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Abstract— Applications were found recently where the analy-
sis of dynamic systems with a special structure could be sinfip
fied considerably by transforming them into equivalent sysems
having complex coefficients and half the number of poles. The
design of controllers for such systems can be simplified in
complex representation, but requires techniques suitabldor
systems with complex coefficients. In the paper, the extersi
of the classical root locus method to systems with complex
coefficients is presented. The results are applied with some
advantages to a three-phase controlled rectifier.

. INTRODUCTION

the 40’s [11][12], and is a fundamental tool that is taught
in first courses on feedback systems. The root locus method
for the general case with complex polynomials presents both
interesting similarities and peculiar differences coneplato

the conventional root locus. Curiously, the method enables
the design of control algorithms with properties that have
no equivalent in the classical root locus design. The rgsult
are illustrated at the end of the paper with the example of a
three-phase controlled rectifier.

II. PROBLEM STATEMENT

The theory of linear control system design concerns almost In this paper, we consider systems with the standard state-
exclusively systems with real coefficients. Since physicapace model

systems are described by state-space models or transfer
functions with real parameters, it would not appear useful

& = Ax + Bu,

y=Cr (1)

to relax this assumption. However, applications were foun@here the state, input, and output vectors can be split into

recently [5][10] where the analysis of electric machinesldo

be simplified considerably by transforming them into equiv-

two vectors of equal dimensions such that
uy(t)

alent systems with complex coefficients. The applications r = ( ) , U= ( >

included a self-excited induction generator and a doubty-f z2(t) ua(t)

induction motor/generator with active/reactive powertcoln _ ( Q) > )
For the transformation to apply, in general, the systems y2(t)

need to satisfy symmetry conditions that enable a reductiqghile

of the order of the system by a factor of 2. In [5][10],

the extension of the classical Hurwitz test to systems with A = ( jll AA21 ) , B= ( g“ 3321 >
complex coefficients [13] yielded the derivation of analyti 2t " 2t "
stability conditions that could not be obtained for the oréd Cc = ( Cii —Cm > (3)
(real) system, due to its higher dimension. Ca1 Cn

Other examples of dynamic systems having transfer fun€&or systems satisfying (3), the following facts apply.
tions with complex coefficients are somewhat rare, but can Fact 1: The transfer function matrix from to y can be
be found in asymmetric bandpass and band-rejection filtepartitioned similarly with

[2], mobile radio communication filtering algorithms [15],
whirling shafts [8], and some mechanical systems [14].
Control theory tools for systems with complex coefficients
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(i )= J(50)) @

are also very limited. The Hurwitz and Routh-Hurwitz tests Proof: Considering the structure of thé matrix, partition
for complex polynomials were applied in [5][10] (see alsadhe matrix inverse as

[1][3][6][9]). Later on, extended versions of Kharitongv’
criterion for polynomials with uncertain complex coefficte
were studied in [4][7][8][16][17][18].

In this paper, we consider the design of controllers for sy
tems with complex coefficients using the root locus method

The root locus method was developed by W.R. Evans
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The first and second equations of (7) give the valued/ef
and Mo

1
((SI — All) + Aoy (sI — All)_l Agl)
— My Agy (sI — Ayy) ™" 8

My =
My =
while the third and fourth equations of (7) show tiidi, and

det (sI — A) = 0, then eithersy or its complex conjugate
s¢ is a root ofdet (s/ — A.) = 0.

