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Abstract— Applications were found recently where the analy-
sis of dynamic systems with a special structure could be simpli-
fied considerably by transforming them into equivalent systems
having complex coefficients and half the number of poles. The
design of controllers for such systems can be simplified in the
complex representation, but requires techniques suitablefor
systems with complex coefficients. In the paper, the extension
of the classical root locus method to systems with complex
coefficients is presented. The results are applied with some
advantages to a three-phase controlled rectifier.

I. INTRODUCTION

The theory of linear control system design concerns almost
exclusively systems with real coefficients. Since physical
systems are described by state-space models or transfer
functions with real parameters, it would not appear useful
to relax this assumption. However, applications were found
recently [5][10] where the analysis of electric machines could
be simplified considerably by transforming them into equiv-
alent systems with complex coefficients. The applications
included a self-excited induction generator and a doubly-fed
induction motor/generator with active/reactive power control.
For the transformation to apply, in general, the systems
need to satisfy symmetry conditions that enable a reduction
of the order of the system by a factor of 2. In [5][10],
the extension of the classical Hurwitz test to systems with
complex coefficients [13] yielded the derivation of analytic
stability conditions that could not be obtained for the original
(real) system, due to its higher dimension.

Other examples of dynamic systems having transfer func-
tions with complex coefficients are somewhat rare, but can
be found in asymmetric bandpass and band-rejection filters
[2], mobile radio communication filtering algorithms [15],
whirling shafts [8], and some mechanical systems [14].
Control theory tools for systems with complex coefficients
are also very limited. The Hurwitz and Routh-Hurwitz tests
for complex polynomials were applied in [5][10] (see also
[1][3][6][9]). Later on, extended versions of Kharitonov’s
criterion for polynomials with uncertain complex coefficients
were studied in [4][7][8][16][17][18].

In this paper, we consider the design of controllers for sys-
tems with complex coefficients using the root locus method.
The root locus method was developed by W.R. Evans in
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the 40’s [11][12], and is a fundamental tool that is taught
in first courses on feedback systems. The root locus method
for the general case with complex polynomials presents both
interesting similarities and peculiar differences compared to
the conventional root locus. Curiously, the method enables
the design of control algorithms with properties that have
no equivalent in the classical root locus design. The results
are illustrated at the end of the paper with the example of a
three-phase controlled rectifier.

II. PROBLEM STATEMENT

In this paper, we consider systems with the standard state-
space model

ẋ = Ax+Bu, y = Cx (1)

where the state, input, and output vectors can be split into
two vectors of equal dimensions such that

x =

(

x1(t)
x2(t)

)

, u =

(

u1(t)
u2(t)

)

y =

(

y1(t)
y2(t)

)

(2)

while

A =

(

A11 −A21

A21 A11

)

, B =

(

B11 −B21

B21 B11

)

C =

(

C11 −C21

C21 C11

)

(3)

For systems satisfying (3), the following facts apply.
Fact 1: The transfer function matrix fromu to y can be

partitioned similarly with
(

y1(s)
y2(s)

)

=

(

H11(s) −H21(s)
H21(s) H11(s)

)(

u1(s)
u2(s)

)

(4)

Proof: Considering the structure of theA matrix, partition
the matrix inverse as
(

M11 M12

M21 M22

)

=

(

sI −A11 A21

−A21 sI −A11

)−1

(5)

Then
(

M11 M12

M21 M22

)(

sI −A11 A21

−A21 sI −A11

)

=

(

I 0
0 I

)

(6)
so that

M11 (sI −A11)−M12A21 = I

M11A21 +M12 (sI −A11) = 0

M21 (sI −A11)−M22A21 = 0

−M21A21 +M22 (sI −A11) = I (7)



The first and second equations of (7) give the values ofM11

andM12

M11 =
(

(sI −A11) +A21 (sI −A11)
−1

A21

)1

M12 = −M11A21 (sI −A11)
−1 (8)

while the third and fourth equations of (7) show thatM22 and
−M21 satisfy equations identical to the first two equations
definingM11 andM12. Therefore

M22 = M11, M21 = −M12 (9)

It is straightforward to show that the structure of the inverse
matrix is preserved by pre- and post-multiplication by theC
andB matrices. Therefore, the transfer function matrix (4)
has the same structure.

