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Stability, Convergence, and Robustness of Adaptive Systems

Marc Bodson

Ph.D. EECS Dept.
Abstract

The thesis addresses three issues of prime importance to adaptive systems: the sta-
bility under ideal conditions, the convergence of the adaptive parameters, and the robust-
ness to modeling errors and to measurement noise. New results are presented, as well as

simplified and unified proofs of existing results.

First, some identification algorithms are reviewed, and their stability and parameter
convergence properties are established. Then, a new, input error, direct adaptive control
scheme is presented. It is an alternate scheme to the output error scheme of Narendra,
Lin, and Valavani, which does not require a strictly positive real condition on the refer-
ence model, or overparametrization when the high-frequency gain is unknown. Useful
lemmas are presented and unified stability proofs are derived for the input and output
error schemes, as well as for an indirect adaptive control scheme. The results show that
all three schemes have similar stability and convergence properties. However, the input
error and the indirect schemes have the advantage of leading to a linear error equation,

and of allowing for a useful separation of identification and control.

The parameter convergence of the adaptive schemes is further analyzed using averag-
ing teéhniques, assuming that the reference input possesses some stationarity properties.
and that the adaptation gain is sufficiently small. It is shown that the nonautonomous
adaptive systems can be approximated by autonomous systems, thereby considerably sim-
plifying the analysis. In particular, estimates of the rates of exponential convergence of
the parameters are obtained for the linear identification scheme, as well for the nonlinear
adaptive control scheme. The approach is particularly useful, as it leads to a frequency

domain analysis, and has a vast potential of interesting extensions.

The Rohrs examples of instability in the presence of unmodeled dynamics are
reviewed. A connection between exponential convergence and robustness is established in
a general framework. The result is applied to a model reference adaptive control scheme,

and stresses the importance of the persistency of excitation condition for robustness.




Robustness margins of the adaptive control scheme are also obtained. The mechanisms of

instability observed in the Rohrs examples are explained, and methods to improve robust-

ness are briefly investigated.
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Introduction

Motivation - Objectives

This thesis studies stability, convergence, and robustness properties of identification
and adaptive control systems, generally referred to as adaptive systems. Identification
methods are of considerable importance to several areas, especially control, communica-
tions, and signal processing. The performance of any control system for example depends
crucially on the accuracy of the model used to design it. Adaptive control, a direct aggre-
gation of identification and control, has current and potential applications to a large
number of systems with parametric uncertainty, and/or time-varying dynamics. Among
these, we find flight and space vehicles, robotic manipulators, chemical processes, and
many others. Therefore, our main motivation in studying adaptive systems is a large

number of current, and potential applications.

With this motivation comes the need for better understanding of the dynamical
behavior of adaptive systems. Although such systems have been studied at least since the
1960’s, the field still lacks methods of analysis comparable to the classical methods for
nonadaptive linear time invariant systems. This has limited practical applications, espe-
cially in adaptive control, despite a significant research effort. Many of the existing
results concern either algorithms, structures, or specific applications, and much still needs
to be understood concerning the dynamic behavior of adaptive systems, and their robust-

ness to uncertainties. This is another motivation for this work.

Our goal is to study the dynamic properties of adaptive systems: their stability and
convergence under ideal conditions, and their ability to maintain stability in the presence
of noise and modeling errors. We do not intend to find the optimal algorithm, given a
specific problem, but to develop techniques to analyze and compare various algorithms.
As much as possible, we wish to derive new results on stability, convergence, and robust-

ness that are sufficiently general to be applied to a large class of algorithms. Adaptive




systems are essentially time-varying, and usually non linear systems. This accounts for
much of the difficulty encountered in analyzing them, and causes the need to develop
appropriate methods of analysis. We do not want to restrict our attention to
simplifications based on either eliminating these characteristics by considering constant or

periodic inputs, or by linearizing the adaptive system around some nominal trajectory.

The number of existing identification and adaptive control schemes is considerable,
due to the variety of possible choices during their derivations. For simplicity, we will
limit the plant under consideration to be single-input. single-output, linear time invariant,
continuous time and deterministic. The identification schemes are parametric, and recur-
sive, that is with parameters that are updated as time progresses. Their application to
adaptive control is therefore immediate. The adaptive control schemes considered are

model reference adaptive control schemes.

Finally, our objective in this thesis is to present a reasonably self-contained treat-
ment of stability, convergence, and robustness issues in adaptive systems. We present
results in a unified framework, sometimes simplifying proofs of existing results. Our
purpose there is to make this work accessible to a wider audience, and clarify the connec-
tions between various adaptive schemes, and between different topics. For example, we
will show the connections between apparently very differem\direct and indirect adaptive
control schemes, and between input error and output error adaptive control schemes. We
will also show connections between robustness and convergence, and between convergence

results obtained by exact methods and by averaging.

Review of Literature

We do not intend to review here the considerable literature in identification and
adaptive control, but to show the evolution of the research connected to the topics of the

thesis.

Model reference adaptive control techniques appear to have been first proposed for
the control of aircraft and spacecraft in the work of Whitaker (1959), and Osburn, Whi-
taker, and Kezer (1959). Their purpose was to design a self-adapting control system such
that, over the whole flight envelope, the controlled aircraft would behave in a satisfactory

way, as described by a reference model. Adaptation algorithms were based on an analysis




of the sensitivity of the output error to adjustable parameters, followed by a steepest

descent search. The resulting update law was called the MIT rule, and was the topic of
much research such as in Donalson and Leondes (1963a & b), Horrocks (1964), Dymock
et al (1965), and White (1966). These papers already showed the difficulties encountered
by the authors in dealing with the dynamics of these nonlinear time-varying systems, and
their attempts to reduce their complexity and analyze them with conventional LTI tech-

niques.

The lack of stability proofs, and instabilities observed on examples induced the
redesign of the model reference adaptive control system by Parks (1966). This design
was supported by a stability proof based on Lyapunov techniques. It also marked the
beginning of a more rigorous approach, accounting for the nonlinearity and time variation
of the adaptive system. The scheme was further extended by Monopoli (1974), Narendra
and Valavani (1978), and Landau (1979). Stability proofs for the general case appeared
simultaneously in Narendra, Lin, and Valavani (1980). Morse (1980), and in the
discrete-time literature, in Goodwin, Ramadge, and Caines (1980). In addition to
Lyapunov analysis, these papers introduced the use of functional analysis techniques
(such as studied in Desoer and Vidyasagar (1975)) to establish stability of the adaptive

systems.

The stability and convergence of identifiers was independently addressed as early as
in Lion (1967), and proofs of exponential convergence were derived by Sondhi and Mitra
(1976), Anderson (1977), Kreisselmeier (1977), Morgan and Narendra (1977a & b).
These results were then extended to the adaptive control case by Boyd and Sastry (1983)
and (1984).

The robustness issue appeared with a controversial paper by Rohrs et al (1982) and
(1985). The example led to further discussion by Astrom (1983), Astrom (1984), Chen
and Cook (1984), Reidle, Cyr, and Kokotovic (1984), and Rohrs (1985). Anderson
(1985) showed the existence of unstable bursting phenomena in adaptive control systems,
even without unmodeled dynamics. Besides the controversy related to the discussion, a
significant research effort was started, that led to robustness analyses, and to methods of
improvement of robustness in work by Kreisselmeier and Narendra (1982), Peterson and
Narendra (1982). Anderson and Johnstone (1983), Bodson and Sastry (1984), Kosut and
Johnson (1984), Sastry (1984), Ortega, Praly, and Landau (1985), Kreisselmeier (1986),




Kreisselmeier and Anderson (1986), Narendra and Annaswamy (1986), and others. A
significant step was the introduction of averaging methods to analyze instabilities of adap-
tive systems in the work of Astrom (1984) and (1985), Riedle and Kokotovic (1985),
Kokotovic, Riedle, and Praly (1985). Riedle and Kokotovic (1986), Mareels et al (1986),
the book by Anderson et al (1986). and Fu and Sastry (1986). Averaging methods were
also introduced for the analysis of convergence of adaptive systems in Fu, Bodson, and

Sastry (1985), and Bodson et al (1986).

Contributions of the Thesis

The topics of stability, convergence, and robustness are addressed successively for
identification and control algorithms. Along these lines, the thesis brings the following

contributions

1) In chapter 3, we present a new continuous time, input error adaptive control algo-
rithm. Since the connections of this scheme to known schemes, especially in the discrete
time literature, are strong, the main interest is in unifying known results, and explaining
some discrepancies between continuous time and discrete time results. We also present
stability proofs for direct adaptive control schemes, and for an indirect scheme. Thereby,
we show that their stability properties are essentially identical. Although the stability
proofs rely strongly on known results, some new proofs are provided for intermediary
lemmas, and the presentation of the stability proofs is original and unified for the various
schemes. In particular, the stability proof for the indirect adaptive control scheme,

without persistency of excitation conditions is original.

2) A significant contribution of our research is the development of averaging
methods for adaptive systems, and the derivation of results justifying the use of these
methods to determine convergence rates of adaptive systems. We review in chapter 4
results obtained with other coworkers, and published in Fu, Bodson, and Sastry (1985)
and Bodson et al (1986). This research is original in providing convergence rates esti-

mates, using a frequency domain analysis in the linear as well as in the nonlinear cases.

3) The connection between exponential convergence and robustness is established in
a general result in chapter 5. This result is then used to establish robustness margins of a

specific adaptive control system. Although the result is more conceptual than practical, it




gives useful insight into mechanisms of instabilities found by Rohrs et al (1982). It also
shows the strong connection between the exponential convergence of the nominal system

and the robustness of the actual system.

4) Besides the original contributions of the thesis, we concentrate on presenting a
reasonably self-contained analysis of the three main topics of the thesis. Therefore, some
known schemes are reviewed, and some known results are presented in a unified frame-
work. Sometimes, original or reviewed proofs are given, such as in the study of the con-
vergence of identifiers for example. We hope these results will be useful to the reader

unfamiliar with the literature in that area.

Overview of the Thesis

Chapter 1 introduces the notation followed throughout the thesis, and presents basic

definitions and results to be used in the sequel.

Chapter 2 reviews a basic identification scheme for SISO LTI plants, with several
identification algorithms. General properties of the identification algorithms are esta-
blished, and the stability of the identifier is proved under general conditions. Conditions
for exponential parameter convergence are also derived, with an analysis of convergence
rates and factors influencing them. Finally, similar properties are established for strictly

positive real error equations arising in other identification and adaptive control schemes.

Chapter 3 presents three model reference adaptive control schemes, among which is
an original input error scheme. The connections between them and their respective advan-
tages are discussed. The stability of the adaptive control systems is proved. together with
the convergence of the output error to zero. Exponential parameter convergence is also
deduced for the adaptive control algorithms, under condiditons similar to the

identification schemes.

Chapter 4 introduces averaging techniques for the approximation of adaptive sys-
tems by autonomous (i.e. time invariant) systems. Several useful results are established,
together with a general framework serving as a basis for further developments. The
methods are applied to study parameter convergence properties of identification and adap-
tive control schemes. In particular, estimates of the exponential convergence rates are

obtained, together with their dependence on the frequency content of the reference input.




Chapter 5 reviews the Rohrs examples of instability in adaptive control systems,
and studies the mechanisms of instability. The relationship between exponential conver-
gence and robustness is analyzed, and guaranteed robustness margins are obtained. More
refined methods to guarantee robustness are required however, and the chapter concludes

with a review of some proposed methods to improve robustness of adaptive systems.

Finally. we present some general conclusions resulting from this work, and sugges-

tions for future research.




Chapter 1 Preliminaries

This chapter introduces the notation used in this work, as well as some basic
definitions and results. The notation used in the adaptive systems literature varies
widely. We elected to use a notation close to that of Narendra and Valavani (1978), and
Narendra, Lin and Valavani (1980), since many connections exist between this work, and
their results. We will refer to texts such as Desoer and Vidyasagar (1975), Vidyasagar
(1978) for standard results, and this chapter will concentrate on the definitions used

most often, and on non-standard results.

1.1 Notation

Lower case letters are used to denote scalars or vectors. Upper case letters are used
to denote matrices, operators, or sets. When z(z ) is a function of time, u (s ) denotes its
Laplace transform. Without ambiguity, we will drop the arguments, and simply write
and z. Rational transfer functions of linear time invariant (LTI) systems will be denoted
using upper case letters, e.g. H(s) or H. Polynomials in s will be denoted using lower
case letters, for example n (s ). or simply n. Thus, we may have H =n/d,.where H is
both the ratios of polynomials in s, and an operator in the Laplace transform domain.
Sometimes, the time domain and the Laplace transform domain will be mixed. and
parentheses will determine the sense 10 be made of an expression. For example, H(u) or
H u is the output of the LTI system H with input u. B (u)v is H («) multiplied by v

in the time domain, while H (uv ) is H operating on the product z (¢ ) v (z ).

1.2 L, Spaces, Norms

We denote by Ix | the absolute value of x if x is a scalar, and the euclidean norm of
x if x is a vector. The notation 1l will be used to denote the induced norm of an opera-

tor, in particular the induced matrix norm

1A i=l5}1_pl 1A x| (1.2.1)




and for functions of time, the notation is used for the Lp norm
b, =( [lu(r)P d7)Vr (122)
()

When p is omitted, lu ¥ denotes the L, norm. Truncated functions are defined as
fs@)=1@) t Ss
=0 t >s (1.2.3)
and the extended L, spaces are defined by
L,={f1 foralls <oo f,; €L, } (1.2.4)
For example, e’ does not belong to L, bute’ € L. . Whenu €L, , we have

Iz, IL,,:=su<plu(‘r)l (1.2.5)

T X1

Note that f € L, does not imply that f —0 as ¢ —oo. This is not even guaranteed

if f is bounded. However, note the following results.

Lemma 1.2.1 Barbalat Lemma

t
If f (¢) is a uniformly continuous function, such that lim f f (7)d 7 exists and is

t ~oco (1)
finite
Then f(t)—0ast —oo

Proof of Lemma 1.2.1 cf Popov (1973) p. 211.

Corollary 1.2.2
If f.f €L .and f €L,

Then f(t)—0ast —oo

Proof of Corollary 1.2.2

Direct from lemma 1.2.1, since f , f bounded implies that f is uniformly continuous. O




1.3 Positive Definite Matrices

Positive definite matrices are frequently found in work on adaptive systems. We
summarize here several facts that will be useful. We consider real matrices. Recall that a
scalar u, or a function of time u(z ), is said to be positive if u 20, or u(¢) 20 for all ¢.
It is strictly positive if u >0, or, for some a >0, u(¢) Za for all £. A square matrix
A € R™*" is positive semidefinite if xT A x 20 for all x. It is positive definite if, for

Tx=walxP for all x. Equivalently, we can require

some a >0, xT Ax 2Zax
xT A x Za for all x such that Ix |=1. The matrix A is negative semidefinite if —A is
positive semidefinite and we write A 2B if A —B 20. Note that a matrix can be neither
positive semidefinite, nor negative semidefinite, so that this only establishes a partial

order of the matrices.

The eigenvalues of a positive semidefinite matrix lie in the closed right-half plane
(RHP), while those of a positive definite matrix lie in the open RHP. If A 20 and
A = AT, then A is symmetric positive semidefinite. In particular, if A 20, then A + A T
is symmetric positive semidefinite. The eigenvalues of a symmetric positive semidefinite
matrix are all real and positive. Such matrix also has n orthogonal eigenvectors, so that

we can decompose A as
A =UTAU (1.3.1)

where U is the matrix of eigenvectors satisfying U” U =1 (i.e. U is a unitary matrix),
and A is a diagonal matrix composed of the eigenvalues of A. The square root matrix

AY 2 is a diagonal matrix composed of the square roots of the eigenvalues of A, and
AvVz2=yprT AI/ZU (1.3‘2)

is the square root matrix of A, with A =AY2. AV 2and (A Y 2)Y =AYV 2,

If A 20and B 20, then A + B 20 but it is not true in general that A.B 20. How-
ever, if A, B are symmetric positive semidefinite matrices. then AB - although not neces-

sarily symmetric, or positive semidefinite - has all eigenvalues real positive.

Another property of symmetric positive semidefinite matrices, following from

(1.3.1), is
AinlANx P xT A x SApa(8)Ix P (1.3.3)

This simply follows from the fact that x? Ax =x"UT AUx =z" Az and




|z B=2T 2 =|x . We also have that

FA 1= Xpax(A) (1.3.4)
and, when A is positive definite

A =1/ Apia(A) (1.3.5)

1.4 Stability of Dynamic Systems

This section is concerned with differential equations of the form
x=f(tx) x(tg)=x,g (1.4.1)

where x € R ,¢t 20.

The system defined by (1.4.1) is said to be autonomous, or time-invariant, if f does
not depend on ¢, and non autonomous, or time-varying, otherwise. It is said to be linear if

f(t,x)=A()x for some A () :Ry =R"** , and nonlinear otherwise.

We will always assume that f (¢.x) is piecewise continuous with respect to t. By
this, we mean that there are only a finite number of discontinuity points in any compact

set.
We define by B, the closed ball of radius 2 centered at O in R".
Properties will be said to be true
- locally if true for all x, in some ball B,
- globally if true for all x, € R"
- in any closed ball if true for all x, € B, , with A arbitrary
- uniformly if true for all 4 20.

By default, properties will be true locally.

Lipschitz Condition and Consequences

The function f is said to be Lipschitz in x if, for some A >0, there exists | =0

such that
If(t.xl)—f(t,xz)ISllxl—le (1.4.2)

for all x;. x, € B,, ¢t 20. The constant [ is called the Lipschitz constant. This defines
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locally Lipschitz functions. Globally Lipschitz functions satisfy (1.4.2) for all x,,
x2 € R", while functions that are Lipschitz in any closed ball satisfy (1.4.2) for all x,.
x2 € By, with | possibly depending on h. The Lipschitz property is by default assumed

to be satisfied uniformly, i.e. I does not depend on ¢.

If f is Lipschitz in x, then it is continuous in x. On the other hand, if f has con-

tinuous and bounded partial derivatives in x, then it is Lipschitz. We denote

0fi

D =4 1.4.3
of = o (1.4.3)

If AD,f I I, then f is Lipschitz with constant [.

From the theory of ordinary differential equations (cf. Coddington and Levinson
(1955)), it is known that f locally bounded, and f locally Lipschitz in x imply the
existence and uniqueness of the solutions of (1.4.1) on some time interval (for as long as

X GB;,).

By definition, an equilibrium point x satisfies f (¢ ,x ) =0 for all ¢ 20. We will often
assume that, by change of coordinates, the equilibrium point is transformed to be x =0.
The following proposition gives bounds on the solutions of (1.4.1) when f is Lipschitz in

X .

Proposition 1.4.1

If x =0 is an equilibrium point of (1.4.1), f is Lipschitz in x with constant [, and

is piecewise continuous with respect to ¢

Then  the solution x (¢ ) of (1.4.1) satisfies
lxole' “70 2x(2)I Zlx e ¢T9 (1.4.4)

as long as x (¢ ) remains in B, .

Proof of Proposition 1.4.1

Note that Ix P = x7 x implies that

d _ d
l?lxlzl—ﬂxllzlxll

=97 ¢4 < d ,

2lx Exl\2|x!lzx| (1.4.5)




so that
d d
l— lx ISI1=- x| 4.
5 1= l\ldt x (1.4.6)
Since f is Lipschitz
d
—llxlﬁzlxléllxl (1.4.7)

and there exists a positive function s (¢ ) such that

d
— ixI=— ] 4.
yn x lix!+s (1.4.8)

Solving (1.4.8)

1
Ix@)i=ixole ™ T4 [ e -D5(r)ar
[¢]

?Ixole_l =0 (1.4.9)

The other inequality follows similarly. O

Proposition 1.4.1 implies that solutions starting inside B, will remain inside B, for
at least a finite time interval. Or, conversely, given a time interval, the solutions will
remain in B, provided that the initial conditions are sufficiently small. Also, f globally
Lipschitz implies that x € L, . Proposition 1.4.1 also says that x cannot tend to zero
faster than exponentially.

The following lemma is an important result generalizing the well-known Bellman-
Gronwall lemma (Bellman (1943)). The proof is similar to the proof of proposition 1.4.1,

and is left to the appendix.

Lemma 1.4.2 Bellman-Gronwall Lemma
Let x().a(),u(.): R, »R,. Let T 20.

If

x(t)<fa(1’)x(7)d*r+u(t) for allz €[0,T] (1.4.10)
0




Then

1

! fa(o)da
x@)<[a(@ulr)e” dr+u(t) for all ¢ €[0.T] (1.4.11)
0 »
When u (.) is differentiable
] j
a(o)do t a{o)do
x(t)Su(0e® + [u()e” dr forallz €[0.T] (1.4.12)

[¢

Proof of Lemma 1.4.2 in appendix
Stability Definitions

Definition Stability in the sense of Lyapunov

x =0 is called a stable equilibrium point of (1.4.1), if for all € >0, there exists 8§ >0 such

that x o € B implies that the solution x (¢ ) € B for all ¢ 2t to 20.

Definition Asymptotic Stability

x =0 is called an asymptotically stable equilibrium point of (1.4.1). if it is stable, and for

all xo € B, .1 20, the solution x (¢ ) #0 as ¢ —oo( i.e. x =0 is attractive).

Definition Exponential Stability, Rate of Convergence

x =0 is called an exponentially stable equilibrium point of (1.4.1) if there exist m, a >0

such that the solution x (¢ ) satisfies
Ix()I<m e—a(l—l")lxol (1.4.13)

for all xo € B, . t 2t 20. The constant « is called the rate of convergence.

Global exponential stability means that (1.4.13) is satisfied for any x,€ R".
Exponential stability in any closed ball is similar except that m and o may be a function
of h. Exponential stability is assumed to be uniform with respect 10 Zo. It can be shown
that uniform asymptotic stability is equivalent to exponential stability for linear systems

(Vidyasagar (1978), p. 170), but it is not true in general.




Exponential Stability Theorems

We will pay special attention to exponential stability for two reasons. When con-
sidering the convergence of adaptive algorithms, exponential stability means convergence,
and the rate of convergence is a useful measure of how fast estimates converge to their
nominal values. In chapter 5, we will also observe that exponentially stable systems pos-
sess at least some tolerance to perturbations, and are therefore desirable in engineering

applications.

The following theorem will be useful in proving several results, and relates

exponential stability to the existence of a specific Lyapunov function.

Theorem 1.4.3 Converse Theorem of Lyapunov

Consider the system (1.4.1). Assume that f has continuous and bounded first partial
derivatives in x , and is piecewise continuous in ¢ for all x € B, . ¢ 20. Then, the follow-
ing statements are equivalent

(a) x =0 is an exponentially stable equilibrium point of (1.4.1)

(b) there exists a function v (¢ .x ), and some strictly positive constants o a3 o3 0y

such that, for all x €B, .t 20

ajtxlP v, x) CoplxP (1.4.14)
dv.x) € —o3lxP (1.4.15)
dt
(1.4.1)
9_"%"_) aylx! (1.4.16)
X

Comments
The derivative in (1.4.15) is a derivative taken along the trajectories of (1.4.1), that
is

dv(t.x) _ av(t'x) av(t,x)
77 P I T f.x) (1.4.17)

This means that we consider x to be a function of # to calculate the derivative along the
trajectories of (1.4.1) passing through x at z. It does not require of x to be the solution

x (¢ ) of (1.4.1) starting at x (¢)
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Theorem 1.4.3 can be found in Krasovskii (1963) p. 60, and Hahn (1967) p. 273. It
is known as one of the converse théorems. The proof of the theorem is constructive: it
provides an explicit Lyapunov function v(¢.x). This is a rather unusual circumstance,
and makes the theorem particularly valuable. In the proof, we derive explicit values of

the constants involved in (1.4.14)-(1.4.16)

Proof of Theorem 1.4.3
(a) implies (b)

(i) Denote by p(7.x .t ) the solution of (1.4.1) starting at x (¢ ), ¢, and define

t+T

v(e,x)= [Ip(r.x.t)Pd7 (1.4.18)
14
where 7 >0 will be defined in (ii). From the exponential stability and the Lipschitz con-
dition
mixle =0 2p(r.x, e ) Zlxle 770 (1.4.19)

and inequality (1.4.14) follows with

oy = Il—e_ZIT}/ 21 ar,=m? |1—e~ 27 |/ 2a (1.4.20)
(ii) Differentiating (1.4.18) with respect to ¢, we obtain
av@.x) _ lp(t+T,x,t)P — lp(z,x,t)12+7ri llp('r,x,t)lz]d’r (1.4.21)
dr A7

Note that d / dt is a derivative with respect to the initial time ¢, and is taken along the

trajectories of (1.4.1). By definition of the solution p
plr.x(t+4), t+&)=p(7.x(t).t) (1.4.22)

for all A, so that the term in the integral is identically zero over [z,¢+ T']. The second
term in the right-hand side of (1.4.21) is simply |x , while the first is related to Ix P by

the assumption of exponential stability. It follows that

dv(t,x)
dt

2,—20T

< -—[ 1—m?Ze Ix P (1.4.23)

Inequality (1.4.15) follows, provided that 77 >(1/ a)Inm, and




a3:=1—m2% 2T (1.4.24)

(iii) Differentiating (1.4.18) with respect to x;, we have
t+7T

%=2] f‘,p,.(f,x.z)gp"—({;f’—tl dr (1.4.25)
i r j=1 i

Under the assumptions, the partial derivative of the solution with respect to the initial

conditions satisfies

ddf {617;(;:1)]: a?ci dd‘r P, (o) =£T [f_,-(T,p(‘r.x.t))
=k}::,1 gik’ o %—(g;x—t) (1.4.26)
(except possibly at points of discontinuity of f (7,x)). Denote
Qi (r.x,t) = 9pi(1.x.t)/ 9x; Aj(x.t)=9f;@.x)/ 9x; (1.427)
so that (1.4.26) becomes
2 0.x.) =A (p(rx.)7).0(x.0) (1.4.28)

Eqn (1.4.28) defines 0 (7.x .t ), when integrated from 7 = ¢ to 7 = ¢ + T, with initial con-
ditions Q (¢ ,x,t)=1. Thus, Q(7,x,t) is the transition matrix associated with the time

varying matrix A (p (7,x.¢).,7). By assumption, fA (.,)I <k for some k , so that
10 (7, x,e)1 Se*7—1) (1.4.29)

and. using the exponential stability again, (1.4.26) becomes

t+7
lﬁ‘i%x'i‘l tSzf mix ek —r=t)g (1.4.30)
t
which is (1.4.16) if we define
ay =2m (e =T —1)/ (k —a) (1.4.31)

Note that the function v(¢,x) is only really defined for x € B, with h'=h/ m, if
we wish to guarantee that p (7.x.t) € B, for all 7 2¢. This is a technicality which will

have no consequence.




(b) implies (a)

This direction is straightforward, using only (1.4.14)-(1.4.15), and we find

o
= (Z2)V 2 a=4 2 (1.4.32)

m =
ag 2 o

Comments

The Lyapunov function v(¢,x) can be interpreted as an averége of the squared
norm of the state along the solutions of (1.4.1). This approach is actually the basis of
exact proofs of exponential convergence presented in sections 2.5-2.6 for identification
algorithms. On the other hand. the approximate proofs presented in chapter 4 rely on
methods for averaging the differential system itself. Then the norm squared of the state
itself becomes a Lyapunov function, from which the exponential convergence can be

deduced.

Theorem 1.4.3 is mostly useful to establish the existence of the Lyapunov function
corresponding to exponentially stable systems. To establish exponential stability from a
Lyapunov function, the following theorem will be more appropriate. Again, the deriva-

tive is to be taken along the trajectories of (1.4.1).

Theorem 1.4.4 Exponential Stability Theorem

If There exists a function v (¢ ,x ), and strictly positive constants o, a5, a3, and §,

such that forall x € B, .t 20

alx P<v(t,x) Saylx P (1.4.33)
d
— v(.x@)) <0 (1.4.34)
dt (14.1)
t+d d
[ = v@.x@)|  d7 S—oylx@)P (1.4.35)
t ar (1.4.1)

Then  x(t) converges exponentially to 0.




