for a second-order system.

Assuming a second-order system :

X =ax + & (4.28)
where
_
0 1
A = (4.29)
-b -a
0 0
T o= . (4.30)
0 1 ;
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Figure 4.4: Rms Prediction Errors (H=10ft, wm=0.72rad/s)
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The covariance matrix propagation equation is :

pP=APA+PA +5 (4.31)
with :
P P
11 12
p = (4.32)
Pio Pa
The equation (4.31) can be rewritten :
- _ - - . -
P111 0 2 0 Pllw 0
P12 = -b -a 1 . Pl2 + 0 (4.33)
P 0 -2b -2a P 1
L 22 | ! | [ T22) )

This is a linear differential matrix equation. The eigenvalues of the

above 3x3 matrix are

A= -a (4.34)

A = -atva’ - 4b ' (4.35)
The eigenvalues of the original system are :
A = (-a * /a?= 4b)/2 ' (4.36)

In other words, the linear system modelling the covariance matrix
propagation has eigenvalues which are equal to twice the original system
eigenvalues. This explains the oscillations of the prediction errors which

are at a frequency double that of the ship motion peak frequency.
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Time simulations of the ship motions and of the prediction estimates
are reproduced in Figs. 4.5, 4.6, and 4.7. The prediction starts at t=40sec.
The previous remarks on the predictability of the motions are easily seen
in these plots.

In an actual realization, the ship states are not directly available
and must be estimated. Fig. 4.8 shows the structure of the estimator/pre-
dictor. Prediction can be seen as an extension of filtering, with the
measurement branch broken. In an actual application, the Kalman filter
would be running in real-time, continuously, while the predictor would
compute the predicted motions for a specific time At ahead, in parallel.
This is indicated schematically in Fig. 4.9.

Some simulations are shown in Figs 4.10, 4.11, 4.12 and 4.13. The
Kalman filter provides estimates at t=40s that are used to predict the
ship motion. Good prediction is still obtained for roll, while yaw becomes

almost unpredictable.

4.3.3 Implementation Issues_

The actual implementatidn.of the estimator/predictor described above
will require the use of a digital computer and, hence, the discretization
of the differential equation. Although the Kalman filter requires a large
number of computations at relatively gmall time steps (with measurement
update), the particular structure of the predictor makes the additional

computational load very small. Given the optimal estimate of the Kalman

filter at time t, %s(t) , the optimal estimate of the predictor at
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time t+At is simply :

ASAt
55(t+At) = e §S(t) (4.37)
A At

Having computed e S rand considering that we are only interested in
predicting the motions (and not the other states), this operation results
in multiplying a matrix (3x16) by a vector (16xl). These are the only
computations required if we are only interested in predicting the motions
At seconds ahead (and not their evolution in between). In this case, there
is no need to integrate the differential equation, as for the Kalman
filter.

In the case when the complete time evolution is desired, and that the
differential equation has to be integrated numerically, the same equation

(4.37) provides the discretized equation corresponding to the differential

equation :
gs = Ag gs (4.38)

It is very tempting to approximate this equation by the simple difference

equation :

gs(t+At) = Es(t) + At(ASES(t)) (4.39)
which is the same as approximating

e = I+ AsAt (4.40)

for a small At.
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However, due to the presence of the very lightly damped roll mode, iarge

errors can occur even for small At, compared to the time constants of the

system. In fact, if At is not very small, the mode becomes even less damped,
ASAt

as indicated in Appendix B. More precise approximations to e are

advisable for the implementation of the predictor (see for example [18] ).

Such problems do not appear for the Kalman filter which does not have this

very lightly damped mode.

In a previous subsection, the important influence of the sea modal
frequency on the performance of the Kalman filter was assessed. This para-
graph addresses the same question for the predictor. The calculation of
the errors is a little more complex in this case.

Given the system :

X = 4.

Xs = Ag¥g + &g (4.41)
and the predictor with wrong model :

& _ ax §

ES AS Xg (4.42)
The error is given by :

& = * * -

&, = (AERIxg + Afeg -~ by (4.43)
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The global system

Denoting

i

PI

P' is the
.

which can

XX
Xe

ae

is :

* o
AS AS

J)(D

“Es

solution of the linear differential équatiqn

ALP' +P' A + E

S

'
s S

be separated in :

T
+ + =
Astx PxxAS -8
AP + P (A*-A )T + P_ A
S xe XX S S xe
* +> L) + \*
ASPee (AS AS)Pxe PeeAs

Py

S

T

—
-
Py

T, T
L . =)
+ PxéAs AS) + =5

S

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)

(4.50)

(4.51)

The original system (the ship) is assumed to be in steady-state, so that

P.. = 0, and Pxx is the solution of the Lyapunov equation

XX
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’A‘spxx + PxxAZ + Es =0 (4.52)
:Replacing P.xx by its steady-state value (given by (4.52)) in equations
(4.50) and (4.51), we obtain a 32nd order linear differential matrix
equation in Pxe and Pee' with initial conditions Pxe(O) = Pee(O) = 0
(the initial State is assumed to be perfectly known).

Figures 4.14, 4.15 and 4.16 show the results of the integration of
this equation, in the case of an error in the sea modal frequency. The
filter was designed with wm=0.72 rad/s, while the actuallvalue was
assumed to be 0.52 rad/s. The degradation in perform;nce is again signi-
ficant and the roll prediction time is about divided by two. This
indicates (again) the importance of the estimation of the sea modal

frequency in real-time applications.

4.4 Summary

In this éhapter, we addressed the important questions of ship motion
 estimation and prediction. First, a Kalman filter was designed, whose task
is to filter the noise in the measurements (mostly due to the ship structur-
al noise), and to provide estimates of the states that are not available for
measurement. These estimates can then be used for optimal prediction of the
"ship motion, and in the feedforward path of the LQG controller for tﬁeiVTOL
landing.

A sensitivity analysis showed the relative importance of the model

parameters, and the sea modal frequency appeared to be a significant
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Figure 4.14: Sway Rms Prediction Error with Wroﬁg Model
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parameter.

The prediction of ship motions, assuming perfect knowledge of the
initial state, was studied, so that lower bounds on the prediction errors
were obtained. Due to its concentrated power spéctrum, the roll motion
turned out to be the easiest to predict (optimally 5 to 10 sec. prediction
time). The sea modal frequency was shown to be an important parameter for
all motions, which indicated the need for an accurate estimation of this

parameter in a real-time application.
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.CHAPTER 5

AIRCRAFT MODEL

5.1 Introducfion

Since the beginning of VIOL aircraft technology development, a large
number of configurations were conceived, and sometimes built and tested.
The most studied and extensively tested VIOL is probably the AV-8A Harrier.
Another VTOL aircraft.which has been extehsively studied is the Lift/Cruise
Fan V/STOL Research Technology Aircraft (RTA). For this aircraft, complete
simulator programming data is available in [19]. In the former study of
the longitudinal controls required for VTOLflandings on destroyers [1],

a‘ linearized model, written in state-space form, was derived from the data.
It.includes both longitudinal and lateral mbtions. In addition to the rigid
body equations of motion aﬁd the contributions of the fan forces and
moments,'this model élso accounts fér ram drag forces and moments, and
ihternél momentum effects (gyroscopic terms) due to the rotating engines

and fans. Neglected are the aerodynamic effects, the ship airwake turbulence,
and the ground effects. The actuators are modelled by first order dynamics,

whose time constants are to be selected by the control system designer.

5.2 Lateral Motions Model

To a first approximation, the longitudinal and lateral motions of the
aircraft can be decoupled. This corresponds to neglecting the cross-coupling

terms between roll, yaw, and pitch due to gyroscopic effects from the
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engines and fans. The effect of this approxiﬁation on the overall system
performance and stability margins is an interesting issue which is not
addressed in this thesis, but is probably worth a subsequent study.

The general ship-aircraft configuration is‘shown in Fig. 5.1. The
lateral motions, and the sign conventions used, are indicated: ‘they are
sway (lateral translation), roll and yaw (angular motions). The
definition of the controls requires some care. Strictly speaking, there
are 9 variables on wnich the controller can ect: the 3 values of the
thruéts'et the fans, the 3 values of the longitudinal deflections of
these ;hrusts, and the 3 values of the lateral deflections. However,
these controls are not independent: for example, deflecting the nhrusts

T, and T, laterally and in opposite directions would result in counter-

1 2

acting forces, and, consequently, in an inefficient use of the controls
available. Considering reasonable use of the controls, we find three
independent controls for the lateral motions (cortesponding'tq fhe three
ﬂ_degrees of freedom):

1) an equal lateral deflection of the aft louvers, denoted byv§al'

2

2) an exchange of thrust from T, to T,, denoted by dT

5 1 (this

1,2
can easily be done, as the engines 1 and 2 are mechanically coupled)

3) a lateral deflection of the front louver, denoted by 6a3.
VThese control variables are grouped in a vector denoted by c.

~In the original work by McMuldroch [1], the vector input was chosen

in a slightly different manner. It is denoted by u in this thesis.
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Figure 5.%: VTOL Aircraft Lateral Motions and Controls
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Its components are:
1) Gyc: an equal lateral deflection of all the louvers, to produce
(mostly) a sway acceleration

2) 8¢ : an exchange of thrust from T, to T,, to produce a roll
[o] : 2 .

1
acceleration

3) Gwc: an opposite lateral deflection of the front and aft louvers,
to produce a yaw acdeleration.

In this thesis, we keep the McMuldroch formulation, but the control
‘weights in the quadratic cost and the robustness criterions will be
expressed in terms of the vector ¢ , which is thé actual physical coﬁtrol
input. The'transformation from ¢ to u and u to c is straightforward.

Figure 5.2 indicates the structure of the aircraft model.

e
[10
o

c c B —————4r—,-
—

B AT NI

Figure 5,2: Aircraft Model Structure

-96—



The numerical values of the matrices are given in Table 5.1. The units of
the model are:
- ft for y.
t for yA‘
- ft/s for Ya
- rad for ¢A' wA’ 6al,2' 6a3, 6yc, Gwc

- rad/s for $A’ wA

- fraction of the nominal thrust for BTl 2 (the nominal thrust of T1 5
4 14
is 9057.5 1lb) and for 6¢c

The only difference between the model indicated here and the model
given in [1], is the absence of actuators dynamics which, in[i], were
selected as integrator dynamics. For the lateral case, the actuators
dynamics are well beyond the significant ship motion frequencies (0.5 to
1.5 rad/s): the thrust deflection can be dqne almost instantenuously,
while the exchange of thrust - which does not réquire any overall increase
of power - has a time constant of about 0.1 s (a shaft-coupled configuration
is considered here). For these reasons, and for simplicity, the actuators
dynamics are neglected here.