Fact 2: Defining complex vectors

yc = y1 + jy2, uc = u1 + ju2 (10)

the signalyc is the output of a system with inputuc and
transfer function

Hc(s) = H11(s) + jH21(s) (11)

whereH11(s) andH21(s) are the sub-matrices of (4). One
also has that

Hc(s) = Cc(sI −Ac)
−1Bc (12)

where

Ac = A11 + jA21, Bc = B11 + jB21, Cc = C11 + jC21

(13)
Proof: We have

yc(s) = H11(s)u1(s)−H21(s)u2(s)

+j (H21(s)u1(s) +H11(s)u2(s))

= (H11(s) + jH21(s)) (u1(s) + ju2(s)) (14)

Similarly,

ẋ1 + jẋ2 = (A11 + jA21)(x1 + jx2)

+(B11 + jB21)(u1 + ju2)

yc = y1 + jy2 = (C11 + jC21)(x1 + jx2)(15)

so that the results follow.
According to (11)

Hc(s) =
NOL(s)

DOL(s)
(16)

where NOL(s) and DOL(s) are polynomials ins. (11)
suggests thatDOL(s) has real coefficients, whileNOL(s)
has complex coefficients. However, (12) indicates that the
number of poles ofHc(s) must be 1/2 the number of
poles of the original system. Thus, half the poles must be
cancelled by zeros in (11). For a system with complex poles,
both the numerator and denominator ofHc(s) have complex
coefficients.

Fact 3: Any root of det (sI − Ac) = 0 is a root of
det (sI −A) = 0. On the other hand, ifs0 is a root of

det (sI −A) = 0, then eithers0 or its complex conjugate
s∗0 is a root ofdet (sI −Ac) = 0.

The fact is proved in [5]. First, it implies specific prop-
erties of the polynomialdet(sI − A). Specifically, due to
the special structure of (3), the roots ofdet(sI − A) = 0
must be either complex pairs or double real pairs. In other
words, there cannot be single real roots. Next, each root of
det (sI −Ac) = 0 is one of the roots in a pair of roots of
det (sI −A) = 0. Thus, knowledge of the eigenvalues ofAc

implies knowledge of the eigenvalues of the original matrix
A: all the poles of the original system can be obtained from
the roots ofdet (sI −Ac).

Corollary 1: Consider a system with state-space model
(3) and (4). Assume that output feedback is applied with

u(t) = −k

(

k11 −k21
k21 k11

)

y(t) (17)

where k is a real, adjustable gain, andk11, k21 are real,
fixed parameters. Then, the closed-loop poles are given by
the roots of

DOL(s) + kkCNOL(s) = 0 (18)

and their complex conjugates, where

kC = k11 + jk21 (19)
Example. Consider a system with

A = 0, B = I, C = I (20)

whereI is the identity matrix. Letk11 = cos(α) andk21 =
sin(α) for some angleα. The closed-loop system is given
by
(

ẋ1

ẋ2

)

=

(

−k cos(α) k sin(α)
−k sin(α) −k cos(α)

)(

x1

x2

)

(21)

which corresponds to the complex system

ẋc = −kkCxc. (22)

wherekC = ejα. The complex system has complex param-
eters, but half the number of states. For varyingk, the locus
of the poles is composed of the single branch

s = kejα (23)

The poles of the original system are given by

s1 = kejα, s2 = ke−jα (24)

Note that the angle in the complex plane isα and is not
constrained by the usual root locus rules (which would
requireα = 0). This is possible because the root locus for the
original system is determined by the characteristic equation

det

(

s+ k cos(α) −k sin(α)
k sin(α) s+ k cos(α)

)

= s2+2k cos(α)s+k2

(25)
Even though the characteristic polynomial is linear ink

in the complex domain, the dependency in the real domain
is polynomial. The root locus for the real system cannot
be drawn using conventional root locus rules. The feedback
law (17) is a multivariable feedback law, as opposed to
the single-input single-output feedback law assumed in the
conventional root locus. ⋄



III. ROOT LOCUS WITH COMPLEX
COEFFICIENTS

Consider the polynomial

DCL(s) = DOL(s) + kkCNOL(s) (26)

whereNOL(s) andDOL(s) are polynomials with complex
coefficients. The degrees ofNOL(s) andDOL(s) arem and
n, respectively, withq = n−m andq > 0 (we assume that
the transfer function is strictly proper). The coefficientswith
the highest powers ofs are equal to 1 in both polynomials.
k is real andkc is complex. By definition, the root locus is
the locus of the roots ofDCL(s) = 0 ask varies from 0 to
infinity.