Proof of Theorem 1.4.4

From (1.4.35)

vt x@)—v( +8.x( +8)) 2 (az/ ax) v(t.x()) (1.4.36)
for allz 20, so that
vt +8, x( +8) S(Q—a3/ o) v(e.x(2)) forallz 20  (1.4.37)
From (1.4.34)
vt x@E ) Sv(.x @) forallt, €[z,t +8] (1.4.38)

Choose for ¢ the sequence Zo, o+ 8.2+ 28.... sothat v(z.x(z)) is bounded by a stair-
case v(t g, x(ty)), v(to+8,x(tg+8)).... where the steps are related in geometric progres-

sion through (1.4.36). It follows that

v(t.x(@)) Smoe ™ TVv (0. x(ty) forallz 21,20  (1.4.39)
where
1 1 1
= = 1 1.4.40
T (1—013/0125 % -g n Zl_a:;/az; ( )
Similarly
xE)€me TV (1.4.41)
where
o, 1 . 1 1
=1_< I =__1 S 1.4.42
m lal 1— a3/ as a5 " 1—ay/ ay ( )
O




Chapter 2 Identification

2.1 Identification Problem

In this chapter, we review some identification methods for single-input single-output
(SISO) linear time invariant (LTI) systems. We concentrate our attention on recursive
identification methods, where the estimates of the parameters are updated in real-time,

thus leading naturally to adaptive control schemes in the following chapter.

Note that a polynomial in 5 is called monic if the coeflicient of the highest power in
s is 1, and Hurwitz if its roots lie in the open left-half plane. Rational transfer functions
are called stable if their denominator polynomial is Hurwitz, and minimum phase if their
numerator polynomial is Hurwitz. The relative degree of a transfer function is by
definition the difference between the degrees of the denominator and numerator polyno-
mials. A rational transfer function is called proper if its relative degree is at least O, and

strictly proper if its relative degree is at least 1.

We consider the identification problem of SISO LTI systems. given the following

assumptions.

Assumptions

(A1) Plant Assumptions

the plant is a SISO LTI system, described by a transfer function

y,(s) n,(s)
2ol =P(s)=k, Pl @.1.1)
r(s) d,(s)
where 7 (s ) and y , (s ) are the Laplace transforms of the input and output of the
plant respectively, n,(s ) and d,(s ) are monic, coprime polynomials of degrees

n and m Sn—1 respectively (m is unknown).




(A2) Reference Input Assumptions

the input r (.) is piecewise continuous, and bounded on R,.

The objective of the identifier is to obtain estimates of k, and of the coefficients of
the polynomials n ,(s) and d,(s) from measurements of the input r(z) and output

¥p (¢ ) only. Note that we do not assume that P is stable.

2.2 Identifier Structure

The identifier structure presented in this section is similar to that of Kreisselmeier

(1977). The transfer function P(s) can be explicitly written as

y (s) - o, s" 1+ - +o
Ve _p(s)= 2" A ! 2.2.1)
r(s) s"+B, s+ - +84

where the 2 n coefficients a; - - - a,, and B; - - - B, are unknown. This expression is a

parametrization of the unknown plant, i.e. a model in which only a finite number of
parameters are to be determined. For identification purposes, it is convenient to find an
expresssion which depends linearly on the unknown parameters. For example, the

expression
sy, (s)=(a, s" N o +a)r ()= (B, s" T - 4By, () (222)

is linear in the parameters o; and B;. However, it would require explicit differentiations
to be implemented. To avoid this problem, we introduce a monic n th order polynomial
denoted A(s ) =s™ + X, s" 1+ - -+ 4+ \;. This polynomial is assumed to be Hurwitz, but

is otherwise arbitrary. Then, using (2.1.1)

’X(s)_;’p(s)=kp ﬁp(s);(s)+(7\(s)—2p(s))31p(s) (22.3)
or, with (2.2.1)
- _a, PLALE SRR N A, =B)s" 1+ - (A —BD) -
y,(s)= YD) ris)+ YO y,(s) 22.4)

This expression is a new parametrization of the plant. Let
a'(s)=a, s" '+ - cay;=k, n,(s)
b (s)=, =B,)s" 1+ - - (A —BD=A()—d , (5) (2:2.5)

so that the new representation of the plant can be written




a'(s) ~

AG) (s)

5,()=86) 2 )+7’ ) 5 () (2.2.6)

The transfer function from » =y, is given by

Yo at(s)

x = 2.2.7
r(s)  As)=56"(s) ( )

and it is easy to verify that this transfer function is 2(s) when a’(s) and 3" (s) are
given by (2.2.5). Further, this choice is unique when n,(s) and d,(s) are coprime:
indeed, suppose that there existed a” (s )+ 8a(s ), 5" (s )+ 85 (s ), such that the transfer

function is still k,n,(s)/ d,(s). The following equation would then have to be

satisfied
8a(s) -z n,(s) =—P(s) (2.2.8)
856(s) P d,(s)

However, equation (2.2.8) has no solution since the degree of d pis n, and n pe d p are

coprime, while the degree of 85 is at most n — 1.

State-Space Realization

A state-space realization of the above representation can be found by choosing

A€ER" " b, €R" in controllable canonical form such that det (sI — A) =A(s). and

1
1 5
(SI - A)-l bX - ’X_(—s—). (2.2.9)
Sn'—l
In analogy with (2.2.5), define
a'l=(ay. @) 5=\ =B Ay — By) (2.2.10)
and the vectors w,(z ), w,2(z) e R"
w,,“’ = Awp(l) +b,r
w2 = Aw, D +b,y, (2.2.11)
with initial conditions w,(0), w,2)(0). In Laplace transforms
) P
wi(s)=(sI =N b, 7(s)
wDs)=(GI—N1byy,(s) (2.2.12)




With this notation, the description of the plant (2.2.6) becomes

¥,()=a""w D) +5" D) (2.2.13)

and, since the plant parameters are constant, the same expression is valid in the time

domain
v, @)= a T wP@)+5 T w @)= 0w, () (22.14)
where

9" :=(a"".5"") € R™ w, @ Y =W, V() w, P ()) e R™  (22.15)

Eqns (2.2.10)-(2.2.14) define a realization of the new parametrization. The vector

w

,» is the generalized state of the plant, and has dimension 2n . Therefore, the realization

of P(s) is not minimal, but the unobservable modes are those of A(s), and are all stable.

The vector 8" is a vector of unknown parameters related linearly to the original
plant parameters a;. B; by (2.2.10)-(2.2.15). Knowledge of a set of parameters is
equivalent to the knowledge of the other, and each corresponds to one of the (equivalent)
parametrizations. In the last form however, the plant output depends linearly on the
unknown parameters, so that standard identification algorithms can be used. This plant

parametrization is represented in figure 2.1.

Identifier Structure

The purpose of the identifier is to produce a recursive estimate 6(¢) of the nominal

parameter 6 . Sincer and ¥y, areavailable, we define the observer
wlW=AwD4p,r
w® = Aw@ 45,3y, (2.2.16)

to reconstruct the states of the plant. The initial conditions in (2.2.16) are arbitrary. We

also define the identifier signals
67(¢) = (aT(t).b7(z)) € R* wl () = wDT (@) w®(2)) € R*(2.2.17)

By (2.2.11), (2.2.16), the observer error w(t )— w, (¢ ) decays exponentially to zero, even
when the plant is unstable. We note therefore that the generalized state of the plant

w, (¢ ) is such that it can be reconstructed from available signals, without knowledge of
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the plant parameters.

The plant output can be written

y@)=0"wk) = () (2.2.18)

where the notation (€) is to remind one of the presence of an additive exponentially

decaying term
€@)=0""(w,(t)—w(t)) (2.2.19)

due to the initial conditions in the observer. We will first neglect the presence of the (€)

term, but later show that it does not affect the properties of the identifier.

In analogy with the expression of the plant output, the output of the identifier is

defined to be
yit)=07()w() €R (2.2.20)
We also define the parameter error
$(t):=60()—0" €R™” (2.2.21)
and the identifier error
e)t) =y, )=y, @)=¢"(d)w() (e) (2222)

These signals will be used by the identification algorithm, and are represented in figure

2.2.

2.3 Linear Error Equation and Identification Algorithms
Many identification algorithms (cf. Eykhoff (1974), Ljung and Soderstrom (1983))
rely on a linear expression of of the form obtained above, that is

y,@)=0"w() (2.3.1)

where y,(¢), w (¢) are known signals. and 8" is unknown. The vector w(¢) is usually
called the regressor vector. With the expression of y, (¢ ) is associated the standard linear

error equation

e ()= ()W) (2.3.2)
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We arbitrarily separated the identifier into an identifier structure and an
identification algorithm. The identifier structure constructs the regressor w and other sig-
nals, related by the identifier error equation. The identification algorithm is defined by a

differential equation, called the update law, of the form
0=¢ =F(y,e1.0.w) (2.3.3)

where F is a causal operator explicitly independent of 0" ., which defines the evolution of

the identifier parameter 0.

2.3.1 Gradient Algorithms

The update law
6=—ge,w g >0 (2.3.4)

defines the standard gradient algorithm. The right-hand side is proportional to the gra-

dient of the output error squared, viewed as a function of ¢. that is

—6%-(e12(¢))=2e1w (2.3.5)
This update law can thus be seen as a steepest descent method. The parameter g is a
fixed, strictly positive gain called the adaptation gain, and allows us to vary the rate of

adaptation of the parameters. The initial condition 0(0) is arbitrary, but can be chosen to

take any a priori knowledge of the plant parameters into account.
An alternative to this algorithm is the normalized gradient algorithm

b=—g 1" g.y >0 (2.3.6)

1+ywliw
where g and y are constants. This update law is equivalent to the previous update law,
with w replaced by w / Vi+yw! w in(2.3.2) and (2.3.4). The new regressor is thus a
normalized form of w. The right-hand side of the differential equation (2.3.6) is globally

Lipschitz in ¢ (using (2.3.2)), even when w is unbounded.

When the nominal parameter 8 is known a priori to lie in a set © € R?" (which we
will assume to be closed, convex, and delimited by a smooth boundary), it is useful to
modify the update law to take this information into account. For example, the normal-

ized gradient algorithm with projection is defined by
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. eyw
0=— R 0 € int(©)
& 1+yw' w "
e1w '
=Pri— 0 €90 237
T8 T 8 (2.37)

where int® and §© denote the interior and boundary of ©, and Pr(z ) denotes the projec-

tion of the vector z onto the hyperplane tangent to §© at 6.

The gradient algorithms, as well as the least-squares algorithms, can be used to iden-
tify the plant parameters with the identifier structure described in section 2.2. Using the

normalized gradient algorithm for example, the practical implementation is as follows.

Identifier - Practical Implementation
Assumptions
(A1)-(A2)
Data
n
Input
r(¢).y,(t)€ER
Out put
0(z).y.(t) €R
Internal Signals
w(t) €R” (wh(),w@() €R")
0(t)eR?>” (a(z).b(t)€ER")
y; (). e (t) €R
Initial conditions are arbitrary
Design Parameters
Choose
e A€ R™ b, € R" in controllable canonical form such that

det(sI — A) = A(s) is Hurwitz
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s g.y>0
Identifier Structure
w=AwD+b,r
W(2)=Aw(2)+bxy,,
07 =(a” .bT) estimates of (ary, -~ &, A1 —=B1. =" Ay —By)
wl = (w7, w@7)
yi=0Tw
e1=Yi =Y
Normalized Gradient Algorithm

e w

f=—g 10
§ 1+yw' w

2.3.2 Least-Squares Algorithms

Least-squares algorithms can be derived by several methods. An interesting
approach is to connect the parameter identification problem to the state estimation prob-
lem of a linear time varying system. The parameter 0" can be considered to be the unk-

nown state of the system
0°()=0 (2.3.8)
with output

Y, &)=wi ()0 (¢) (2.3.9)

Assuming that the right-hand sides of (2.3.8)-(2.3.9) are perturbed by zero-mean
white gaussian noises of spectral intensities Q € R?" X2* and r €R respectively. the

least-squares estimator is the well-known Kalman filter (Kalman and Bucy (1961))

é=—;—Pwe1=—g Pwe,

P=Q—éwaTP=Q—ngwTP 0.g >0 (2.3.10)
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Q and g are fixed design parameters of the algorithm. The update law for 6 is very
similar to the gradient update law, with the presence of the so-called correlation term
w e;. The matrix P is called the covariance matrix, and acts in the 8 update law as a
time-varying, directional adaptation gain. The covariance update law in (2.3.10) is called
the covariance propagation equation. The initial conditions are arbitrary, except that

P(0) >0. P(0) is usually chosen to reflect the confidence in the initial estimate 6(0).
In the identification literature, the least-squares algorithm referred to is usually the

algorithm with Q =0, since the parameter 6" is assumed to be constant. The covariance

propagation equation is then replaced by
P=—g Pwwl P e (P H=gww’ g >0 (2.3.11)
where g is a constant.

The new expression for P! shows that gt_ P! 20, so that P~} may grow without

bound. Then P will become arbitrarily small in some directions, and the adaptation of
the parameters in those directions becomes very slow. This so-called covariance wind-up
problem, can be prevented using the least-squares with forgetting factor algorithm, defined
by

P=—g (AP+PwwiP)

ie. (P VD=g(—APl+wwl) Ag >0 (2.3.12)

Another possible remedy is the covariance resetting, where P is reset to a predeter-

mined positive definite value, whenever Amin(P) falls under some threshold.

The normalized least-squares algorithm is defined (cf Goodwin and Mayne (1985))
by

6 = Pwe >0
=—g —————— ,
g 1+yw' Pw &y

WWT

1+ywl (P~ 1w

; P i =
Pemg it e P =g

W Pw (2.3.13)

Again g .y are fixed parameters, and P(0) >0. The same modifications can also be made

to avoid covariance windup.
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The least-squares algorithms are somewhat more complicated to implement, but are

found in practice to have faster convergence properties.

2.4 Properties of the Identification Algorithms - Identifier Stability

In this section, we establish properties of the gradient algorithm
¢ =0=—gew g >0 (2.4.1)

and the normalized gradient algorithm

. . ey w
=60 = — ,y >0 (2.4.2)
¢ ¢ 1+ 'yw7 w gy
assuming the linear error equation
e1=¢’ w (2.4.3)

Theorems 2.4.1-2.4.4 establish general properties of the gradient algorithms, and
concern solutions of the differential equations (2.4.1)-(2.4.2), with e, defined by (2.4.3).
The properties do not require that the vector w originates from the identifier described in
section 2.2, but only require that w be a piecewise continuous function of time, to
guarantee the existence of the solutions. The theorems are also valid for vectors w of any

dimension, not necessarily even.

Theorem 2.4.1 Linear Error Equation with Gradient Algorithm

Consider the linear error equation (2.4.3), together with the gradient algorithm (2.4.1).

Let w : R, »R?" be piecewise continuous.

Then (a) e1€L2
(b) ¢€L,

Proof of Theorem 2.4.1

The differential equation describing ¢ is d=—gw wli¢. Let v =¢’ ¢ so that
v =—2g (¢Tw)?=—2g e} 0. Hence, 0 v (z) <v(0) forallt 20,s0 thatv.$ € L,

Since v is a positive, monotonically decreasing function, the limit v (o0) is well-

defined, and —1/ 2g f\} dt =fe12 dt <oo,ie.e; €L, O
() ()
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Theorem 2.4.2 Linear Error Equation with Normalized Gradient Algorithm

Consider the linear error equation (2.4.3), together with the normalized gradient algo-

rithm (2.4.2). Let w : R, —=R?" be piecewise continuous.

e
Then (a) -——_—_—1‘____— eL2 nLoo

VitywTw
() ¢€L,.P €EL,NL,

= i NL
= _____.¢”

(C) B 1 ; I . ﬂ € L2 oo
Proof of Theorem 2.4.2

Let v=¢7¢, so that v =—2g e/ 1+yw/w <O. Hence, 0<v(t)<v(0) for all
¢t 20, so that v.¢.e,/ Y1+yw/w ,BE€L, . Using the fact that x/ 1+x €1 for all
x 20, weget that 1 |<(g/ y)lpland d € L,

Since v is a positive, monotonically decreasing function, the limit v (o0) is well-
defined, and ——f& dt <co implies that e,/ Vi +yw’w €L,  Note that
0

B=(ey/ V1+ywiw) (V1+ywTw / 141w, 1,). where the first term is in L, and the
second in L. so that B € L,. Sinceldp P <(g? y)(ef/ 1+ywiw). ¢ €L, D

Effect of Initial Conditions and Projection
In the derivation of the linear error equation in section 2.2, we found exponentially
decaying terms, such that (2.4.3) is replaced by
e@)=¢" @)w() +e) (2.4.4)
where €(z ) is an exponentially decaying term due to the initial conditions in the observer.

It may also be useful, or necessary, to replace the gradient algorithms by the algorithms
with projection. The following theorem asserts that these modifications do not affect the

previous results.




30

Theorem 2.4.3 Effect of initial conditions and projection

If the linear error equation (2.4.3) is replaced by (2.4.4), and/or the gradient algo-

rithms are replaced by the gradient algorithms with projection,

Then  the conclusions of theorems 2.4.1-2.4.2 are valid.

Proof of Theorem 2.4.3

(a) Effect of initial conditions

€2(7)d 7. Note that the addi-

~5~38

Modify the Lyapunov function to v =¢’ ¢ + -'g—

tional term is bounded, and tends to zero as ¢ tends to infinity. Consider first the gra-

dient algorithm (2.4.1), so that

v=—2g(¢Tw)—2¢ (d)Tw)e—.g_ €
=—2g (¢Tw+ _;i 2 <o (2.4.5)

The proof can be completed as in theorem 2.4.1, noting that € € L, NL_,. and similarly

for theorem 2.4.2.
{(b) Effect of projection

Denote by z the right-hand side of the update law (2.4.1) or (2.4.2). When 8 € 30,
z is replaced by Pr(z) in the update law. Note that it is sufficient to prove that the
derivative of the Lyapunov function on the boundary is less than or equal to its value
with the original differential equation. Therefore. denote by z, the component of z per-
pendicular to the tangent plane at 6, so that z =Pr(z)+ z,. Since 8" €0 and 8 is con-
vex, (8 —6°).z,=¢7z,20. Using the Lyapunov function v =@’ ¢, we find that, for
the original differential equation v =2¢’ z. For the differential equation with projection.
vp =207 Pr(z) =v —2¢7 z, so that vp SV, ie. the projection can only improve the

convergence of the algorithm. The proof can again be completed as before. [
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Least-Squares Algorithms
We now turn to the normalized LS algorithm with covariance resetting, defined by

the following update law

= 6=—g ﬁ%:—::—;—w— g.vy>0 (2.4.6)
and a discontinuous covariance propagation
T . T
P==g l—f% e (PT)=¢ 1+ yw”;(v;’_l)_l w
PO)=P(, )=kol >0
where ¢, ={t IAgyin(P () Sk, <ky} (2.4.7)

This update law has similar properties as the normalized gradient update law, as stated in

the following theorem.

Theorem 2.4.4 Linear Error Equation with Normalized LS Algorithm and Covari-
ance Resetting
Consider the linear error equation (2.4.3), together with the normalized LS algorithm
with covariance resetting (2.4.6)-(2.4.7).
Let w : R, —=R?" be piecewise continuous.

€
Vityw! Pw
(b) €L, ¢ €L, NL,

Then (a) €L,NL,

- $w
() B THiw T €L,NL,

Proof of Theorem 2.4.4

The covariance matrix P is a discontinuous function of time. Between discontinui-
ties, the evolution is described by the differential equation in (2.4.7). We note that
d/ dt P! 20, so that P~Y¢,)— P ¢t,) 20 for all ¢; 2t; 20 between covariance reset-

tings. At the resettings, P~}(z,*) = k1. so that P7(¢) 2P Wty)=kgll, forallt 20.
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On the other hand, due to the resetting. P(¢) 2k,I for all? 20, so that
kol 2P(t) 2k 1 k7Y I 2PTHe) 2kt | (2.4.8)
where we used results of section 1.3.
Note that the interval between resettings is bounded below, since

lw P

P~ <
(PN SE T PIw P

s% 1PN (2.4.9)

where we used the fact that x/ 1+x <1 for all x 20. Thus, the differential equation
governing P! is globally Lipschitz. It also follows that {z, } is a set of measure zero.

Let now v =¢? P71¢, sothat v = —¢g e’/ 1+ywl Pw SO between resettings. At
the points of discontinuity of P, v ¢H—vi)= TP~ P, ) <0. It fol-

lows that 0 <v(¢) <v(0) for all ¢ 20, and, from the bounds on P, we deduce that

qb.d).BELw Also —fv dt <oo, so that e,/ Jl+‘waPw € L,. Note that
0

' w - o'w VE +yw  Pw (2.4.10)
T+tw e, Ji+yw Pw 1+iw, b,
é = ‘1 Pw (2.4.11)

—&
J1+waPw J1+waPw
where the first terms in the right-hand sides of (2.4.10)-(2.4.11) are in L. and the last

terms are bounded. The conclusions follow from this observation. O

Comments

a) Theorems 2.4.1-2.4.4 state general properties of differential equations arising from
the identification algorithms described in section 2.3. The theorems can be directly
applied to the identifier with the structure described in section 2.2, and the results inter-

preted in terms of the parameter error ¢, and the identifier error e;.

b) The conclusions of theorems 2.4.1-2.4.4 may appear somewhat weak, since none
of the errors involved actually converge to zero. The reader should note however that the
conclusions are valid under very general conditions regarding the input signal w. In par-

ticular, no assumption is made on the boundedness, or on the differentiability of w.
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¢) The conclusions of theorem 2.4.2 can be interpreted in the following way. The

function B(z ) is defined by

Hw@) o eld)

(2.4.12)
14+ Iw, ¥ 1+iw, 1

Bz) =

so that
le (=17 Iw = B)lw, I+ B() (2.4.13)

The purpose of the identification algorithms is to reduce the parameter error ¢ to zero, or
at least the error e;. In (2.4.12), B can be interpreted as a relative error, i.e. e; normalized
by Iw, I,. In (2.4.13), B can be interpreted as the gain from w to ¢’ w. From theorem

2.4.2, this gain is guaranteed to become small as ¢ —~coin an L, sense.

Stability of the Identifier

We are not guaranteed the convergence of the parameter error ¢ to zero. Since only
one output y, is measured to determine a vector of unknown parameters, some additional
condition on the signal w (see section 2.5) must be satisfied in order to guarantee parame-
ter convergence. In fact, we are not even guaranteed the convergence of the identifier

error e, 1o zero. This can be obtained under the following additional assumption

(A3) Bounded Output Assumption
Assume that the plant is either stable, or located in a control loop such that r

and y, are bounded.

Theorem 2.4.5 Stability of the Identifier

Consider the identification problem, with (A1)-(A3), the identifier structure of section
2.2, and the gradient algorithms (2.4.1), (2.4.2), or the normalized LS algorithm with

covariance resetting (2.4.6)-(2.4.7).

Then  The output errore; € L,NL _.e;—0as¢ —oo, and ¢.¢ €L,.
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Proof of Theorem 2.4.5

Since  and y, are bounded, it follows from (2.2.16)-(2.2.17), and the stability of
A, that w and w are bounded. By theorems 2.4.1 - 2.4.4, ¢ and ¢ are bounded so that e,
and é, are bounded. Also e; € L,, and by corollary 1.2.2, e.e1€L,,and e, €L,

implies that e; 0 as¢ —oo. O

Regular Signals

Theorem 2.4.5 relies on the boundedness of w,w, guaranteed by (A3). It is of
interest to relax this condition, and to replace it by a weaker condition. We will present
such a result using a regularity condition on the regressor w. This condition guarantees a
certain degree of smoothness of the signal w. In discrete time, such a condition is not
necessary, because it is automatically verified. The definition presented here corresponds

to a definition in Narendra, Lin, and Valavani (1980).

Definition Regular Signals
Letz :R, —R",suchthatz.z €L,.

z is called regular if, for some k ;, k 20

2@ )<k Iz o+ ks, for allz 20 (2.4.14)

The class of regular signals includes bounded signals with bounded derivatives, but
also unbounded signals (e.g. e’ ). It typically excludes signals with "increasing frequency”
such as sin(e’). We will also derive some properties of regular signals in chapter 3. Note
that it will be sufficient for (2.4.14) to hold everywhere except on a set of measure zero.
Therefore, piecewise differentiable signals can also be considered.

This definition allows us to state the following theorem, extending the properties

derived in theorems 2.4.2-2.4.4 to the case when w is regular.

Theorem 2.4.6
Let ¢, w:R, »R?" besuch thatw.,w €L_,,and .0 €L_.
If (a) w is regular

- _ ¢
%) B THiw L €L,
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Then B.B€L_,and B—0ast—oo.

Proof of Theorem 2.4.6

Clearly, B € L. and since B.B € L and B € L, implies that B—0 as ¢ — oo (corollary
1.2.2), we are left to show that B€ L,

‘We have that

w (/] dtliw )

2.4.15
1+Ilw, | il-le,Hm 1+1w, L ( )

|B|<l¢f

1+1w, i,

The first and second terms are bounded, since ¢, ¢ € L. and w is regular. On the other

hand

d
ld llw,llml la— T\Ilw(’r)l|
d d
£ < 4.16
\l__dt Iw(t)ll\‘dt w(t)I (2.4.16)

The regularity assumption then implies that the last term in (2.4.15) is bounded, and

hence B €L

Stability of the Identifier with Unstable Plant

Theorem 2.4.6 shows that when w is possibly unbounded, but nevertheless satisfies
the regularity condition, the relative error e;/ 1 +1Iw,l, or gain from w = ¢’ w tends to

zero as t —oco.

The conclusions of theorem 2.4.6 are useful in proving stability in adaptive control,
where the boundedness of the regressor w is not guaranteed a priori. In the identification
problem, we are now allowed to consider the case of an unstable plant with bounded

input, i.e. to relax assumption (A3).

Theorem 2.4.7 Stability of the Identifier - Unstable Plant

Consider the identification problem with (A1)-(A2), the identifier structure of section 2.2,
and the gradient algorithms (2.4.1), (2.4.2), or the normalized LS with covariance reset-

ting (2.4.6)-(2.4.7).
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_ ¢TW .
Then B T+w T €L,NL_.B—0ast —oco.,and . ¢ €L, .
Proof of Theorem 2.4.7

It suffices to show that w is regular, to apply theorem 2.4.4 followed by theorem
2.4.6. Combining (2.2.16) - (2.2.18), it follows that

. A 0 by
)= w()+ t 2.4.17
W( ) b)\ad b)‘b*l’ ( ) 0 r( ) ( )

Since 7 is bounded by (A2), (2.4.17) shows that w is regular. [

2.5 Persistent Excitation and Exponential Parameter Convergence

In the previous section, we derived results on the stability of the identifiers, and on

T
the convergence of the output error e; = 07w —0"w =¢"w to zero. We are now con-
cerned with the convergence of the parameter 6 to its nominal value 07, i.e. the conver-

gence of the parameter error ¢ to zero.

The convergence of the identification algorithms is related to the asymptotic stability

of the differential equation

d@)=—gw(@)wi(t)e(e) g >0 (2.5.1)

which is of the form
b ()=—A@)P() (2.52)

where A (z) € R**" ig a positive semidefinite matrix for all £. Using the Lyapunov
functionv =@’ ¢, v =—¢7 (A + AT)$. When A(z) is uniformly positive definite, with
Apin(A + AT) 22 @, then v S—2a v, which implies that system (2.5.2) is exponentially
stable with rate a. For the original differential equation (2.5.1), such is never the case,
however, since at any instant the matrix w (¢ ) w7 (z) is of rank 1. In fact, any vector ¢
perpendicular to w lies in the null space of w w’, and results in ¢ =0. However, since
w varies with time, we can expect ¢ to still converge to 0 if w completely spans R"” ast

varies. This leads naturally to the following definition
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Definition Persistency of Excitation (PE)

A vector z: R, =R" is persistently exciting if there exist a;, a5y, 8 >0 such that

tgt+d
al > [ 2(1)27(1)d1 2041 for all £ 20 (2.5.3)

9
Although the matrix z(7) zT(7) is singular for all 7, the PE condition requires that
z rotates sufficiently in space that the integral of the matrix z(1)z7 (1) is uniformly

positive definite over any interval of some length .
The condition has another interpretation, by re-expressing the PE condition in scalar
form

tg+ 8
az?f GCET(TM)x)Pdr 2 forallzy, 20, ixI=1 (2.5.4)

o
which appears as a condition on the energy of z in all directions.

With this, we establish the following convergence theorem. For consistency, the

dimension of w is assumed to be 2n, but it is in fact arbitrary.