The resulting model is very simple: it contains only 6 states,
specifically the aircraft motions and velocities. As indicated earlier,

a simple model is desirable on the control system point of view, although
it necessarily implies some crude approkimations and, therefore, increases
the need for good robustness properties. On the other haﬁd; the interpre-
tation of the elements of the modél is easier from a simple model, as will

be seen in the next section.
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r {YA
3-yc 6“1.2 : q;&
u= 8¢c c= Sle X, = ‘!h
8 'A - yA
?c bﬂs 5%
[ o 0 0 1 0 o ] [ o o o
o o o o 1 o o o o
o o 0 o 0 1 0 0 o
A= B, = :
A 0 32.2 0 -085922 -052023 -.39174 . 322 o o
0 o 0 -00271 -1025  -.04208 -4.2411 45953 0.5346
o o 0 -005087 -0117 -1471 | . -17896 .1939 B.0484
o o o
-1 0 1
o o o
T, = o 1 0 -
¢ %= | aien -10.988
1 o -1.9302
2.976 4.5853 1.285
2864 1830 -2685

Table 5.1: Aircraft Model Values
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5.3 Model Interpretation

The important couplings inherent to a VTQL aircraft are répresented
in the model, and it is worth taking some time analyzing them.

A first important coupling is a dynamic coupling between roll and
sway. As the aircraft is banked, a lateral component of the thrust appears,
which results'in an important side force. This is represented by the
AA(4,2) element (cf table 5.1). It is equal to g (32.2 ft/sz) because,
under the small angle approximation, the side force is equal to the weight
times the roll angle.

The other elements coupling the velocities in the A, matrix are due
to the ram drag forces and moments, and are responsible for most of the
aircraft dynamics in this model (especially its instability).

An important coupling appearing in the BA matrix is the BA(S'l) term.
It indicates that a lateral deflection of the thwusts produces an important
roil moment. Note that if this effect is not compensated for, the roll
moment will produce a roll angle which, by the effect described above, will
in turn produce a sway force opp051te to the sway force originally produced
by the louvers deflections. The origin of the roll moment is in the
difference between the center of gravity and the center of thrust of the -
fans (the centef of gravity is 3.12 ft higher).

Finally, an interesting, aithough apparently not very significant term
is the BA(6,2) term. It tells us that an exchange of thrust in the aft fans
produces a yawacceleration. Although no yaw moment is produced by this

control, a small yaw acceleration results from the roll moment, due to the
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angular difference between the principal axes and the body axes (in other
words, .due to the presence.of a cross-term Ixz in the inertia tensor).

The above summarizes the important couplings present in the VTOL
“aircraft. These couplings are dynamic (reflected in the AA matrix), as
well as control couplings (reflected in the BA matrix), and are captured
in the simplified, linearized model given here.

In fact, not only is the system strongly coupled, but it is also
open-loop unstable. The open-loop poles are shown in Fig. 5.3. Two of bthe
six poles are at the origin and correspond to the pure integrators in

sway and yaw motions.

5.4 Summary

In this chapter, we described the aircraft model for the lateral
motions. We showed that three independent controls can be used to track
the lateral deck motions, buf that some important couplings are present
amongst the controls and motions (especially between sway and roll).

The aircraft model is written in state-space form, and the state
vector contains 6 states, namely the aircraft mqtions and velocitiés.
The important couplings of the VIOL are represented in the model, and

it was shown to be open-loop unstable.
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Figure 5.3: Aircraft Open-Loop Poles, Plotted in

the s-plane
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CHAPTER 6 -

LINEAR QUADRATIC REGULATOR DESIGN

. 6.1 Introduction

The LQ/LQG design methodology was introduced in chapter 2. As a first

. step, it is assumed that all states of the system are available (output
matrix C = I), so that full state feedback can be used. Note that while
this assumption is generally a rather unrealistic assumption, it is not

the case for +he simplified aircraft model that was obtained in chapter 5.
Angular motions as well as angular rates are available through gyros and
rate gyros. Similarly, estimates of position as well as velocity can be
obtained from accelerometer measurements combined with MLS/DME measurements,

with a high quality. In a sense, a Kalman filter is not strictly necessary
for the aircraft. For these reasons, significant attention has been given to

this part of the design.

6.2 Choice of the Quadratic Weights

Under the assumption of full state feedback, the only parameteré left
to the designer are the Q and R weighting matrices in the quadfatic cost.
A very natural way to select these matrices is the diagonal inverse-square
weighting [ 20]. Some other methods have been proposed, as for example the
method proposed: in [21] and [22] to achieve aesirable asymptotic regulator
properties. In any case, it is interesting to note that the robustness

properties of LQ regulators can be seriously deteriorated if a non-diagonal
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matrix R is chosen [23] [24]. For this reason, it is wise to select a

diagonal‘R matrix, or‘equivalently, to pick R = pI, after some scaling

of the inputs.

In this thesis, we decided to start with a simple diagonal inverse

square weighting, leaving some parameters to acheive a desirable eigen-

structure, with a careful study of their influence on the optimal root-.

locus. The quadratic cost that we want to minimize is given by (2.25).

As a first step, we want to weight all the state variables (motions and

velbcities), s0 that:

Wa = WaXy = Xy

(—=—2 0 0
ymax
0 (3%—.)2 0
max ‘
0 0 (-q)—l'-l‘——.)2
B max
0 0 0
0 0 0
0 0 0
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where i i i s ;
> ymax’ ¢ ' wmax are arbitrarily chosen maximal deviationsof the

max
states:
Yoax = 4 Tt ‘ (6.5)
¢max = wmax = 10 degrees = 0.1745 rad (6.6)

A parameter Tz is left in the Q matrix. For Tz = 0, only the motions are
'weighted. For Tz # 0, the motions and the velocities are weighted. They
are weighted equally if Tz = 1. In the VIOL landing problem, the’velocity
tracking etrors can be as important as the position tracking errors
(they determine the shock at the landing), which justifies the weighting
of both in the quadratic cost. Also, it is known that, sometimes, the
weighting of outputs only may lead to underdamped second-order type
systems, and that this can be improved by weighting derivatives as well
as outputs. At this stage, the variable Tz is then left as a design para-
meter.

The control weighting R matrix is chosen diagonal at the point of

the actual controls:

() 2 0 0 |
60‘1,2
max 1 )
R =p 0 ( -) 0 (6.7)
fo 6T1'2max
1
0 0 (5o )2
3
max
e p—
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and:
R=T R T ' (6.8)

with Sal 5 ’ GTl 5 , and Ga3 are arbitrarily chosen maximal values
" “max " “max max

of the control authority.

6al 2 = 6a3 = 10 degrees = 0.1745 rad (6.9)
" “max max

(o]
H
I

0.3 (30% of the nominal thrust value) v (6.10)
max

Another parameter of the design, P, is left here, and indicates the

relative importance of the control versus state deviations.

6.3 Optimal Root-Locus

An optimal root-locus is defined as the locus of the close&-loop
poles of the sfstem with optimal LQ feedback, when the parameter P in the
R matrix is varied from ® to 0.

It is interesting to note that this problem in itself does not reéuire
the solution of the associated Riccatti equation. The closed-loop poles are

the left half piane.eigenvalues of the Hamiltonian system [9] and[25]:

2 =2z (6.11)

Z = ' (6.12)
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This replaces the problem of solving a nth order Riccatti equation (n being
the order of the system) and a nth order eigenvalue problem by a 2nth order
eigenvalue problem.

The points of departure of the optimal root-locus are the stable
open-loop poles; combined with the mirror images of the unstable open-loop
poles (symmetric position about the imaginary axis). In our case, two poles
are at the origin, two are on the negative real axis, and two are oscilla-
tory unstable, and are then reflected in the left—half plane.

The points of arrival define the asymptotic behavier of the system as
p*0, and are somewhat harder to obtain. Some poles go to infinity along
specific asymptotic patterns (Butterworth patterns) depending on the rank

3

of Q°B. The other poles go to the zeroes of transmission of the system
Q%(sI—A)_lB (with the same remarks for right-half plane zeroes as for

unstable poles when p»w). The zeroes of transmission z, are the solution

of the generalized eigenvalue problem:

= 0 ' (6.13)

The system has as many inputs as outputs, so that the zeroes of'transmission
are the zi's that make the matrix A' (defined by (6.13)) rank degenerate
(the full rank is mt+n, where m is the number of inputs, and n the number of
states).

The matrix Q is diagonal, so that we can take:
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(6.14)

and A' is given in Table 6.1.

The matrix is three times rank degenerate at zi = —l/TZ. Thenvthe row 1
is a linear combination of the rows 7 and 10 (similarly for 2, 8, 11 and
3, 9, 12). In other words, the inclusion of the velocities in the
quadratic cost results in the introduction of three transmission zeroes
in the optimal root-locus. It turns out that the three remaining zeroes
of transmission are at the infinity. The case when Tz=0 can be seen as a
limiting case when the weights on the derivatives go to zero. All the
transmission zercoes are then at infinity.

Figures 6.1, 6.2, and 6.3 show the optimal root-loci for Tz=0, Tz=l,
and Tz=0.5 and are labelled for different values of p. The structure of the
root=locus for high values of P is the same for different values of Tz
and is not repeated in the last two plots.

The previous comments coﬁcerning the points of departure and of arrival
are easily checked.vFof non-zero Tz’ the poles eventually ieach the negative
real axis, and three go to infinity, while the others reach the zeroes at
—l/Tz; As TZ goes to zero, the zeroes move to infinity, and the case of zero
velocity weights appears clearly asa limiting case from the three figures.
Then, the asymptotic structure consists of three second-order Butterworth
patterns.

As expected, the root-loci reach faster higher damping regions when
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Figure 6.1: Optimal Root-Locus (TZ=0)
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Figure 6.2: Optimal Root-Locus (Tz=1)
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derivative weights are included. However, the asymptotic behavior with
no.velocity weights is a desirable one. At this point, no decision is

made about which case is better (TZ=0 or Tz=l). This depends on which value
of;)corresponds to a realistic design (acceptable tracking errors and
control authority). If high values of p are reasonable, choosing Tz=l'

will probably improve the design. If small values of p aré reasonable,
choosing Tz=0 may be better, as it leads to desirable closed-loop poles
locations.