In general, the polynomialsDOL(s) andNOL(s) can be
factored as

DOL(s) = (s− p1)(s− p2) . . . (s− pn)

NOL(s) = (s− z1)(s− z2) . . . (s− zm) (27)

where p1, p2, . . . , pn and z1, z2, . . . , zm are the roots of
DOL(s) andNOL(s). Compared to the polynomial form

DOL(s) = sn + a1s
n−1 + . . .+ an−1s+ an

NOL(s) = sm + b1s
m−1 + . . .+ bm−1s+ bm (28)

one has

a1 = −

n
∑

i=1

pi, b1 = −

m
∑

i=1

zi. (29)

From the characteristic equation

DOL(s) + kkCNOL(s) = 0 (30)

a magnitude condition can be derived (assuming1 k > 0)

k|kC |

∣

∣

∣

∣

NOL(s)

DOL(s)

∣

∣

∣

∣

= 1 (31)

as well as a phase condition

∠kc + ∠

(

NOL(s)

DOL(s)

)

= ±rπ (32)

wherer = 1, 3, 5... The phase condition can also be written
as

∠kC +

m
∑

i=1

∠(s− zi)−

n
∑

i=1

∠(s− pi) = ±rπ. (33)

Since q, k > 0, the order of the polynomialDCL(s) is
alwaysn. Hence, it must always have exactlyn roots, and
the first rule can be derived as in the real case.

Rule 1: Number of branches of the root locus.The
number of branches of the root locus is equal to the degree
of the characteristic polynomial,n.

A property that does not follow from the real case is that
the branches of the complex root-locus do not have to be
symmetric with respect to the real axis. There is also no

1An alternate set of rules can be derived fork < 0, often referred as
Negative Root Locus.

guarantee that any portion of the real axis belongs to the
root-locus.

The second and third rules define the starting points (the
roots ofDCL(s) = 0 for k = 0) and the end points (the roots
of DCL(s) = 0 ask tends to infinity) of the root locus.

Rule 2: Starting points of the root locus.The root locus
of DCL(s) starts at the open-loop poles (DOL(s) = 0).

Proof: Replacing k = 0 in (26), with kC 6= 0, it
automatically follows that,DCL(s) = DOL(s) = 0.

Rule 3: End points of the root locus.m of the branches
of the root-locus converge to the roots ofNOL(s), while
the othern−m roots converge to infinity along asymptotes
whose angles with respect to the real axis are defined by the
n−m complex roots of

si =
n−m

√

−kC , i = 1, . . . , n−m (34)

The center of the asymptotes is located at

c =
1

n−m

(

n
∑

i=1

pi −

m
∑

i=1

zi

)

(35)

where pi and zi are the roots ofDOL(s) and NOL(s),
respectively.

Note that, in contrast to the case with a polynomial
with real coefficients, the center of the asymptotes can be
everywhere of the complex plane. Also, the asymptotes do
not have to be symmetric with respect to the real axis.

Proof: Assuming |kC | 6= 0, if k → ∞, the magnitude
condition (31) holds only if

• NOL(s) → 0, or
• s → ∞.

The first condition directly implies thatm roots ofDCL(s)
tend to the roots ofNOL(s) ask → ∞.

SupposingNOL(s) 6= 0, the characteristic equation (30)
can be written as

−kkC =
DOL(s)

NOL(s)
(36)

With polynomial division

−kkC = sn−m

(

1 +
a1 − b1

s

+
a2 − b2 − b1(a1 − b1)

s2
+ . . .

)

. (37)

As s → ∞, the condition becomes

−kkC = sn−m

(

1 +
a1 − b1

s

)

. (38)

Then, we may write

k
1

n−m (−kC)
1

n−m = s

(

1 +
a1 − b1

s

)
1

n−m

, (39)

and keeping only the first-order term of the Taylor series,
and solving fors gives

s = k
1

n−m (−kC)
1

n−m −
a1 − b1
n−m

. (40)



wherer = 1, 3, 5 . . . Hence, ask → ∞, n−m roots of (30)
go to infinity along the asymptotes radiating from (35) with
an angle with respect to the real axis given by (34).

If two roots approach each other ask varies, a break-away
point can occur. In contrast to the classical root locus, break-
away points can appear in any point of the complex plane
(see the example of Fig. 4 discussed later in the paper).