The fact is proved in [5]. First, it implies specific prop-
erties of the polynomiallet(sI — A). Specifically, due to
the special structure of (3), the roots @t(s/ — A) = 0
must be either complex pairs or double real pairs. In other
words, there cannot be single real roots. Next, each root of

— My, satisfy equations identical to the first two equationslet (s/ — A.) = 0 is one of the roots in a pair of roots of

defining M1; and M15. Therefore
Mg = Myy, My = —Mi2 9

det (sI — A) = 0. Thus, knowledge of the eigenvaluesAf
implies knowledge of the eigenvalues of the original matrix
A: all the poles of the original system can be obtained from

It is straightforward to show that the structure of the ipeer the roots ofdet (sI — A.).

matrix is preserved by pre- and post-multiplication by &he
and B matrices. Therefore, the transfer function matrix (4

has the same structure. [ |

Fact 2: Defining complex vectors
Ye = Y1+ JY2, Uc =u1 + jus (10)

the signaly. is the output of a system with input. and
transfer function

HC(S) = Hll(S) +jH21(S) (11)

where Hy1(s) and Ho;(s) are the sub-matrices of (4). One

also has that
H.(s) = Cu(sI — A.)"'B. (12)
where

Ac = A11 +jAsn, Bo=DBi1+jB2a, Co=Ci1 + 370y
(13)
Proof: We have

Ye(s) = Hii(s)ui(s) — Hai(s)ua(s)
+J (H21(s)u1(s) + Hii(s)uz(s))
= (Hi1(s) + jHa1(s)) (ui(s) + jua(s)) (14)
Similarly,
14y = (An +jAn)(x1 + ja2)
+(B11 + jBa1)(u1 + juz)
Ye = w1+ jy2 = (Ci1 +jCo1)(x1 + ja2)(15)

so that the results follow. [ |
According to (11)

_ NOL(S)
DOL (S)

where Nor(s) and Dor(s) are polynomials ins. (11)
suggests thaDo(s) has real coefficients, whiléVoy (s)

He(s) (16)

has complex coefficients. However, (12) indicates that the
number of poles ofH.(s) must bel/2 the number of

Corollary 1: Consider a system with state-space model

fS) and (4). Assume that output feedback is applied with

ki1 —k21

t) = — t

u(?) ( R )y<>

where k is a real, adjustable gain, anfd,, ko1 are real,

fixed parameters. Then, the closed-loop poles are given by
the roots of

(17)

Dor(s) + kkcNor(s) =0 (18)
and their complex conjugates, where
ke = ki1 + jko1 (19)
Example. Consider a system with
A=0, B=I C=1I (20)

wherel is the identity matrix. Lett;; = cos(a) and ko =
sin(«) for some anglex. The closed-loop system is given

by
)= ( kit )(%) e

1
)
which corresponds to the complex system
(22)
whereks = e/®. The complex system has complex param-
eters, but half the number of states. For varyinghe locus
of the poles is composed of the single branch

k sin(«)
—k cos(a)

i?c = —kkc:l?c.

s = kel® (23)
The poles of the original system are given by
s1 = kel®, 5o =ke 7™ (24)

Note that the angle in the complex planedsand is not

constrained by the usual root locus rules (which would

requirea. = 0). This is possible because the root locus for the

original system is determined by the characteristic equati
s+ kcos(a) —ksin(a)

( ksin(a) s+ k cos()

(oW
@D
=+

) = 5%42k cos(a)s+k>

(25)
Even though the characteristic polynomial is linearkin

poles of the original system. Thus, half the poles must bi@ the complex domain, the dependency in the real domain
cancelled by zeros in (11). For a system with complex poless polynomial. The root locus for the real system cannot
both the numerator and denominatorff(s) have complex be drawn using conventional root locus rules. The feedback
coefficients. law (17) is a multivariable feedback law, as opposed to

Fact 3: Any root of det (sI — A.) = 0 is a root of the single-input single-output feedback law assumed in the
det (sT — A) = 0. On the other hand, ik, is a root of conventional root locus. o



1. ROOT LOCUS WITH COMPLEX guarantee that any portion of the real axis belongs to the

COEFFICIENTS root-locus.
Consider the polynomial The second and third rules define the sta_rting points (the
roots of D¢, (s) = 0 for £ = 0) and the end points (the roots
Dcr(s) = Dor(s) + kkcNor(s) (26) of Do (s) = 0 ask tends to infinity) of the root locus.