It turns out that the range of p between p = 0.3 and p = 30 is a
realistic one, as will be elaborated in the sequel. The corresponding pole
locations are satisfactory for Tz = 0, and this case will be consideredias
the nominal one from now on.

Finally, an interesting characteristic of the root-loci presented
here is their rather peculiar behavior around the 1 rad/s region. This
appears in all three cases. For Tz = 0, the behavior is quite surprising,
as one pole (one complex pair) seems to come back before going to infinity
along the 45'degrees line. At some point, this point "slows" down as if
it was reaching a zero. This point is found to be approximately at
0.91 * j 0.87 and p = 3. No attempt is made to justify this behavior
mathematically, but some physical connection can be found, and will be
explained below.

It can be expected that the important couplings between sway and roll
previously mentionned have some importance in this strange behavior.

Actually, while a small relative change of p produces only a very small
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movement of the pole near p= 3, a comparatively small change of the weight
on STl 5 (6'1‘l P ) produces a much larger movement of this pole. It .is

! " “max
clear then that the roll control variable is crucial in the optimal lateral

control system design, as it is probably in any VTOL lateral control system

design.

6.4 Step Responses

As a first step in the evaluation of the control system design,
responses to~deviati9ns from equilibrium are computed and plotted. The
aircraft is éssumed to be left with a zero velocity and some position error
at t=0. Figures 6.4, 6.5, 6.6, 6.7, show the response to a 4 ft sway
initial‘erfor, and Figures 6.8, 6.9, 6.10, and 6.11 the responses to a 10
degrees roll initial error. The responses to,a.yaw initial error afe not
significant (they require comparatively very small control authority))»and

are not reproduced here. Similarly, the deflections GGI and 5d3 are

2
about the same, and only 5a1l2 is»shown.

The sway grror response is particularly interesting: for high values
of p (high control cost), the roll response is important, while the fan
deflection (which mainly produces a sway force) is small.‘In fact, the
controller flies the VTOL aé a helicopter: as the weight on the state is
small, and the weight on the controls is high, the controller slowly banks
the aircraft and uses the‘lateral componentvof the thrust to obtain a sway

acceleration; then, after some time, it banks the aircraft in opposite

ditection to reduce the sway speed to zero, together with the sway deviation.
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Figure 6.4:
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Sway Response to a Sway Initial Error
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Figure 6.5: Roll Response to a Sway Initial
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Figure 6.6: Fans Deflection Response to a Sway Initial Error
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Figure 6.7: Thrust Exchange Response to a Sway Initial Error
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‘Figure 6.10:
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Figure 6.11: Thrust Exchange Response to a Roll Initial Error
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For small p (high state deviation cost), the situation is very
different, and a dramatic increase in fan deflection response can be
observed on Fig. 6.6, while the roll response on Fig. 6.5 is much
smaller. This shows that the turning point observed in the root-locus
of Fig. 6.1 corresponds also to a change in strategy of the controller.

A similar conclusion can be obtained from the responses to a roll
initial erfor. For a high value of p (p=30), the sway induced by the
initial roll angle isg important, and it is then compensated by an impor—
tant opposite roll (about half of the initial roll angle).

We conclude from this discussion that the gquadratic optimization
problem leads to solutions which, when understood, are very logical,
and simply express specific characteristics of the system, which, at
first, may be obscured by its multiple-input multiple-output structure.
One advantage of the LQ methodology is that it leads to coupled

controller designs that exploit the dynamic coupling phenomena.

6.5 A Special Example

To illustrate the above remarks, a limiting case is presented; it
corresponds top = 10, TZ = 0, but with the penalty on the sway error

multiplied by 10°. The resultant closed-loop matrix:
A = A - B_G (6.15)

and the gain matrix GA are given in Table 6.2.

The most interesting terms are the AA CL(4,2) and the GA(2,1) terms.
) ’
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CL,A

0.
0.

-32.96
44.77
17.93

10.2360
-0.0637
-1.9995

Table 6.2:

-0.11
-12.04
-0.2405

1.0034
3.5568
-0.0093

0.

0.0155
-0.4046
-1.175

-0.00005

0.0071
0.1443

1.
0.

-25.55
2.634
1.279

0.7914
0.1737
-0.1462

.3263
.656
.3219

.0009
.2153
.0009

.0021
.4832
.539

.0012
.0065
L1711

Closed-Loop Matrix and Feedback Gains for a High

Sway Error Penalty

Figure 6.12: Exact Compensation of the Lateral Force Due to

a Roll Angle with a Thrust Deflection
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Compared to the original AA(4,2) = 32.2, the term AA'CL(4,2)=-0.11 is
reduced almost to zero; we recall that this term expressed the lateral
force due to a roll angle of the aircraft. The weight on a sway error
being very large, the controllef compensates this efﬁect very logically
with a deflection of the thrusts in opposite»direction than the roll

angle. This is accomplished by the GA(1,2) term, which, in the limit,

would be equal to 1 (see Fig. 6.12).

6.6 Ship Motion Tracking

~Up to now, the VIOL controller was designed as a étabilizer, or
zero state tracking controller. As indicated earlier, the feedback
structure cf the controller is independent of the specific reference
signal to follow, i.e. the ship motion at the landing pad. The ship
ﬁodei is required in the definition of the forward gain matrix value (G).
The importance of the ship model is mostly in the computation of the
rms tracking errors and controls, which define the performance of the
controller.

In chapter 2, we denoted by EA and w

We the vectors of the aircraft

and ship variables that we want to track. They are the aircraft and ship

motions (at the landing pad), so that:
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with:

W =]/01 0 0 0 O (6.18)

W, =¢C | (6.19)

Vag T ¥y T ¥y =Wy g X ' (6.20)
where:
Wy g = ( -Wg s Wy ) (6.21)
x = (6.22)
%

The overall system equations are:

kX =2ax +Bu+§ : (6.23)
c = Tc u (6.24)
where:
A 0
S .
A = (6.25)
0 -AA
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0

B = (6.26)
&

g=|""° (6.27)
£

The spectral intensity of § is:

[1]

0
5= (6.28)

0 :A

The LQ controller is designed, using a Q matrix:

T T
oW o w = U QMg Vs 9 W (6.29)
A-S *w A-S w0 W W o W )
A *w 'S A~ w 'S

where Qw is the same matrix as the one used in 6.2 and defined by (6.4).
Similarly, the matrix R is chosen as defined by equations (6.7) and (6.8).

The control law is :
u=-6x = -G_x, - G X (6.30)

In this state-space framework, the rms values of the tracking errors Eﬁ—s

and of the controls g_are very easily obtained. The covariance of the states

deviations is obtained by solving the Lyapunov equation:

(A-BG) P + P(A-BG) + Z = 0 (6.31)
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where:
P = E(E_x ) (6.32)

The rms tracking errors and rms controls are the square roots of the

diagonal elements of the covariance matrices:

T
Bl g Yag) "W g FWas Wi
Elcc) =T GPG T (6.34)

Tables 6.3 and 6.4 contain the results obtained for the two sea conditions
discussed in chapter 3. Table 6.5 contains the closed-loop poles locations

corresponding to the different values of p.

SEA H=12ft wm=0.4807 rad/s
Sway Roll Yaw Controls
(ft) (deg) | (deg)

Ship motion 7.155]12.64 ] 0.373 | Sa &T 8a.

1,2 1,2 3

at landing pad (deg)| (%) (deg)

Tracking p=30 1.124 | 14.98 | 0.414 0.26 2.04 0728
errors

pP=3 0.971 | 13.35 | 0.203 1.93 3.06 1.96

p=0.3 | 0.465| 6.36]0.099| 9.15|15.35 | 9.16

A/C driving p=0.3 | 0.801| 6.410.329 | 9.72|16.74 | 9.37
noise incl.

Table 6.3: LQ Controller Performance (decaying sea)
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SEA H=10ft wm=o.72 rad/s

Sway Roll Yaw Controls
(ft) (deg) | (deq)
Ship motion
at landing pad 2.551 | 4.556 | 0.227 6a1'2 6Tl,2 6a3
(deg) (%) (deq)
Tracking P=30 0.517 | 5.405 | 0.172 0.10 0.12 0.10
errors ;
=3 0.444 | 4.830 | 0.082 0.70 1.10 0.71
£=0.3 0.227 [ 2.322 | 0.044 3.34 5.61 3.34
A/C driving p=0.3 0.691 | 2.480 | 0.317 4.72 8.78 3.92

noise incl.

Table 6.4: LQ Controller Performance (fully developed sea)

Closed-loop poles locati

ons

p=30 | -0.598 * j 0.585
p=3 -0.906 % j 0.87

p=0.3| -1.064 + j 1.036

-1.038 *
-1.054 *

-1.869 %

J
3
3

0.611
1.039
1.863

-0.642 + j 1.054

~1.528 * j 1.552

-2.792 + j 2.803

Table 6.5: LQ Controller Closed-Loop Poles
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For p = 0.3, good tracking is obtained, with reasonable control
authority (for H =12 ft, w, = 0.4807 rad/s, some higher value of p may
however be appropriate). The value of p = 0.3 was chosen as a nominal
value for the control system. The closed-loop poles are also at desirable
locations for a VIOL control system.

For this nominal design, the effect of wind turbulence is also
indicated. The results are obtained by introducing an aircraft driving
noise matrix EA’ and‘are also indicated in Tables 6.3 and 6.4.
values for wind disturbances are found in the form of Dryden spectra
in [19]. The derivation of the’EA matrix from this data is included in
Appendix C.

As for the aircraft controller step responses, the values of the rms
tracking‘errors and cahtrols‘givefus some interesting indications about the
physical aspects of thevproblem. The yaw tracking errors are very small,
compared to the maximal values given in the quadraﬁic cost. Similarly,
the rms deflections 6&1'2 and 6a3 are very close. This indicates that
yaw tracking is not at all a problem for the aircraft. The control
authority is clearly more than sufficient to track the ship motion
(which is very small anyway), or to reject wind disturbances.

On the other hand, roll tracking errors are much higher than the
sway and yaw errors (compared proportionnaily to the maximal values given
in the quadratic cost).vForpb= 30, thé rms érror is even larger than

the rms ship motion. This probably indicates that roll is the "least

easily controllable" state of the VTOL aircraft, but it also reflects two
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basic‘contradictions faced by the controller in the tracking of the sway
and roll motions. The first comes from the ship motion at the landing pad.
From the sway at the landing pad, a large part is coming from the roll
motion, due to the difference in altitude between the landing pad and the
center of rotation of the ship. It has been seen earlier that an easy way
for the aircraft to track a sway reference is to ?oll the aircraft as

a helicopter would do. However, the roll angle required to follow the

ship swéy motion by this mean is precisely opposite to the ship roll‘angle
that has produced the sway motion of the landing pad. This is illustrated
schematically on Fig. 6.13.