Rule 4: Break-away and break-in points.A break-away
point s0 must be a root of (30) that also fulfills

dDOL(s)
ds

∣

∣

∣

s=s0

dNOL(s)
ds

∣

∣

∣

s=s0

=
DOL(s)|s=s0

NOL(s)|s=s0

. (41)

Proof: A polynomialDCL(s) has more than one root at
s = s0 if and only if

DCL(s0) = 0 (42)

and
dDCL(s)

ds

∣

∣

∣

∣

s=s0

= 0. (43)

Then, using (30) in (42) and (43), condition (41) is obtained.

Rule 5: Angle of departure from complex poles.The
angle of departure from a complex pole,pj , of DOL(s) is
given by

θdj = π+∠kC +

m
∑

i=1

∠(pj − zi)−

n
∑

i=1,i6=j

∠(pj − pi). (44)

Proof: From the phase condition (33), the angle atpj is
given by

∠(s−pj) = ±rπ+∠kC +

m
∑

i=1

∠(s−zi)−

n
∑

i=1,i6=j

∠(s−pi),

(45)
The angle of departure is defined ass → pj , which yields
(44).

Rule 6: Angle of arrival at complex zeros.The angle of
arrival at a complex zero,zj , of NOL(s) is given by

θaj = π−∠kC −

m
∑

i=1,i6=j

∠(zj − zi) +

n
∑

i=1

∠(zj − pi). (46)

Proof: From the phase condition (33), the angle atzj is
given by

∠(s−zj) = ±rπ−∠kC −

m
∑

i=1,i6=j

∠(s−zi)+

n
∑

i=1

∠(s−pi),

(47)
The angle of arrival is defined ass → zj , which yields (46).

Rule 7: Imaginary axis crossing.The intersection of the
root locus with the imaginary axis can be found by separating
the equation

DOL(jω) + kkCNOL(jω) = 0 (48)

into real and imaginary parts and finding values ofk for
which real solutions exist forω. Alternatively, the values
for k can be obtained from the complex Hurwitz test (see
Theorem 1) given below.

Theorem 1: The polynomialP (s) = sn + α1s
n−1 +

α2s
n−2+. . .+αn, whereαk = ak+jbk andk = 1, 2, . . . , n,

has all its zeros in the half-planeR(s) < 0 if and only if the
determinants,∆1 . . .∆k,

∆1 = a1 (49)

and

∆k =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 a3 a5 . . . a2k−1 −b2 −b4 . . . −b2k−2

1 a2 a4 . . . a2k−2 −b1 −b3 . . . −b2k−3

...
. . .

...
. . .

...
0 . . . ak 0 . . . −bk−1

0 b2 b4 . . . b2k−2 a1 a3 . . . a2k−3

0 b1 b3 . . . b2k−3 1 a2 . . . a2k−4

...
. . .

...
. . .

...
0 . . . bk 0 . . . ak−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(50)
for k = 2, 3, . . . , n and ar = br = 0 for r > n, are all
positive.

Proof: See Theorem 3.2 of [13].

IV. APPLICATION: A THREE-PHASE
CONTROLLED RECTIFIER

Power systems turn out to offer significant opportunities
for applying the root locus method to systems with complex
coefficients. As a first, illustrative and relatively simple
example, we apply the complex root locus rules to the current
control of a three-phase rectifier in the dq reference frame.
Figure 1 shows the circuit scheme for one axis (both the
d and the q axes satisfy the same circuit).L is the filter
inductance,r represents the inductance losses,v is the grid
voltage, ande is the voltage generated by the switch positions
of the full bridge inverter.

v

r L

e

i

Fig. 1. Simplified circuit scheme of a three-phase rectifier.

Assuming a balanced grid, the RL filter of the rectifier has
the following linear dynamics

L
di
dt

= −(rI + ωsLJ)i− e+ v (51)



where i = col(id, iq) ∈ R
2 are the dq-currents,v =

col(vd, vq) ∈ R
2 are the dq-grid voltages,e = col(ed, eq) ∈

R
2, are the averaged voltages given by the switching policy,

L andr are the RL filter parameters,ωs is the grid frequency
and

I =

(

1 0
0 1

)

, J =

(

0 −1
1 0

)

. (52)

A typical control scheme for this problem has a feedback
compensator that decouples the dq-currents and translates
the multi-input multi-output control problem into two single-
input single-output control designs. The complex root-locus
suggests an interesting approach with different properties.
We consider a PI-controller

e = −kP (i
∗ − i)−

kP
Ti

∫

(i∗ − i)dt, (53)

where kp is the proportional gain,Ti is the integral time
value and the upper index(·)∗ refers to the desired current
values. Applying the Laplace transform in (51) and (53) the
closed-loop system becomes
(