Theorem 2.5.1 PE and Exponential Stability
Let w: R, = R?" be piecewise continuous.
If w is PE

Then  (2.5.1) is globally exponentially stable

The proof of theorem 2.5.1 can be found in various places in the literature (Sondhi
and Mitra (1976). Morgan and Narendra (1977a&b). Anderson (1977), Kreisselmeier
(1977)). The proof by Anderson has the advantage of leading to interesting interpreta-
tions, while those by Sondhi and Mitra, Kreisselmeier give estimates of the convergence
rates. We will present here a combined proof. Before proving the theorem, it is suitable

to recall a few definitions and results.
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Uniform Complete Observability - Definition and Results

Consider a linear time-varying system [A, C] defined by
x(@)=A@)x(@)
y@)=C(x() (2.5.5)

wherex € R”, A €R"™ ,C €R™,andy €R".

Definition Uniform Complete Observability (UCO)

The system [A,C] is uniformly completely observable if there exist positive constants

B;.8,.8, and a positive function B3 € L, . such that, forallz,t, 20
Bo,I ZN(toto+8) 28,1 (2.5.6)
Nzt SB3(1e —1241) 2.5.7)

where ®(¢.2,) is the transition matrix associated with A (z), and N (to.to+8) is the

observability grammian

Lo+

N(tgto+8)= f ST (t,to)CT)C()P(t,ty)dt (2.5.8)
1o
Note that condition (2.5.6) can be rewritten as

to+d

Bolx (22 [ 1C()x ()P de 2By1x (el forallx(te) ER™ 1020 (2.5.9)
to

where x (z ) is the solution of (2.5.5) starting at x ().

Similarly, condition (2.5.7) can be written

x(ENEBslt —tDIx (o)  forallx(zy) ER™ 2.2 20 (2.5.10)

The following lemma is a result by Anderson and Moore (1969), stating that the
UCO of the system [A.C] is equivalent to the UCO of the system with output injection
[A+KC.C]. The proof is given in the appendix. It is an alternate proof to the original
proof, and relates the eigenvalues of the associated observability grammians, thereby
leading to estimates of the convergence rates in the proof of theorem 2.5.1 given after-

wards.
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Lemma 2.5.2 Uniform Complete Observability under Output Injection

Assume that, for all 8 >0, there exists k 5 20 such that, forall ¢, 20
1g+d
[k (@)Pdr <ks (2.5.11)
o
Then  The system [AC] is uniformly completely observable if and only if the system
[A+KC.C] is uniformly completely observable.
Moreover, if the system [A,C] satisfies inequalities (2.5.6) and (2.5.7) with B,. B2,

8. and B;(.). then the system [A+KC.C] satisfies these inequalities with identical

8. and
=81/ (1+ kB, ) (2.5.12)
By = Brexp (ksf2) (2.5.13)
Byt =g =Byt =t D+ sup  Ba(Im) (kiy (141 0 DBV (2514)

Proof of Lemma 2.5.2 in appendix.

With these preliminaries, we are now ready to return to the proof of theorem 2.5.1.
The idea of the proof of exponential stability is to note that the PE condition is a UCO

condition on the system

0°(t)=0

y@)=wl()0" () (2.5.15)
which is the system described earlier in the context of the least-squares identification
algorithms (cf (2.3.8)-(2.3.9)). We recall that the identification problem is equivalent to
the state estimation problem for the system described by (2.5.15). We now find that the

persistency of excitation condition, which turns out to be an identifiability condition, is

equivalent to a uniform complete observability condition on system (2.5.15).

Proof of Theorem 2.5.1

Let v =¢7 ¢. so that v = —2g (w7 ¢)? <0 along the trajectories of (2.5.1). For all
to 20
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1g+d tg+d
f vdr=-2g f wT (D) p(r))?d 7 (2.5.16)

By the PE assumption, the system [0. wl (¢)] is UCO. Under output injection with
K(t)=—g w(t). the system becomes [—g w(z Ywl (), wl (¢)] with

to+d g+

kg= flgw(*r)lzd'r=g2tr(f w@wl(t)dr)$2n g?8,  (2517)

where 2 n is the dimension of w. By lemma 2.5.2, the system with output injection is

UCO. Therefore. for all £, 20

tg+d
0 . _28 B1

< f |2 2.5.18
.!; vdr (1 +\/2n 2 32)2 ¢(t0) ( )

Exponential convergence then follows from theorem 1.4.4.

The constants o and m are related to the PE constants a;. . 8 (equal here to Bj,

B,. 8), and the adaptation gain g through

1 1 1 12
= 2.5.1
o 55 In 27 o, m ) 774, ( 9)
(1+V2n g an)? (1+V2n g a,)’

Exponential Convergence of the Identifier

Theorem 2.5.1 can be applied to the identification problem as follows.

Theorem 2.5.3 Exponential Convergence of the Identifier

Consider the identification problem with assumptions (A1)-(A3). the identifier structure
of section 2.2. and the gradient algorithms (2.4.1) or (2.4.2), or the normalized LS algo-
rithm with covariance resetting (2.4.6)-(2.4.7).

If w is PE

Then  the identifier parameter 6 converges to the nominal parameter 0" exponentially

fast.
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Proof of Theorem 2.5.3

This theorem follows directly from theorem 2.5.1. Note that when w is bounded, w
PE is equivalent to w/ V1 +ywlw PE, so that the exponential convergence is guaranteed
for both gradient update laws. The bounds on P obtained in the proof of theorem 2.4.4

allow to extend the proof of exponential convergence to the LS algorithm. O

Exponential Convergence Rates

Estimates of the convergence rates can be found from the results in the proof of
theorem 2.5.1. For the standard gradient algorithm (2.4.1) for example, the convergence
rate is as given in (2.5.19). The influence of some design parameters can be studied with
this relationship. The constants «;, a, 8 depend in a complex manner on the input signal
r and on the plant being identified. However, if r is multiplied by 2, then a;, a; are
multiplied by 4. In the limiting case when the adaptation gain g or the reference input r
are made small, the rate of convergence @ =g o)/ 8. In this case, the convergence rate is
proportional to the adaptation gain g. and to the lower bound in the PE condition.
Through the PE condition, it is also proportional to the square of the amplitude of the
reference input r. This result will be found again in chapter 5, using averaging tech-

niques.

When the adaptation gain and reference input get sufficiently large, this approxima-
tion is not valid anymore, and (2.5.19) shows that above some level, the convergence rate

estimate saturates, and even decreases (cf. Sondhi and Mitra (1976)).

It is also possible to show that the presence of the exponentially decaying terms due
to initial conditions in the observer do not affect the exponential stability of the system.
The rate of convergence will however be as found previously only if the rate of dacay of
the transients is faster than the rate of convergence of the algorithm (cf. Kreisselmeier

(1977)).

2.6 Strictly Positive Real Error Equation and Identification Algorithms

In previous sections, we derived properties of identification algorithms for the linear

error equation

e ()= Iw () (2.6.1)
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A more general error equation encountered in identification and adaptive control problems

is the strictly positive real (SPR) error equation
e (t)=M (@ (tIw()) (2.6.2)

where M is a stable, strictly positive real transfer function. For uniformity with previ-
ous discussions, we assume that w:R, —R?" | but the dimension of w is in fact com-

pletely arbitrary.

Definition Strictly Positive Real Function (SPR)

A rational function M (s) of the complex variable s =0+ jw is positive real (PR), if
M (o) €R, Re(M(5)) >0 for >0, and Re M (jw) 20, for all w 20. It is strictly positive
real (SPR) if, for some € >0, M (s —€) is PR.

SPR transfer functions form a rather restricted class. In particular, an SPR transfer
function must be minimum phase, and its phase may never exceed 90°. An important
lemma concerning SPR transfer functions is the Kalman-Yacubovitch-Popov lemma, of

which a form is given below.

Lemma 2.6.1 Minimal Realization of an SPR Transfer Function

Let [A,b.c7] be a minimal realization of a strictly proper, stable, rational transfer func-

tion M (s ). Then, the following statements are equivalent

(a) M (s) is SPR

(b) there exist symmetric positive definite matrices . Q . such that
PA+ATP=-Q

Pb=c (2.6.3)

Proof of Lemma 2.6.1 cf. Anderson and Vongpanitlerd (1973).

SPR Error Equation with Gradient Algorithm

A remarkable fact about SPR transfer functions is that the gradient update law
d)=0)=—ge,(t)w(t) g >0 (2.6.4)

has properties similar to the SPR error equation (2.6.2), as with the linear error equation
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(2.6.1).

Using lemma 2.6.1, a state-space realization of M(s) with state e,, can be obtained

so that
6,t)=Ae,(t)+bd" (tIw(t)
e (t)=c"(t)e,(t)

d()=—gcle,t)w(t) g >0 (2.6.5)

Theorem 2.6.2 SPR Error Equation with Gradient Algorithm

Let w:R, = R?" be piecewise continuous. Consider the SPR error equation (2.6.2) with
M(s) SPR, together with the gradient update law (2.6.4). Equivalently. consider the

state-space realization (2.6.5) where [A b .c7] satisfy the conditions of lemma 2.6.1.
Then
(a) e,.¢1 €L,

(b) em'el'¢€Loo

Proof of Theorem 2.6.2

Let P, Q beasin lemma 2.6.1, andv =g el Pe, +¢’¢. Along the trajectories of
(2.6.5)

v=gelPAe,+g elPbd'w +gelATPe, +g d'wbTPe, —2g cle, ¢'w
=—gelQe, SO (2.6.6)

where we used (2.6.3). The conclusions follow as in theorem 2.4.1, since P and Q are

positive definite. O

Modified SPR Error Equation

The normalized gradient update law presented for the linear error equation is not
usually applied to the SPR error equation. Instead, a modified SPR error equation is con-

sidered

e t)=M@T)Iw@)—ywi@)wlt)e,£)) y>0 (2.6.7)
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where ¥ is a constant. The same gradient algorithm is applied to this error equation, so

that in state-space form
6, (t)=Ae,(t)+b(@" (¢t w)—ywl @)w(t)cle,(t )
e (t)=cle,(t)

d()=—g cle, (tI)w(t) g.y>0 (2.6.8)

Theorem 2.6.3 Modified SPR Error Equation with Gradient Algorithm

Let w:R, = R?® be piecewise continuous. Consider the modified SPR error equation
(2.6.7) with M(s) SPR, together with the gradient update law (2.6.4). Equivalently,
consider the state-space realization (2.6.8), where [A b cT] satisfy the conditions of

lemma 2.6.1.
Then
(a) em'elr¢ ELZ

(b) en.e1, O €L,

Proof of Theorem 2.6.3

Let P, Q be as in lemma 2.6.1, and v =¢ efPe, + ¢’ ¢. Along the trajectories of
(2.6.8)

v=—gelQe,—2gylew) (ew) SO (2.6.9)

Again, it follows that e,. e;. ¢ are bounded, and e, €; € L,. Moreover, it also follows

now that e;w € L,, sothat ¢ € L,. O

Exponential Convergence of the Gradient Algorithms with SPR Error Equations

As stated in the following theorem, the gradient algorithm is also exponentially con-

vergent with the SPR error equations, under the PE condition.
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Theorem 2.6.4 Exponential Convergence of the Gradient Algorithms with SPR

Error Equations
Let w:R, »R?" . Let [A.b,c”]satisfy the conditions of lemma 2.6.1.
If w isPE,andw,w €L

Then (2.6.5),(2.6.8) are globally exponentially stable.

The proof given hereafter is similar to the proof by Anderson (1977) (with some
differences however). The main condition for exponential convergence is the PE condition,
as required previously. The additional boundedness requirement on w guarantees that PE
is not lost through the transfer function M (cf. lemma 2.6.6 hereafter). It is sufficient
that the boundedness conditions hold almost everywhere, so that piecewise differentiable

signals may be considered.

Auxiliary Lemmas on PE Signals

The following auxiliary lemmas will be useful in proving the theorem. Note that
the sum of two PE signals is not necessarily PE. On the other hand, an L signal is neces-
sarily not PE. Lemma 2.6.5 asserts that PE is not altered by the addition of a signal
belonging to L,. In particular, this implies that terms due to initial conditions do not
affect PE. Again, we assume the dimension of the vectors to be 2n . for uniformity. but

the dimension is in fact arbitrary.

Lemma 2.6.5 PE and L, Signals
Let w.e : R, = R?" be piecewise continuous.
If w is PE

e €L,

Then w +e is PE.

Proof of Lemma 2.6.5 in appendix.

Lemma 2.6.6 shows that PE is not lost if the signal is filtered by a stable. minimum

phase transfer function, provided that the signal is sufficiently smooth.
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Lemma 2.6.6 PE Through LTI Systems
Let w:R, —=R?" .

If w isPE,and w.w €L

A is a stable, minimum phase, rational transfer function
Then H(w) isPE.

Proof of Lemma 2.6.6 in appendix.

We now prove theorem 2.6.4.

Proof of Theorem 2.6.4

As previously, let v = ¢ el P e, + ¢’ ¢. so that for both SPR error equations

1g+d tg+d N ~(Q) tg+d
[vdar<—g [elQendr s—g_ll“‘_“l,z_ [ etdr<o (26.10)
g 1o c 14

By theorem 1.4.4, exponential convergence will be guaranteed if, for some a3 >0

tg+d

[ et 2o len o) 1?+ 19(20)1) (2.6.11)

To
for all to. e, (o). P20).
Derivation of (2.6.11)
This condition can be interpreted as a UCO condition on the system
é,=Ae,+ bop'w
d=—gcle,w
e;=cle, (2.6.12)

An additional term —byw’w c’e,, is added in the differential equation governing €, in
the case of the modified SPR error equation. Using lemma 2.5.2 about UCO under output

injection, we find that inequality (2.6.11) will be satisfied if the following system
én,=Ae, +bdp'w
¢=0

e;=c’e, (2.6.13)
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is UCOQ. For this, we let

10 -
K_lgW] or K=

b Ty
Yg"w ‘ (2.6.14)

for the basic SPR, or modified SPR error equations respectively. The condition on K in
lemma 2.5.2 is satisfied, since w is bounded.

We are thus left to show that system (2.6.13) is UCO, i.e. that

t
el(t ):CTeA(,-Io)em(to)+ fCT eA(t_T)b WT(T)d’T ¢(t0)

Ig

= x40t )+ x,(2)

(2.6.15)
satisfies, for some B;. 8,.8 >0

tg+d

Bo(1e,(te)!2+ 1 p(ty)12) 2 f e2(r)dT 2B, e, (t) 1%+ 1 p(t0)17)(2.6.16)
for all tq, e, (z). $(z,).

Derivation of (2.6.16)

By assumption, w is PE, and w. w €L,
that, for all z, 20, the signal

Therefore, using lemma 2.6.6, we have

4
wy (t)=cheA(’_T)b w(r)dT
1

[

(2.6.17)
is PE. This means that, for some o, a3, 0 >0

ty+o

a, 1¢(t)12 2 [ x3(1)d7 2oy 1 ¢(to)1? (2.6.18)
LS
for all £, 2t 20, and ¢(z o).

On the other hand, since A is stable, there exist y;. y> >0, such that

+
358

Ig o

x2(@)d 7T Sy, | e, (t)12e 277
Y

(2.6.19)
for all to. e,(¢o). and an arbitrary integer m >0 to be defined later. Since [A ellis

observable, there exists y3(m @) >0, with y3(m 0) increasing with m o, such that
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tqg+mo
[ x2(@)dr 2y;(m 0) le,(t0)1? (2.6.20)
o

for all ¢, e, (o). and m >0.

Let 7 >0 be another integer to be defined, and let = (m +n )o. Using the triangle

inequality
1g+d tg+mo tgtma 1g+d 1o+
fe{"(r)dv'? f xf(r)dT— f xF(r)dT+ f xZ(r)d 71— f xZ(r)dT
tg to ty totma to+mc

2 yy(m o) le, (o) P — mayl@(to) P
+rnagldlte)P—yie 2" le,(to)P (2.6.21)
Let m be large enough to get
yam @) —yre 77 Zys(m o)/ 2 (2.6.22)
and n sufficiently large to obtain
no;—mayp 20y (2.6.23)
Further, define
B, = min (o, y3(m o)/ 2) (2.6.24)

The lower inequality in (2.6.16) follows from (2.6.21), with B; as defined, while the

upper inequality is easily found to be valid with

B, = max(y,. (m +n o) (2.6.25)

Comments

a) Although the proof of theorem 2.6.4 is somewhat long and tedious. it has some
interesting features. First, it relies on the same basic idea as the proof of exponential con-
vergence for the linear error equation (cf. theorem 2.5.1). It interprets the condition for
exponential convergence as a uniform complete observability condition. Then, it uses
lemma 2.5.2 concerning UCO under output injection to transform the UCO condition to a
UCO condition on a similar system, but where the vector ¢ is constant (cf. (2.6.13)). The

UCO condition leads then to a PE condition on a vector w; , which is a filtered version of
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w, through the LTI system M (s ).

b) The steps of the proof can be followed to obtain guaranteed rates of exponential
convergence. Although such rates would be useful to the designer, the expression one
obtains is quite complex, and examination of the proof leaves little hope that the estimate
would be tight. A more successful approach is found in chapter 4, using averaging tech-

niques.

2.7 Conclusions

In this chapter, we derived a simple identification scheme for SISO LTI plants. The
scheme involved a generic linear error equation, relating the identifier error, the regressor,
and the parameter error. Several gradient and least-squares algorithms were reviewed,
and common properties were established, that are valid under general conditions. It was
shown that for any of these algorithms, and provided that the regressor was a bounded
function of time, the identifier error converged to zero as ¢ approached infinity. The
parameter error was also guaranteed to remain bounded. When the regressor was not
bounded, but satisfied a regularity condition, then it was shown that a normalized error

still converged to zero.

The exponential convergence of the parameter error to its nominal value followed
from a persistency of excitation condition on the regressor. Guaranteed rates of exponen-
tial convergence were also obtained, and showed the influence of various design parame-
ters. In particular, the reference input was found to be a dominant factor influencing the

parameter convergence.

The stability and convergence properties were further extended to strictly positive
real error equations. Although more complex to analyze, the SPR error equation was
found to have similar stability and convergence properties. In particular, PE appeared as

a fundamental condition to guarantee exponential parameter convergence.

Most results derived in this chapter are known, but scattered in the literature. We
presented here these results in a unified framework, and established the basis for subse-

quent developments.
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Chapter 3 Adaptive Control

3.1 Model Reference Adaptive Control Problem

The motivation for adaptive control arises from applications where plant parameters
are unknown, or vary with time to a sufficient degree that robust control is not satisfac-
tory. Initial interest appears to have been concentrated on applications to advanced
aerospace vehicles, which experience substantial changes in dynamical behavior as altitude
and velocity are varied. Current and potential applications span a large class of problems,

including process control, robotics, and others.

Model reference adaptive control consists in designing an adaptive controller such
that the behavior of the controlled plant remains close to the behavior of a desirable
model, despite uncertainties or variations in the plant parameters. More formally, a
reference model M is given, with input r(¢) and output y,(z). The unknown plant P
has ‘input « (¢ ) and output y, (¢ ). The control objective is to design u(¢) such that y, (¢)
asymptotically tracks y,(¢), with all generated signals remaining bounded. In this
chapter, we consider the problem of attaining this objective under the following assump-

tions.

Assumptions

(A1)  Plant Assumptions

the plant is a SISO LTI system, described by a transfer function

y,(s) _ _on,(s)
e Tk d,(s) R

where n,(s ). d ,(s) are monic. coprime polynomials of degree m and n respec-
tively. The plant is strictly proper, and minimum phase. The sign of the so-
called high-frequency gain k, is known, and without loss of generality, we will

assume k,, >0.
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(A2) Reference Model Assumptions
The reference model is described by
=M(s)=ky 3.1.2
=53 (s) 70 (3.1.2)

where n (s ), d ,,(s ) are monic, coprime polynomials of degree m and n respec-
tively (i.e. the same degrees as the corresponding plant polynomials). The refer-

ence model is stable, minimum phase, and k,, > 0.

(A3) Reference Input Assumptions

The reference input r () is piecewise continuous, and bounded on R,.

Note that P(s) is assumed to be minimum phase, but is not assumed to be stable.

3.2 Controller Structure

To achieve the control objective, we consider the controller structure shown in figure

3.1. By inspection of the figure, we see that

_ c(s) d(s)
u—c0r+7x(s) (u)+7)‘\(s) (v,) 3.2.1)

where ¢, is a scalar, ¢(s), d (s), and A(s) are polynomials of degrees n—2, n—1, and

n—1 respectively. From (3.2.1)

~

A d
u = = (cor + * v, )) (3.2.2)

which is shown in figure 3.2. Since

~

n
¥, =k, -;—”—(u) (3.2.3)
14

the transfer function fromr to y, is

~

Yp cokp‘)\ﬁp

= ) - (3.2.4)
r O\-—c)dp-—kpnpd

Note that the derivation of (3.2.4) relies on the cancellation of polynomials A(s).
Physically, this would correspond to the exact cancellation of modes of ¢(s)/ A(s) and
d(s)/ N(s). For numerical considerations, we will therefore require that A(s) is a

Hurwitz polynomial.
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The following proposition indicates that the controller structure is adequate to
achieve the control objective, i.e. that it is possible to make the transfer function from r
10 y, equal to M(s). For this, it is clear from (3.2.4) that A(s ) must contain the zeros of

n,(s), so that we write
AG)=2(s)n () (3.2.5)

where Ao(s ) is an arbitrary minimum phase polynomial of degree n —m —1.

Proposition 3.2.1 Matching Equality

There exist unique cp. ¢ (s ), d (s ) such that the transfer function from r =y, is M (s ).

Proof of Proposition 3.2.1
Existence

The transfer function from r to y, is M if and only if the following matching

equality is satisfied

by ~ % -~ ~ Ax * k ~ ~ -
(A\=c")d,~k,n,d =c0-]-c—’,;—z—)\onpd,,, (3.2.6)

The solution can be found by inspection. Divide Aod ,, by d p- let g be the quotient (of
degree n —m—1), and —k, d " the remainder (of degree n —1). Thus d" is given by

~ %

& == (32, -%d,) (32.7)
P

Let ¢ (of degree n —2). ¢, be given by

¢"=X—-gn, (3.2.8)
. ky
=_" 3.2.
Co X, ( 9)

Eqns (3.2.7)-(3.2.9) define a solution to (3.2.6), as can easily be seen by substituting cy .

*

¢'.d’ in(3.2.6).

Unigueness

* ~

Assume that there exist co=cy +8co.c =c" +8¢c.d =d" +8d satisfying (3.2.6).

The following equality must then be satisfied
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P Noftpdm (3.2.10)

14

Recall that d P n P> Xo. d,. have degrees n, m, n—m—1, and n respectively, with
m €n—1, and 8¢, 8d have degrees at most n—2, and n—1. Consequently, the right-
hand side is a polynomial of degree 2n—1, and the left-hand side is a polynomial of
degree at most 2n—2. No solution exists unless 8co=0, so that ¢ is unique. Let then

8¢y =0, so that (3.2.10) becomes

Se ﬁp N
OC —_p P =_p (3.2.11)
8d v d,

) . i ) A~ ) ~s as
This equation has no solution since n,, d, are coprime, so that ¢ and d are also

unique. 0O

Comments

a) The coprimeness of n pe d p is only necessary to guarantee a unique solution. If
this assumption is not satisfied, a solution can still be found using (3.2.7)-(3.2.9). Equa-
tion (3.2.11) characterizes the set of solutions in this case.

b) Using (3.2.2), the controller structure can be expressed as in figure 3.2, with a
forward block A/ A—¢. and a feedback block d/\. When matching with the model

occurs, (3.2.7)-(3.2.8) show that the compensator becomes

b o7t m
A =0 (3.2.12)
A—C qnp
and
7 53, —Nod,
4a - 9%p " Ro (3.2.13)

1
A kp Ao n,,
Thus the forward block actually cancels the zeros of P, and replaces them by the zeros of
M.
c) The transfer function from r to y, is of order n, while the plant and controller
have 3n —2 states. It can be checked (see section 3.5) that the 2n—2 extra modes are

unobservable, and that they are those of . Ao, and n »- The modes corresponding to Ao

are stable by choice, and those of n p are stable by assumption (A1).
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d) The structure of the controller is not unique. In particular, it is equivalent to the
familiar structure found, e.g. in Callier and Desoer (1982) p. 164, and represented in

figure 3.3. The polynomials found in this case are related to the previous ones through

-~ ~ -~

na=CoA d.=\—c¢c n;=—d (3.2.14)

The motivation in using the previous controller structure is to obtain an expression that is
linear in the unknown parameters. These parameters are the coefficients of the polynomi-
als ¢, d. and the gain c,. The expression in (3.2.1) shows that the control signal is the

sum of the parameters multiplied by known or reconstructible signals.

State-Space Representation
To make this more precise, we consider a state-space representation of the controller.

Choose A€ R*~1*7=1 and b, € R*71, such that (A. b)) is in controllable canonical form,

and det(s7—A) =A(s). It follows that

1
(I —A)1by= ’i(—IJ : (32.15)
Sn'—Z

Let ¢ € R*! be the vector of coefficients of the polynomial ¢(s), so that

c(s)

=T —A)1
Gy D © (sI-A)1b, (3.2.16)

Consequently, this transfer function can be realized by

wP=AwM +b,u

-,;\- W)=l w® (3.2.17)

where the state w'Y € R*~!, and the initial condition w(0) is arbitrary. Similarly,
there exist d o € R, and d €R" ! such that

d(s)

e =do+dT (sI —A)1b 2.
A(S) 0 (s ) A (3218)

and

w®=Aw@D +b,y,
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-

,‘.i_ (y,)=doy, +dT w? (3.2.19)
where the state w@ € R*~!, and the initial condition w®(0) is arbitrary. The controlier
can be represented as in figure 3.4, with

u=cor+cl wl+d,y, +d7 w®
=0T w (3.2.20)
where
07 :=(co.07 ):=(co.cT.dod" ) €ER” (3.2.21)
is the vector of controller parameters, and
wl=(r.wl )=(r.w® .y, w®") er® (32.22)

is a vector of signals that can be obtained without knowledge of the plant parameters.
Note the definitions of & and w which correspond to the vectors 6 and w with their first

components removed.

In analogy to the previous definitions, we let
07 =(ch.0 7 )=(ch.c'".dy.d") ERT (3.2.23)

be the vector of nominal controller parameters that achieves a matching of the transfer

function » =y, to the model transfer function M . We also define the parameter errors

$:=0—0" €eR™ $:=0—-0" eR>™! (3.2.24)

The linear dependence of ¥ on the parameters is clear in (3.2.20). In the sequel, we
will consider adaptive control algorithms, and the parameter 6 will be a function of time.
Similarly. ¢ (s ), d (s ) will be polynomials in s whose coefficients vary with time. Eqns

(3.2.17) and (3.2.19) give a meaning to (3.2.1) in that case.

3.3 Adaptive Control Schemes - Identifier Structure

In section 3.2, we showed how a controller can be designed to achieve tracking of the
reference output y,, by the plant output y,, when the plant transfer function is known.
We now consider the case when the plant is unknown, and the control parameters are

updated recursively using an identifier. Several approaches are possible. In an indirect
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adaptive control scheme, the plant parameters (ie. k,. and the coefficients of ﬁp(s ).
d » (s)) are identified using a recursive identification scheme, such as the one described in
chapter 2. The estimates are then used to compute the control parameters through

(3.2.7)-(3.2.9).

In a direct adaptive control scheme, an identification scheme is designed that directly
identifies the controller parameters co. ¢. do. d. A typical procedure is to derive an
identifier error signal which depends linearly on the parameter error ¢. The output error
e(t)=y, )= ynm (¢) is the basis for output error adaptive control schemes such as those
of Narendra and Valavani (1978), Narendra, Lin and Valavani (1980), and Morse (1980).
An output error direct adaptive control scheme, and an indirect adaptive control scheme
will be described in sections 3.3.2 and 3.3.3, but we will first turn to an input error direct

adaptive control scheme in section 3.3.1.

Note that we made the distinction between controller and identifier, even in the case
of direct adaptive control. The controller is by definition the system that determines the
value of the control input, using some controller parameters as in a nonadaptive context.
The identifier obtains estimates of these parameters - directly or indirectly.

As in chapter 2, we also make the distinction, within the identifier, between the
identifier structure and the identification algorithm. The identifier structure constructs
signals which are related by some error equation, and are 10 be used by the identification
algorithm. The identification algorithm defines the evolution of the identifier parameters,
from which the controller parameters depend. Given an identifier structure with linear
error equation for example, several identification algorithms exist from which we can
choose (cf. section 2.3).