The second adverse effect has been mentioned previously and is
illustrated on Fig. 6.14. It is shown that a roll moment is induced by
a lateral deflection of the thrusts (term BA(S;l)). It is opposite to the
ship roll motion.

It i§ possible to improve the roll tracking'by increasing its penalty
in the Q matrix. Considering the physical problems mentioned here above,
this will probably result in alarge increase in control authority.
Moreover, precise roll tracking is not necessary, and not even desirable.
For the same reasons as the ones mentioned here above, precise roll
tracking would result in large lateral accelerations at the pilot location
and this would probably be unacceptable.

Finally, it can be noted that only the influence of wind gusts was
considered here; while the mean wind was neglected (together with the

aerodynamic effects, as in [1] ). The influence of the mean wind will be
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Figure 6.14: Adverse Sway/Roll Coupling in the Aircraft Motion
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to produce a steady-state tracking error whose amplitude depends on the
amplitude of the mean wind and on the feedback gains. This can easily be
compensated for, if necessary, by introducing some integral compensation

(for example, by augmenting the system and recomputing the feedback gains)

6.7 'Time Domain Simulations

Some time domain simulations are illustrated in Figures 6.15 to 6.27.
Figs 6.15 to 6.19 correspond to the case p = 0.3, without aircraft driving
noise (wind gusts). As expected roll tracking ig the worst of all, and the
aircraft roll motion is systematically smaller than the ship motion.

Figures 6.20 to 6.22 illustrate the tracking in the presence of wind
disturbances. As expected, the yaw tracking is the most severely affected,
but the aircraft motion remains small.

Figures 6.23 to 6.27 show the case p = 30, without wind disturbances.
While sway tracking remains good, the roll tracking is simply out of phase
most of the time. This demonstrates again the "heliéopter" behavior of the

controlled aircraft for high values of p.

6.8 Summary

| in this chapter, we described the design of a linear quadratic (LQ)
regulator. This design assumes perfect knowledge of the states at any
moment. For the aircraft part, the assumption is not unrealistic (espe-
ciélly if a good navigation system is used aboard the ;ircraft), as all
the states are available for measurement, and the only role of an optimal

estimator is to filter the noise, and provide optimal estimates on the
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basis of the known dynamics of the aircraft.

For the ship however, a Kalman filter is necessary to teconstruct
the states that are not available, and the results indicating the rms
traCking'e:fore.for a given control authority must be interpreted as
lower bounds.

Due to the decoupling of the ship and of the aircraft in the LQG
design, the optimal closed-loop poles locus could be plotted independently
from the ship motion. It waS'shqwn that the rxoot-locus can be shaped. by
the introduction of velocity error penalties in the. quadratic cost, and
that some peculiar behavior of the .root-locus- could be explained on the‘
basis of physical arguments.
| The responses of the controlled aircraft to deviations from equili-~
briumwere plotted, and the important ccuplingsabeztween the sway and roll
were shown to have a significantvinfluence on the behavior of the
controlled aircraft. For high values of the control penalty, the controller
appeared to fly the VTOL like a helicopter, while, for smaller values, it
used much more the thrust deflection capability to provide lateral
accelerations. o

The difference in strategy for high and suall values of the control
penalty appeared to have a 51gnificant influence on theverrors achieved in
the tracking of the ship landing pad motion. It was shown that the
controller faced two important contradictory phenemena in the tracking of
the roll motion, espeCially due to the sway motion induced at the landing

pad by the roll motlon. Although prec1se roll tracking is not necessary,
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the high values that the roll motion can reach in high sea states make
imperative the limitation of the tracking errors (to avoid a contact of
the wing tip at the landing for example),and the constraints present in
the simultaneous tracking of the sway and roll motion are basic

limitations in the tracking of the lateral motions.
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' CHAPTER 7

LINEAR QUADRATIC GAUSSIAN REGULATOR- DESIGN

7.1 Introduction

Having designed the 1inearquad;ati¢ {egu;ator,lghe next step to the
final control system is the optimal estimation of the system states. As
all the states are not available for»feedback, and as those which are
measurable are affected by measurement ﬁoise, a state estimator is necessary
and, in the general assumptionsbbf’the LQG'méthoaolpgy, this state estimator
is a Kalman filter. The overall control system is then composed of a Kalman
filter whose state estimates éfé’ﬁultiplied by constant gains, determined
as in the LQ problem.

It has been previously indicated that the estimation problem can be
reasonablyvdecoupled. The ship motion estimation problem has been addressed
in chapter 4, so that this chapter will concentrate on the aircraft motion

estimation problem, and on the overall system performarce.

"7.2 Navigation Systemé

The accurécy of the navigation systems used aboard the ship and aboard
the éircraft will be a determining factor in the performance obtained in the
tracking of the ship motions.

Some previquskstudies [261, [27], have a§dressed the navigation problem
of VTOL landings on destroyers. An inertial measurement unit aboard the

ship provides measurements of the ship motions that are data-linked to the
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aircraft (in our configuration, the full ship state, estimated by the

ship Kalman filter described in chapter 4, is data-linked to the aircraft).
Aboard the aircraft, the combined use of an inertial measurement unit,
microwave (scanning beam) landing system, and distance measuring equipment
(MLLS/DME), leads to estimates of the aircraft position and attitude. The
aircraft navigation system considered in [26], [27] is a low to medium
quality navigation system, so that even if the whole aircraft state is
available for measurement, some improvement can be gained by an aircraft
Kalman filter that estimates the aircraft total state using the model for
the aircraft dynamics and control effectiveness. This is the subject of
section 7.3.

However, it should be noted that with the use of a good quality‘

aircraft inertial measurement unit, much better estimation accuracy can

be achieved. The appropriate Kalman filter formulation in this case uses
an error state formulation, where the state variables are the very low
frequency errors in the indicated position , velocity, and attitude of the
inertial system. The radio measurements (MLS/DME) are used to estimate
vthese low frequency errors. The precise structure of such a navigation
system is not studied in this thesis, which concentrates on the control
. aspects of the VIOL landing problem. If the accuracy and response time of
the navigation system is such that the aircraft navigation errors and the
time lags are negligible, an aircraft Kalman filter, using the known
dynamics of the aircraft, is not necessary, and the control loop around

the aircraft is equivalent to the LQ control loop. The robustness of the
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control éystem is then the same as the robustness of the LQ system (cf
chépter 8), and the degradation in performance, as compared to the LQ
controller performance indicated in ;hapter 6, is due to the ship Kalman
filtér, and the estimation of the-ship states that are not available for
‘measurement. The reduction in péeérformance is small, however, as will be

indicated in section 7.4.

7.3 Aircraft Kalman Filter

, First, we assume that the aircraft controller has available noisy
absolute position and attitude measurements that are used as input of
the aircraft Kalman filter. The measurement (output) matrix is then:

1 0 0 0 0 O
c, = o1 0 0o 0 O (7.1)

0 01 0 0 O

From data available in [26] and @7], the intensity matrix of the measure-

ments noise is selected to be:

0.286 0 0
@A =]. 0 - 0.001 0 (7.2)
0 0 0.001

With this choice of measurement noise, and with the driving noise
resulting from the wind turbulence model, the Kalman filter poles are

located at: =0.5743 * j 0.5593, -1.317 * j 1.104 and -1.107 * j 1.318.
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If measurements of the angular rates and velocities, as well as
angles and displacements, are available from the navigation system, a
Kalman filter can be designed, assuming the measurement of all the 6

states. The measurement matrix is then the identity matrix:
CA = I (7.3)

The measurement noise intensity matrix is selected, using the same

references as before, and is equal to:

™~ =

0.286 0 0] 0 0 ¢
0] 0.001. 0] 0 0 0
0 0 0.001 0 0] 0

@A = (7.4)

0 0 0] 0.286 0 e
0 0 0 0 0.00024 0
0 0] 0] 0 0 0.00024

In this case, the closed-loop poles tuin out to be at: -0.4981,
-0.5662 * j 0.5804, -0.91, -3.92, -4.819.
The first design is referred in the next sections as the 3 measurements
case, and the second as the 6 measurements case. s
Note that in the situation when the 6 measuremehts are available,
we are very close to the full state feedback. The role of the Kalman
filter is not to reconstruct the unavailable states, as it was the case for
the ship Kalman filter for example. In this case,‘itsvroie is to provide

optimal estimates of the states from noisy measurements, using the known
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dynamics of the aircraft: it is actually nothing else than a filter.

In the;elosedeloep system,.its tele is to filtet the noise and so, it
decreases the bandWidth of.the sfstem. The\consequenqevis, theoretically
(i.e. in the assumption of thte'meaeﬁremeht”noisej;'aﬁ increased perfor-
mance compared to the full (n01sy) state feedback, at the expenses however

of robustness, as will be seen in the next chapter.“

7.4 1LQG Controller performance

The evaluation of the contfeller performance can be done as for the
LQ coetfoiler in chapter 6, by computing the rms velues of the tracking
errors and of the controls.b

To determine the rms values of the states (shlp, aircraft, and

Kalman filter states), we write thekovereli system equations:

|
1%,
Y

= A', + | \ (7.5)
where:
A -BG ’ , ‘
At = » . L : B 7.6)

HC  A-BG-HC

The overall state”¢0variance matrix is obtained by solving the Lyapunov

equation:

a'Tp + pa' + E' =0 (7.7)
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with:

= 0
=
=' = (7.8)
0 HOH' o
and:
E(xx") E(x&")
P = T AT 7 (7.9)

The rms values of the tracking errors and controls are the square roots

of the diagonal elements of:

Elw, oy o) = W E(xx’) Wy (7.10)
and:

E(ee) = T_G E@E) ¢ T (?.11)
respectively.