where No 1 (s) and Doy (s) are polynomials with complex  Rule 2: Starting points of the root locus. The root locus
coefficients. The degrees ofp,(s) and Do (s) arem and  of Doy (s) starts at the open-loop pole® ¢ (s) = 0).
n, respectively, withy = n —m andq > 0 (we assume that  Proof: Replacingk = 0 in (26), with k¢ # 0, it
the transfer function is strictly proper). The coefficienith ~ automatically follows thatDcr.(s) = Dor(s) = 0. [ |
the highest powers of are equal to 1 in both polynomials.
k is real andk. is complex. By definition, the root locus is
the locus of the roots 0D¢ 1 (s) = 0 ask varies from 0O to
infinity.

In general, the polynomial®o . (s) and Nor(s) can be
factored as

Rule 3: End points of the root locus.m of the branches
of the root-locus converge to the roots i (s), while
the othern — m roots converge to infinity along asymptotes
whose angles with respect to the real axis are defined by the
n —m complex roots of

S; = nim\/—kcg i:l,...,n—m (34)

Dor(s) = (s=pi)(s—p2)...(s—pn)
Now(s) = (s—z1)(s—2)...(s—z,) (27) The center of the asymptotes is located at
where py,pa,...,p, and zy,22,...,2, are the_roots of ¢ — 1 zn:pi_izi (35)
Do (s) and Noy(s). Compared to the polynomial form n—m \ ‘= =
Dor(s) = s"+ a1 P+t an_15—+an where p; and z; are the roots ofDor(s) and Nor(s),
Nopr(s) = s™4+bs™ '+ .. +by_15+Dby, (28) respectively. _ _ .
Note that, in contrast to the case with a polynomial
one has " m with real coefficients, the center of the asymptotes can be
ap = — Zpi, by = _Zzi' (29) everywhere of the complex plane. Also, the asymptotes do
= Py not have to be symmetric with respect to the real axis.

Proof: Assuminglkc| # 0, if & — oo, the magnitude
condition (31) holds only if
Dor(s) + kkcNor(s) =0 (30) e Nor(s) =0, or

e S — OQ.
The first condition directly implies that roots of D¢y (s)
_ 31) tend to the roots oV, (s) ask — oo.

SupposingNoy(s) # 0, the characteristic equation (30)

can be written as

From the characteristic equation

a magnitude condition can be derived (assurhihg- 0)
NOL(S)
DOL(S)
as well as a phase condition

k|kc|‘

DOL(S)

—kke = ——— 36
Lket 2 (NOL(S)) = drr (32) “~ Now(s) (36)
Dor(s) . o
. . With polynomial division
wherer =1, 3,5... The phase condition can also be written
as T (1 uh
Lk +Y L(s—z)— Y Lls—p)=+rr. (33 as — by — by (a1 — by)

= Py + =2 +...]. (37)

Sinceg, k > 0, the order of the polynomiaDcL(s) iS  As s — oo, the condition becomes
alwaysn. Hence, it must always have exactlyroots, and

the first rule can be derived as in the real case. —kke ="M (1 + @ bl) ) (38)
S

Rule 1: Number of branches of the root locus.The it
number of branches of the root locus is equal to the denggen’ we may write
of the characteristic polynomiat,.

1
ay — by

_ e (—ke ) = s (1 + —) T (@39
A property that does not follow from the real case is that s

the branches of the complex root-locus do not have to bg,q keeping only the first-order term of the Taylor series,
symmetric with respect to the real axis. There is also ngnq solving fors gives

1 i 1 1 a;—b
An alternate set of rules can be derived for< 0, often referred as s = k7 (—ko)™m — 1 1 (40)

Negative Root Locus. n—m



wherer = 1,3,5... Hence, asg — oo, n —m roots of (30)

into real and imaginary parts and finding values kofor

go to infinity along the asymptotes radiating from (35) withwhich real solutions exist fow. Alternatively, the values

an angle with respect to the real axis given by (34). &

If two roots approach each other awaries, a break-away
point can occur. In contrast to the classical root locusakre

away points can appear in any point of the complex plan@,s™~2+...+a,,, Whereay, = a,+jb, andk = 1,2, ..