Although we make the distinction between controller and identifier, we will see that,

for efficiency, some internal signals will be shared by both systems.

3.3.1 Input Error Direct Adaptive Control

Define
r, =M Yy, )=M1P (u) (3.3.1)

and let the input error e; be defined by
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e; == rp -—r
=M1 (y, —ym) =M (ep) (33.2)

where €9 =y, —yn is the output error.

By definition, an input error adaptive control scheme is a scheme based on this error,

or an approximation of it.

Preliminaries

Since the relative degree of M is at least 1, its inverse is not proper. M) is
well-defined, provided that the argument is sufficiently smooth. However, in the fre-
quency domain, the gain of the operator M™is arbitrarily large at high frequencies.
Therefore, due to the presence of measurement noise, the use of M ™1 is not desirable in
practice. Although we will use M ~1(.) in the analysis, we will consider it not imple-
mentable, so that 7, and e; are not available. Instead, we will construct an approximate

inverse of M as follows.

Since M is minimum phase with relative degree n —m, for any stable, minimum
phase transfer function LY of relative degree n —m. the transfer function M L hasa
proper and stable inverse. For example, we can let I be a minimum phase polynomial of

degree n —m. The signal £7'(r, ) is available since
L7Yr,) =M L)Y (y,) (3.3.3)

where (M L )7! is a proper, stable transfer function.

Approximate Input Error

To obtain the identification scheme of chapter 2, it was useful to derive an expres-
sion in which a known signal depended linearly on the unknown parameter 0’. We now
derive such an identity based on the matching equality (3.2.6).

First transform (3.2.6). by dividing both sides by Ad , L so that it becomes, using
(3.2.5)

-~ ~ ~

A—c’ = n,d »_ N O dn -
—k, ol S L= chk, ot A 3.3.4
X P T, X T Tmnim (3349

and, with the definition of P, M
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Z-‘%'_ +co(MLY | P = 12-1-12-1%:_ (3.3.5)

(3.3.5) is an equality of two polynomial ratios. but also an equality of two LTI operators.
The right-hand side is a stable transfer function, while the left-hand side is possibly

unstable (since P is not assumed to be stable).

To transform (3.3.5) into an equality in the time domain, care must be taken of the
effect of the initial conditions related to the unstable modes of P. These will be unob-

servable or uncontrollable, depending on the realization of the transfer function. If the
left-hand side is realized by P followed by L1 %— +co (M L)Y, the unstable modes of
2 will be controllable, and therefore unobservable.

The operator equality (3.3.5) can be transformed to a signal equality by applying

both operators to u, so that
ﬁ“f.)\;(yp)+c5(h?i)‘l(yp) = z—l(u)—z-lf.;_ @ ) (336

where (€) reminds us of the presence of exponentially decaying terms due to initial condi-
tions. These are decaying because the transfer functions are stable, and the unstable
modes are unobservable. Therefore, (3.3.6) is valid for arbitrary initial conditions in the

realizations of L1, \, and (M L)L

Now, recall that w € R?" ! is given by

(sI —A) b, (u)

w = ¥» (3.3.7)
(I —A)Y5,(y,)
and, since 8" is constant. 8~ L~(#) is given by
0 L w)= L@ W)
_ ~ 5 3t
= L™ —c.x—(u)-i-—.)‘—(yp)
= LW u)—co(ML)(y,) (e) (3.3.8)

where we used (3.3.6). Define now

V= (27627 |= [ o). 7)) e RY (339)
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so that (3.3.8) can be written
L) = 0""v (e) (3.3.10)

where 0° is defined in (3.2.23). (3.3.10) is essential to subsequent derivations. so that we

summarize the result in the following proposition.

Proposition 3.3.1 Fundamental Identity

Let P, M satisfy assumptions (A1)-(A2). Let £7! be any stable, minimum phase transfer
function of relative degreer =n —m. Letv and w be as defined by (3.3.9), and (3.3.7).
with arbitrary initial conditions in the realizations of the transfer functions. Let 6° be

defined by (3.2.7)-(3.2.9), with (3.2.23).

Then  for all piecewise continuous u € L., (3.3.10) is satisfied.

Input Error Identifier Structure

Equation (3.3.10) is of the form studied in chapter 2 for recursive identification.
Both the signal L~Yu) and v are available from measurements, and the expression is

linear in the unknown parameter 6" .

Therefore, we define the approximate input error to be
e, =0Tv—LYu) (3.3.11)
so that, using (3.3.10)
e, =¢'v (e) (3.3.12)

which is of the form of the linear error equation studied in chapter 2. Although we con-
sidered the input error e¢; not to be available, because it would require the realization of a
nonproper transfer function, the approximate input error e, and the signal v are avail-

able, given these considerations.

We also observed in chapter 2 that standard properties of the identification algo-

rithms are not affected by the (€) term. For simplicity, we will omit this term in subse-

quent derivations.




60

Relationship Between the Approximate Input Error and the Input Error

The approximate input error e, in (3.3.11) can be related to the input error e; in
(3.3.2) by assuming that u = 87w = cor + 87 w. and that the controller parameter 6

is constant. Then

coL7Yr,) +8T L) = LN eor) — LTH@T #)

€2
= cofl—l(rp)+5TI:'1(W)—cof,'l(r)—ari—l(ﬁ)
= ¢coL 7, —1r)= coL7Ue;) (3.3.13)
Equation (3.3.13) shows the relationship between the approximate input error e, and the

input error e;. It should be remembered that it is only valid under the conditions that

u = 07w, and that 0 is constant, but this is not necessary for previous derivations.

Assumptions

The algorithm relies on assumptions (A1)-(A3), and the following additional

assumption.

(A4) Bound on the High-Frequency Gain

Assume that an upper bound on k, is known, i.e. that k, L k nax TOT some & pax-

The structure of the controller and identifier is shown in figure 3.5, while the com-
plete algorithm is summarized hereafter. The need for assumption (A4), and for the pro-
jection of ¢ will be discussed later, in connection with alternate schemes. It will be more

obvious from the proof of stability of the algorithm in section 3.7.

Input Error Direct Adaptive Control Algorithm - Practical Implementation
Assumptions
(A1)-(A4)
Data
n.m.M (Ge Ky np.@p; )oKk max
Input
r(t).y,(t)€R




Output
u(z) €R
Internal Signals
w@) € R (wO(), w@()eR™)
0(t) €R? (colt)dot) ER c(t)d() eR"™D)
v() ER?,e(t) €ER
Initial conditions are arbitrary, except ¢o{0) Z € min = K/ Kk max >0
Design Parameters
Choose
e A€ R"~P7-1 . € R"7! in controllable canonical form, such that
det(sI—A) is Hurwitz, and contains the zeros of n,(s)
¢ [ ! stable, minimum phase transfer function of relative degree n —m
°*g.v>0
Controller Structure
w=AwW +b,u
w@ = Aw@ 4 by Y,
07 =(co.c”.do.dT)
wl=(r.w®,y, w)
u=606"w
Identifier Structure
vI =(M L)Y (5,). 2w, L7 (3,). L 1w @)
e, =0Ty —L 1)

Normalized Gradient Algorithm with Projection

. e,V
0=—g¢ 1—_’-_—-)277 if ¢ = ¢ min and ¢ <0, then let ¢, =0.
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Adaptive Observer

The signal generators for w® and w® ((3.2.17) and (3.2.19)) are almost identical
to those used in chapter 2 for identification of the plant parameters (their dimension is
now n—1 instead of n previously). They are shared by the controller and the identifier.
The signal generators for w® and w® form a generalized observer, reconstructing the
states of the plant in a specific parametrization. This parametrization has the characteris-
tic of allowing the reconstruction of the states without knowledge of the parameters. The
states are used for the state feedback of the controller to the input in what is called a cer-
tainty equivalence manner, meaning that the parameters used for feedback are the current
estimates multiplying the states as if they were the true parameters. The identifier with
the generalized observer is sometimes called an adaptive observer since it provides at the

same time estimates of the states and of the parameters.

Separation of Identification and Control

Although we derived a direct adaptive control scheme, the identifier and the con-
troller can distinguished. The gains co. ¢, do. d serving to generate u are associated with
the controller, while those used to compute e, are associated with the identifier. In fact,
it is not necessary that these be idemic\:al for the identifier error to be as defined in
(3.3.12). This is because (3.3.12) was derived using the fundamental identity (3.3.10),
which is valid no matter how u is actually computed. In other words, the identifier can
be used off-line, without actually updating the controller parameters if necessary. This is
also useful for example in case of saturation of the input (cf Goodwin and Mayne
(1985)). If the actual input to the LTI plant is different from the computed input
u =67 w (due to actuator saturation for example), the identifier will still have consistent
input signals, provided that the signal u entering the identifier is the actual input entering

the LTI plant.

3.3.2 Output Error Direct Adaptive Control

An output error scheme is based on the output error eéo=y, = Ym- Note that by

applying M L to both sides of (3.3.10), we find

Mu)=coy, +MO@ W) (3.3.14)
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As before, the control input u is set equal to u = 67 w, but now, this equality is

used to derive the identifier error equation

eo=yp S zlg. M (u _6‘1.;1’— )—M(T‘)

= 1, M ((co—co )r (0T =0T )w)

= M(¢Tw) (3.3.15)

which has the form of the basic SPR error equation of chapter 2. The gradient
identification algorithms of section 2.6 can therefore be used, provided that M is SPR.
However, since this requires M to have relative degree at most 1, this scheme does not

work for plants with relative degree greater than 1.

The approach can however be saved by modifying the scheme, as for example in
Narendra, Lin, and Valavani (1980). We now review their scheme for the case when the

high-frequency gain k, is known, and we let ¢o = co-

The controller structure of the output error scheme is identical to the controller
structure of the input error scheme, while the identifier structure is different. It relies on
the identifier error

e1=-},-Mﬁ(¢T\7—y17T\7el) (3.3.16)

Co
which is now of the form of the modified SPR error equation of chapter 2. As previously,
7 is identical to v, but with the first component removed. Practically, (3.3.16) is not
implemented as such. Instead, we use (3.3.10) to obtain

e1=-c}:)- MEOTv =L @w)+eo ML) (y,)—yv vey)

1
*
Co

=y, M(u)+;1;- MEBT L @)=y 7ey) (3.3.17)
]

As before, the control signal is set equal to u =07 w =cyr + 07 w, and the equal-
ity is used to derive the error equation for the identifier

€e1=y, —M - L M@+ L MEBT L @)~y Tey)
Co Co
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=yp—ym——3r ME(LET =BT L )W)+ yv vey) (3.3.18)
Co

Again, the identifier error involves the output error €o =Yy, —ym. The additional term,
which appeared somewhat mysteriously starting with the work of Monopoli (1974), is

denoted

yo= L ML(LET =07 L") +y T eyr) (3.3.19)
Co

and the resulting error €1 =Y, —¥m ~ Ya is called the augmented error, in contrast with
the original output error €=y, = Y-

The error (3.3.16) is of the form of the modified SPR error equation of chapter 2
provided that M I is a strictly positive real transfer function. If this condition is
satisfied, the properties of the identifier will follow. and are the basis of the stability

proof of section 3.7.

Assumptions
The algorithm relies on assumptions (A1)-(A3), and the following assumption.

(A5) High-Frequency Gain and SPR Assumptions
Assume that k, is known, and that there exists L ™!, a stable, minimum phase

transfer function of relative degree n —m —1, such that M L is SPR

The practical implementation of the algorithm is summarized hereafter.

Output Error Direct Adaptive Control Algorithm - Practical Implementation
Assumptions
(A1)-(A3), (AS)
Data
n.m. MGe kp .fm.dm )k,
Input

r() y,(t) €R

Out put
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u(t) €R
Internal Signals
w(t) e R (wD(), w®() eRTY)
0() € R (c(t).d() €R TV d(t) ER)
v()eR*1
e1(t). y.(t).y.(t) €R
Initial conditions are arbitrary
Design Parameters
Choose
e A€ R"~Pw-1 p, €R"7!, in controllable canonical form, such that
det(sI —A) is Hurwitz, and contains the zeros of nna(s)
o . ~1 stable, minimum phase transfer function of relative degree n —m -1,
such that M L is SPR
g, y>0
Controller Structure
wD=AwD +b,u
w@=Aw@+b,y,
87 =(cT.do.d")
#=(w,y, w®")
co =kn/ k, >0
u=cor+ 0w
Identifier Structure
vi=L"Yw)
Ym =M ()

Ya =21,_M£ (L2(8T w)-0T L7 )—y¥ v e;)
0

€15 Yy = ¥m — Ya
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Gradient Algorithm

0 =g 31\7

Differences between input and output error

Traditionally, the starting point in the derivation of model reference adaptive con-
trol schemes has been the output error €=y, —¥,. Using the error between the plant
and the reference model to update controller parameters is intuitive. However, stability
considerations suggest that SPR conditions must be satisfied by the model, and that an
augmented error should be used when the relative degree of the plant is greater than 1.
The derivation of the input error scheme shows that model reference adaptive control can
in fact be achieved without formally involving the output error, and without SPR condi-

tions on the reference model.

Important differences should be noted between the input and output error schemes.
The first is that the derivation of the equation error (3.3.18) from (3.3.16) relies on the
input signal u being equal to the computed value u = 07 w, at all times. If the input
saturates, updates of the identifier will be erroneous. When the input error scheme is
used, this problem can be avoided, provided that the actual input entering the LTI plant is
available and used in the identifier. This is because (3.3.12) is based on (3.3.10), and does
not assume any particular value of u. If needed, the parameters used for identification

and control can also be separated, and the identifier can be used "off-line".

A second difference appears between the input and output error schemes when the
high-frequency gain k, is unknown, and the relative degree of the plant is greater than 1.
The error e, derived in (3.3.16) is not implementable if ¢y is unknown. Although an
SPR error equation can still be obtained in the unknown high-frequency gain case, the
solution proposed by Morse (1980) (and also Narendra, Lin, and Valavani (1980))
requires an overparametrization of the identifier which excludes the possibility of asymp-
totic stability even when PE conditions are satisfied (cf. Boyd and Sastry (1984), Ander-
son, Dasgupta, and Tsoi (1985)). In view of the recent examples due to Rohrs, and the
connections between exponential convergence and robustness (see chapter 5), this appears

to be a major drawback of the algorithm.
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Another advantage of the input error scheme is to lead to a linear error equation for
which other identification algorithms, such as the least-squares algorithm, are available.

These algorithms may be an advantageous alternative to the gradient algorithm.

Output Error Direct Adaptive Control - The Relative Degree 1 Case

The condition that M I be SPR is considerably stronger than the condition that
M L simply be invertible (as required by the input error scheme, and guaranteed by
(A2)). The relative degree of L ~! however is only required to be n —m —1, as compared
to n —m for proper invertibility. In the case when the relative degree n —m of the
model and of the plant is 1, L ™! is unnecessary along with the additional signal y,. The
output error direct adaptive control scheme then has a much simpler form, in which the
error equation used for identification involves the output error €=y, = ynm only. The
simplicity of this scheme makes it attractive as an example of adaptive control. We

assume now

(A6) Relative Degreee 1 Assumption

n—m=1

Output Error Direct Adaptive Control Algorithm, Relative Degree 1 - Practical

Implementation
Assumptions
(A1)-(A3), (A6)
Data
n.M( i.e.km,r;.,,,,a,,, ),kp
Input
r(z).y,(t) €R
Out put
u(z)€R

Internal Signals

w(i) €R” (w(E), w®() e R* 1)




68

B(t) € R (colt). dot) €ER. ct).d(2) € R*1)
ya(t). eolt) €ER
Initial conditions are arbitrary
Design Parameters
Choose
e A€ R*1~1 b, € R"! in controllable canonical form, and such that
det (I-A=n,(s)
g >0
Controller Structure
w®l = AwD +5,u
w@ = Aw® + bryp
07 =(cgcl.do.dT)
wl =( r.w(‘)r,yp L w@)
u=0"w
Identifier Structure
ym =M @)
€0=Yp = ¥m
Gradient Algorithm

0 =—geow

Output Error Equation

The identifier error equation is (3.3.15), and is the basic SPR error equation of

chapter 2. The high-frequency gain k, (and consequently ¢o) can be assumed to be unk-

nown, but the sign of k, must still be known to ensure that co >0.s0 that (1/ cp YM is
SPR.
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3.3.3 Indirect Adaptive Control

In the indirect adaptive control scheme presented in this section, estimates of the
plant parameters k. n p» and d p are obtained using the standard identifier of chapter 2.
The controller parameters Co. ¢, d are then computed using the relationships resulting

from the matching equality (3.2.6).

Note that the dimension of the signals w1, w®@ ysed for identification in chapter 2
is n. the order of the plant. For control, it is sufficient that this dimension be n—1.
However, in order to share the observers for identification and control, we will let their
dimension be n. Proposition 3.2.1 is still true then, but the degrees of the polynomials
become respectively: 67\=n, 63\0=n -m, (')ar =n-—-m, 63 =n—1, and aE =n —1.
Since §d =n — 1, it can be realized as d” (sI — A)~!b, without the direct gain do from
¥p- This a (minor) technical difference, and for simplicity, we will keep our previous

notation. Thus, we define

87 :=(cT.d7) €R™” 7T =W w®@) e R™ (3.3.20)
and

07 :=(c,.07) erR**! wl =( ,wl)eR™"" (3.3.21)

The controller structure is otherwise completely identical to the controller structure

described previously.

The identifier parameter is now different from the controller parameter 6. We will

denote, in analogy with (2.2.17)
=@’ . b7)=(a;. - Qn4+1.0. by b,) €R*" (3.3.22)
Since the relative degree is assumed to be known, there is no need to update the
parameters a,, 4. ... SO that we let these parameters be zero in (3.3.22). The corresponding

components of w are thus not used for identification. We let w be equal to w except for

those components which are not used. and are thus set to zero, so that

W e D, w0 - w®T) eR™ (3.323)

A consequence (that will be used in the stability proof in section 3.7) is that the

relative degree of the transfer function from u —w is at least 1. while the relative degree

of the transfer function from u —w is at least n —m.
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The nominal value of the identifier parameter ' can be found from the results of
chapter 2 through the polynomial equalities in (2.2.5), that is
a' (s)=a) -_*-a'z sS4 - ame "=k, n,(s)
B*(s)=by +bys+ -~ b, s" ! =A\(s)—d,(s) (3.3.24)
The identifier parameter error is now denoted

y=m—7 €ER” (3.3.25)

The transformation 7 —@ is chosen following a certainty equivalence principle to be
the same as the transformation 7 —8", as in (3.2.7)-(3.2.9). Note that our estimate of
the high-frequency gain k, is @n+1- Since co =k, / k,, we will let co=k,/ an+1. The
control input v will be unbounded if a,4; goes to zero, and to avoid this problem, we

make the following assumption.

(A7) Bound on the High-Frequency Gain

Assume k, 2k pin >0.

The practical implementation of the indirect adaptive control algorithm is summar-

ized hereafter.

Indirect Adaptive Control Algorifhm - Practical Implementation
Assumptions
(A1)-(A3), (AT)
Data
n.m.M (Ge kp.fpm.dm ) Kamin
Input
r().y,(t)€ER
Output
u(t)€ER

Internal Signals

W(t) € RZn +1 (W(l)(t )' w(Z)(t) € R” )




0(t) e R (co(t) €ER,c(2).d(t) ER)
mt) € R*™ (a(z).b(z) €R*)
w(t) € R
yi(t) es(t) €R
Initial conditions are arbitrary, except @,,+1(0) >k min
Design Parameters
Choose
s A€ER*™, b, € R" in controllable canonical form, such that
det(sI — A) =\(s) is Hurwitz, and A(s ) =Xo(s )7, (s)
*g.v>0
Controller Structure
w® = Aw® 45, 4
W@ =Aw® by,
07 =(cq.cT.dT)=(cg.cy, - Cp.dy - - dy)
wl =@, w @)
u=0"w
Identifier Structure

'ﬂj =(ar,bT)=(a1, .. 'dm+1,0' < ,bl, - bn)

w=w®, w0 w@)
y,=‘n]ﬁ
e3=1rrﬁ—yp

Normalized Gradient Algorithm with Projection

33‘;

T=—g if @41 = k in and a,,4+; <0, then let @, 41 =0

1+ywl w
Transformation Identifier Parameter— Controller Parameter

Let the polynomials with time-varying coefficients

a(s)=a;+ .a,415™ c(s)=c;+..c, s*7!
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b(s)=b,+.b, s} dGs)=d;+..d,s"?
Divide Ao d ,, by (A —25), and let ¢ be the quotient
6 is given by the coefficients of the polynomials

1

qa
A +1

cC=A—

Transformation Identifier Parameter — Controller Parameter

We assumed that the transformation form the identifier parameter 7 to the con-
troller parameter 0 is performed instantaneously. Note that A —25 is a monic polynomial,
so that ¢ is also a monic polynomial (of degree n —m). Its coefficients can be expressed
as the sum of products of coefficients of 'Xoa n and A\ —&. The same is true for ¢. d , and
co with an additional division by an+1- Therefore. given n and m, the transformation

consists of a fixed number of multiplications, additions, and a division.

Note also that if the coefficients of a and b are bounded, and if a,+; is bounded
away from zero (as is guaranteed by the projection), then the coefficients of g.c. d, and
¢, are bounded. Therefore, the transformation is also continuously differentiable, and has

bounded derivatives.

3.3.4 Connections to Alternate Schemes

The input error scheme is closely related to the schemes presented in discrete time
by Goodwin and Sin (1984), and in continuous time by Goodwin and Mayne (1985).
Their identifier structure is identical to the structure used here, but their controller struc-

ture is somewhat different. In our notation, Goodwin and Mayne choose

M(s)= n(s)
(s)=k, XOVAO) (3.3.26)

where n. A and L are polynomials of degree Sn, n, and n—m respectively. The
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polynomials \. [ are used for similar purposes as in the input error scheme. However,
except for possible pole-zero cancellations, AL now also defines the model poles in
(3.3.26). The filtered reference input

n(s)

7=k,

is used as input to the actual controller. Then, the transfer function 7 —y p is made to
match £ 7!, so that the transfer function from r —y, is M. Thus, by prefiltering the
input, the control problem of matching a transfer function M is altered to the problem of

matching the arbitrary all-pole transfer function L

The input error adaptive control scheme of section 3.3.1 can be used to achieve this
new objective, and is represented on figure 3.6. This scheme is the one obtained by
Goodwin and Mayne (up to a small remaining difference described hereafter). Since the
new model is L™}, the new transfer function M L is equal to 1. Note that, in this
instance, the input and output errors are identical. and the input and output error

schemes are very similar. The analysis is also considerably simplified.

Goodwin and Mayne's algorithms essentially control the plant by reducing the
transfer function to an all-pole transfer function of relative degree n—m. The additional
dynamics are provided by prefiltering the reference input. Thus, the input error scheme
presented in section 3.3.1 is a more general scheme, allowing for the placement of all the

closed-loop poles directly at the desired locations without prefiltering.

Note that since identification and control can be separated in the input error scheme,
we may identify 1/ ¢o and 6/ ¢, rather than ¢, and 6. This is shown in figure 3.6. By
dividing the identifier error e; by ¢y, the appropriate linear error equation may be found

and used for identification.

The problems encountered are different depending whether we identify ¢ or 1/ cy.
If we identify 1/ c. as we did in the indirect scheme, the control input u =cor + 6’ w
will be unbounded if the estimate of 1/ ¢, goes to zero. To avoid the zero crossing, we
require knowledge of the sign of 1/ ¢, (i.e. of &, ), and of a lower bound on 1/ cy. i.e. 2

lower bound on k, to be used with the projection algorithm.

If we identify cq directly, as we did in the input error scheme, a different problem

appears. If ¢,=0, and § =0, then u =0, and e, =0 (cf. figure 3.5). No adaptation will
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occur (d) =0) although ¥p —¥m does not tend necessarily to zero, and may even be
unbounded. This is an identification problem, since we basically lose information in the
regression vector. To avoid it, we require the knowledge of the sign of ¢ (i.e. of &,). and

a lower bound on ¢, i.e. an upper bound on k,, to be used by the projection algorithm.
3.4 The Stability Problem in Adaptive Control

Stability Definitions

Various definitions and concepts of stability have been proposed. A classical

definition for systems of the form
x=f(t,x) (3.4.1)

is the stability in the sense of Lyapunov defined in chapter 1.

The adaptive systems described so far are of the special form
Xx=f@.x,r)) (3.4.2)

where r is the input to the system, and x is the total state of the system, including the
plant, the controller, and the identifier. For practical reasons, stability in the sense of
Lyapunov is not sufficient for adaptive systems. As we recall, this definition is a local
property, guaranteeing that the trajectories will remain arbitrarily close to the equili-
brium, when started sufficiently close. In adaptive systems, we do not have any control on
how close initial conditions are to equilibrium values. A natural stability concept is then
the bounded-input bounded-state stability (BIBS): for any r (.) bounded. and x4 € R", the
solution x (.) remains bounded. This is the concept of stability that will be used in this

chapter.

The Problem of Proving Stability in Adaptive Control

The stability of the identifiers presented in chapter 2 was assessed in theorem 2.4.5.
There, the stability of the plant was guaranteed independently. In adaptive control, the
stability of the plant must be guaranteed by the identifier, which seriously complicates
the problem. The stability of the overall adaptive system, which includes the plant, the

controller, and the identifer, must then be considered.
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To understand the nature of the problem. we will take a general approach in this
section, and consider the generic model reference adaptive control system shown in figure
3.7. The signals and systems defined previously can be recognized. 0 is the controller
parameter, and 7 is the identifier parameter. In the case of direct control, 6 =, i.e. the
parameter being identified is directly the controller parameter. The identifier error may be
the output error eo =y, —yn,. the input error ¢, =r, —r, or any other error used for

identification.

The problem of stability can be understood as follows. Intuitively, the plant with
the control loop will be stable if 6 is sufficiently close to the true value 0. However, as
we saw in chapter 2, the convergence of the identifier is dependent on the stability and

persistent excitation of signals originating from the control loop.

To break this circular argument, we must first express properties of the identifier
that are independent of the stability and persistency of excitation of these signals. Such
properties were already derived in chapter 2, and were expressed in terms of the identifier
error. Recall that the identifier parameter error m— 7 does not converge to zero, but that
only the identifier error converges to zero in some sense. Thus, we cannot argue that for ¢
sufficiently large, the controller parameter 6 will be arbitrarily close to the nominal value

that stabilizes the plant-control loop.

Instead of relying on the convergence of 6 to 0" to prove stability, we can express
the control signal as a nominal control signal - that makes the controlled plant match the
reference model -, plus a control error. The problem then is to transfer the properties of
the identifier to the control loop, i.e the identifier error to the control error, and prove sta-
bility. Several difficulties are encountered here. First. the transformation 6 (7) is usually
nonlinear. In direct adaptive control, the transformation is the identity. and the proof is
consequently simplified. Another difficulty arises however from the different signals v
and w used for identification and control. A major step will be to transfer properties of
the identifier involving v to properties of the controller involving w. Provided that the
resulting control error is a "small" gain from plant signals, the proof of stability will
basically be a small gain theorem type of proof, a generic proof to assess the stability of

nonlinear time varying systems (cf. Desoer and Vidyasagar (1975)).
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3.5 Analysis of the Model Reference Adaptive Control System

We now return to the model reference adaptive control system presented in sections
3.1-3.3. The results derived in this section are the basis for analyses presented in this and
following chapters. Most identities involve signals which are not available in practice
(since P is unknown), but are well-defined for the analysis. Most results also rely on the

control input being defined by
u=0"w
07 =(cg.cT.dy.d7)

wl =G .why, w?) (3.5.1)

Error Formulation

It will be useful to represent the adaptive system in terms of its deviation with
respect to the ideal situation when 6 =87, i.e. ¢ = 0. This step is similar to transfering
the equilibrium point of a differential equation as (3.4.1) to x =0 by a change of coordi-

nates.

Recall that we defined 7, in (3.3.1) as

r

» = M~(y,) (3.5.2)

while
Ym =M () (3.5.3)
Applying L 10 (3.3.10). it follows, since 8" is constant, that
u=cor,+0 W (3.5.4)

and, since u is given by (3.5.1),

r, =r+ —1,- o’ w (3.5.5)
Co

Further, applying M to both sides of (3.5.5)

Yo = ¥mt zlr M(¢p'w) (3.5.6)
)]
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The signal ¢’ w will be called the control error. We note that the input error
e; =r, —r is directly proportional to the control error ¢” w (cf (3.5.5)). while the output

error e =y, — Y, is related to the control error through the model transfer function M

(cf (3.5.6)).