Tables 7.1 and 7.2 show the results obtained for the rms tracking
errorsvand controls. In the case when the aircraft navigation system is
of quality such that the navigation errors are negligible, the aircraft
total state Kaiman filter is not necessary. The ship Kalman filter is
still required as a state reconstructor. The degradation in the tracking
errors (compared with the unrealizable full ship and aircraft state

feedback case) is then very small, while the rms controls required are
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SEA H=12ft wm=o.4807rad/s

Rms Tracking Errors Sway | Roll | Yaw 6al,2 6Tl,2 503
and Controls (ft) (deg) | (deg) | (deg) (%) (deg)

LQ- (l)" 0.801) 6.410 | 0.329 .72 | 16.70 { 9.37

LQG (2) 0.913] 6.432 | 0.341 9.71 :16.73 9.36

LOG (3) 2.3léﬁ 7.249 | 2.547 | 11.39 23.6lv 10.42

‘LQG_(4) 1.4011 6.567 1.499 10.10 | 18.13 9.61

(1), (2),(3), and (4) see below"

Table 7.1: LOG Controller Performance (decaying sea)

| sEa Heloft w_=0.72rad/s

Rms Tracking Errors | Sway | Roll | Yaw f.6a1’2 5T1'2 6a3
and Controls (ft) (deg) (deg) n(deg) (%)‘ (deg)
Lo (1) 1 0.691| 2.480 | 0.317 | 4.72| 8.78| 3.92
LOG (2) - 0.812| 2.529 | 0.328 | 4.70| 8.76| 3.89
LG (3) o | | 2.274| 4.193 | 2.545 | 7.60| 18.82 | 6.01

_LQQ 4) e 1.338| 2.856 | 1.496 | 5.45| 11.19 | 4.47

(1) : LQ Controller, with wind disturbances

(2) : LQG Controller, with only the ship Kalman filter
(3) : LQG Controller, 3 measurements case

(4) : LQG Controller, 6 measurements case

Tébié'7.2: LQG"Controllér Performanéé (fhlly devélbped sea)
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sometimes smaller, due to the decrease in bandwidth caused by the ship
Kalman filter.

When the aircraft navigation system is of lower quality, and an
aircraft total state Kalman filter is used, along with‘the ship Kalmén
filter, the degradation in performance is more serious, but stiil

reasonable in the 6 measurements case.

7.5 Summagz

In this chapter, we considered the optimal estimation of the aircraft
states from noisy measurements. Two cases were considered: the first
corresponded to measurements of position and attitude only, the second to
measurements of position, attitude, and their derivatives (full state
measurement). The second case is coﬁsidered the nominal one.

The degradation in performance due to the estimation of the ship
states and of the aircraft states from noisy measurements. was indicated.
It was shown to be very small if only the ship states had to be estimated,
and reasonable in the case of the noisy measurement of the full aircraft

state vector.
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CHAPTER 8

ROBUSTNESS ANALYSIS

8.1 ‘Introduction

The robustness of a feedback system to modelling errors (parameter
uncertainty, unmodelled dynamiosq'heglectéd’couplings'...) is certainly
as' important as the stability of the nominal closed-loop system. It is
- fundamental for éerospace applications in which, very often, the nominal

open-loop system is unstable. While the open-loop system is an optimally
robust system when it is stéblé;“the existence of an optimally robust
closed-loop system can be conceived in the case when the open-loop
system is unstable.

Although the issues of robustness are'well understood, and easily

expressed for single-input Singlé-output systems, they are much moré

" complex for multiple—input'multiple—output systems. Much research has
been done recently in this area, showing mainly the usefulness of
‘singular values to quantify robustness properties of multiple-input
multipie—output feédback systems. In this_phesis, we will mainly refer

to the results found in [23], [24], [28].

8.2 Robustness Measures

The stability of SISO feedback systems can be determined by the use

of the Nyquist diagram. The Nyquist contour DR is defined as two segments
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of the positive and negative imaginary axis, connected by a half circle
whose radius R is, to the limit, taken to be infinite, so that the whole
right half plane is then included in the contour. The Nyquist contour
transformed by the complex function g(s) (the open-loop transfer function)
is then plotted in the complex plane. The closed-loop system is guaranteed
to be stable if the number of counterclockwise encirclements of the (-1,0)
point is equal to the number of open-loop unstable poles.

Robustness is easily measured by the distance from the transformed
contour to the (-1,0) point. It isusually expressed in gain and phase
margins. They indicate what minimal multiplicative perturbation (constant
gain or phase shift) would make the Nyquist diagram pass through the
(-1,0) point. This would be at the limit to change the number of encircle-

ments, and, consequently, the stability of the closed-loop system.

'The stability of MIMO feedback systems can be determined in a very
similar manner by a Nyquist diagram. The transfer function to be plotted
on the Nyquist diagram is now. (-1 + det (I+G(s))) where G(s) is the open-
loop transfer matrix. The same criterion can then be used.

We note immediately however that det (I + kG(s)) is different from
l+kdet(G(s)). This indicates already that no stability margins can be
found frombthe MIMO‘Nyquist diagram, as in the SISO case.

Very often, separate loop-by-loop stability margins, similar to the

ones used in SISO systems, are considered indicative of the overall system
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robustness. They are however clearly insufficient. Perturbations are not
likely to occur separately, and simultaneous perturbations in different
channels may be much more dangerous for the stability than separate
perturbations. The‘importance of possiblg cross—channel disturbances has
also to be evaluated, and is not reflected by a single 1oop—by;loop
robustness analysis. Consequently,‘going back ;qmppe SISO case, with

a single loop-~by-loop analysis is not a satisfac;ory way to stﬁdy the
robustness of MIMO feedback systems.

Unfortunately, the distance from the (-1,0) point to the Nyquist
contour trénaformed by (-l+det(I+G(s))) - which is the same as the
distance from det (I+G(s)) to 0 - is not a reliable measure of robustness.
In fact, numerical analysts have long rqugnizgd’;hat the specific value
of theideterminant of a matrix is a poor measure of the nearness of this
matrix to singularity (or rank deficiency). In other words, det (I+G(s))
can be large, although a small additive perturbation E can make

det (I+G(s)+E) equal to zero.

8.2.3 Singular Values
Thesepshortcomings can be avoided by the use of singular values. The
singular values of a complex matrix A are defined as the sguare roots of

the eigenvalues‘of the matrix'AH‘A (AH is the complex conjugate transpose

Of A)' ,i.e,.:_

% W |
o, (A) = A; (a"A) | (8.1)
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The maximum singular value of a matrix A is indicative of its "size",

as it is equal to the spectral norm of the matrix A:

- l2x |,
Opaye® = 2], = max (8.2)

x#0 x|,
where:

Il = 1L, = /?? | (8.3)

Phe miniiaum singular value of a matrix A is indicative of ifs nearness
to singularity. If cmin=a’ there exists a perturbation E such that Omax(ﬁ)=a'
and det(A+E)=0. Moreover, no matrix E such that Gmax(E)<u will make A+E.
singular. The minimum singular value is ﬁhen ah indication of the minimal
"size" of the additive perturbation required to bring the matrix A to
singularity.

An advantage of the use of singular values is that it also allows to
compute the minimal perturbation E through the singular values decomposition

If U and V are matrices containing the unit eigenvectors of AAH and AHA

(known as left and right singular vectors of the matrix A), and if I is a
diagonal matrix containing the singular values of A, then A can be

decomposed as:

A=UZL VH (8.4)
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- .And the matrix E can be decomposed as:
E= U. LV , . (8.5)

where Py is any n=1 x n-1 matrix such that ” PS‘]Iz £ 0, and where it is
assumed that the singular values have been ordered so that Un ='cmin(A).

Without loss of generality, one can select PS=O’ so that:
v (8.6)

— i m— e M e e - o ——

8.2.4 Robustness of MIMO_Systems_

The robuStness of MIMO systems is défined by the size of the minimal
perturbation E that brings the closed-loop syster at the limit of instabi-
lity. Then, the return difference matrix I+&(s) (where &(s) is the
perturbed open=locop transfer matrix) is singular for someé s on the
NyéuiSt contour. |

Different structures of perturbation c¢an be imagined, for example, an

additive pertufbation:
G=G+E (8.7)
or a multiplicative perturbation:

& =G (14B) = G.L N | (8.8)
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In the first case, the closed-loop system stability. is guaranteed if:

o, (I+G(s)) > 0 (E) (8.9)

In the second case, if:

-1 '
om.m(I+G (s)) > Omax(E) (8.10)

Other structure of errors have been analyzed in .[23 ] and showed the use

of (I+G)(I-G)_l) for some type of perturbations.

o . {
min
As in the SISO case, the transfer matrices go to zerc as s> , SO

that the only important of the Nyguist contour is the imaginary axis,

and s can be replaced by jw in the previous formulas.

Guaranteed gain and phase margins can also be obtained from the
minimum singular values. Although only diagonal perturbations are
considered here, they are not limited to the case when only one channel
is perturbed at a time. At the contrary, simultaneous gain or phase
changes 1in gl;_chanhels together are considered. The results presented
here can be found in [23]. The gain and phase margins obtained are
guaranteed (or conservative) margins. In other words, the gains (or phases)
in all channels can be changed simultaneously within the limits indicated
by the gain (phase) margins without céusing instability, but it is not
necessarily possible to find some perturbation of this amplitude that
will cause instability (at the contrary of’the previous case where a

general type of perturbation was considered).

-162-



For the different type of errors considered in [23], the guaranteed

gain and phase margins are:

1 1
> —_ =
Cnin (I¥6) > 0 > @M 5 (725 + T4) (8.11)
PM 5 (-2sin’ 92‘- , 2sint %) (8.12)
-1 .
>
o, (T+6 ) >a > G 3 (1-a, l+a) (8.13)
PM > (-2sint % , 2sint %) (8.14)
‘ -1 ' 1-0 1+,
Opin (146 (1-6)7) > o> Gl > Gn s T (8.15)
L =] -1
PM S (“2tan’a , 2tan o) (8.16)

8.3 VTOL Control System Robustness

8.3.1 Introduction

»The robustness ;esults summgrized above are applied to the LQ and LQG
control system designs pf chapte: 6 apd chépfér‘f. ﬁote that the computa-
tion of sihgular valueé oé ﬁransfer matrices\caahbe doﬁé quite rapidly,

by ﬁhg use of efficient algorithms [29], [3Q], [31L

 For the LQ design, we have:
X = Ax + Bu o ‘ o ~ (8.17)

u = fGE_ : (8.18)
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The open-loop transfer matrix is:
. . -1
G(jw) = G (jwI-A) ~ B
We can also consider the transfer matrix:

G' (jw) = R? G(jw) R Z

(8.19)

(8.20)

which is egquivalent to consider a normalized transfer matrix (normalized

by the weights attributed to each control in the R matrix).