(see the example of Fig. 4 discussed later in the paper).

Rule 4: Break-away and break-in points. A break-away
point s must be a root of (30) that also fulfills

dDor(s)
ds

S§=S80 DOL(S)|S:SO

~ Now(s)l,_,

Proof: A polynomiasrLS?DCL(s) has more than one root at
s = so if and only if

DCL(S()) =0 (42)
and q
M —0. (43)
ds s—so

Then, using (30) in (42) and (43), condition (41) is obtainedfor b o—

Rule 5: Angle of departure from complex poles.The
angle of departure from a complex po}g,, of Dor(s) is
given by

n

I

=1,
Proof: From the phase cond|t|on (33) the anglepatis
given by

9;l=7r+4kc+24 )- (44)

n

Z (s

i=1,ij

= :I:mr—i—ékc—l—ZZ(s—zi) —

=1

Z(s—pj) —Di);

(45)
The angle of departure is defined as— p;, which yields
(44). [ |

Rule 6: Angle of arrival at complex zeros.The angle of
arrival at a complex zero;, of Noy(s) is given by

m

0% = m— Lkc — Z 25—z +Zz ). (46)
i=1,i#
Proof: From the phase condition (33) the anglezatis
given by
L(s—z;) = trm—Lke — Z Z(S—Zi)—I—ZZ(S—pi),
i=1,i#j i=1
(47)
The angle of arrival is defined as— z;, which yields (46).
|

Rule 7: Imaginary axis crossing.The intersection of the

root locus with the imaginary axis can be found by separatmtgl

the equation

DOL(jw)—i-kchOL(jw) =0 (48)

for k can be obtained from the complex Hurwitz test (see

Theorem 1) given below.
Theorem 1: The polynomial P(s) = s + a;s" ! +

.,n,

has all its zeros in the half-plaf®&(s) < 0 if and only if the

determinantsAy ... Ay,
Al = al (49)
and
a; a3z as ... agk—1 —b2 —b4 e —bgk,Q
1 as Q4 ... 2k—2 —b1 —b3 e —bgk_g
A, — 0 So.oag 0 . —bp_1
L0 by by b a1 a3 a2k—3
0 by b3 ...by—3 1 as a2k—4
0 bk 0 Af—1
(50)
=23,....,nanda, = b. = 0 for r > n, are all
positive.
Proof: See Theorem 3.2 of [13]. [ |

IV. APPLICATION: A THREE-PHASE
CONTROLLED RECTIFIER

Power systems turn out to offer significant opportunities
for applying the root locus method to systems with complex
coefficients. As a first, illustrative and relatively simple
example, we apply the complex root locus rules to the current
control of a three-phase rectifier in the dqg reference frame.
Figure 1 shows the circuit scheme for one axis (both the
d and the q axes satisfy the same circuit)is the filter
inductancey represents the inductance lossess the grid
voltage, ana is the voltage generated by the switch positions
of the full bridge inverter.

Fig. 1. Simplified circuit scheme of a three-phase rectifier.

Assuming a balanced grid, the RL filter of the rectifier has
e following linear dynamics

R

o —(rI +wsLJ)i —e+v

(51)



where i = col(iq,i;) € R? are the dg-currentsy = representation not only allows to go further in the analysis
col(va,v,) € R? are the dg-grid voltages, = col(eq,e,) €  but also to consider a more general PI structure
R?, are the averaged voltages given by the switching policy,

L andr are the RL filter parameters, is the grid frequency e=—Kp(i* —i) — K; /(i* —i)dt, (57)
and
10 0 -1
I_<O 1), J_(1 0)' (52) where
A typical control scheme for this problem has a feedback Kp = kprl+kprJ
compensator that decouples the dg-currents and translates K; = kirI+kd. (58)

the multi-input multi-output control problem into two sileg
input single-output control designs. The complex rootsc Alternatively, theK'» and K; gains can be defined as
suggests an interesting approach with different propertie