Since y, =P (u)=M(r,). the control input can also be expressed in terms of the

control error as

=P M G)=P M (r+ ¢ w) (3.5.7)
Co

and the vector w is similarly expressed as

wD (sI =AY, P'M 1
w=|y, |= M ) G+=¢Tw) (35.8)
W (sI —A) 6, M <o

while v (cf. (3.3.9)) is given by

1
RN PP

o= p-t| Gl A)beP M1+l otw) (359
(sI =AY\ M °0

For the purpose of the analysis alone, we will define

r

1
_ |Gz —A);;b@ MG leny (3510

(SI - A)—lb xM co

z=Lv)= |2
w

Note that the transfer functions appearing in (3.5.6)-(3.5.10) are all stable (using
assumptions (A1)-(A2), and the definitions of Aand L ~1).

Model Signals

The model signals are defined as the signals corresponding to the plant signals when
60 =0",ie ¢=0. As expected, the model signals corresponding to ¥, and r, are y, and

r respectively (cf (3.5.6) and (3.5.5)). Similarly, we define

wiD (sI =AY ', P M
W = | ym |= M . )
w,{® (s1 =AY '8\ M
=8 ) (3.5.11)

m
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and
PPN
I —AY ', P M
v =L7Yz,) =L (s )1\2 r r) (3.5.12)
(I =AM
By defining
W, o= wr,,, (3.5.13)
we note the remarkable fact that
W, = Zm (3.5.14)

Since the transfer functions relating r to the model signals are all stable, and since r
is bounded (assumption (A3)), it follows that all models signals are bounded functions of
time. Consequently, if the differences between plant and model signals are bounded, the

plant signals will be bounded.

State-Space Description

We now show how a state-space description of the overall adaptive system can be
obtained. In particular, we will check that no cancellation of possibly unstable modes

occurs when 8 = 6.
The plant has a minimal state-space representation [A » by .c,,T ] such that

n,(s)

d,(s)

P(s)=k, =cf(sI—A,) b, (3.5.15)

With the definitions of w'¥, w® in (32.17)-(3.2.19), the plant with observer is
described by
X, =A, x, +b, u
wil) = Aw WV 4p, u
w@=Aw@ +b,y, =Aw@ +b,c] x, (3.5.16)

The control input u can be expressed in terms of its desired value, plus the control

error ¢7 w, as
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u=0Tw=0"w+¢'w (3.5.17)
so that
X, A, +b, dy c{ b, e b, a7’ x,
wl | = bydy c;. A+b,cT bydT |.|w®
w® brel 0 A w®
b, b,
+ b, |¢"w+|b) |cor
0 0
Yp =€5 % (3.5.18)

Defining x,,. € R3 72 to be the total state of the plant and observer, this equation is

rewritten
Xpw = Am Xpw +b,¢" w+b,cor
Yp = Co Xpu (3.5.19)

where A, € R 232 p €R>™2 and c,, € R%~2 are defined through (3.5.18). Since
the transfer function from r =y, is M when ¢=0, we must have that

T(sI-A,)'b, =(1/cy) M(s), ie. that [A,, .5, .c]]is a representation of the model
transfer function, divided by c,. Therefore, we can also represent the model and its out-

put by
m =Am Xm + b, cor

v =cl x, (3.5.20)

Note that although the transfer function M is stable, its representation is non-
minimal, since the order of M is n, while the dimension of A, is 3n —2. It can be
checked, using the Popov-Belevitch-Hautus rank test (Kailath (1980), p. 136), that
(A,,.b,,) is a controllable pair. We can find where the unobservable modes are located by
noting that the representation of the model is that of figure 3.8. Using standard transfer
function manipulations, but avoiding cancellations, we get

k,n, A
T_ZTJ_

k,n,\ g*

d,

i)\ c) b

e (sI —A,) s,
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kA, Xont

T T s (3.5.21)
AN=c")d,~k,n,d" )
and, using the matching equality (3.2.6)
A m AR .,
e, T(sI—A ) b, = &, 2m 2207, 1 4 (3.5.22)
Co d m A Aon P Co

Thus, the unobservable modes are those of A, Ay, and n p » Which are all stable by choice of

X.%,. and by assumption (A1). In other words, A,, is a stable matrix.

Since r is assumed to be bounded and A4,, is stable, the state vector trajectory x,, is
bounded. We can represent the plant states as their differences with the model states, let-

ting the state error e = x,, — x,, € R* 72, so that

é=A,e+b, ¢ w

€= Y, —Ym =Che (3.5.23)
and
eo=yp—ym=?1rM(¢Tw)=M(zlr¢Tw) (3.5.24)
[ 0

which is (\3.5.6), derived above through a somewhat shorter path.

Note that (3.5.23) is not a linear differential equation representing the plant with

controller, because w depends on e . This can be resolved by expressing the dependence of

w on e as
w=w,+tQe (3.5.25)
where
0 00 R RIxn—1 RIxn -1
0O 190 Rn—an Rn—an—l Rn——IXn—l
Q= T oo € R RIxn-1 R -1 = R X3r -2 (3.5.26)
12
0 01 R -1x Rr-bxn-1 pnr-lXa-1

A differential equation representing the plant with controller is then
e=Ane+b,d" w,+b,¢" Qe

e;=cle (3.5.27)




where w,, is an exogeneous, bounded input.

Complete Description - Output Error, Relative Degree 1 Case

To completely describe the adaptive system, one must simply add to this set of
differential equations the set corresponding to the identifier. For example, in the case of
the output error adaptive control scheme for relative degree 1 plants, the overall adaptive

system (including the plant, controller, and identifier) is described by

ée=A,e+b, ¢  w,+b,¢' Qe

p=—gclew,—gcleQe | (3.5.28)
As for all adaptive control schemes presented in this work, the adaptive control scheme is

described by a nonlinear time varying ordinary differential equation. This specific case

will be used in subsequent chapters as a convenient example.

3.6 Useful Lemmas

The following lemmas are useful to prove the stability of adaptive control schemes.
Most lemmas are inspired from lemmas that are present in one form or another in existing
stability proofs. In contrast with Sastry (1984), and Narendra. Annaswamy, and Singh
(1985), we do not use any ordering of signals (order relations o(.) and O(.)), but keep

relationships between signals in terms of norm inequalities.

The systems considered in this section are of the general form
y=H (u) (3.6.1)
where H : L,, — L, is a SISO causal operator, that is, such that
y: =(H (%)), (3.6.2)

forallu € L, , and forall ¢ Z0. Lemmas 3.6.1-3.6.5 further restrict the attention to LTI

systems with proper transfer functions H(s).

Lemma 3.6.1 is a standard result in linear system theory, and relates the L, norm

of the output to the L, norm of the input.
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Lemma 3.6.1 BIBO Stability

Let y =H (u), where H is a proper, rational transfer function. Let h be the impulse

response corresponding to H.
If H is stable
Then forall p €[1,00], and forallu €L,
byl Shhah lul, +lel, (3.6.3)
forallu € L,
ly (¢ ) Shhby by, I, +1€(t)] forallz 20 (3.6.4)
where €(z ) is an exponentially decaying term due to the initial cond itions.

Proof of Lemma 3.6.1 cf. Desoer and Vidyasagar (1975), p. 241.

It is useful, although not standard, to obtain a result that is the converse of lemma
3.6.1, i.e. with u and y interchanged in (3.6.3)-(3.6.4). Such a lemma can be found in
Narendra, Lin, and Valavani (1980), Narendra (1984), Sastry (1984), Narendra,
Annaswamy, and Singh (1985), for p=eo . Lemma 3.6.2 is a version that is valid for
p €[1,00], with a completely different proof (see appendix).

Note that if # is minimum phase, and has relative degree zero, then it has a proper
and stable inverse, and the converse result is true by lemma 3.6.1. If H is minimum
phase, but has relative degree greater than zero, then the converse result will be true pro-
vided that additional conditions are placed on the input signal . This is the result of

lemma 3.6.2.

Lemma 3.6.2 BOBI Stability
Let y = A (u), where H is a proper, rational transfer function. Let p € [1, ca].

If A is minimum phase

For some k 1.k , 20, and for all¢ 20,u,.% € L, .and
Vi, U, Sk lu, b, + ko (3.6.5)
Then  there exist a;,a, 20 such that

Iu, IP sa 1')’: Hp + ans (3.66)
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for all ¢ 20.
Proof of Lemma 3.6.2 in appendix.

It is also interesting to note the following equivalence, related to L, norms. For all

a,bel,_,
la(t ) Sk Ib, I+ ky iff Vo b, Skilb, I+ k, (3.6.7)

The same is true if the right-hand side of the inequalities is replaced by any positive,
monotonically increasing function of time. Therefore, for p = co, the assumption (3.6.5)
of lemma 3.6.2 is that u is regular (cf. definition in (2.4.14)). In particular, lemma 3.6.2
shows that if u is regular and y is bounded, then u is bounded. Lemma 3.6.2 therefore

leads to the following corollary.

Corollary 3.6.3 Properties of Regular Signals

Let y = A (u). where H is a proper, rational transfer function. Let H be stable and

minimum phase.

(a) if  u isregular
then lu(t)1<ayly Io+a, foralle 20
(b) if  u is bounded, and H is strictly proper
then y is regular
(c) if  u isregular
then y is regular
The properties are also valid if ¥ and y are vectors such that each component y; of y is
related to the corresponding u; through y; = H (u;).

Proof of Corollary 3.6.3 in appendix.

In chapter 2, a main property of the identification algorithms was obtained in terms
of a gain belonging to L,. Lemmas 3.6.4 is useful for such gains appearing in connection

with systems with rational transfer function H.
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Lemma 3.6.4
Let y = H (u), where H is a proper, rational transfer function.

If H is stable,u € L_, . and for some x €L,
fu (e KB ) ix, I+ Bo(2) (3.6.8)

for all ¢ 20, and for some B,.B8, € L»

Then  there exist y1.y2 € L such that, forallz 20

ly ) Sy(e M, g+ 2 (2) : (36.9)

If in addition, either A is strictly proper,
or B;.B,€L_.and B,(¢).B,(t) 20 ast = oo

Then 7y, y,€L,.and y,(z),yx(t) »0ast = oo
Proof of Lemma 3.6.4 in appendix.

The following lemma is the so-called swapping lemma (Morse 1980), and is essential

to the stability proofs presented in section 3.7.

Lemma 3.6.5 Swapping Lemma

Let ¢.w : R, = R", and ¢ be differentiable. Let H be a proper, rational transfer func-

tion.
If H is stable, with a minimal realization
B=c"(sI—A)'b +d (3.6.10)
Then
Hwl¢)—AwN)¢=H (H,w)¢) (3.6.11)
where
Hy=(GI—-A)"d H.=cT (sI-A)" (3.6.12)

Proof of Lemma 3.6.5 in appendix.

Lemma 3.6.6 is the so-called small gain theorem (Desoer and Vidyasagar (1975)),

and concerns general nonlinear time-varying systems connected as shown in figure 3.9.
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Roughly speaking, the small gain theorem states that the system of figure 3.9, with
inputs u,,u,, and outputs y;.y» is BIBO stable, provided that #, and H , are BIBO stable,

and provided that the product of the gains of H, and H , is small enough (less than 1).

Lemma 3.6.6 Small Gain Theorem

Consider the system shown in figure 3.9. Let p € [1,00]. Let Hy, Hy:L,, — L, be

causal operators. Lete;,e; € L, . and defineu;, u, by

u,=e;+H,(e,)

u,=e,—H;(ey) (3.6.13)
Suppose that there exist constants B;. B2, and ¥;, ¥> 20, such that

HHl(el),u<71"e11“+Bl

1H;(ez) I Sysley 1+ B forallt 20 (3.6.14)
If Y172 <1
Then

fey, 8 S(1=y1y2)7" (huy 1+ yoluy U+ B2+ ¥281)

ep 8 S(1—=yyy2)7" (hup 4+ yyluy 1+ By + ¥182) for allt 20 (3.6.15)
If in addition, u;, u; € L,

Then ey, ez y1=Hler) yy=Hye,) € L,, and (3.6.15) is valid with all subscripts

t dropped.

Proof of lemma 3.6.6 cf. Desoer and Vidyasagar (1975), p. 41.

3.7 Stability Proofs

3.7.1 Stability - Input Error Direct Adaptive Control

The following theorem is the main stability theorem for the input error direct adap-
tive control scheme. It shows that. given any initial condition, and any bounded input
r (¢ ). the states of the adaptive system remain bounded (BIBS stability), and the output

error tends to zero, as¢ —oeo. Further, the error is bounded by an L, function.
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We also obtain that the difference between the regressor vector v and the
corresponding model vector v, tend to zero as ¢ —oo, and is in L. This result will be

useful to prove exponential convergence in section 3.8.

We insist that initial conditions must be in some small B, . because although the
properties are valid for any initial conditions, the convergence of the error to zero, and the
L, vounds are not uniform globally. For example, there does not exist a fixed L, func-

tion that bounds the output error, no matter how large the initial conditions are.

Theorem 3.7.1

Consider the input error direct adaptive control scheme described in section 3.3.1, with

initial conditions in an arbitrary B, .

Then

(a) all states of the adaptive system are bounded functions of time.

(b) the output error ¢, = y, — ¥» € L3. and tends to zero as? —oo
the regressor error v —v,, € Lj, and tends to zero asf —oo.

Comments

The proof of the theorem is organized to highlight the main steps that we described

in section 3.4.

Although the theorem concerns the adaptive scheme with the gradient algorithm,
examination of the proof shows that it only requires the standard identifier properties
resulting from theorems 2.4.1-2.4.4. Therefore, theorem 3.7.1 is also valid if the normal-
ized gradient algorithm is replaced by the normalized LS algorithm with covariance reset-

ting.

Proof of Theorem 3.7.1

(a) Derive properties of the identifier that are independent of the boundedness of the

regressor

These results were obtained in theorems 2.4.1-2.4.4, and led to

lp(2)v(e)i=B(t )y, I+ B()




BeL,NL_

b€EL,, ¢ €L,NL,,

colt) Zcpmin >0 for allz 20 (3.7.1)

The inequality for c((¢ ) follows from the use of the projection in the update law.
(b) Express the system states and inputs in term of the control error

This was done in section 3.5, and led to the control error ¢/ w, with

1
rp—r+—c-g¢rw
u=P—1M(rp)
Yp M(rp)=y,,,+cl‘ M(@dT w)

w = M (r,)=H,; (r))
(sI—A)'5\M
=W+ H,; (o ¢Tw) (3.7.2)

where the transfer functions M and B v arestable and strictly proper.
m

(c) Relate the identifier error to the control error

The properties of the identifier are stated in terms of the error o' v=¢7 L7I(z),
while the control error is ¢’ w. The relationship between the two can be examined in

two steps.
(c1) Relate ¢ w to ¢ z

Only the first component of w, namely r, is different from the first component of z,

namely 7,. The two can be related using (3.5.4), that is
u=cor, +67 w (3.7.3)

and using the fact that the control input u =cor +87 W to obtain

rp=—1,-(cor +§6TW)=r+—!,-¢TW (3.7.49)
Co Co

and




1 T —y— 1 7
r—a(corp—iﬁ w)—rp—ad) w

It follows that
& w=(co—colr +& w

* *
Co—Cyo Co—Co — —
=0T - T w4
Co Co

*

c . _ c
____0 ((Co—Co)rP +¢TW )=_O¢Tz
.Co c

0
that is
1 1
—_— ¢T W = ¢T VA
Co Co

(c2) Relate ¢’ z top? v =¢7 L71(2)

This relationship is obtained through the swapping lemma (lemma 3.6.5). We have,

with notation borrowed from the lemma

i,—l(_l_¢Tz)=ci¢Tv+z;1(1:,,—l(zf)(ci)) (3.7.8)
(4]

Co 0

and, using (3.7.7) with (3.7.8)

A M@ w)=MLE L ¢Tw=MLENL ¢72))
Co Co Co
=ML (L T+ MELEAEAGCTI(E)) (3.1.9)
Co Cyo

With (3.7.2), this equation leads to figure 3.10. It represents the plant as the model
transfer function with the control error ¢/ w in feedback. The control error has now
been expressed as a function of the identifier error ¢ v using (3.7.9).

The gain ¢’ operating on v is equal to the gain B operating on Iv, L, . and this gain
belongs to L,. On the other hand, ¢ € L,, so that any of its component is in L,. In par-

ticular ¢o € L,. Also, cot ) Zc i, so that 1/ ¢y € L, . Thus, (Ci ) € L,. Therefore, in
0

figure 3.10, the controlled plant appears as a stable transfer function M with an L, feed-

back gain.




(d) Establish the regularity of the signals

The need to establish the regularity of the signals can be understood from the fol-
lowing. We are not only concerned with the boundedness of the output y,. but also of
all the other signals present in the adaptive system. By ensuring the regularity of the sig-
nals in the loop, we guarantee, using lemma 3.6.2, that boundedness of one signal implies

boundedness of all the others.

Now, note that since ¢ € L, the controller parameter 6 is also bounded. It fol-

lows. from proposition 1.4.1, that all signals belong t0 L .. -

Recall from (3.7.4) that

ro=—vr 4+ 2w (3.7.10)
Co Co

Note that ¢, and r are bounded, by the results of (a), and by assumption (A3). w is

related to r, through a strictly proper, stable transfer function (cf (3.7.2)). Therefore,

with (3.7.10). and lemma 3.6.1

w1 <k 1@ W), I+k
u% 7 1<k NG 7)), b+ k (3.7.11)

for some constant k =0. To prevent proliferation of constants, we will hereafter use the

single symbol k , whenever such inequality is valid for some positive constant.

Since ¢ is bounded, the last inequality implies that
d _ —
| I Sk Iw, L, +k (3.7.12)

i.e. that w is regular.

Similarly, since ¢ and ¢ are bounded, and using (3.7.11)
d T — d TN — T d —
1= <I(E -
7 (@ w)|\l(dt P Iwi+ld (dt w)l
<k W@ w) I +k (3.7.13)

so that ¢’ W is also regular.




The output y, is given by, using (3.7.10)
yP=M(rp)=-£1:)- M(cor)-(-:l:_ M @ w) (3.7.14)
where M (cor) is bounded. Using lemma 3.6.2, with the fact that ' w is regular, and
then (3.7.14)
17wl SkIM@ W), I+k
Sk ly, ket k MM (cor)), Lotk
Sk ly, Lotk (3.7.15)
hence, with (3.7.10) and (3.7.11)
7y | Sk W@ W), I+ k Sk Uy, btk

W 1<k by, latk (3.7.16)

Inequalities in (3.7.16) show that the boundedness of y, implies the boundedness of

r,.w.u, - - therefore of all the states of the adaptive system.

It also follows that v is regular, since it is the sum of two regular signals,

specifically
a c a
. AT B A 2
1 f: rp Co [«
v=L"Yz)= il |T 0 + fo1g (3.7.17)

where the first term is the output of £ ™! (a stable and striclty proper, minimum phase
LTI system) with bounded input, while the second term is the output of L' with a reg-

ular input (cf. corollary 3.6.3).
(e) Stability proof

Since v is regular, theorem 2.4.6 shows that B —=0 as ¢ ~oo. From (3.7.2) and

(3.7.9)

yp =¥m +—1i=‘ M(¢TW)
Co

=y +M L ¢+ ML LN (L)) (3.7.18)
4] 0
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We will now use the single symbol B in inequalities satisfied for some function satisfying

the same conditions as B8, that is € L, NL, ., and B(t) =0, as ¢ —eo.
The transfer functions M L, L ;1, L 71, are all stable, and the last two are strictly

proper. The gain —C}— is bounded by (3.7.2), because of the projection in the update law.
0

Therefore, using results obtained so far, and lemmas 3.6.1 and 3.6.4
1y, = ym | SBIv, I+ Bhz L+ B
SBIlrpt L+BIw i +8
< B Yp, bt B
SBIy, =y lt B (3.7.19)
Recall that since 8 € L, all signals in the adaptive system belong to L. - On the
other hand, for T sufficiently large, B(z 27 ) <1. Therefore, application of the small gain

theorem (lemma 3.6.6) with (3.7.19) shows that y, —y,, is bounded for ¢ 27'. But since

Yp» ¥m € Leoe . it follows that y, € L, . Consequently, all signals belong to L.

From (3.7.19). it also follows that e =y, — ¥, € L, and tends to zero as ¢ — oo.

Similarly, using (3.5.9), (3.5.12), and (3.7.9)

1
—A)1p. P-1 AT ;
v v [WTATRETM (L gry s b 2767 (2 ))) (3720
(I —A)'65M o °

so that v —v,, also belongs to L,, and tends to zero, as? —oo.
3.7.2 Stability - Output Error Direct Adaptive Control

Theorem 3.7.2

Consider the output error direct adaptive control scheme described in section 3.3.2, with

initial conditions in an arbitrary B, .

Then

(a) all states of the adaptive system are bounded functions of time.




(v) the output error e =y, — ¥, € L, and tends to zero as? —oo

the regressor error L ~'(w )~ £~ (w,,) € L, and tends to zero as ¢ —oo.

Proof of Theorem 3.7.2

The proof is very similar to the proof for the input error scheme, and is just

sketched here, following the steps of the proof of theorem 3.7.1.

(a) we now have, instead
€3, ¢ € Lz
e, pEL, (3.7.21)

Note that these results are valid, although the realization of M is not minimal (but is
stable).

(b) as in theorem 3.7.1.

(¢) since co=cyp. (3.7.9) becomes

1
*
Co

I M@ w) =L MEGEF o)+ L MEULIESEDS) (3722
Co Co

(d) as in theorem 3.7.1.

(e) Recall, from (3.3.16) and the definition of the gradient update law, that

L ME(FT 7)=e+ X ML G ve)=e,—~—2- ML @ ¥) (3723)
Co

Co g Co

so that, with (3.7.22)

Yo = m =;10r ML (¢TV)+?‘: MEL(EIEIENS))
me;— Y _ ML@G)+ L MELILESEDE) (3.7.24)
g Co Co

Recall that e is bounded (part (a)), and that M L is strictly proper (in the output error

scheme). The proof can then be completed as in theorem 3.7.1. O
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3.7.3 Stability - Indirect Adaptive Control

Theorem 3.7.3

Consider the indirect adaptive control scheme described in section 3.3.3, with initial con-

ditions in an arbitrary B, .

Then

(a) all states of the adaptive system are bounded functions of time.

(b) the output error e = ¥, — Y € L. and tends to zeroas? —oo
the regressor error w— w,, € L,. and tends to zero as? —oo.

Comments

Compared with previous proofs, the proof of theorem 3.7.3 presents additional com-
plexities due to the transformation 7 —0. A major step is to relate the identification error

Y7 W to the control error ¢7 w.

To understand the idea of the proof, assume that the parameters 7 and @ are fixed in
time, and that k, is known. For simplicity, let kK, =@p 41 = k., =1. The nominal values
of the identifier parameters are then given by

*

Q>
2

P

b'=A—-d

I
>

P

The controller parameters are given as a function of the identifier parameters through
c=h—ja

d=gh—gb—-%od, (3.7.25)

d, —Xd (3.7.26)
It follows that
ga—ga =0-2)—gn,=—C—-cH)+QA-c)=gn,

=—(—c)+(@ —q)n, (3.7.27)




and

=—(@-3)+G-3)a,
Therefore
~la-a" 5—5" n, c—c d—d’ ;lp
T3 + 3 = —_— + > —_ (3-7.29
S Y x4, X X 3, )

This equality of polynomial ratios can be interpreted as an operator equality in the
Laplace transform domain, since we assumed that the parameters were fixed in time. If
we apply the operator equality to the input u, it leads to (with the definitions of section
3.3)

g wW)=—3"w (3.7.30)
and consequently
Yp ~¥m = L maw W (3.7.31)
€o

Since the degree of g is at most equal to the relative degree of the plant, the transfer
function M ¢ is proper and stable. The techniques used in the proof of theorem 3.7.1,

and the properties of the identifier would then lead to a stability proof.

Two difficulties arise when using this approach to prove the stability of the indirect
adaptive system. The first is related to the unknown high-frequency gain, but only
requires more complex manipulations. The real difficulty comes from the fact that the
polynomials g.a.b.c.and d vary as functions of time. Eqn (3.7.29) is still valid as a
polynomial equality, but transforming it to an operator equality leading to (3.7.30)

requires some care.

To make sense of time varying polynomials as operators in the Laplace transform

domain, we define

S, = . (3.7.32)




so that

a(s)=al 5, %=0T-(f£—)

Consider the following equality of polynomial ratios

a(s) _8()
AG)  AGs)

(3.7.34)

where @ and b vary with time, but A is a constant polynomial. Equality (3.7.34) implies

the following operator equality
o Se rSn .
a (T('))=b (T(')) (3.7.35)

Similarly, consider the product

a(s) b(s)

AG) T AGs) (3.7.36)

This can be interpreted as an operator by multiplying the coefficients of the polynomials
to lead to a ratio of higher order polynomials, and then interpreting it as previously. We

note that the product of polynomials can be expressed as
a(s)b(s)=a"(G,55)8 (3.7.37)

so that the operator corresponding to (3.7.36) is

’(}” }"T())b (3.7.38)
a ——— . ey . oA
A A

i.e. by first operating the matrix transfer function on the argument, and then multiplying

by a and b in the time domain. Note that this operator is different from the operator

ro Sa (54
a” (5= (5= ()5)) (3.7.39)

but the two operators can be related using the swapping lemma (lemma 3.6.5).
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Proof of Theorem 3.7.3
The proof follows the steps of the proof of theorem 3.7.1, and is only sketched here.

(a) Derive properties of the identifier that are independent of the boundedness of the

regressor

The properties of the identifier are the standard properties obtained in theorems

24.1-2.4.4

W (e )wle )= B )Niw, i+ B(t)

BeL,NL,
yeEL, YEL,NL,
ap+1(t ) 2Kk gin >0 for allz 20 (3.7.40)

The inequality for a,,4+,(¢ ) follows from the use of the projection in the update law.

We also noted, in section 3.3, that if 7 is bounded. and a,,+; is bounded away from
zero, then 8 is also bounded, and the transformation has bounded derivatives. The vector
g of coefficients of the polynomial g is also bounded. By definition of the transformation,
0(m)=0". Therefore, ¥ € L .y € L, NL_ implies that p € L, . € L, NL, . Also,

we have that (k,,/ 1a,+1l) Scot ) Sky/ & min. for all ¢ 20.

(b) Express the system states and inputs in term of the control error
As in theorem 3.7.1.