The Kalman inequality is:
N Vs
(I+G' (Jw)~ (I+G'(jw)) > I
This guarantees that:
] 2 >
Opip (I¥6' Gw)) > 1
and then:
GM > (1/2, =)
PM o (-60deg, 60deq)
As:
' -1
O . (I+G') +1 > 0 . (I+G' 7)
min — “min

This also implies that:

-1
0 ;o (I+G' T (jw) > 1/2
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For the LQG design, we have:

X = Ax + Bu ‘ » : (8.27)
u = -G& (8. 28)
3 = (A-BG)R + H(y—Cx) , (8.29)
y=cx | " : | (8.30)
so that:
G(w) = (0 q), A o b Is (8.31)
jwr - | :

HC A-BG-HC 0
Again, to have some normalization of the transfer matrix, the matrix:

' (30) = R* G(jw) R : | (8.32)

can be used. In the LOG case, there is no inequality as (8.22), (8.26),

and, consequently, no guarantee on the robustness of the closed-loop

system.

In the next subsections, the minimum singular values of the loop
transfer matrices for the LQ and LQG designs are indicated; To provide
some normalization, the loop transfer matrices cénSidered are tﬁose given
by (8.2Q),(8.32) (note that the parameter p‘haéﬁﬂ; ;nfluence in this

normalization).

-165-



The minimum singular values of the LQ design are shown in Figures
8.1, 8.2, and 8.3. It is easily checked that Gmin(I+G_l)z_1/2 and
0 . (I+G) > 1.

min -

It is interesting to note that the minimum over w of the minimum
singular value (for any perturbation criterion) is smaller for p= 30
than for p= 0.3. In other words, the closed-loop system with higher
loop gains is more robust than the others. This is probably due to the

instability of the open-loop system.

The minimum singular .values of the LQG design with 3 meésurements
(aircraft position and attitude) are illustrated in Figures 8.4, 8.5,
and 8.6. For the 6 measurements case (motions and derivatives), the
values are shown in Figures 8.7, 8.8, and 8.9.

The first conclusion is that the robustness is seriously degraded
when only position measurements are available. The estimation of positions
and velocities from noisy measurements of positions only does not only
result in degraded performance, as indicated préviously (tables 7.1 and
7.2), but also in reduced stability margins.

The robustness is improved when the 6 measurements ate used in the
Kalman filter. However, the minimum sihgular values drop significantly

for very low frequency in the nominal case p=0.3.
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Figure 8.3: LQ ‘Mipimum Singular Values
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The singular value decomposition can be used to obtain the minimal
destabilizing perturbation, and get some insight about what physical
effects are implied by this perturbation. The minimal destabilizing
perturbation, computed'for p=0.3 and w=0, depends on the error criterion
selected, but it turns out that the different results are very similar.

The minimal multiplicative perturbation, indicated by Ohin(I+G-l)' is:

0.889 0.063 =-0.065

L

0.0785 0.955 0.046 (8.33)

0.133 -0.076 1.079

 This can be interpreted in many different ways. For example, we can
assume that this perturbation is due to modelling errors in the B matrix
(fbrce generation part, or control effectiveness). This would mean a

change from Bc to §c=BcL. The nominal Bc was given in Table 5.1:

[ o 0 o |

0 0 0
0 0 0
B = (8.34)
C

-21.211 0 -10.989

2.976 4.595 1.265

2.864 0.194 —2.685_I
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The matrix Ec is then:

F 0] 0 0
0 0 0
- (0] ’ 0 0
Bc = - (8.35)
v - ~20.334 -0.290 -10.468
3.438 4,443 1.536
2,217 0.410 -3.071
which, for the last three rows, is a change of:
- -4% © -5%
Ec ij Bc ij
e 2y = | 1es -3%  21% (8.36)

c,ij R
—23%9?1'111% 14%
We see that the “destabilizationﬁ-fequireSimportant changes in terms that
were quitesmall originally, and coﬁld be called parasitic. For exaﬁple, the
second term of the last row is ind?eased by about 100%. We remember that
this term expresses the yaw acceleration produced by a roll command, and
that this is due, originaliy, to the angular difference between the body
axes and the principal axes. |

At this point, the deéigner will decide( onvthe basis of the knowlédge
of the accuracy of the model, whether such perturbaﬁibn (orverror in the
model)‘is physical%y pqssible 6rvnqt. This is qldelicate task that requires
a good knowlédge of the system and of the precision to which the model is

known. In our case, no data could -be found in [1], and in the original
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model [19] about the precision of the model, so that this question could

not be answered with certitude. However, small singular values over some
frequency range are indicative of decreased stability margins of the closed-
loop system, and the best solution is, if possible, to change this charac-

teristic: it is the subject of the next section.

8.4 Robustness Recovery

The robustness recovery for LQG designs refers to the recovery of the
LQ transfer matrix - and consequently stability margins - from the LQG
design. The robustness recovery technique was proposed in [28], following
a procedure very similar to the one proposed in[32].

The idea is simply to modify the Kalman filter in order to approach
the LQ design. The filter is redesigned with a new value of the driving

noise spectral intensity matrix:

E=E_ +qBB (8.37)

This corresponds to assume that some white noise is present at the input,
and, consequently, tells to the mathematical expression of the problem
that there are uncertainties at this point. It can be shown[ 28] that, as
g+, the LQ loop transfer matrix is asymptotically approached by the'LQG
loop transfer matrix.

The robustification procedure is applied to the LQG design described
in chapter 8 (6 measurements case), and is illustrated in Figures 8.10,

8.11, and 8.12. For g=0.0l1, the robustness properties are seriously
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iméroved, and for g=1 the LQ singular values are almost recovgred.

The minimal values of the minimum singular values over the whole range
of frequencies, and the gain and phase margins obtained from equations (8.11)
to (8.16) are shown in Table 8,1. As these margins are guaranteed, or
conservative, the overall guaranteed margins are the unioélof the margins
’corresponding to the different c;iterions,'and are underliéned in Table 8.1.
For g=0.01, the guaranteed gain margin is about frpm}6;4$£o 3, and the
guaranteed phase margin about +40deg. These‘appear égfficient for our
application.

The robustness recovery is however made‘aélfﬁe expense of the perform-
ance. In fact, the bandwidth of the Kalman filter increases quickly as g
increases. Table 8.2 indicates the 1ocatioﬁ of the Kalmangfilter\poles for

different values of g. .

q Aircraft Kalman filter poles

0 -4,82, -3.92, -0.91, -0.57 %# j 0.58, =-0.5
0.01 -10.81, -5.37, -2.23, -1.12, -0.60, -0.49
1 -97. , -43. , -7.49, -l. , -0.5, -0.49
100 Aa—798>9. , -429. , -69. , -l. , -0.49, -0.49

Table 8.2: Aircraft Kalman Filter Poles (with robustification)
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The size of the loop transfer matrix G is represented by its maximal
singular value, so that the bandwidth of the control system can be defined
by the crossover frequency of the transfer function Omax(G(jw)).‘The
evolution of this transfer function with the parameter g is shown in
Figure 8.13. The increase in bandwidth resulting from the robustification
procedure can be directly observed from this figure.

The increase in bandwidth may result in improved or degraded tracking
performance, but almost certainly in increased control authority, as more
noise is passed through the filter. Table 8.3 illustrates the changes in

the rms tracking errors and control authority for different wvalues of qg.

SEA H=10ft W =0.72 rad/s
Rms Errors and Sway | Roll Yaw 6al,2 .5T1'2‘ 6a3
Controls (£t) (deg) | (deg) | (degq) (%) (deqg)
LQ w.A/C noise 0.691 | 2.480| 0.317| 4.719 8.78 | 3.917
LOG q=0 1.338 |2.856| 1.491| 5.448 11.19 | 4.467
g=0.01 1.350 | 2.869| 1.482| 5.456 11.83) 4.653
g=1 1.239 | 2.851| 1.445| 6.394 18.70| 5.825

Table 8.3: LQG Controller Performance (6 meas., with robustification)
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For g=0.01, the decrease in performance is very small, while for g=1

it becomes significant. The design corresponding to g=0.0l1 appears to be
a very satisfactory one, both for the performance and the robustness.
Note however that in this performance evaluation, white measurement noise
hés been assumed. In reality, the noise will be bandlimited, and the
degradation will probably be less than indicated. In fact,as all the
states are available (but noisy), an LQ controller, without Kalman filter
(ﬁsing the known dynamics of the aircraft), is not an unrealistic possi-
bility: its performance would be less than the performance of an LQG
design, but the robustness would be increased, and the computational

load would be dramatically reduced (this would be the case if a good

navigation system is available aboard the aircraft, cf. chapter 7).

8.5 Nyquist Diagrams

Some Nyquist diagrams will illustrate the facts indicated at the
beginning of this chapter. Figure 8.14 shows the function -l+det (I+G(jw)),
w>0. To plot it, it is convenient to compress the distances radially by

a logarithmic transformation which is chosen to be:

log (1+v xziy )

(8.38)
V xz+yI

X' = x.r | (8.39)

y' =y.r (8.40)
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For MIMO systems, such compression of the distances is almost
unavoidable, as the transfer function det(I+G(s)) is of an order equal
to the order of the system (equal to 6 here).

Figure 8.15 shows the complete contour, and the number of encircle-
ments for the LQ design. There are 3 counterclockwise encirclements, and
1 clockwise encirclement. Remembering that there are two unstable open-
loop poles, this confirms the ciosed—loop stability of the LQ controller.

As in the SISO case, some attention has to be given to the two poles at the

origin, and to the encirclement at the infinity.

Figure 8.16 shows (in normal cartesian coordinates) the Nygquist
diagrams for the LQ and LQG design (6 meas.,qg=0) near the critical point.
It is checked that the Nyquist diagram for the LQ design never enters the
unit circle centered at -1. This is a consequence of the Kalman inequality
(8.21) [33].

The minimum singular values shown in the previous subsection indicate
the size of the minimal perturbation that destabilizes the closed-loop
system. It is also possible to compute the value of the multiplicative
(or additive) perturbation L, such that the perturbed transfer matrix G.L
is at the limit of instability. In terms of Nyquist diagrams, the minimal
perturbation L is the perturbation that,at the specific frequency W where
it is computed, brings the point of the Nygquist diagram =l+det (I+G (jw))
to the -1 point (then det(I+G(jw))=0 ). At ggz freqpency, the minimum
singular value indicates the size of the minimal perturbation that will

make the Nyquist diagram pass through the -1 point, and bring the system
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at the limit of instability. Over the yhglgﬁrange‘of_fxequencies, the
minimal v;iue of the minimum singular value gives, from all the minimal
perturbations found at each frequency, the constant perturbation that has
the minimal size. ?he meaning of ;he’previoqs discussion, is that the
frequéncy at which this overall minimum occqislmay correspond to a point
located very far from the -1 point on the Nyquist diagram. This is
illustrated in Figures 8.17 and 8.18.