We consider a PI-controller Kp = IZP(I +6pJ)
k K = Z(I+6J 59
e=—kp(i* —i)—%/(z —4)dt, (53) ! E( +0:J) (59)
. ok . _ ken 5. ._ k
where &, is the proportional gain7; is the integral time Wherekp = kpr, 0, := g20, Ti = 300, 0i == g7, and

value and the upper index)* refers to the desired current ke, 0p, Ti, 0; > 0.
values. Applying the Laplace transform in (51) and (53) the APPlying the Laplace transform in (51) and (57) the

closed-loop system becomes closed-loop system becomes
Lstrl +w.ld T (I(s) V(s) As) <I(S)) _ ( Vis) > (60)
—kp(s+ )T sI) \E(s) —kp(s + 7:)I*(s) E(s) —(Kps+ K)I*(s)
(54)
whose stability is given by the determinant of the matrix onvhere
the left-hand sidei.e., (Ls + ) +wLJ T 61)
KPS + K]) sI
D(s) = L?s*+2L(r+kp)s® ,
kp and defmmg[( ) =1Iq(s) +314(s), V(s) = Vals) +3iVy(s),
+ ((r +kp)? + 2L +w2L2> E(s) = Eq(s) + jE,(s), (60) can be rewritten as

2

+2k—(kp +7)s+ ;2. (55) Als) <

T, 3) = <—(Kpsi(21)z*(s)) - (©2)

3=

The analysis of the poles of (55) is complicate@specially with

if we are interested in determining the influence of the Als) — Ls+r+jwsl 1 (63)
parameters. Moreover, rewriting (55) (s) = —(Kps+Kj) s
2 1 d
D(s) = <82+ES+T_Z-2> k% an
I Kp = kp(1+30,)
+2s (sQL + (r + —) 5+ L) kp kp i
T, T; K; = T —— (1 +756). (64)
+L2%s* +2rLs® + (W2L* +1%)s*  (56)
shows that it is not possible to apply the conventional roog‘ Sability analyss
locus rules, because the polynomial is not linearkin. The stability of the closed-loop system (51)-(57) can
These facts motivate the use of polynomials with complelse analyzed using the complex Hurwitz test. The complex

coefficients. polynomialdet A(s) has the form

i k
A. Generalized PI controller Der(s) = Ls* + (r+kp+j(ws L+ kpdy)) s+ %(1—#]’5»)

The original Pl controller (53) did not consider cross- ¢ (65)
terms between the dq axes. However, the use of the complgxy he stability conditions given by the complex Hurwitz

) ) ) o ) o test [13], with L > 0, reduce to
’Notice that if a decoupling term is included in (53), whicheiguivalent

to cancelws in (55), the polynomialD(s) simplifies in
(55) poly (s) simp 0 < r4kp

2
D(s) = (S(LS +7)+kp (s + %)) ; 0 < (r+kp)?- L%&f + (r+kp)(wsL + kpdp)d;.

and makes the analysis more tractable. (66)



C. Root locus analysis o Rule 6: Angle of arrival at the complex zero. The

For the root locus analysis, we consider that= 6, = angle of arrival at:; is

0 >0, w
0y = — arctan(d) + arctan (%) . (76)

k
DCL(S):LS2—|—(T+kp+j(wsL—|—kp5))S+%(14—_].5). I

3

(67) « Rule 7: Imaginary axis crossing. From (48), the
Then, the above complex polynomial can be written as (26)  following two conditions are obtained

with

kp
2 —_—— =
Dor(s) = Ls*+ (r+jwsL)s Lw™+ (woL + Okp)ew T; 0
1 k
Nor(s) = s—i—? (kp—l-r)w—i-d% =0 (77)
ko= ke The conditions imply
ke = 1+ 36, (68)
_ k3 + arkp + ag = 0, (78)
wheren = 2 andm = 1. Following the root locus rules
from Section lll, we get: where
o Rule 1: Number of branches of the root locusFrom Ti(r(1 + 6%) + (r + dw,L)) — 6L
(68), the number of branchesis= 2. o = Ti(1 + 62)
o Rule 2: Starting points of the root locus.The starting r(r + 8w, L) ’
points are the roots of (68), ag = ——t (79)
1462
po= 0 . Sinceag > 0, the positive real solutions dfp exists if
P2 = — —jws (69) a1 <0 anda? — 4ag > 0.