(c) Relate the identifier error to the control error

We first establish an equality of ratios of polynomials, then transform it to an

operator equality. Using a similar approach as in the comments before the proof, we have

that
ga—ga =a,,yA=2¢)—qk,n,
=—an (e —¢ Vtap1A=c")—k,qn,
=—au1 (€ —¢ I+ (ap1q —k, g )7, (3.7.41)
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An41 ~« An+1 4 2m ~ 1 am “
+(—-= Ao +§ —Ao = )d (3.7.42)
kp kp d, P ?
Therefore
,a_ &_:‘E_ ,‘2_ b5 kp ’A‘P
Ao A o p) a,
-2, d-a N dnhp 1
- —4a, " + x— P - k )T"’ P ~
@m+l 1 X R 1YW (kp ~an+1) ¢ 3, X
kn [e-2 L a=a p
=—_" |57 +28 2% PH(co—co)M — (3.7.43
Co AXO )\)\0 0 0 )\0 )

where we divided by A}, to obtain proper stable transfer functions. The polynomial A, is
Hurwitz, and ¢ is bounded, so that the operator g7 3', / 7\0 is a bounded operator
We now transform this polynomial equality into an operator equality as in the com-

ments before the proof. Applying both sides of (3.7.43) to u

—-q T W)= En (co—co)M™ 12_( )+¢T ! w) (3.7.44)
Ao Ao Ao

The right-hand side is very reminiscent of the signal z obtained in the input error

A filtered version of the signal M ™' P (u) =r, appears, instead of r, with the

scheme.
error co— cy. From proposition 3.3.1, with L =), (cf. (3.3.10))
" 1 AT —
c M”P,—(u)— (u)—,.——(GT ) (3.7.45)
¢ o o o
and sinceu =cor + 67 w. it follows that
(3.7.46)

P =1 (L o)+ L@ W)
)\o C A()

The right-hand side of (3.7.44) becomes, using (3.7.46) followed by the swapping lemma

(and using the notation of the swapping lemma)

(657-—( )— @ %))
O

km cO—CI')
— *-—(c r)+,.- T—)+
Cgo Co )\0 0 AO 6 Co
k,, :
=5 P L (eomed)r)=Ay (A, (cor) (S 0=0
Co 0 Co
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+ %—(«'ﬁf w)— c—;’ A (A, &) P) (3.7.47)
0

[+

On the other hand, using again the swapping lemma, the left-hand side of (3.7.44)

becomes
P s, - s e
g7 ;— FT)9=g7 3= GT¥)=g" 8, (8,5 1Y) (3.7.48)
0 0

where the transfer functions A, . A, S,s. and S,. result from the application of the
swapping lemma. The output error is then equal to (using (3.7.2), (3.7.44), (3.7.47),
(3.7.48))

Yp = Ym = —L M (co—co)r +3 w)
0

1 a4a L Rm 1 o 1 7 —
—}-:MXO —c—;o—n((co CO)r)+’x—0(¢ W)
. 5, .
= L M| —g7 XL G 9D +gT 8 (86 W)
m 0

Kn o~ 4 —cy
+ 20 N (A Leor) (22

Co

)) + ’Z—"' A (M WHYP) | (3.7.49)
[}

0

(d) Establish the regularity of the signals
As in theorem 3.7.1.
(e) Stability Proof

M 7\0 is a stable transfer function, and since qT is bounded, qr },/ 7\0 is a bounded
operator. We showed that ¢, &, ¢¢ € L, so that, from (3.7.49) and part (a), an inequal-
ity such as (3.7.19) can be obtained. As before w regular implies that 8 =0 as? —eo. The
boundedness of all signals in the adaptive system then follows as in theorem 3.7.1. Simi-
larly, y, —yn € L and tends to zero as ¢ —oo. Since the relative degree of the transfer

function from u —w is the same as the relative degree of P. M. and therefore L™, the

same result is true for w—w,, .
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3.8 Exponential Parameter Convergence

Exponential convergence of the identification algorithms under persistency of excita-
tion conditions was established in sections 2.5 and 2.6. Consider now the input error
direct adaptive control scheme of section 3.3.1. Using theorem 2.5.3, it would be straight-
forward to show that the parameters of the adaptive system converge exponentially to
their nominal values, provided that the regressor v is persistently exciting. However,
such result is useless, since the signal v is generated inside the adaptive system, and is
unknown a priori. Theorem 3.8.1 shows that it is sufficient for the model signal w,, to be

persistently exciting to guarantee exponential convergence.

Note that in the case of adaptive control, we are not only interested in the conver-
gence of the parameter error to zero, but also in the convergence of the errors between
plant states and model states. In other words, we are concerned with the exponential sta-

bility of the overall adaptive system.

Theorem 3.8.1
Consider the input error direct adaptive control scheme of section 3.3.1.
If w,, is PE

Then  the adaptive system is exponentially stable in any closed ball.

Proof of Theorem 3.8.1

Since w,,, w,, are bounded. lemma 2.6.6 implies that v, =L "Nz,)=LYw,) is
PE. In theorem 3.7.1, we found that v —v,, € L,. Therefore. using lemma 2.6.5, v,, PE
implies that v is PE. Finally, since v is PE, by theorem 2.5.3, the parameter error ¢ con-

verges exponentially to zero.

Recall that in section 3.5, it was established that the errors between the plant and
the model signals are the outputs of stable transfer functions with input ¢’ w. Since w is

bounded (by theorem 3.7.1), ¢’ w converges exponentially to zero. Therefore, all errors

between plant and model signals converge to zero exponentially fast. D
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Comments

Although theorem 3.8.1 establishes exponential stability in any closed ball, it does
not prove global exponential stability. This is because v = v, is not bounded bSl a unique
L, function for any initial condition. Results in section 4.5 will actually show that the

adaptive control system is not globally exponentially stable.

The various theorems and lemmas used to prove theorem 3.8.1 can be used to obtain
estimates of the convergence rates of the parameter error. It is, however. doubtful that
these estimates would be of any practical use, due to their complexity and to their conser-

vatism. A more successful approach is that of chapter 4, using averaging techniques.

The result of theorem 3.8.1 has direct parallels for the other adaptive control algo-

rithms presented in section 3.3.

Theorem 3.8.2

Consider the output error direct adaptive control scheme of section 3.3.2 (or the indirect

scheme of section 3.3.3)
If w, is PE (W, is PE)

Then  the adaptive system is exponentially stable in any closed ball.

Proof of Theorem 3.8.2

The proof of theorem 3.8.2 is completely analogous to the proof of theorem 3.8.1,

and is omitted here. O

3.9 Conclusions

In this chapter, we derived three model reference adaptive control schemes. All had
a similar controller structure, but had different identification structures. The first two
schemes were direct adaptive control schemes, where the parameters updated by the
identifier were the same as those used by the controller. The third scheme was an indirect
scheme, where the parameters updated by the identifier were the same as those of the
basic identifier of chapter 2. Then, the controller parameters were obtained from the
identifier parameters through a nonlinear transformation resulting from the model refer-

ence control objective.
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We investigated the connections between the adaptive control schemes, and also with
other known schemes. The difficulties related to the unknown high-frequency gain were
also discussed. The stability of the model reference adaptive control schemes was proved,
together with the result that the error between the plant and the reference model con-
verged to zero as t approached infinity. Although the proofs relied strongly on known
results. we used a unified framework, and an identical step-by-step procedure for all
three schemes. We proved - with original or reviewed proofs - basic lemmas that are
fundamental to the stability proofs, and we emphasized a basic intuitive idea of the proof

of stability, that was the existence of a small loop gain appearing in the adaptive system.

The exponential parameter convergence was established, with the additional assump-
tion of the persistency of excitation of a model regressor vector. This condition was to be
satisfied by an exogeneous model signal. influenced by the designer, and was basically a

condition on the reference input.

An interesting conclusion is that the stability and convergence properties are identi-
cal for all three adaptive control schemes. Further, the normalized gradient identification
algorithm can be replaced by the least squares algorithm with projection without altering
the results. Differences appear between the schemes however, in connection with the

high-frequency gain, and with other practical considerations.

The input error direct adaptive control scheme and the indirect scheme are attractive
because they lead to linear error equations, and do not involve SPR conditions. Another
advantage is that they allow for a decoupling of identification and control useful in prac-
tice. The indirect scheme is quite more intuitive than the input error direct scheme,
although more complex in implementation, and especially as far as the analysis is con-
cerned. The end result shows however that stability is not an argument to prefer one

over the other.

The various model reference adaptive control schemes also showed that the model
reference approach is not bound to the choice of a direct adaptive control scheme, to the
use of the output error in the identification algorithm, or to SPR conditions on the refer-

ence model.
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Chapter 4 Parameter Convergence Using Averaging
Techniques

4.1 Introduction

The method of averaging is a method of analysis of differential equations of the

form
x=€f (t.x) (4.1.1)

and relates properties of the solutions of system (4.1.1) to properties of the solutions of

the so-called averaged system

Xo =€fq (x0) (4.1.2)
where
tg+T
fav (x)=}i_xgo—;—, !; f@.x)dt (4.1.3)

provided that the parameter € is sufficiently small. The method was proposed originally
by Bogoliuboff and Mitropolskii (1961), developed subsequently by Volosov (1962),
Sethna (1970), Balachandra and Sethna (1975), Hale (1980), and stated in a geometric
form in Arnold (1982), and Guckenheimer and Holmes (1983).

Averaging methods were introduced for the stability analysis of deterministic adap-
tive systems in the work of Astrom (1983), Astrom (1984), Riedle and Kokotovic (1985)
and (1986), Mareels et al (1986), and Anderson et al (1986). We also find early informal
use of averaging in Astrom and Wittenmark (1973), and, in a stochastic context, in Ljung

and Soderstrom (1983).

Averaging is very valuable to assess the stability of adaptive systems in the presence
of unmodeled dynamics, and to understand mechanisms of instability. However, it is not

only useful in stability problems, but in general as an approximation method, allowing
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one to replace a system of nonautonomous differential equations by an autonomous sys-
tem. This aspect was emphasized in Fu, Bodson, and Sastry (1985), Bodson et al (1986),
and theorems were derived for one-time scale, and two-time scale systems such as those
arising in identification and control. These results are reviewed here, together with their

application to the adaptive systems described in previous chapters.

4.2 Averaging Theory - One-Time Scale

In this section, we consider differential equations of the form
x=¢€¢f(tx.€) x(0)=x, (4.2.1)

where x €ER”, ¢t 20, 0 <€ <€, and f is piecewise continuous with respect to¢. We will
concentrate our attention on the behavior of the solutions in some closed ball B, of

radius k., centered at the origin.

For small €, the variation of x with time is slow, as compared to the rate of time
variation of f . The method of averaging relies on the assumption of the existence of the
mean value of f (¢ .x.0) defined by the limit

tg+T

fm,(x)=T1i_r)x;%;/; frx.0)dr (4.2.2)

assuming that the limit exists uniformly in ¢4 and x. This is formulated more precisely

in the following definition.

Definition Mean Value of a Function, Convergence Function

The function f (¢.x.,0) is said to have mean value f,, (x) if there exists a continuous
function y(T ): R, —R,, strictly decreasing, such that ¥(7) =0 as T — oo, and

tot7
|_1T_ [ FGx0dr—faG)<HT) (42.3)
‘o
forallz, 20,7 20,x €B,.
The function ¥(7') is called the convergence function.

Note that the function f (¢ .x ,0) has mean value f,, (x ) if and only if the function

diex)=f @ x.0)=fqa(x) (42.4)
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has zero mean value.

The following definition (Hahn (1967), p. 7) will be useful.

Definition Class K Function

A function a(e):R, =R, belongs to class K (ale) € K), if it is continuous, strictly

increasing. and a(0)=0.

It is common, in the literature on averaging, to assume that the function f (¢ x €) is
periodic in ¢, or almost periodic in ¢. Then, the existence of the mean value is guaranteed,
without further assumption (Hale (1980), theorem 6, p. 344). Here, we do not make the
assumption of (almost) periodicity, but consider instead the assumption of the existence

of the mean value as the starting point of our analysis.

Note that if the function d (¢ ,x ) is periodic in ¢, and is bounded, then the integral of
the function d (¢ ,x ) is also a bounded function of time. This is equivalent to saying that
there exists a convergence function y(7')=a/ T (i.e. of the order of 1/ T ) such that
(4.2.3) is satisfied. On the other hand, if the function d (¢ .x) is bounded. and is not
required to be periodic but almost periodic, then the integral of the function d (t x) need
not be a bounded function of time, even if its mean value is zero (Hale (1980). p. 346).
The function y(T') is bounded (by the same bound as d (¢ .x )), and converges to zero as
T — oo, but the convergence function need not be bounded by a/ T as T — oo (it may be of
order 1/ VT for example). In general, a zero mean function need not have a bounded
integral, although the converse is true. In this paper, we do not make the distinction
between the periodic, and the almost periodic case, but we do distinguish the bounded
integral case from the general case, and indicate the importance of the function Y(T) in

the subsequent developments.

System (4.2.1) will be called the original system and. assuming the existence of the

mean value for the original system, the averaged system is defined to be
Zay =€ fav (xa) xa (0)=x ¢ (4.2.5)

Note that the averaged system is autonomous and, for 7 fixed and € varying. the solu-

tions over intervals [0,7/ €] are identical. modulo a simple time scaling by €.
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We address the following two questions

(a) the closeness of the response of the original and averaged systems on intervals
[0.7/ €l.
(b) the relationships between the stability properties of the two systems.

To compare the solutions of the original and of the averaged system, it is convenient
to transform the original system in such a way that it becomes a perturbed version of the
averaged system. An important lemma that leads to this result is attributed to Bogo-
liuboff and Mitropolskii ((1961), p. 450, and Hale (1980). lemma 4, p. 346). We state a

generalized version of this lemma.

Lemma 4.2.1 Approximate Integral of a Zero Mean Function

1 d (¢ x):R,xB, »R" is a bounded function, piecewise continuous with respect to
h P espe

¢, and has zero mean value with convergence function y(7')

Then  there exists £(€) € K, and a function w (¢ .x ): RyXB, = R" such that

lew (¢t .x) I <&(e) (4.2.6)
191‘_;_’2 —d(t.x)1 SEE) 427

for all ¢ 20, x € B, . Moreover, w (0.x )=0, for all x €B, .
If, moreover y(T)=a/ T" for somea 20, r €(0.1],
Then the function £(€) can be chosen to be 2a €”.

Proof of Lemma 4.2.1 in appendix.

Comments

The construction of the function w.(¢ .x) in the proof is identical to that in Bogo-
liuboff and Mitropolskii (1961), but the proof of (4.2.6), (4.2.7) is different, and leads to

the relationship between the convergence function ¥(7') and the function £(e).

The main point of lemma 4.2.1 is that, although the exact integral of d (¢ .x ) may be
an unbounded function of time, there exists a bounded function w (¢ .x ), whose first par-
tial derivative with respect to ¢ is arbitrarily close to d (¢ .x). Although the bound on

w (¢ .x ) may increase as € =0, it increases slower than £&(€)/ €, as indicated by (4.2.6).
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It is necessary to obtain a function w (¢ .x ), as in lemma 4.2.1, that has some addi-
tional smoothness properties. A useful lemma is given by Hale ((1980), lemma 5, p.
349). At the price of additional assumptions on the function d (¢ x). the following

lemma leads to stronger conclusions that are useful in the sequel.

Lemma 4.2.2 Smooth Approximate Integral of a Zero Mean Function

If d(z .x):R,XB; »R" is piecewise continuous with respect to ¢, has bounded and
continuous first partial derivatives with respect to x, and d (¢ .0)=0 for all ¢ 0.

Moreover, d (¢ .x ) has zero mean value, with convergence function y(7 )lx |, and

Qﬂ%ﬁ has zero mean value, with convergence function ¥(7')

)

Then  there exists £(€)€K , and a function w (¢ .x ): Ry XB, —=R", such that

lew (r x)1 <€(elix | (4.2.8)
&”:a(_i_"fl-d(t <) I<EE) x| (42.9)
e ) ey (4.2.10)

ox

for all t 20, x €B, . Moreover, w (0.x )=0, for all x €B,,.
If, moreover y(T')=a/ T’ for some a 20.r €(0,1],
Then the function £(€) can be chosen to be 2a€”.

Proof of Lemma 4.2.2 in appendix.

Comments

The difference between this lemma and lemma 4.2.1 is in the condition on the partial
derivative of w (¢ .x ) with respect to x in (4.2.10), and the dependence on |x | in (4.2.8),
(4.2.9).

Note that if the original system is linear, i.e.
x=A)x x(0)=x, (4.2.11)

for some A (¢ ): R, = R**, then the main assumption of lemma 4.2.2 is that there exists

A,, such that A{t )—A,, has zero mean value.
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The following assumptions will now be in effect.

Assumptions
For some h >0, €, >0

(A1) x=0 is an equilibrium point of system (4.2.1), ie. f (z.0,0)=0 for all ¢ 20.

f (¢ x €) is Lipschitz in x , i.e. for somel; 20
1 f (. xp.€)— f (¢ ,x2€) SLjlx—x,] (4.2.12)
forallt 20,x,.x, € B, ,€ S¢€o.
(A2)  f(t.x.€) is Lipschitz in €, linearly in x , i.e. for somel; 20
If (t.x,€)—f (t.x,€)ISllx lle;— €] (4.2.13)
forallt 20,x € By, €, €, S€,.
(A3) £, (0)=0, and f, (x) is Lipschitz in x , i.e. for somel, =0
[ faw ()= fav (x2Sl lx 1 — x5! (4.2.14)
for all x;, x,€B,.

(A4)  the function d (¢ .x)=f (z x .0)—f . (x ) satisfies the conditions of lemma 4.2.2.

Lemma 4.2.3 Perturbation Formulation of Averaging

If the original system (4.2.1) and the averaged system (4.2.5) satisfy assumptions
(A1)-(A4)

Then  there exist functions w(t.x), £(€) as in lemma 4.2.2, and €; >0 such that the

transformation
x=z +ewc(t.z) (4.2.15)
is a homeomorphism in B, for all € <€, and
Ix —z1S&e)lz ] (4.2.16)
Under the transformation, system (4.2.1) becomes
z2=€fa(z)+ep(t.z.€) z(0)=x, (4.2.17)

where p(t.z,€) satisfies
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ip(t.z,e)ISylelz | (4.2.18)

for some W(e) € K. Further, y(€) is of the order of e+&(€).

Proof of Lemma 4.2.3 in appendix.

Comments

a) A similar lemma can be found in Hale (1980) (lemma 3.2, p. 192). Inequality
(4.2.18) is a Lipschitz type of condition on p(¢.z,€), which is not found in Hale (1980),

and results from the stronger conditions and conclusions of lemma 4.2.2.

b) Lemma 4.2.3 is fundamental to the theory of averaging presented hereafter. It
separates the error in the approximation of the original system by the averaged system
(x —x,,) into two components: x—z and z—x,,. The first component results from a
pointwise (in time) transformation of variable. This component is guaranteed to be small
by inequality (4.2.16). For € sufficiently small (¢ S€;). the transformation z—x is
invertible, and as €0, it tends to the identity transformation. The second component is
due to the perturbation term p(¢.z.€). Inequality (4.2.18) guarantees that this pertur-

bation is small as € —0.

c) At this point, we can relate the convergence of the function y(7') to the order of
the two components of the error x —x,, in the approximation of the original system by
the averaged system. The relationship between the functions ¥(7') and §(€) was indicated
in lemma 4.2.1. Lemma 4.2.3 relates the function £(€) to the error due to the averaging.
If d(¢t.x) has a bounded integral (i.e. y(Z) ~1/ T). then both x —z and p(¢ .z .€) are of
the order of € with respect to the main term f, (z). If d(¢.x) has zero mean but
unbounded integral, these terms go to zero as € —0, but possibly more slowly than
linearly ( as V€ for example). The proof of lemma 4.2.1 provides a direct relationship

between the order of the convergence to the mean value, and the order of the error terms.
We now focus attention on the approximation of the original system by the averaged
system. Consider first the following assumption.

(A5)  x, is sufficiently small so that, for fixed 7. and some h'<h. x,, (¢ )J€B,: for all

t €[0.T/ €] (this is possible, using the Lipschitz assumption (A3). and proposition
1.4.1).
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Theorem 4.2.4 Basic Averaging Theorem

If the original system (4.2.1) and the averaged system (4.2.5) satisfy assumptions
(A1)-(A5)

Then  there exists y(€) as in lemma 4.2.3 such that, given 7 20
lx (¢ ) — x4, (£ )1 SY(€) by (4.2.19)

for some by 20.€r >0,and forallz €[0,7/ €l and € <er.

Proof of Theorem 4.2.4
We apply the transformation of lemma 4.2.3, so that
lx —z 1 <€)z 1 SyY(e)iz | (4.2.20)

for € <€;. On the other hand, we have that

% (2 =x,)= € (f 0 (2)= fur (s D+ € p(t 2.6) 2(0)—3x,,(0)=0 (4.221)

forallt €[0,7/ €). x4 €B, h'<h.

We will now show that, on this time interval, and for as long as x.z €B, . the

errors (z —x,, ) and (x —x,, ) can be made arbitrarily small by reducing €.

Integrating (4.2.21)
4 t
12(¢) = %0 ()1 Sely, [12(1) = x0,(1)1d 7 + € Yle) Jiz(mdr  (4222)
0 0
Using the Bellman-Gronwall lemma (lemma 1.4.2)

1202 ) — 2 (2 )1 Sele) [12(r)1 e Va1 <yleh
0

el, T
e ¥ —1
Loy

=y(e)ar (4.2.23)

Combining (4.2.20), (4.2.23)
lx(t)— 2, @)ISIx @)=z (E)+12()~x, ()]
Sy lx,, )+ (A+y(e)) 1z () — x4, ()1
<yle) (h +(1+y(e N ar)
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= y(ebr (4.2.24)

By assumption, lx, (t)I<h'<h. Let €r (with 0<er <e,) such that
v(er )by <h—h'. It follows, from a simple contradiction argument, that x(t)€B,, and

that the estimate in (4.2.24) is valid for all ¢ € [0.T/ €], whenever € Se;. O

Comments

Theorem 4.2.4 establishes that the trajectories of the original system and of the
averaged system are arbitrarily close on intervals [0.T/ €]. as € is sufficiently small. The
error is of the order of Y(€), and the order is related to the order of convergence of ¥(T).

If d (¢ .x ) has a bounded integral (i.e. y(Z)~1/ T'), then the error is of the order of €.
It is important to remember that, although the intervals [0.7/ €] are unbounded,
theorem 4.2.4 does not state that

Ix (¢)— x4, (£ )1 SY(€) b (4.2.25)

for all ¢ =0, and some b. Consequently, theorem 4.2.4 does not allow us to relate the
stability of the original and of the averaged system. This relationship is investigated in

theorem 4.2.5.

Theorem 4.2.5 Exponential Stability Theorem

If the original system (4.2.1) and the averaged system (4.2.5) satisfy assumptions
(A1)-(AS), the function f, (x ) has continuous and bounded first partial deriva-
tives in x , and x =0 is an exponentially stable equilibrium point of the averaged

system

Then  the equilibrium point x =0 of the original system is exponentially stable for €

sufficiently small.

Proof of Theorem 4.2.5

The proof relies on the converse theorem of Lyapunov for exponentially stable sys-
tems (theorem 1.4.3). Under the hypotheses, there exists a function v (x,, )>: R” 2R, and

strictly positive constants a,a;,0:3.04 such that, for all x,, €B,

aglxg, P <vix, ) Soplx,, P (4.2.26)
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S—€ a5lx,, P (4227
(4.2.5)

[
axav
The derivative in (4.2.27) is to be taken along the trajectories of the averaged system

(4.2.5).

v (xq)

Soaylx,, | (4.2.28)

The function v is now used to study the stability of the perturbed system (4.2.17),
where z(x ) is defined by (4.2.15). Considering v (z). inequalities (4.2.26) and (4.2.28)
are still verified, with z replacing x,, . The derivative of v(z) along the trajectories of

(4.2.17) is given by

v(z) =v(z) + %Ez’. (ep(t.z.€)) (4.2.29)

(4.2.17)

(4.2.5)

and, using previous inequalities (including those from lemma 42.3)

v(z) S—eajlz P+eaylediz P
(4.217)
<ce |TY O lv () (4.2.30)
o

for all € €€,. Let €', be such that a3 — Y(€'2)ay >0, and define €; = min(e,.€’2). Denote

ale) = BTV (4.2.31)
205
Consequently, (4.2.30) implies that
v(z) Sv(z(ty)) e 20 (42.32)
and
PIO IR ? W 2iz(g)le O (4.2.33)

1

Since af€) >0 for all € e,, system (4.2.17) is exponentially stable. Using (4.2.16), it

follows that

1+£€(e) , @2 —afe) (1 —t)
| < /2 [
xu)l\m( o W2 ix(ty)le (4.2.34)

for all ¢ 2t, 20, € <€,, and x (¢,) sufficiently small that all signals remain in B,. In

other words, the original system is exponentially stable, with rate of convergence (at
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least) eale). O

Comments

a) Theorem 4.2.5 is a local exponential stability result. The original system will be
globally exponentially stable, if the averaged system is globally exponentially stable, and

provided that all assumptions are valid globally.

b) The proof of theorem 4.2.5 gives a useful bound on the rate of convergence of the

.. € a3 L :
original system. As € tends to zero, €éx(€) tends to > oo which is the bound on the rate
2

of convergence of the averaged system that one would obtain using (4.2.26)-(4.227). In
other words, the proof provides a bound on the rate of convergence, and this bound gets
arbitrarily close to the corresponding bound for the averaged system, provided that € is
sufficiently small. This is a useful conclusion because it is in general very difficult to
obtain a guaranteed rate of convergence for the original, noNautonomous system. The
proof assumes the existence of a Lyapunov function satisfying (4.2.26)-(4.2.28), but does
not depend on the specific function chosen. Since the averaged system is autonomous, it is
usually easier to find such a function for it than for the original system, and any such
function will provide a bound on the rate of convergence of the original system for €

sufficiently small.

¢) The conclusion of theorem 4.2.5 is quite different from the conclusion of theorem
4.2.4. Since both x and x,, g0 to zero exponentially with ¢, the error x —x,, also goes to
zero exponentially with ¢#. Yet, theorem 4.2.5 does not relate the bound on the error to €.
It is possible, however, to combine theorem 4.2.4 and theorem 4.2.5 to obtain a uniform

approximation result, with an estimate similar to (4.2.25).

4.3 Application to Identification

To apply the averaging theory to the identifier described in chapter 2, we will study

the case when g =€ >0, and the update law is given by (cf. (2.4.1))

p(t)=—€e(t)w(t) 6(0) = ¢, (4.3.1)

The evolution of the parameter error is described by

dt)=—ew(@)wl()e(z) ¢(0) =, (4.32)
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In theorem 2.5.1, we found that system (4.3.2) is exponentially stable, provided
that w is persistently exciting, i.e., there exist constants a;, &, § >0, such that

tg+d
al 2 [ wmwl(1)dr 2yl forallto >0 (4.3.3)

to

On the other hand., the averaging theory presented above leads us to the following

definition.

Definition Stationarity, Autocovariance

A signal z : R, = R” is said to be stationary if the following limit exists, uniformly in ¢,

tg+T
R()=lm L [ z():zTG+r)dr R (4.3.4)
T 7o T g

in which instance, the limit R, (¢ ) is called the aufocovariance of z .

Frequency Domain Analysis

We now review some results from Boyd and Sastry (1984) and (1985). Many
results have direct parallels with results in the stochastic literature, but are obtained in a

completely deterministic framework.

The autocovariance matrix of a stationary signal w is a positive semidefinite func-
tion of ¢. Therefore, R, (¢) can be written as the inverse Fourier transform of the posi-

tive spectral measure S,, (d )
— 1 T iwt
R, ()= 5 _fw e™ S, (dw) (4.3.5)

If the input » of a proper stable transfer function H,, is stationary, then the out-

put w is also stationary. Its spectrum is related to the spectrum of r through

S,(dw)=H,, (o)A (jw)s (dw) (4.3.6)

and, using (4.3.5) and (4.3.6), we have that

R, (0)= %Lﬁ,w(jw)ﬁ::(jw)sr (d @) (4.3.7)
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In the context of the identifier considered here, H,, is given by (cf. (2.2.16)-
(2.2.17))

(SI—A)_I bx

(sI=A)15,B(s) | € R () (4.3.8)

H,.(s)=

It can be shown (cf. Boyd and Sastry (1984) and (1985)) that when w is stationary. w is
PE if and only if R, (0) is positive definite. From (4.3.7) and (4.3.8), it follows that this
is true if the support of s, (d w) is greater than or equal to 2n points (the dimension of w
= the number of unknown parameters = 2n ). Note that a DC component in r (¢ ) contri-
butes one point to the support of s, (d ), while a sinusoidal component contributes two

points.

With these definitions, the averaged system corresponding to (4.3.2) is simply
¢. =—€ R, (0) ¢, b (0) = (4.3.9)

This system is particularly easy to study, since it is linear.

Convergence Analysis

When w is persistently exciting, R, (0) is a positive definite matrix. A natural

Lyapunov function for (4.3.9) is
vy )= % g, 12 = % ba, b (4.3.10)

and

—€Amin(R,, (01, 12 € —v (g, ) € —€Apax(R, (0)) 16, 12 (4.3.11)

where Agin and Apay are respectively the minimum and maximum eigenvalues of R, 0).
Thus, the rate of exponential convergence of the averaged system is at least €Ap,(R, (0)),
and at most €Ap.(R, (0)). We can conclude that the rate of convergence of the original

system for € small enough is close to the interval [€Apmin(R,, (0)). €A pnax(R, (0))].

Equation (4.3.7) gives an interpretation of R, (0) in the frequency domain, and also
a mean of computing an estimate of the rate of convergence of the adaptive algorithm,
given the spectral content of the reference input. If the input r is periodic or almost

periodic

re)=2r e’ k! (4.3.12)
P
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then the integral in (4.3.7) may be replaced by a summation

RO=FH,, o)A (jo)r? (43.13)
k

Since the transfer function A ,, depends on the unknown plant being identified, the
use of (4.3.11) to determine the rate of convergence is limited. With knowledge of the
plant, it could be used to determine the spectral content of the reference input that will
optimize the rate of convergence of the identifier, given the physical constraints on r.
Such a procedure is very reminiscent of the procedure indicated in Goodwin and Payne
(1977) (chapter 6), for the design of input signals in identification. The autocovariance
matrix defined here is similar to the average information matrix defined in Goodwin and
Payne (1977) (p. 134). Our interpretation is, however, in terms of rates of parameter
convergence of the averaged system rather than in terms of parameter error covariance in

a stochastic framework.