Fig. 8.17 show the Nyquisf diagram of thelloop transfer matrix G
corresponding to the robustified k§=b.01) LQG (curQélLQG) together‘with
the diagram of the loop transfer'ﬁatrix G.Li(cﬁrve‘per£ﬁibed.LQG). The
perturbation L is the minimal mﬁitipiicéti#é’perturbation'that corresponds
to Fig.8.10. It is computed at thé-freqﬁéhcywwhére’the mihimﬁﬁ éinéular
‘valﬁé is minimal, i;e; i.lSrad/s.‘Thé diStbrtioh.éf the Nyquistﬁdiaéram
is quite peculiar. The péint that‘is brbughtvtozihé -1 point is not at
all the closest point of the Nyquist diagram, although it is the closest
poiﬁt‘on the basis of minimal muitiplicativé‘beiturbatiéh; This is a
practical“éroof"of'éhe fact that the disténcé to the -1 point iﬁ the
Nyguist aiagram is notvrepresentgtive of the‘closenéss to instability,
with respect to general type of pérturbatiéﬁé;ﬁ

The situation is even moréVSurérising fofzthe non—rbbustified LQG
design (g=0). In this case, the ﬁinimﬁm singﬁlar Qalue‘goes to its minimum
at m=0 (cf;'Fig.S.7); at this frequency, dué fd thé preseﬁce ofvthe two
poles at the origin}réhe déterﬁinaﬂt of'i+C(jw; i;.infiﬁite. This means

that the closest point (closest in the sense of minimal norm additive or
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multiplicative perturbation of G(jw)) from the Nyquist diagram to the -1

point is the point at infinity! This is illustrated in Fig.8.18. As this
case'is numericallf perfectly ill-conditioned, the minimal multiplicative
perturbation is computed at w=0.1 rad/s, where the minimum singular value

is very close to the minimum value reached at w=0rad/s.

8.6 Summary

In this chapter, we addressed the important issues of the control
system robustness to modelling errors and parameter uncertainty. Due to the
decoupling between the ship énd the aircraft, this problem only involved
thevaircraft model and the feedback from the aircraft states.

The importance of the singular values analysis in the definition of
multivariable robustness measures was first introduced, and some recent
results concerning ﬁhe stability margins of multivariable systems were
summarized.

- The singular values analysis was used for the different transfer
matrices of iﬁterest, and for different designs considered previously.
For the nominal design, it‘was shown that reduced stability margins were
obtained at very low frequency, and some physical interpretations were
indicated for the minimal multiplicative destabilizing error given by the
singular value decomposition. A robustification procedure was used, and
appeared successful in retrieving the favorable robustness properties

-

of the LQ design, with a limited degradation in performance.
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Finally, some Nyquist diagrams illustrated the theoretical results
‘mentioned previously, especially the impossibility of defining stability
margins from the Nyquist diagram in the MIMO case, in contradistinction

to the SISO case.
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CHAPTER 9

CONCLUSIONS

9.1 General Conclusions

Two'major aspects of the problem of landing VTOL aircrafts on small
ships were addressed in this thesis. The first is the estimation and
prediction of ship motions, mostly for applications in piloted landings,
and the second is the design and evaluation of an automatic controller,
for use in fully or partially automatic landing schemes.

An accurate ship model was first derived, using hydrodynamic data
for the DD963 destroyer. It was shown that the ship motions have power
» spectra that are concentrated in a narrow frequency band, especially the
roll motion. Consequently, good prediction time could be obtainéd, and
the roll motion could be predicted for as far as 5 to 10 seconds ahead.
This was a significant result, as the roll motion turns out to be the
most important lateral motion in the VIOL landing problem. In particular,
the lateral translation of the landing pad is due to a large extent to
the roll motion, as the location of the landing pad is significantly
higher than the ship center of rotation.

The sea modal frequency is a significant parameter of the ship model,
and its large influence on the estimation and prediction errors justifies
a precise estimation of this parameter in a real-time application.

The aircraft model was briefly described, and the important couplings

amongst the motions were mentioned. Two of them appeared significant, and
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contradictory: the first is the lateral,acceleration due to a roll angle
of the aircraft, and the secend‘is the roll moment due to a lateral
deflection of the thrusts.

The design of an automatic controller, defined as a tracker of the
ship motions, made clear some other of the constraints related to the
fracking of the ship motions. The relations between the lateral transla-
tion of the ship landing pad induced by the roll motion at the center of
rotation, and the roll motion itself, appeared to be contradictory with
the two important couplings of these motions in the aircraft itself.

These constraints are specific to the landing problem, and are independent
of the control systeﬁ design methodology. Although the roll motion may
often be neglected, its possibly large amplitude in high sea states makes
imperative te take these limitations into account in an engineering design.

The design of the automatic controller also illustrated some results
and recent aannces in the design of an optimal controller, using the LQG
methodology. The relations between the choiqe of the state and control
weighting matrices in the qdadratic cost, and the resulting root-loci were
explainéd,‘andiﬁustified the careful selection ef these matrices.

The usefulness of the singdlar values analysis in the definition of
realistic stability margins was indicated, and some Nyquist diagrams
illustrated related theoretical-results, and the important differences
between the MIMO and the SISO case.

The robustification procedure appeared to be very successful in the

design of robust LOG control systems, and led to increased stability
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margins, with moderate degradation in the performance.

9.2 Suggestions for Future Research

Among the possible topics for future research, we note:

- the evaluation of the performance and of the stability margins of
an automatic controller including the longitudinal and the lateral motions,
and the study of the influence of the cross-coupling terms (gyroscopic
terms)

- the inclusion of the aerodynamic effects in the aircraft model,
and of the ship airwake turbulence and ground effects; the aerodynamic
effects being nonlinear, some nonlinear theories may then be useful

- although this research concentrated on the landing problem, some
‘interesting results may be obtained from the design of a control system
for the transition flight, and from the use of modern control theories

for this time-varying problem.
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APPENDIX A
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U=0, $=90 degrees:
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By o = -55.4 887xRDF 6270
423 6270 144000 J
0 0 0
c, = 0 28800 0
) 0
L °

RDF=3 (the roll damping factor takes the nonlinear damping into

account)
Any U, ¢:
0 0 Bh’o
- 1,1
A = A + = 0 0 B
h h,o wp h,ol'2
-B -B U.A
Boy .y hoy h,0, 4
- -
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F 0 0
= +
Bh Bh,o U . 0 0
A : A
hoy 1 hioy 5
where:

- ‘ u cosQ
mp« 0.425 + 178.27

A.2 Ship Dynamics: State-Space Model

We ‘have the equation of motion:

(M+Ah)§h + B

lx + C]x] =F
where:
fxl | sway
3=1%, ‘= roll
;x3 . :faw
FFl- -SWay force
F = F,[ = |roll moment
F yaw moment
| 3). U
We call:
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o)
Il

-1 _

-1 N
(M+Ah) Ch = R.Ch

L o]
Il

Roll is the only motion having a spring constant so that:

0 0 0
Ch = 0 Crr 0
0 0 0

and:

TO r12Crr 0
T22Cr O

_O r32Crr OJ

Using Laplace transforms,; we write:

s°X = -Psx - Ox + RE

or:

s(x,) = (sx,)
s(x2) = (sxz)
s(x3) = (sx;)
s(sx) = -p ) (sx)) = p ,(sx,) —r) C . (x,)

+r12F2 +r13F3
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S(sxz) = -.le(sxl) - Pzz(sxz) _r22Crr(x2) — 923(sx3)

+ r21Fl + r22F2 + r23F3. - (A.2)

0
—
n
»
w
[
it
1

Py (s%;) = Py,(sx,) —ry,Co (%)) = P33 (5%3)

+ Ty Fp ot TgoFy ¥ TgsFy o (A.3)

which is equivalent to a state-space representation having 6 states.
The;e is an implicit pole-zero cancellation at the origin, between the
the poles of the sway and the yaw motions and the zeroes of the corres-
ponding force and moment.

To avoid this, we rewrite eq. (A.2):

2 P Poo Pys3
Cor s -~ " 5% K17 T % T %3
22 22 22 22
r F F r F
s +?2+?2'1—3 (8.4)
22 — 22

and use (A.4) with (A.l) to obtain:

S(x)) = £y (x) + t)plex)+ B (x) ¥ £14%5)

3
F F
1 3 .
— — | =4
+uy () 50 (A.5)
where:
t :.'r_l%p _P
1", Fa"
]
12 r22
e, =22p, -p
13 7 r, P22 " 12
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t14 = r£ Py3 7 P13
22

X

Y11 T i1 T Flﬁ 21
22
X

Y15 T f13 * :cl_2 t23
22

Similarly, (A.4)and (A.3) give:

where:

And,

s(x3)
F
T Yy (?l) * u45(?3)
r
ta1 T riz' Pyy T P3p
’ 22
. o o32
42 r22
X
Y43 = EQ Paa 7 P3p
22
r
Y44 = 22 Py3 7 P33
22
r
Y1 T Ta1 T r3—2 21
22
X
Ygs T 33 7 ?3'2_ ¥23
22

of course:

s(xz) = (sxz)

=t ) Eutexy) Ey3(x,)
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Finally, (A.4), (A.5), (A.6), and (A.2) lead to:

's(sxz) = tzl(xl) +t, (sxz)‘f t23(x2) + t24(x3) + uzl(igﬁ
. .
Fuy (F]) + Uy, (Fy) + uyg (5 + uyg(Fy) (A.8)
where:
ty =7 Pyitiy T Pasta
€2 = " Pyitin " Pz3t4é = Py
23 7 7 letls.' 923§43 = F22%rr
tya = " Py®ia T Pa3tug
uyy =7 PyyYin T Pasztan
Uy T 21
Y2 T fzz
Uys 7 Pyytys T Pastss
Y6 T 23

Equations (a.4), (A.5), (a.6), (@A.7), and (A.8) constitute the new state-—

space representatidn, with only 4 states:
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- = ~ - _ W
xl xl Fl/s
sx2 sx2 Fl
s = T . + U . F2
* ) F/s
F
X X 3
L3 |3 S
and:
T = {tij}
U = R
{ulj

are given above.

The pole-zero cancellations are eliminated by the introduction of
the integrals of the sway force and yaw moment, which, instead of being
computed (implicitely) in the ship dynamics model, can directly be obtained
"drift-free" from the transfer functions between the sea height and the

generated forces.
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APPENDIX B

DISCRETIZATION PROBLEMS

A simple derivation is presented here that explains some difficulties
that can be encountered in discretizing systems containing lightly damped

second-order modes.