Ls+ rI + ωsLJ I

−kP (s+
1
Ti
)I sI

)(

I(s)
E(s)

)

=

(

V (s)
−kP (s+

1
Ti
)I∗(s)

)

(54)
whose stability is given by the determinant of the matrix on
the left-hand side,i.e.,

D(s) = L2s4 + 2L(r + kP )s
3

+

(

(r + kP )
2 + 2L

kP
Ti

+ ω2
sL

2

)

s2

+2
kP
Ti

(kP + r)s+
k2P
T 2
i

. (55)

The analysis of the poles of (55) is complicated2, especially
if we are interested in determining the influence of the
parameters. Moreover, rewriting (55)

D(s) =

(

s2 +
2

Ti

s+
1

T 2
i

)

k2P

+2s

(

s2L+

(

r +
L

Ti

)

s+
r

Ti

)

kP

+L2s4 + 2rLs3 + (ω2
sL

2 + r2)s2 (56)

shows that it is not possible to apply the conventional root-
locus rules, because the polynomial is not linear inkP .
These facts motivate the use of polynomials with complex
coefficients.

A. Generalized PI controller

The original PI controller (53) did not consider cross-
terms between the dq axes. However, the use of the complex

2Notice that if a decoupling term is included in (53), which isequivalent
to cancelωs in (55), the polynomialD(s) simplifies in

D(s) =

(

s(Ls+ r) + kP

(

s+
1

Ti

))

2

,

and makes the analysis more tractable.

representation not only allows to go further in the analysis,
but also to consider a more general PI structure

e = −KP (i
∗ − i)−KI

∫

(i∗ − i)dt, (57)

where

KP = kPRI + kPIJ

KI = kIRI + kIIJ . (58)

Alternatively, theKP andKI gains can be defined as

KP = kP (I + δpJ)

KI =
kP
Ti

(I + δiJ) (59)

wherekP := kPR, δp := kPI

kPR
, Ti :=

kPR

kIR
, δi := kII

kIR
, and

kP , δp, Ti, δi > 0.
Applying the Laplace transform in (51) and (57) the

closed-loop system becomes

A(s)

(

I(s)
E(s)

)

=

(

V (s)
−(KP s+KI)I

∗(s)

)

(60)

where

A(s) =

(

(Ls+ r)I + ωsLJ I

−(KP s+KI) sI

)

, (61)

and definingI(s) = Id(s)+ jIq(s), V(s) = Vd(s)+ jVq(s),
E(s) = Ed(s) + jEq(s), (60) can be rewritten as

A(s)

(

I(s)
E(s)

)

=

(

V(s)
−(KP s+KI)I

∗(s)

)

, (62)

with

A(s) =

(

Ls+ r + jωsL 1
−(KP s+KI) s

)

(63)

and

KP = kP (1 + jδp)

KI =
kP
Ti

(1 + jδi). (64)

B. Stability analysis

The stability of the closed-loop system (51)-(57) can
be analyzed using the complex Hurwitz test. The complex
polynomialdetA(s) has the form

DCL(s) = Ls2+
(

r+kP +j(ωsL+kP δp)
)

s+
kP
Ti

(1+jδi),

(65)
and the stability conditions given by the complex Hurwitz
test [13], withL > 0, reduce to

0 < r + kP

0 < (r + kP )
2 − L

kP
Ti

δ2i + (r + kP )(ωsL+ kP δp)δi.

(66)



C. Root locus analysis

For the root locus analysis, we consider thatδi = δp =
δ > 0,

DCL(s) = Ls2 +
(

r+ kP + j(ωsL+ kP δ)
)

s+
kP
Ti

(1+ jδ).

(67)
Then, the above complex polynomial can be written as (26)
with

DOL(s) = Ls2 +
(

r + jωsL
)

s

NOL(s) = s+
1

Ti

k = kP

kC = 1 + jδ, (68)

wheren = 2 and m = 1. Following the root locus rules
from Section III, we get:

• Rule 1: Number of branches of the root locus.From
(68), the number of branches isn = 2.

• Rule 2: Starting points of the root locus.The starting
points are the roots of (68),

p1 = 0

p2 = −
r

L
− jωs. (69)

• Rule 3: End points of the root locus. One root
converges to the root of (68), that is

z1 = −
1

Ti

, (70)

as k → ∞, and the other root converges to∞, along
an asymptote with an angle

θ∞ = arctan(−δ), (71)

and a centroid

c = −
r

L
+

1

Ti

− jωs. (72)

• Rule 4: Break-away and break-in points.From (41),
the following complex equation is obtained

TiLs
2 + 2Ls+ r + jωsL = 0. (73)

Consequently, break-away (or break-in) points exists for
those values ofr, L, ωs andTi that satisfy (73) together
with (67).