Note that the proof of exponential stability of theorem 2.5.1 was based on the
Lyapunov function of theorem 1.4.1, that was an average of the norm along the trajec-
tories of the system. In this chapter, we averaged the differential equation itself. and

found that the norm becomes a Lyapunov function to prove exponential stability.

It is also interesting to compare the convergence rate obtained through averaging
with the convergence rate obtained in chapter 2. We found, in the proof of exponential
convergence of theorem 2.5.1, that the estimate of the convergence rate tends to g a,/ 8
when the adaptation gain g (denoted € in this section) tends to zero. The constants a;, &
resulted from the PE condition (2.5.3), i.e. (4.3.3). By comparing (4.3.3) and (4.3.4), we
find that the estimates provided by direct proof and by averaging are essentially identical

for g =€ small.

Example
To illustrate the conclusions of this section, we consider the following example
kp

.s'-i-a,J

P(s)= (4.3.14)

The filter is chosen to be A(s )=1;/ s +1, (where [; = 10.05, [, = 10 are arbitrarily

chosen such that | A(j1) | = 1). Although X is not monic, the gain I, can easily be taken
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into account.

Since the number of unknown parameters is 2, parameter convergence will occur
when the support of s, (d ®) is greater than or equal to 2 points. We consider an input of

the form r = rosin(wyt ), so that the support consists of exactly 2 points.

The averaged system can be found by using (4.3.8).

1 —r?_ P
¢ =—€ — ¢ , ¢av 0)= ¢ 4.3.15
av 3 —2'-_‘—2'12 ; Z ap kp kp2 av 1]

ol +ta? wi+a,

With ro=1, wo=1, a, =1, k, =2, the eigenvalues of the averaged system (4.3.15)

are computed to be — i+—4\/-£ €e=—1309¢, and — 3# € =—0.191 €. The nominal

parameter ' = (k,/ 11.Uz—ay)/ 1,). Welet 8(0) = 0, so that ¢7 (0) = (—0.199. -0.9).

Figures 4.1 to 4.4 show the plots of the parameter errors ¢, and ¢,, for both the ori-
ginal and averaged systems. and with two different adaptation gains € =1, and € =0.1.

We notice the closeness of the approximation for € = 0.1.

Figures 4.5 and 4.6 are plots of the Lyapunov function (4.3.10) for € =1 and
€ = 0.1, using a logarithmic scale. We observe the two slopes, corresponding to the two
eigenvalues. The closeness of the estimate of the convergence rate by the averaged system

can also be appreciated from these figures.

Figure 4.7 represents the two components of ¢, one as a function of the other when
€ = 0.1. It shows the two subspaces corresponding to the small and large eigenvalues: the
parameter error first moves fast along the direction of the eigenvector corresponding to
the large eigenvalue. Then, it slowly moves along the direction corresponding to the

small eigenvalue.

4.4 Averaging Theory - Two-Time Scales

We now consider a more general class of differential equations arising in the adaptive

control schemes presented in chapter 3.
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4.4.1 Separated Time Scales
We first consider the system of differential equations
x=ef(txy) (4.4.1)

y=Ax)y +eg(t.x.y) (4.4.2)

where x (0) = x4, y(0) =y, x ER", and y €R™.

The state vector is divided in a fast state vector y, and a slow state vector x, whose
dynamics are of the order of € with respect to the fast dynamics. The dominant term in

(4.4.2) is linear in y, but is itself allowed to vary as a function of the slow state vector.

As previously, we define

to+l
- 1
fm.(x)-rlgan [n f(r.x,0)d7 (4.4.3)
and the system
xav = fav (xav ) Xay (O) =Xg (4,4,4)

is the averaged system corresponding to (4.4.1)-(4.4.2). We make the following addi-

tional assumption.

Definition Uniform Exponential Stability of a Family of Square Matrices
The family of matrices A (x )ER™™™ is uniformly exponentially stable for all x €B, . if

there exist m. A, m', X' >0, such that, for all x €B, and ¢t 20

mie ™ KleA0X | Kme™™ (4.4.5)

Comments

This definition is equivalent to require that the solutions of the system y=A(x)y

are bounded above and below by decaying exponentials, independently of the parameter

X .

It is also possible to show that the definition is equivalent to requiring that there
exist p;. Pa. q1. g2 >0, such that for all x €B,, there exists P(x) satisfying
p1l SP(x)<pyl.,and —¢, 1 SAT(x)P(x)+P(x)A(x)S—q,1.
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We will make the following assumptions.

Assumptions
For some h >0
(B1) The functions f and g are piecewise continuous functions of time, and continu-

ous functions of x and y. Moreover, f (£,00)=0, ¢ (¢ ,0.0) =0 for all £ 20, and

for some 14, [5.13. 14 20
Vf (.xy.yD)—f (E.x2.52)] Sllx—xd+ 1y =yl
lg(t.xy.y)—gt.x2.52)! Slylxy—xd+ldy;—y2 (4.4.6)
for all ¢ 20, x,. x2€B;,. y1. y2€B, . Also assume that f (¢ .x ,0) has continuous
and bounded first partial derivatives with respect to x, for allz 20,and x €B;,.

(B2)  The function f (z.x,0) has average value fq (x). Moreover, fq (0)=0, and
f o» (x ) has continuous and bounded first partial derivatives with respect 10 x.

for all x €B, . so that for some [, 20
oo (x1) = fav (x 2 Sy 121 — X2 (4.4.7)
for all x . x,€B,.
B3) Letd(Gx)=f(x0)—fq(x) sothatd(t.x ) has zero average value. Assume

od (¢

that the convergence function can be written as y(T)lx|, and that _——xi)— has

0

zero average value, with convergence function ¥(T).

(B4)  A(x) is uniformly exponentially stable for all x €B, and, for some k, 20

|i*.‘§i_"_)u<ka forall x €B, (4.4.8)

(B5) For some h' <h,lx,, (¢ ) € B, on the time intervals considered, and for some hy.
Yo€Bs, (where h', ho are constants to be defined later). This assumption is
technical, and will allow us to guarantee that all signals remain in B, .

As for one-time scale systems, we first obtain the following preliminary lemma,

similar to lemma 4.2.3.
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If the original system (4.4.1)-(4.4.2) and the averaged system (4.4.4) satisfy

assumptions (B1)-(B3)

Then  there exist functions w (¢ x). £é(€) as in lemma 4.2.2, and €; >0, such that the

transformation
x=z+ew/(t.z)
is a homeomorphism in B, for all € <€, and
Ix —z 1<&e)iz |
Under the transformation, system (4.4.1) becomes
=€ fo(z)+ep,(t.z.€)+€pyt.z.y.€) z(0)=x,
where
Ip,(¢.z.€) S€(e)kylz | and Ip(t.z.y € <k,lyl

for some &, k5 depending on [, 15, [,, .

Proof of Lemma 4.4.1 in appendix.

(4.49)

(4.4.10)

(4.4.11)

(4.4.12)

We are now ready to state the first averaging theorem concerning the differential

system (4.4.1)-(4.4.2). Theorem 4.4.2 is an approximation theorem similar to theorem

4.2.4, and guarantees that the trajectories of the original and averaged system are arbi-

trarily close on compact intervals, when € tends to zero.

Theorem 4.4.2 Basic Averaging Theorem

If the original system (4.4.1)-(4.4.2) and the averaged system (4.4.4) satisfy

assumptions (B1)-(B5)

Then  there exists Y(€) as in lemma 4.2.3 such that, given T 20
Ix(t)—x,, () SyY(e) by

for some by 20, €y >0, and forall¢ €[0.7/ €], and € <er.

(4.4.13)
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Proof of Theorem 4.4.2

The proof assumes that for all ¢ €[0, T/ €], the solutions x (¢), y (¢ ), and z(z) (to be
defined) remain in B, . Since this is not guaranteed a priori, the steps of the proof are
only valid for as long as the condition is verified. By assumption. X, (¢) € B,.. with
h' <h. We will show that by letting € and h sufficiently small, we can let x (¢ ) be arbi-
trarily close to x,, (¢ ), and y (¢ ) arbitrarily small. It then follows, from a contradiction
argument, that x(z), y(¢)€B, for all ¢z €[0,T/ €], provided that € and h, are
sufficiently small.

Using lemma 4.4.1, we transform the original system (4.4.1),(4.4.2) into the system
(4.4.11).(4.4.2). A bound on the error 1z (¢)—x,, (¢)| can be calculated by integrating
the difference (4.4.11)-(4.4.4), and by using (4.4.7) and (4.4.12)

12() =% (¢ NSl [12(r)—xp(P)ldT+e &)k, [12()dT
0 0

+ek, [ly(idr (4.4.14)
[4]

Bound on | y(t) |

To obtain a bound on ly (¢ )1, we divide the interval [0, T/ €] in intervals [#;.¢;4;] of
length AT (the last interval may be of smaller length, and AT will be defined later). The

differential equation for y is
y=Ax)y +eglt.xy) (4.4.15)
and is rewritten on the time interval [¢;.¢;,,] as follows
y =AY +eg(t.x.y)+(Axt—AXi)y (4.4.16)
where A, =A(x(z)). and A, =A(x (¢;)). so that the solution y(z), for ¢ €[t;.¢;41]). is
given by

A LA, (t-7)

x(t_t,')
y()=e y,»+efe : glr.x.y)dr
L#

oA (e—T)
4

+fe

LF

(A, —A)y(T)dr (4.4.17)

where y; =y (¢;). From the assumptions, it follows that
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1A, — A NSk, 15 1(7—2,) Se (U +,) b k, AT (4.4.18)

and, using the uniform exponential stability assumption on A (x)

=\ -1;) m

+€A

ly (¢ I €Sm ly;le h((Us+1)+Uy+1,)k, AT) (4.4.19)

Let the last term in (4.4.19) be denoted by € k,, and use (4.4.19) as a recursion formula

for y; . so that

. i=1 )
Iyl S(m e ™7 Y iygl+ek, Y (me ™) (4.4.20)
j=0

Choose AT sufficiently large that

m e M LT/ 2 i.e. AT 2% Inm (4.421)
It follows that
if —\AT ]/<i —W/2]j 1 (4422)
me e = 4.
= 1—eMT72

Jj=0 j=0
Combining (4.4.20)-(4.4.22), and using the assumption Yo€By,

€k A,/ 2
=e

—AAT i/ 2
ly, | e ho+ — gy = ho+ ek, (4.423)

Using this result in (4.4.19), it follows that for all ¢ € [¢;,¢;,,]

=At; 12 —\t —1;) —A(r

ly(t)ISm e hge +mek.e —I")+ekb

Smhoe ™ 24+e(m k. +k,) (4.4.24)

Since the last inequality does not depend on i, it gives a bound on ly(z)! for all

t €[0,T/ €l.
Bound on z (¢t )~ x,, (¢t)

We now return to (4.4.14), and to the approximation error, using the bound on
ly (@)1

12(t) = xo, @)1 €€y [12(1) =20 (Pl +e &)k, [RdT
0 [

t
teky [(mhoe™ 2 +e(mk, +k,)dT (4.425)
0
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so that, using the Bellman-Gronwall lemma (lemma 1.4.2)

z
Iz(t)_xav(t)lsf (f(é)klh +k2m hoe—)‘T/2+k26(m kc +kb))ee€lav (I—T)d’r
4]

kam hol,, el‘"T
<
S(e +€ée))(kyh + VITel +k(m k. +k)) i
=vy(e)ar (4.4.26)
and, using (4.4.10)
lx (2 ) — x,, (¢ Syle) by (4.4.27)

for some b;.
Assumptions

We assumed in the proof that all signals remained in B,. By assumption,
X (t) €B,., for some h'<h. Let h, and €; be sufficiently small so that, for all
€ Ser €;, we have that mho+te(mk, +k,)Sh (cf (4.424))., and that
Y(e)b;y Sh —h'(cf (4.4.27)). It follows, from a simple contradiction argument, that the
solutions x (¢ ), y(¢), and z(z ) remain in B, for all ¢ € [0,T/ €], so that all steps of the

proof are valid, and (4.4.27) is in fact satisfied over the whole time interval. O

Theorem 4.4.3 Exponential Stability Theorem

If the original system (4.4.1)-(4.4.2) and the averaged system (4.4.4) satisfy
assumptions (B1)-(B5), the function f,, (x) has continuous and bounded first
partial derivatives in x, and x = 0 is an exponentially stable equilibrium point of

the averaged system

Then  the equilibrium point x =0, y =0 of the original system is exponentially stable

for € sufficiently small.

Proof of Theorem 4.4.3

The proof relies on the converse theorem of Lyapunov for exponentially stable sys-
tems (theorem 1.4.3). Under the hypotheses, there exists a function v (x,, ): R* = R,,

and strictly positive constants «;, o, &3, o4 such that, for all x,, € B,
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o lx,, PSvix,,) Sazlx,, P (4.4.28)
v (xg ) S—€aylx, P (4.4.29)
(4.4.4)
v |g
L | <ay x| (4.4.30)

The derivative in (4.4.29) is to be taken along the trajectories of the averaged system
(4.4.4).

We now study the stability of the original system (4.4.1).(4.4.2), through the
transformed system (4.4.11),(4.4.2), where x (z) is defined in (4.4.9). Consider the fol-

lowing Lyapunov function

v,z ,y)=v(z)+§_z_ yIP(x(z)y (4.4.31)

where P(x ), p, are defined in the comments after the definition of uniform exponential

a
stability of A (x ). Defining o'; = min(a,, ;-2- p1). it follows that
2

a1 (1zP+ly P)Svi(z,y) Say (iz P+1y P) (4.4.32)

The derivative of v along the trajectories of (4.4.11)-(4.4.2) can be bounded, using above

inequalities

vi(zy)S—€azlzP+eé(e)ka lzP+eka,lzllyl

oz QP(x) ,, 0% 4, 5 02 2
+ =1 FEO9Z iz 11y P— = gy iyl

72 0% oz Pz 1Y
+4elyaxlzllyl+2€elasly P (4.4.33)

for € <€, (so that the transformation x —z is well-defined. and lx 1<2{z 1). We now

calculate bounds on the terms in (4.4.33).
Bound on | §P/ 9x |

Note that P(x ) can be defined by

oo

Px)= [etT®) g ed™)igy (4.4.34)
0

so that
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0 ATt

6 Ax)e
—_ e
ox;

[

61{;’)(:) =£ l 0 AR 4 AT g

The partial derivatives in parentheses solve the differential equation

}dt (4.4.35)

41 gator |2 () |9 patrr |4 84K Lac (4.4.36)
dt |ox; ox; ox;
with zero initial conditions, so that
t
0 _ac), — [.a)c-n 9A(xX) aco)r
Y e t=1|e V-7 e dt (4.4.37)
ox; ‘{ 0x;
From the boundedness of -QA—J?—) , and from the exponential stability of A (x), it fol-

lows that

“aa—x A L 1 <m2k, t e (4.4.38)

With (4.4.35), this implies that I P (x )/ §x I is bounded by some k, 20.
Bound on Igx/ 9z, and 1 z|

On the other hand. using (4.4.9), (4.2.8) and (4.4.12)

“%;“ <1+ée)<2 and 1z1Seh (1, +&€)k,+k,) (4.4.39)

Using these results in (4.4.33), and noting the fact that, forally.z €R

€lzl |yt<.;_ (€ 31zP + €% 31yP) (4.4.40)

it follows that

ko

[e]
1/3——2—-—4- —261/3l3a2)lz '2

vilzy)S—e(az—€e)kias—€

o koo
—(Z2 g, —2€l4a,—€¥3 21
P2

—262/31302

+2e;_2 kph (lav+§(€)k1+k2))'y'2
2

=—2€eaale)izP—g(e)ly P (4.4.41)

o o
Note that, with this definition. a(€) — %a—3 as €—0, while g (€) —'-P—z q1-
2 2
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Let € <€, be sufficiently small that a(e) >0, and 2 € a,a(e) Sq(€). Then
vi(zy) $=2eale)v,lz.y) (4.4.42)

so that the z.,y system is exponentially stable with rate of convergence € ale) (v, being
bounded above and below by the square of the norm of the state). The same conclusion
holds for the x .y system, given the transformation (4.4.9), with (4.4.10). Also, for €. ho
sufficiently small, all signals are actually guaranteed to remain in B, so that all assump-

tions are valid. O

Comments

As for theorem 4.2.5, the proof of theorem 4.4.3 gives a useful bound on the rate of

€ 93 L
convergence of the nonautonomous system. As € =0, the rate tends to 5 which is
o]

the bound on the rate of convergence of the averaged system that one would obtain using
the Lyapunov function v(x,, ). Since the averaged system is autonomous, it is usually
easier to obtain such a Lyapunov function for the averaged system than for the original
nonautonomous system, and conclusions about its exponential convergence can be applied

to the nonautonomous system for € sufficiently small.

4.4.2 Mixed Time Scales
We now discuss a more general class of two-time scale systems, arising in adaptive
control
x=€ef'txy") (4.4.43)
y'=A(x)y'+h(x)+egt.xy") (4.4.44)
We will show that system (4.4.43)-(4.4.44) can be transformed into the system (4.4.1)-
(4.4.2). In this case, x is a slow variable, but y ' has both a fast, and a slow component.

The averaged system corresponding to (4.4.43), (4.4.44) is obtained as follows.
Define the function
t

vt x)= [ eA DR (rx)dT (4.4.45)
4]

and assume that the following limit exists uniformly in ¢ and x
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Lo+l
fa(x)= }1_:30 % !; f'raxv(rx)dr (4.4.46)

Intuitively, v (¢ .x ) represents the steady-state value of the variable y‘ with x frozen and

€=0 in (4.4.44). Then, f is averaged with v (¢ .x ) replacing y ' in (4.4.43).

Consider now the transformation

y=y'—v(t.x) (4.4.47)
Since v (¢ .x ) satisfies
6@; v(tx)=A)v(.x)+h(.x) v (¢ .0)=0 (4.4.48)
we have that
_dvex)

y=A(x)y +€ f@xy+vix)+g'@xy+v(e.x))| (4.4.49)

ox

so that (4.4.43), (4.4.49) is of the form of (4.4.1), (4.4.2) when

fxy)=fGxy+vt.x)) (4.4.50)
gt xy)= —i‘igT'x—) fxy+v@xDN+g'txy+v(.x)) (4.4.51)

The averaged system is obtained by averaging the right-hand side of (4.4.50) with y =0,
so that the definitions (4.4.46), and (4.4.3) (with f given by (4.4.50)) agree.

To apply theorems 4.4.2 and 4.4.3, we require assumptions (B1)-(B5) to be satisfied.
In particular, we assume similar Lipschitz conditions on f ', g', and the following
assumption on A (¢ .x)

(B6) h(z.0)=0forall ¢t 20, and 1A (¢ .x )/ §x Vis bounded for all ¢ 20, x € B,.

This new assumption implies that v(z,0)=0. It also implies that IMI is

ox
bounded for all¢ 20, x € B, , since
t
__av(t x) =f eAt)a=T) 8h(7.x) + 9 eANE-D ip(rx) |dT (4.4.52)
axi [} axi axi

and using the fact that e?®)%~7) and aix e2) =7 are bounded by exponentials

((4.4.5) and (4.4.38)).




127

4.5 Applications to Adaptive Control

For illustration, we apply the previous results to the output error direct adaptive

control algorithm for the relative degree 1 case.

We established the complete description of the adaptive system in section 3.5 with

(3.5.28), i.e.
e(t)=A,e(®)+b,¢" tw,t)+b,¢" ()0 elt)
d(t)=—€eclet)w,(t)—€ecle(t)Q e(r) (4.5.1)

where € is the adaptation gain. With the exception of the last terms (quadratic in e and
&), (4.5.1) is a set of linear time varying differential equations. They describe the adaptive
control system, linearized around the equilibrium e =0, $=0. We first study these

equations, then turn to the nonlinear equations.

4.5.1 Linearized Equations

The linearized equations, describing the adaptive system for small values of e and .

are
e(t)=A,et)+b, wht)p(t)
d)=—ew,(t)c,  e(t) (4.5.2)

Since w,, is bounded. it is easy to see that (4.5.2) is of the form of (4.4.43), (4.4.44) with
the functions f ' and h satisfying the conditions of section 4.4. Recall that A, isa stable

matrix.

The function v (¢ ,¢) defined in (4.4.45) is now
t
vie ) =[ [ e Tbwlr)dT]e (4.5.3)
0

and f,. is given by

to+T

fav(¢)=—rli_r.r:°%"/; wm(t)cmf[{e‘*m""’b,,,w;(f)df]dz ¢ (4.5.4)
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Frequency Domain Analysis

To derive frequency domain expressions, we assume that r is stationary. Since the
transfer function from r —w,, is stable, this implies that wy, is stationary. The spectral

measure of w,, is related to that of r by
S. (dw)=H,, (Go)A (jo)s(do) (4.5.5)

where the transfer function from r =w,, is given by (using (3.5.11))

1
(sI —A) b, P M
e, = M (4.5.6)
(SI - A)_lb A M
which is a stable transfer function.
Define now a filtered version of w,, to be
H
W @)= [ e bwa M dT= 5 M, (4.5.7)
0 Co

where the last equality follows from (3.5.22). Note that the signal wy was also used in

the direct proof of exponential convergence in chapter 2 (cf. (2.6.17)).

Since ¢, L (sI — A, ) b, = —li— M (s ) is stable, w,¢ (¢ ) is stationary. We let

Co
lto+T
e— 13 T
Ry, (0):= lim = f wa (2wl (2) dt (4.5.8)

which is called the cross correlation between w,, and w,, evaluated at 0. Consequently,

we may use (4.5.7) and (4.5.8) to obtain a frequency domain expression for R, ., (0) as

R.,., (©)= 2_1_r [, GO ()M (jo)s, (dw) (45.9)

TCp ~o
With (4.5.7) and (4.5.8). (4.5.4) shows that the averaged system is a LTI system

¢y =—€R,_,, (0) &g b, (0) = ¢y (4.5.10)
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Convergence Analysis
Since M (s) is strictly positive real, the matrix R, ., . (0) is a positive semidefinite
matrix (cf. (4.5.9)). Unlike the matrix R, (0) of section 4.3, R, ., (0) need not be sym-

metric, so that its eigenvalues need not be real. However, the real parts are guaranteed to

be positive, and a natural Lyapunov function is again
V(¢av ) = ‘¢av P = ¢£ ¢av (4.5.11)
and

=V (P )=€0L (R, v, (O + R, (0)) s (45.12)

The matrix in parentheses is symmetric positive semidefinite. As previously, it is positive

definite if w,, is PE.

When the reference input r is almost periodic, i.e.

r(t)=Y roel (4.5.13)
X
an expression for R, ., (0) is
Ry, (0)= zlr T A, GodB\ GodM Ge)r? (4.5.14)
0 &

Example

As an illustration of the preceding results, we consider the following example of a

first order plant with an unknown pole and an unknown gain

k

s 4.5.15
s + a, ( )

PGs)=

We will choose values of the parameters corresponding to the "Rohrs example” (Rohrs

(1982), see also section 5.1) , when no unmodeled dynamics are present.

The adaptive process is to adjust the feedforward gain ¢, and the feedback gain d

so as to make the closed-loop transfer function match the model transfer function

(4.5.16)
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To guarantee persistency of excitation, we use a sinusoidal input signal of the form

r(t) = rosin (wot) (4.5.15)

Thus, (4.5.2) becomes
é(t)=—a,e()+k, (¢, ()re)+¢,(t)yn(2))
b (t)=—€ee(t)r(t)
b, () =—€e(t)y,(t) (4.5.18)
where
¢, (t)=colt) —co
¢, (1) =do(t) —dy (4.5.19)

It can be checked, using (4.5.14), that the averaged system defined in (4.5.10) is now

a k, kZ@?—wd)
2 (a?+wd) (a2+0d)
. ro k m 0 m 0
¢av = —€ —2"‘ _P k 2 a k 3 ¢av (4'5'20)

(@2+wd) (a2+wl)y

With @,=3, k,=3, a,=1, k,=2, r9o=1, @o=1, € =1, the two eigenvalues of the
averaged system are computed to be —0.0163 € and —0.5537 €, and are both real negative.
The nominal parameter 0" =(k,/ k,.(a, —a,) k,). We let 6(0)=0, so that
¢’ (0)=(-15,1).

Figures 4.8, 4.9 and 4.10 show the plots of the parameter errors ¢, (¢, ) for the ori-
ginal and averaged system, with three different frequencies (wp = 1,3.5). Figure 4.10
corresponds to a frequency of the input signal @, =5, such that the eigenvalues of the
matrix R, ., (0) are complex: (—0.0553+j0.05076)e. This explains the oscillatory
behavior of the original and averaged systems observed in the figure, which did not exist

in the previous examples of section 4.3.
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4.5.2 Nonlinear Equations

We now return to the complete, nonlinear differential equations
6(t)=A,e)+b, T ()w, &) +b,¢"()Qe(t)
¢(t)=—ewm(t)c,£e(t)—eQe(t)cﬁe(t) (4.5.21)

From (4.4.45)

t
I
vt p)= [ hntm® Oy T (1)d T (4.522)
[\]

so that the averaged system is
Gav =€ [ (ba) $av (0) = $(0) (4.523)

where f,, is defined by the limit

to+7

fav(¢)=—rli_{nl f (w,(t)eIvt )+ Qv P clvep))dr (4.524)

The assumptions of the theorems will be satisfied if the limit in (4.5.24) is uniform
in the sense of (B3), and provided that the matrix A, + b, ¢’ Q is uniformly exponen-
tially stable for ¢€B,. This means that if the controller parameters are frozen at any
point of the trajectory the resulting time invariant system must be closed-loop stable.
Naturally, this precludes consideration of adaptation from initial parameter values which

define an unstable closed-loop system.

Frequency Domain Analysis

The expression of f,, in (4.5.24) can be translated into the frequency domain, not-

ing that w,, is related to r through the vector transfer function H e

fa@)== o [ (81, (j0)+Q (ol = A = @7 )7 by 67 H v, ()

C; ('—_](z)I - Am - bm ¢T Q )--1 bm ¢T ﬁrwm ("’] w) S, (d (l)) (45.25)

where s, (d w) is the spectral measure of ». Note that f,, can be factored as

fav (¢) = _Aav (¢) . ¢ (45.26)
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where A,, : R?" 2 R?" " js similar to R, ,_ /(O) in section 4.5.1, but now depends non-

linearily on ¢. The expression in (4.5.25) is more complex than in the linear case, but

some manipulations will allow us to find a more interesting result.
Recall that (4.5.21) was obtained from the differential equation
e(t)=Ae(t)+b,¢0" (t)w(t)
@)= —ew(t)chelt) (4.527)
by noting that w(z) =w, (z)+Q e(t). In general, (4.5.27) is of limited use, precisely
because w depends on e. The signal w is not an external signal, but depends on internal

variables. On the other hand, w,, is an exogeneous signal, related to r through a stable

transfer function.

In the context of averaging, the differential equation describing the fast variable (i.e.
e) is averaged. assuming that the slow variable (i.e. ¢) is constant. However, when ¢ is
constant, w is related to  through a linear time invariant system, with a transfer func-
tion depending on ¢. If det(sI —A,, —b,¢" Q) is Hurwitz (as we assume to apply
averaging), this transfer function is stable. Therefore, assuming that ¢ is fixed, we can
write

w=H, (jo.¢).r (4.5.28)

so that using (4.5.27), (4.5.25) can be replaced by (4.5.26), with an expression similar to

the expression of R, ., (o) in (4.5.9). i.e.