Assuming the system:

A Xx

]

ES

having a second-order mode MA) = -0 * jw. The exact discretization of the

system is:
x(t+At) = Ay x(t)

where:

It would lead to the equivalent mode in the z-plane:
S {(=0Eqw) A

If- we use an approximate representation:

x(t+At) = (I+AAt)x(t)
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the modes will, instead, be at:
S A(I+aAt) = (1-0At) £ jwAt

Let us consider consider a system A', having modes at -az* jb in the
continuous time domain which, discretized, would have the same modes as
I+AAt.

The following equations can then be obtained:

eT3At | JIPAE /g gat) 2 (wat) 2 ejt‘“—l (%Z_t’
and:

a= -A% 1n /(1—th)2+(wAt)2'

b = & tan'l(I-‘f—éZ—t-)

It is easily checked that for At vanishingly small, a approaches g, and '
b approaches w so that the discretization is valid.
The question is to determine how small At actually has to be.

For b to approach W, we need:

wAt <<'1 and oAt << 1
or:

At << 1/w  and At << 1/0

which is the expected condition that At must be small compared to the time
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constants of the system.

The condition for a'is a little different. We need:

/1 200t+ (0bt) 2+ wht) =/ 1-20At" = 1-0At
so that the conditiohs are:

JgAt << 1 , (oAt)? << 20At , and (wAt)? << 20At

At << 1/20
At << 2/w. (0/w)

The first condition is similar to the previous one, while the second is
similar only if 0/w is close to one. If 0/W is much less than one (lLightly
damped;mode), the required time step is much smaller than the one indicated
by the time constants of the system. If this is not taken into account, the
term (wAt)? will influence the 20At term, which is equivalent to reducing
the value of ¢. This implies a ;educed value of the real part, whiie the
imaginary part remains constant. In conclusion, the discretization of very
l;ghtly‘damped secqnd-ordér modes with approximate discretization may lead
to even less dampea.equivalent discrete modes, even if small time steps -

compared to the time constants of the system - are used.
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APPENDIX C

TURBULENCE MODEL

A wind disturbance model is available in [19] and is summarized here.

The mean wind component has been neglected (only the turbulence is

considered), and the air turbulence considered does not include the ship

airwake and the ground effects.

The turbulence is modelled as;the outputs of Dryden filters driven

by white noises of intensity 1. Th¢ outputs are additional turbulent

velocities of the aircraft VBN (swgy), PBN (roll), and rBN

expressions given in [19]are:

(1 + ?;-S )2
g8 ' ™yui16 1
p,. >0 ( ) P
4 LV ‘4b 14 %0 BN
v S
v > - l— = - r
BN v l+3_bS BN
v

where p2 and p4 are white noises of intensity 1.

-210-

(yaw) . The



In the condition considered in this thesis:
h=40ft (altitude of the stationkeeping point)
v=15.5ft/s (=10kts)
VWIND=30ft/s (=20kts)
And the parameters'of the filtere given in {;ﬂ ‘are:
L =600ft
v
Ov=6ft/s
b=44.43ft
o =3.058ft/s
w
L =69.1ft
To brlng thls w1nd turbulence model to a standard state-space formulation,
the outputs of the Dryden filtexrs are first multiplied by s, and entered
in the acceleration equation of the aircraft model, instead of the velocity
equation. Next, the time constants of the shaping filters being large
compared to the time constants of interest, they are neglected, so that

the Dryden filters become simple gains:

. [y .

> = >
p2 OV 3 L VBN

Vv

. / 8 ("I,‘w)l/e,ﬂ L,
Py > Oy LV 4b 4o Fen
. T R

> - = T
BN 3b BN
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And the driving noise spectral intensity for the aircraft model is then:

- 7
0 0 -0 0 0 0
0] 0 0 0 0 0
0 0 0 0 0 0
@A=
0 0 0 2.79 0 -. 0657
0 0 0 0 -. 00561 0
0 0 0 -. 0657 0 .00155
a -
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APPENDIX D

GAIN MATRICES AND AIRCRAFT POLES

D.1 Ship Gain Matrices
The matrices are given for the nominal case: H=10ft, W =0.72rad/s,
‘ m

U=15.5ft/s, ¢=45deg. p=0.3, Tz=0’ g=0.01 (6 meas. case)

Kalman Filter Gain Matrix H

_____________ s
coL 1 2 3

ROW
1 -4.6134D-01 1.4458D+01 2.77020+00
2 -2.8914D+00 -5.5774D+01 -8.3641D+00
3 1.0408D+00 3.9739D+01 6.4446D+00
4 -3.83380+00 -6.5996D+01 -9.1990D+00
5 3.7748D+00 6.5939D+01 B8.43110+00
6 -3.3059D+00 -5.02900+01 -6.2364D+00
7 8.11170+01 3.2181D+03 5.31510+02
8 -1.3968D+02 -1.7453D+03 -2.3981D+02
9 3.67230+02 2.6746D+04 4.B504D+03
10 -4.7817D+03 -2.8682D+04 -4.3007D+03
t1 -1.5594D+03 1.7822D+05 4.0871D+04
12 -2.1862D+04 -4.1617D+05 -7.1668BD+04
13 5.8324D-01 6.4656D+00 7.9196D-01
14 -1.0493D-03 1.5716D-01 3.31490-02
15 1.2931D-02 4.7797D-01 4.7370D0-02
16 " 1.5839D-03 4.73700-02 9.1689D-03
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Feedforward Gain Matrix GS

5.11660-05

2.0720D-04

4.9162D-06

11

-4.73370-06-7.5781D0-07 -

-1.4924D0-05-1.8849D-06 -

-1.6319D-07 4.8016D-08

coL 1 2 3 4
ROW :
1 5.10870-04 -7.3047D0-04 1.6527D-04 -2.7353D-04
2 1.7439D-03 -1.9028D-03 6.0739D-04 -7.2401D-04
3 3.4578D-05 -1.2955D-05 1.3776D-05 ~-1.1610D-05
7 8 9 10
1.1108D-04 4.7791D-05 1.1348D-06
3.0083D-04 1.6679D-04 4.3B43D-06
1.0475D-07 1.6906D-06 6.9925D-08
13 14 15 16
4.5487D-02 -1.0492D+400 -6.39630-01 -5.40B6D+00
9.2824D-02 -3.75420+400 -4.17850+00 -9.9567D+00
-1.0912D-03 -2.6243D-02 -1.41B6D-03 9.8906D-01
D.2 Aircraft Gain Matrices
Egimgp_Fi;EQE_gﬁip_Matrix H
coL 1 2 3 4
ROW
1 ~9.1151D-01 1.8097D0+00 -6.8603D-01 6.7683D-01
2 6.32760-03 3.3360D-01 5.6023D-02 1.6645D-02
3 -2.3987D-03 5.6023D-02 4.5755D-01 -2.6443D-03
4 '6.7683D-01 4.7604D+00 -7.5627D-01 2.6779D+00
S -3.8412D-04 2.1455D-01 -2.8B469D0-03 2.0864D-03
6 -6.5700D-03 8.7886D-02 1.6437D-01 -4.8438D-02
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.5774D-01
8.9397D-01
.1862D-02
2.4863D+00
4.7115D+00

7.4267D-03

-9.90030-05
-2.7717D-04

-6.1738D-06

12

2.49620-07
B.00590-07

5.3488D-0¢

.82920+00
.66190-01
.8487D-01
.77220+01
.4267D-03

.8715D+00



Feedback Gain Matrix G

——————————— A
coL 1 2 3 4 5 6
ROW _
1 4.3643D-02 -1.0417D-01 -3.35510-01 3.77920-02 -8.1850D-02 -1.3893D-01
2 8.7849D-02 4.0469D+00 -9.7677D-02 1.0427D-01 1.2890D+00 -4.6082D-02
3 -9.1154D-04 6.9076D-02 8.7931D-01 1.3588D-04 3.2002D-03 4.5089D-01
D.3 Aircraft Poles
Open-loop poles: A(AA)
REAL PART IMAG PART NAT FREQ(HZ) ZETA FREO(HZ)
B 1 -5.324D-01 0.0 8.4730-02 1.000000 0.0
2 1.425D-01 3.788D-01 6.441D-02 -0.352163 6.029D-02
3 1.425D-01 -3.788D-01 6.441D-02 -0.352163 6.029D-02
4 -6.820D-02 0.0 1.0850-02 1.000000 0.0
5 0.0 0.0 0.0 0.0 0.0
6 0.0 0.0 0.0 0.0 0.0
L0 Closed-loo oles: A(A_-B.G
LQ Closed-100) p_poles: A(A ~B,G,)
REAL PART IMAG PART NAY FREQ(HZ) ZETA FREQ(HZ)
1 -2.792D+00 2.803D+00 6.296D-01 0.705716 4.460D-01
2 -2.792D+00 -2.803D+00 6.296D-01 0.705716 4.460D-01
3 -1.869D+00 1.863D+00 4.2000-01 0.708310 2.965D-01
4 -1.869D+00  -1.863D+00 4.200D-01 0.708310 2.965D-01
5 -1.064D+00 1.036D+00 2.363D-01 0.716447 1.649D-01
6 -1.064D+00 -1.036D+00 2.363D-01 0.716447 1.649D0-01
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REAL PART IMAG PART
1 -1.081D+01 0.0
2 -5.368D+00 0.0
3 -2.231D+00 0.0
4 -1.118D+00 0.0
5 -6.010D-01 0.0
6 -4.920D-01 0.0

NAT FREQ(HZ)

1.720D+00
8.544D-01
3.550D-01
1.780D-01
9.566D-02

7.830D-02

Compensator roles A(A.-B_G_-H.C.)

REAL PART IMAG PART
1 -1.679D0+01 0.0
2 -8.875D+00 0.0
3 -3.744D+00 0.0
4 -1.165D0+00 0.0
5 -6.06{0-01 0.0
6 -5.707D-01 0.0

the compensator is stable.

A AA ARA

NAT FREQ(HZ)

2.672D+00
1.413D+00
5.959D-01
1.854D-01
9.646D-02

9.083D-02
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. 000000
.OOOOOQ
.000000
. 000000
.000000

. 000000

ZETA

. 000000
.00CC0o0
. 000000
. 000000
. 000000

- 000000

o O O O O o
o O O O O O

FREQ(HZ)

FREQ(HZ)

0.0
0.0
0.0
0.0
0.0

0.0
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