The results of the root locus rules are summarized in Fig.

2. Notice that two different scenarios are obtained dependi
on ; > Ti (the case shown in Fig. 2) of < Tl

1 70 However, some of the rules does not allow to obtain aﬁalytic
(70) conclusions and it must be studied numerically.

o Rule 3: End points of the root locus. One root
converges to the root of (68), that is

ask — oo, and the other root converges ¢o, along
an asymptote with an angle

0°° = arctan(—0), (71) ) 64
_r _Tr + =
and a centroid E — mzl
P
1 a
c:—i—i-——jws. (72) 01\\3\
L Tl ed 0°°
o Rule 4: Break-away and break-in points.From (41), 2 @\m —w
the following complex equation is obtained c 3

T;Ls*> +2Ls +r + jw,L = 0. (73)

Consequently, break-away (or break-in) points exists for
those values of, L, ws andT; that satisfy (73) together
with (67).

o Rule 5: Angles of departure from the complex poles.
The angles of departure from complex poles are Fig. 2. Root-locus simplified scheme fgf > 7.

Replacing the following numerical values= 10, L = 1,
ws = 1,0 = 10 in (67) and (73), a break-in point appears
and for T; = TBX = 0.1651, and is expected at = —5.4425 —
Ws ) j4.9254 for kp = 0.8851. From the conditions obtained in

6% = 4 arctan(d) — arctan (E) (74)
T

Rule 7, the root-locus crosses the imaginary axis for values
T, < TA°, whereT/A° = 0.0761. Fig. 3 shows the root-
— arctan (ﬂ) (75) locus when varyingl; such that scenarios with different

r break-away points and imaginary axis crossings occur.

03 = 7+ arctan(d) + arctan <

Sk
S



Root locus plot
10 T T

Imaginary axis

-60
-20

Real axis

Fig. 3. Root locus of the 3-phase rectifier example. Th@arameter takes
the value:T; = 0.5T/4€ (blue line), T; = TIAC (red line), T; = 1.5T}AC
(green line),T; = TFK (cyan line) and; = 272X (magenta line).

Root locus plot
10 T T

—10F

Imaginary axis

-60

Real axis

Fig. 4. Detail of the break-in point of the root locus. Thg parameter
takes the valueT; = 0.1538 (green line),T; = TPK = 0.1651 (red line)
andT; = 0.1818 (blue line).

Overall, the complex root locus exhibits striking similar-
ities with the real root locus. However, peculiar differeac
are also observed, namely:

variable gain is used, the characteristic polynomial of the
original system is nonlinear in the gain parameter.

V. CONCLUSIONS

The classical root locus method was extended to poly-
nomials with complex coefficients. The motivation for such
an extension lied in the existence of systems which could
be studied through equivalent complex systems of half the
dimension or order. It was found that most but not all
properties of the classical root locus extended with minor
modifications to the complex case. Rules that did not extend
yielded peculiar differences in characteristics reflectf a
multivariable design.

The application of the results to a three-phase controlled
rectifier was presented to illustrate the results. The cerpl
representation simplifies the fourth order polynomial (55)
which is nonlinear inkp , into the second order polynomial
(65) which is linear inkp. In this manner, the problem can
be solved analytically, in contrast with the traditionatte
niqgue where only numerical results could be obtained. The
complex notation has been used to describe various power
systems, but not to perform design or stability analyses. Th
example shows that the root locus method for polynomials
with complex coefficients can be a powerful tool for these
purposes.
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