• Rule 5: Angles of departure from the complex poles.
The angles of departure from complex poles are

θd1 = π + arctan(δ)− arctan

(

ωsL

r

)

(74)

and

θd2 = π + arctan(δ) + arctan

(

ωs

r
L
− 1

Ti

)

− arctan

(

ωsL

r

)

(75)

• Rule 6: Angle of arrival at the complex zero. The
angle of arrival atz1 is

θa1 = − arctan(δ) + arctan

(

ωs

r
L
− 1

Ti

)

. (76)

• Rule 7: Imaginary axis crossing. From (48), the
following two conditions are obtained

Lω2 + (ωsL+ δkP )ω −
kP
Ti

= 0

(kP + r)ω + δ
kP
Ti

= 0 (77)

The conditions imply

k2P + α1kP + α0 = 0, (78)

where

α1 =
Ti(r(1 + δ2) + (r + δωsL))− δ2L

Ti(1 + δ2)

α0 =
r(r + δωsL)

1 + δ2
. (79)

Sinceα0 > 0, the positive real solutions ofkP exists if
α1 < 0 andα2

1 − 4α0 > 0.

The results of the root locus rules are summarized in Fig.
2. Notice that two different scenarios are obtained depending
on r

L
> 1

Ti
(the case shown in Fig. 2) orr

L
< 1

Ti
.

However, some of the rules does not allow to obtain analytic
conclusions and it must be studied numerically.

z1 p1

p2

− r
L

−ωs

− r
L
+ 1

Ti

θd1

θa1

θd2
θ∞

c

Fig. 2. Root-locus simplified scheme forr
L

> 1

Ti
.

Replacing the following numerical valuesr = 10, L = 1,
ωs = 1, δ = 10 in (67) and (73), a break-in point appears
for Ti = T BK

i = 0.1651, and is expected ats = −5.4425−
j4.9254 for kP = 0.8851. From the conditions obtained in
Rule 7, the root-locus crosses the imaginary axis for values
Ti < T IAC

i , whereT IAC
i = 0.0761. Fig. 3 shows the root-

locus when varyingTi such that scenarios with different
break-away points and imaginary axis crossings occur.
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Fig. 3. Root locus of the 3-phase rectifier example. TheTi parameter takes
the value:Ti = 0.5T IAC

i
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Fig. 4. Detail of the break-in point of the root locus. TheTi parameter
takes the value:Ti = 0.1538 (green line),Ti = TBK

i
= 0.1651 (red line)

andTi = 0.1818 (blue line).

Overall, the complex root locus exhibits striking similar-
ities with the real root locus. However, peculiar differences
are also observed, namely:

• the root-locus (including the asymptotes) is not neces-
sarily symmetric with respect to the real axis;

• in the case of a single asymptote, the angle with respect
to the real axis can be set arbitrarily in the complex
plane (this angle represents a degree of freedom not
available in the conventional root locus);

• poles can merge and split off at arbitrary locations in
the complex plane.

These differences in properties can be attributed to the
fact that the complex root locus is, in general, associated
with a multi-input multi-ouput feedback system. Even though
the linearity of the complex characteristic polynomial in the

variable gain is used, the characteristic polynomial of the
original system is nonlinear in the gain parameter.

V. CONCLUSIONS

The classical root locus method was extended to poly-
nomials with complex coefficients. The motivation for such
an extension lied in the existence of systems which could
be studied through equivalent complex systems of half the
dimension or order. It was found that most but not all
properties of the classical root locus extended with minor
modifications to the complex case. Rules that did not extend
yielded peculiar differences in characteristics reflective of a
multivariable design.

The application of the results to a three-phase controlled
rectifier was presented to illustrate the results. The complex
representation simplifies the fourth order polynomial (55),
which is nonlinear inkP , into the second order polynomial
(65) which is linear inkP . In this manner, the problem can
be solved analytically, in contrast with the traditional tech-
nique where only numerical results could be obtained. The
complex notation has been used to describe various power
systems, but not to perform design or stability analyses. The
example shows that the root locus method for polynomials
with complex coefficients can be a powerful tool for these
purposes.
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