4@ = e [ Ao BlGodMGo)s@de) (4529
0 -—oco

Explicit expression of # ,, (jw.¢)
Recall that w,, is related to r through the transfer function a rw » Whose poles are
the zeros of det (s — A,,). Let
X (5) = det(sI — A,,) (4.5.30)

and write the transfer function A riw, @S the ratio of a vector polynomial n(s), and a

characteristic polynomial X, (s ), i.e.
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~

B, ()= ’;;((s_{)i (4.5.31)

We found in section 3.5 (cf. (3.5.8), (3.5.11)) that

7= 20 G+ L ¢Tw) (4.5.32)
Xm(s) Co

Denote ¢, = co— co.so that 7w = ¢, Jt @’ w. Assuming that ¢ is constant, (4.5.32)

becomes

A R ) b,
# =, ()I= 2 AGF I AGI(1+ 2D r)

Co Co
= ;‘(15) ((1+¢;i1)r) (4.5.33)
X (s)— = F n(s) €o
Co
Denote
Xo(s) = Xm(s)— zlr  nis) (4.5.34)
0

3@(5) is closed-loop characteristic polynomial, giving the poles of the adaptive system
with feedback 0, i.e. the poles of the model transfer function with feedback ¢. Therefore,

Xo(s) is also given by
Xo(s) = det(s] —A,, —b, 4" Q) (4.5.35)

With this notation, (4.5.33) can be written

’\Xm 4 ¢C

w= " H_(r +—2r)
X¢ n Co
3 3 o
=X G+ (2w (4.5.36)
X¢ X¢ Co
On the other hand
A -
r=X (1= .0
X €oXm
3 3 T
=Xy -X(®_ %) (4.537)

X¢ X¢ €o
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Define

Rlxl Rlen -1
= R%>2n (4.5.38)

2n—1x1 2n—1x2n -1
R R

so that (4.5.36)-(4.5.37) can be written

~

X

w= |T|=221T +3ﬁ"LB(¢). 4 (4.5.39)
w X¢ w,, X¢> m

The vector transfer function H .~ can therefore be expressed in terms of the vector

transfer function A rw, DY

H,,(s.¢)= Xn (s (I +B@NH,, (s) (4.5.40)
X¢(S ) m
and. as expected
H,.(.0=H, (5) (4.5.41)

Convergence Analysis

With (4.5.40), A,, can be written

oo

21cg 2o | Xg(j®)

Ao (@) = [a+B@NA .., o>

A Go)T +BT@))M(jo) s, (dw) (4.5.42)

Consider now the trajectories of the averaged system, and let

vy ) =1, P = ¢l ¢, . Note that by choice of B(¢), it follows that
¢’ .B(¢)=0 for all ¢ (4.5.43)

Denote

1 7 Xm (j @)

R(¢y ) = : .
¢ 27y 2ol Xg,, (J0)

rﬁ',wm(jw)ﬁ,',fm(jw)}\?(jw) s, (dw) (4.5.44)

It follows that the derivative of v is given by
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=~V (@ay ) = €05, (R, )+ RT (95, )) S0 (4.5.45)
which is identical to the expression for the linear case (4.5.12), provided that R (¢, )
given in (4.5.44) replaces R, Yy (0) given in (4.5.9). It is remarkable that this result

differs from the expression obtained by linearization followed by averaging in section
4.5.1 only by the scalar weighting factor 1X,, / 3(4,12. This term is strictly positive, given

any ¢ bounded, and it approaches unity continuously as ¢ approaches zero.

Since M (s) is strictly positive real, R(¢,,) is at least positive semidefinite. As in
the linearized case, it is positive definite if w, is persistently exciting. Using the
Lyapunov function v (¢,, ). this argument itself constitutes a proof of exponential stabil-
ity of the averaged system, using (4.5.45). By theorem 4.4.3, the exponential stability of

the original system is also guaranteed for € sufficiently small.

Rates of convergence can also be determined, using the Lyapunov function v (a0 ).

so that
—v =€¢GT;, (R(¢av)+RT(¢av)))¢av

Ze . inf Amin (R(@0 )+ RT(po)))v i=2€av (4.5.46)

and the guaranteed rate of parameter convergence of the averaged adaptive system is € a.
The rate of convergence of the original system can be estimated by the same value, for €

sufficiently small.

It is interesting to note that, as |¢,, | increases, Amin ( R (¢o, )+ R7 (¢, ) )) tends to
zero in some directions. This indicates that the adaptive control system is not globally

exponentially stable.

Example
We consider the previous two parameter example. The adaptive system is described
by
e@@)=—a,e()+k, (¢, )rt)+¢,(t)e(t)+ ¢, (t)yn(¢))
¢ @)=—€e(t)r(z)

b, (t)=—€eX(t)—€ee(t)y,(t) (4.5.47)
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Consider the case when r =rgsin(wyt). The averaged system can be computed
using (4.5.42). We can also verify the expression using (4.5.47), and the definition of the
averaged system (4.5.22). After some manipulations, we obtain, for the averaged system
(dropping the "av" subscripts for simplicity)

2

rs 1

b =—€k, —
¢ P2 wg+(a, —k, ¢,)

(am _kp ¢y)¢r

al—wl k,ay,k
+( 55— kn - ¢2 4.5.48
( (77 +a,,, )¢y [0 1) +am ¢y ( )
2 2
ry 1 A km
=—€k, — kp, o, +
s P2 wé+(a,—k, ¢,) ¢ wé +a72 é
s kpam kn,
+ kP ¢r + 2 ] ¢r ¢y (4.5.49)
Wg + a,

Using this result, or using (4.5.42)-(4.5.43), we find that forv =¢’ ¢

ank, kZ2@@l-od)
ré k, o wl+a; (wi+a2)
2 &, k7

m

woz + a,,f

wi+(a, —k, ¢,) $(4.5.50)

—v=2¢€

an kp

wl+a’? (0f+a?)?

\

It can easily be checked that when the first term in brackets is equal to 1 (i.e. with
¢, replaced by zero), the result is the same as the result obtained by first linearizing the
system, then averaging it (cf. (4.5.20)). In fact, it can be seen, from the expressions of
the averaged systems ((4.5.10) with (4.5.9), and (4.5.23) with (4.5.26), (4.5.38), and
(4.5.42)) that the system obtained by linearization followed by averaging is identical to
the system obtained by averaging followed by linearization. Also, given any prescribed
B, (but such that det(sI —A,, —b,, 7 Q) is Hurwitz), (4.5.50) can be used to obtain

estimates of the rates of convergence of the nonlinear system.

We reproduce here simulations for the following values of the parameters: a,, =3,
kn,=3.a,=1,k,=2,ro=1,w,=1,€=1. The first set of figures is a simulation for ini-
tial conditions ¢,(0)=—0.5, and ¢,(0) =0.5. Figure 4.11 represents the time variation
of the function In(v =¢7 ¢) for the original, averaged. and linearized-averaged systems
(the minimum slope of the curve gives the rate of convergence). It shows the close

approximation of the original system by the averaged system. The slope for the




137

linearized-averaged system is asymptotically identical to that of the averaged system,
since parameters eventually get arbitrarily close to their nominal values. Figures 4.12 and

4.13 show the approximation of the trajectories of ¢, ., and ¢, .

Figure 4.14 represents the logarithm of the Lyapunov function for a simulation with
identical parameters, but initial conditions ¢, (0) =0.5, ¢,(0) =—0.5. Due to the change
of sign in ¢, (0), the rate of convergence of the nonlinear system is less now than the rate
of the linearized system, while it was larger in the previous case. These simulations
demonstrate the close approximation by the averaged system, and it should be noted that
this is achieved despite an adaptation gain € equal to 1. This shows that the averaging
method is useful for values of € which are not necessarily infinitesimal (i.e. not neces-

sarily for very slow adaptation), but for values which are often practical ones.

Figure 4.15 shows the state-space trajectory ¢, (¢, ). corresponding to figure 4.10,
that is with initial conditions ¢, (0)=—1.5.¢,(0) =1, and parameters as above except
wo=5. Figure 4.15 shows the distortion of the trajectories in the state-space, due to the

nonlinearity of the differential system.

4.6 Conclusions

Averaging is a powerful tool to approximate nonautonomous differential equations
by autonomous differential equations. In this chapter. we introduced averaging as a
method of analysis of adaptive systems. Although averaging was studied previously as a
method of analysis of differential equations, we have established here results that are

better suited to our purposes.

The approximation of parameter convergence rates using averaging was justified by
general results concerning a class of systems including the adaptive systems described in
chapter 2 and chapter 3. The analysis had the interesting feature of considering nonlinear
differential equations, as well as linear ones. Therefore, the application was not restricted
to linear or linearized systems, but extended to all adaptive systems considered in this
work, including adaptive control systems. The results were also interesting in that they

did not require the traditional almost periodicity condition, but instead a stationarity con-

dition.
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The application to adaptive systems included useful parameter convergence rates
estimates for identification and adaptive control systems. The rates depended strongly on
the reference input, and a frequency domain analysis related the frequency content of the
reference input to the convergence rates, even in the nonlinear adaptive control case.
These results are useful for the optimum design of reference input. They have the limita-
tion of depending on unknown plant parameters, but an approximation of the complete
parameter trajectory is obtained, and the understanding of the dynamical behavior of the
parameter error is much increased using averaging. For example, it was found that the
trajectory of the parameter error corresponding to the linear error equation could be
approximated by an LTI system with real negative eigenvalues, while for the SPR error

equation it had possibly complex eigenvalues.

Besides requiring stationarity of input signals, averaging also required slow parame-
ter adaptation. We showed however, through simulations, that the approximation by the
averaged system was good for values of the adaptation gain that were close to 1 (that is.
not necessarily infinitesimal), and for acceptable time constants in the parameter varia-
tions. In fact, it appeared that a basic condition is simply that parameters vary slower

than other states and signals of the adaptive system.
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Chapter 5 Robustness

5.1 The Rohrs Examples

Despite the existence of stability proofs for adaptive control systems (cf. chapter 3).
Rohrs, et al (1982), (1985) showed that several algorithms can become unstable when
some of the assumptions required by the stability proofs are not satisfied. Especially con-

cerned are the assumptions of the knowledge of
e the order of the plant
e the relative degree of the plant

In practice. plants cannot be modeled exactly with finite dimensional models, and
the robustness problem is to guarantee that the adaptive system remains stable despite

the presence of high frequency dynamics, and measurement noise.

While Robrs, et al considered several continuous and discrete time algorithms, the
results are qualitatively similar for the various schemes. We consider one of these
schemes here, which is the output error direct adaptive control scheme of section 3.3.2,

assuming that the degree and the relative degree of the plant are 1.

Rohrs Examples

The adaptive control scheme of Rohrs examples is designed assuming a first order

plant with transfer function

k

P
ET (5.1.1)

P(s)=

and the SPR reference model

kn _ 3
M(s)= TFe - 573 (5.1.2)
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The output error adaptive control scheme (cf. section 3.3.2) is described by

u=cor +doy, (5.1.3)
€0=Yp = Ym (5.1.4)
Co= —gTreg (5.1.5)
do=—g Yp €o (5.1.6)

In a first step, we assume that the plant transfer function is given by (5.1.1), with

k, =2,a, = 1. The nominal values of the controller parameters are then

* km —
¢ =% = 1.5 (5.1.7)
dy = f”_l_:_a_ =—1 (5.1.8)

The behavior of the adaptive system is then studied, assuming that the actual plant
does not satisfy exactly the assumptions on which the adaptive control system is based.
The actual plant is only approximately a first order plant, and has the third order transfer

function

2 229

) (5.1.9
s+1 s2+30s +229

In analogy with nonadaptive control terminology, the second term is called the
unmodeled dynamics. The poles of the unmodeled dynamics are located at —15 £ 2, and,

at low frequencies, this term is approximately equal to 1.

In Rohrs examples, the measured output y, (¢ ) is also affected by a measurement
noise n(¢). The actual plant with the reference model and the controller are shown in

figure 5.1.

An important aspect of Rohrs examples is that the modes of the actual plant and
those of the model are well within the stability region. Moreover. the unmodeled dynam-
ics are well-damped. stable modes. From a traditional control design standpoint, they

would be considered rather innocuous.

At the outset, Robrs, et al (1982) showed through simulations that, without meas-

urement noise or unmodeled dynamics, the adaptive scheme is stable. and the output
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error converges to zero, as predicted by the stability analysis.
However, with unmodeled dynamics, three different mechanisms of instability appear.

(R1)  With a large, constant reference input, and no measurement noise, the output
error initially converges to zero, but eventually diverges to infinity, along with
the controller parameters ¢y and d .
Figures 5.2 and 5.3 show a simulation with r(z)=4.3, n(¢ ) =0, that illustrates

this behavior (co(0) = 1.14, d ((0) = —0.65, and other initial conditions are zero).

(R2)  With a reference input having a small constant component, and a large high fre-
quency component, the output error diverges at first slowly, and then more
rapidly to infinity, along with the controller parameters ¢o and do.

Figures 5.4 and 5.5 show a simulation with 7(z) = 0.3 +1.85sin16.1¢ , n(z) = 0

(co(0) = 1.14, d ((0) = —0.65, and other initial conditions are zero).

(R3) With a moderate constant input and a small output disturbance, the output error
initially converges to zero. After staying in the neighborhood of zero for an
extended period of time, it diverges to infinity. On the other hand, the controller
parameters ¢, and d, drift apparently at a constant rate, until they suddenly
diverge to infinity.

Figures 5.6 and 5.7 show a simulation with r(¢)=2, n(¢)=0.5sin16.1
(co(0) = 1.14, d ,(0) = —0.65, and other initial conditions are zero).

Although this simulation corresponds to a comparatively high value of n(t).
simulations show that when smaller values of the output disturbance n (¢ ) are
present, instability still appears, but after a longer period of time. The controller
parameters simply drift at a slower rate. Instability is also observed with other

frequencies of the disturbance, including a constant n (¢ ).

Rohrs examples stimulated much research about the robustness of adaptive systems.
Examination of the mechanisms of instability in Rohrs examples show that the instabili-
ties are related to the identifier. In identification, such instabilities involve computed sig-
nals, while in adaptive control, variables associated with the plant are also involved. This
justifies a more careful consideration of robustness issues in the context of adaptive con-

trol.
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5.2 Robustness of Adaptive Algorithms with Persistency of Excitation

Rohrs examples show that the BIBS stability property obtained in chapter 3 is not
robust to uncertainties. In some cases, an arbitrary small disturbance can destabilize an
adaptive system, which is otherwise proved to be BIBS stable. In this section, we will
show that the property of exponential stability is robust. in the sense that exponentially
stable systems can tolerate a certain amount of disturbances. Thus, provided that the
nominal adaptive system is exponentially stable (guaranteed by a PE condition), we will
obtain robustness margins, i.e. bounds on disturbances and unmodeled dynamics that do
not destroy the stability of the adaptive system. Of course, the practical notion of
robustness is that stability should be preserved in the presence of actual disturbances
present in the system. Robustness margins must include actual disturbances for the adap-

tive system to be robust in that sense.

The main difference from classical LTI control system robustness margins is that
robustness does not depend only on the plant and control system, but also on the refer-
ence input, which must guarantee persistent excitation of the nominal adaptive system

(j.e. without disturbances or unmodeled dynamics).

5.2.1 Exponential Convergence and Robustness

In this section, we consider properties of a so-called perturbed system
x=flt,x.u) x(0) = x4 (5.2.1)
and relate its properties to those of the unperturbed system
i=f(,x.0) x(0) = x4 (5.2.2)

where z 20, x € R",u € R™. Depending on the interpretation, the signal u will be con-

sidered either a disturbance, or an input.

We restrict our attention to solutions x and inputs u belonging to some arbitrary

balls B, € R* and B. € R™.
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Theorem 5.2.1 Small Signal I/0 Stability

Consider the perturbed system (5.2.1) and the unperturbed system (52.2). Let x =0 be
an equilibrium point of (5.2.2). i.e. f (¢.0,0) = 0, for all ¢ 20. Let f be piecewise con-
tinuous in ¢, and have continuous and bounded first partial derivatives in x, for all £ 20,
x €B,.u €B.. Let f be Lipschitz in «, with Lipschitz constant I,.forallz 20,x €B,,
u €B.. Letu €L_.

If x =0 is an exponentially stable equilibrium point of the unperturbed system
Then (a)

the perturbed system is small-signal L, -stable, i.e. there exist Y, , Co >0, such

that lu §, <c, implies that
Ix I, Syoluky, (5.2.3)

where x is the solution of (5.2.1) starting at x¢=0;

(v)

there exists m =1 such that, for all lxol <h/ m, lul, <c, implies that x(t)
converges to a B ball of radius 8=y, luk, <h. that is: for all € >0, there exists

T 20 such that
lx (¢ ) <(1+€)8 (5.2.4)

for all ¢ 2T . along the solutions of (5.2.1) starting at xo.
Also, for allz 20, x(¢) € B,,.

Comments

Part (a) of theorem 5.2.1 is a direct extension of theorem 1 of Vidyasagar & Van-
nelli (1982) (see also Hill & Moylan (1980)) to the non autonomous case. Part (v)

further extends it to non zero initial conditions.

Theorem 5.2.1 relates internal exponential stability to external input/output stabil-
ity (the output is here identified with the state). In contrast with the definition of BIBS
stability of section 3.4, we require a linear relationship between the norms in (5.2.3) for
L, stability.

Although lack of exponential stability does not imply input/output instability, it is

known that simple stability. and even (non uniform) asymptotic stability are not
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sufficient conditions to guarantee 1/0 stability (see e.g. Kalman & Bertram (1960) Ex. 5 p.

379).

Proof of Theorem 5.2.1

The differential equation (5.2.2) satisfies the conditions of theorem 1.4.3, so that

there exists a Lyapunov function v (¢ .x ) satisfying the following inequalities

alx P Sv(t,x) Caylx P

dav (e,
dt

for some strictly positive constants a;...a4, and for allt 20, x €B, .

x)l

L—azlx P

(5.2.2)

lgv—(atT'x-)ISa.,le

(5.2.5)

(5.2.6)

(52.7)

If we consider the same function to study the perturbed differential equation (5.2.1),

inequalities (5.2.5) and (5.2.7) still hold, while (5.2.6) is modified, since the derivative is

now to be taken along the trajectories of (5.2.1). instead of (5.2.2). The two derivatives

are related through

dv(t.x) - av(t.x)+z":
dt (52.1) ot i=1

_ dv(t.x)
dt (5.2.2)

+Z

aV(th) file.x.u)

I

& Jvit.x)

i=1 axi

Using (5.2.5)-(5.2.7), and the Lipschitz condition on f

dv(z.x)l S—aslx!Z+ aylxl I, luly,
dt (52.1)
Define
Q4 o
= 1 (2 Huz2
Yool o o )
8=y lul,

o
mi=(2)221

Inequality (5.2.9) can now be written

dv(t .x)

dt

(5.2.1)

o

L—a3lxl(lx l—é- )
m

fi.x.u)—fi(t.x.0)] (52.8)

(5.2.9

(5.2.10)

(5.2.11)

(5.2.12)

(5.2.13)
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This inequality is the basis of the proof.

Part (a) Consider the situation when lxo,l <8/ m (this is true in particular if
x4=0). We show that this implies that x (¢ J€B; for all z 20 (note that 8/ m <8, since

m 21).

Suppose, for the sake of contradiction, that it was not true. Then, by continuity of the
solutions, there would exist To.T; (T >To 20), such that lx(T)1=8/m, |x(T)1>8,
and for all ¢ €[T4.T1] : 1x (¢ )1 28/ m. Consequently, inequality (5.2.13) shows that, in
{70,741 dv/ dt <0. However, this contradicts the fact that
v(Tox(T) So,(8/ mP=a; 8% and v (T1.x(T)) >y 82

Part (b) Assume now that lx,l >8/ m. We show the result in two steps.
(b1) for all € >0, there exists 7 =0 such that |x(T)1=(8/ m) (1+e).

Suppose it was not true. Then, for some € >0, and for all ¢ 20, lx()1>(8/ m)(1+e€)
and, from (5.2.13), dv/ dt <—a3(8/ m)?>(1+€)e€. which is a strictly negative constant.
However, this contradicts the fact v (0, xo) Salxof, and v (.x(t)) >0 (8/ m P (1+€)?

forallz 20.

(b2) for all £ 2T, 1x(z)1 <8(1+€). This follows directly from (b1), using an argument

identical to the one used to prove (a).

Finally, recall that the assumptions require that x (¢ J€B,, u (¢ J€B,, for all ¢ 20.
This is also guaranteed, using an argument similar to (a), provided that Ixol <h/ m and

fu i, <c.,.where m is defined in (5.2.12). and
c:=min(c.h/ y) (5.2.14)

(5.2.14) implies that & <k, and |x¢l <h/ m Sh implies that lx ()l Smixy <h for all

t 20.

Note that although part (a) of the proof is, in itself, a result for non zero initial con-
ditions, the size of the ball Bg, , involved decreases when the amplitude of the input

decreases, while the size of B, ,, is independent of it. O
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Additional Comments

a) The proof of the theorem gives an interesting interpretation of the interaction
between the exponential convergence of the original system, and the effect of the distur-
bances on the perturbed system. To see this, consider (5.2.9): the term —aslx P acts like
a restoring force bringing the state vector back to the origin. This term originates from
the exponential stability of the unperturbed system. The term og4lx 11, Nu l, acts like a
disturbing force, pulling the state away from the origin. This term is caused by the input
u (i.e. by the disturbance acting on the system). While the first term is proportional to
the norm squared. the second is only proportional to the norm, so that when ix | is
sufficiently large, the restoring force equilibrates the disturbing force. In the form

(5.2.13), we see that this happens when {x =8/ m =vy,/ mlul,.

b) If the assumptions are valid globally, then the results are valid globally too. The
system remains stable, and has finite 1/0 gain, independent of the size of the input. In the
example of section 5.2.2, and for a wide category of nonlinear systems (bilinear systems
for example), the Lipschitz condition is not verified globally. Yet. given any balls B, B
the system satisfies a Lipschitz condition with constant I, depending on the size of the
balls (actually increasing with it). The balls By .B. are consequently arbitrary in that
case, but the values of y., (the L, gain) and c,, (the stability margin) will vary with
them. In general, it can be expected that ¢, will remain bounded despite the freedom left

in the choice of & and ¢, so that the 1/0 stability will only be local.

¢) Explicit values of vy, and ¢, can be obtained from parameters of the differential
equation, using equations (5.2.10) and (5.2.14). Note that if we used the Lyapunov func-
tion satisfying (5.2.5)-(5.2.7) to obtain a convergence rate for the unperturbed system,
this rate would be o3/ 2a;. Therefore, it can be verified that, with other parameters
remaining identical, the L, gain is decreased, and the stability margin ¢, is increased,

when the rate of exponential convergence is increased.

5.2.2 Robustness of an Adaptive Control Scheme

For the purpose of illustration, we consider the output error direct adaptive control
algorithm of section 3.3.2, when the relative degree of the plant is 1. This example con-

tains the specific cases of the Rohrs examples.
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In section 3.5. we showed that the overall output error adaptive scheme for the rela-
tive degree 1 case is described by (cf. (3.5.28))
é(t)= A, e(t)+b,d" (¢ Yw,(t)+b,¢" )0 e(t)
@)= —gcle)w,(t)—gcle)Qelt) (5.2.15)

where e(¢) €R> ~2, and ¢(z) € R?" . A,, is a stable matrix, and w, (¢) € R?" is bounded
for all # =0. (5.2.15) is a nonlinear ordinary differential equation (actually it is bilinear)

of the form
x=f(x) x(0)=x, (5.2.16)
which is of the form (5.2.2), where

e

¢

Recall that we also found, in section 3.8, that (5.2.15) (i.e. (5.2.16)) is exponentially

€ R (5.2.17)

X =

stable in any closed ball, provided that w,, is PE.

Robustness to OQutput Disturbances

Consider the case when the measured output is affected by a measurement moise
n(t). as in figure 5.1. Denote by y, the output of the plant 2(s5) (i.e. the output without

measurement noise), and by Yp (z), the measured output, affected by noise, so that

y,@)= ye)+n@)=P)+n() (5.2.18)

To find a description of the adaptive system in the presence of the measurement
noise n (¢ ), we return to the derivation of (5.2.15) (that is (3.5.28)) in section 3.5. The

plant P has a minimal state-space representation [4, .5, .¢; ] such that

X, = A, x, t b, u

¥, = € x, (5.2.19)
The observers are described by

wD=Aw® +b,u

W@ =AwD4b,y, = Aw@ +b,clx, +byn (5.2.20)

and the control input is given by u =67 w = ¢ w + 0" w.




As previously, we let x1, =(x; w7 w @) Using the definition of A,

c,, in (3.5.18)-(3.5.19). the description of the plant with controller is now

Xpw = Am Xpw +b, ¢Tw +b,cor +b, n

Yo = Cm Xpw
where we defined 57 =(0.0,6]) € (R*,R""L,R*"1)=R>" -2,
As previously, we represent the model and its output by
Xm = Am Xm +bmco T
Ym = CmXm
and welete = x,, —X,-
The update law is given by
p=—g (yp —ym)w

=—gclew—gnw

and the regressor is now related to the statee by
r 0
_ Wi, w0l o
w = =W, *
Ye yf “Ym n
w@ w2 — 1y @ 0

=w,+0etqg,n

where we defined g7 =(0.0,1,0) € (R,R"LR.R* )= R*".
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., bn. and

(5.2.21)

(5.2.22)

(5.2.23)

(5.2.24)

Using these results, the adaptive system with measurement noise is described by

é(t)= A, e()+b,¢" (t)w,(t)+b,6"(t)Qe()+b, ¢’ (t)g, n(t)+b, n(t)

()= —gcle@)w,(t)—gcler)Qelt)—gece(t)g, n(t)

—gn()w,E)—gn)Qelt)—gn*t)g,

(5.2.25)

which, with the definition of x in (5.2.17), and the definition of f in (5.2.15)-(5.2.16)

can be written

i=f@x)+p(e)+P(t)x ()

(5.2.26)
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where p (¢ JER® 72, and P,(t )€ER> ~25" 72, are given by

) = b, n(t)
pit) = —gn(@)w,@)—g n¥t)q,
0 b, n(t)ql
PA= | _gntrg gl 0 o2

Note that if n €L, , then p; and P, € L, . Therefore, the perturbed system
(5.2.26) is a special form of system (5.2.1), where u contains the components of p; and
P,. Although p,(¢ ) depends quadratically on r, given a bound on n , there exists k, 20

such that

1+ 1P, Sk, Ini, (5.2.28)

From these derivations, we deduce the following theorem.

Theorem 5.2.2 Robustness to Disturbances

Consider the output error direct adaptive control scheme of section 3.2.2, assuming that
the relative degree of the plant is 1. Assume that the measured output y, of the plant is

given by (5.2.18), wheren € L. Leth >O0.
If w,, is PE
Then  there exists y,.c, >0 and m 21, such that In I.<c, and |x(0)l <h/ m implies

that x (¢ ) converges to a B ball of radius 8 =y, In k, . and tx (2)1€mlxgl <h
for all ¢ 20.

Proof of Theorem 5.3.2

Since w,, is PE, the unperturbed system (5.2.15) (i.e. (5.2.16)) is exponentially
stable in any B, by theorem 3.8.2. The perturbed system (5.2.25) (i.e. (5.2.26) is a spe-
cial case of the general form (5.2.1). so that theorem 5.2.1 can be applied with  contain-
ing the components of p(¢), Po(¢). The results on pi(t). Po(t) can be translated into

similar results involving n (¢ ). using (5.2.28).
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Comments

a) A specific bound ¢, on In I can be obtained such that, within this bound, and
provided the initial error is sufficiently small, the stability of the adaptive system will be
preserved. For this reason, ¢, is called a robustness margin of the adaptive system to

output disturbances.

b) The deviations from equilibrium are locally ar most proportional to the distur-
bances (in terms of L norms), and their bounds can be made arbitrarily small by reduc-

ing the bounds on the disturbances.

¢) The L, gain from the disturbances to the deviations from equilibrium can be
reduced by increasing the rate of exponential convergence of the unperturbed system (pro-

vided that other constants remain identical).

d) Rohrs example (R3) of instability of an adaptive scheme with output distur-
bances on a non persistently excited system, is an example of instability when the per-

sistency of excitation condition of the nominal system is not satisfied.

Robustness to Unmodeled Dynamics

The approach adopted here is similar to that used by Doyle & Stein (1981) to study
the robustness of non adaptive control systems. We assume again that there exists a
nominal plant P(s), satisfying the assumptions on which the adaptive control scheme is

based, and we define the owtput of the nominal plant to be
vy =P(u) (5.2.29)

The actual output is modeled as the output of the nominal plant, plus some additive

uncertainty represented by a bounded operator H,
¥, €)=y, (¢)+ Hy(u X2) (5.2.30)

The operator H, represents the difference between the real plant, and the idealized plant
2(s). In the terminology of Doyle & Stein (1981), we refer to it as an additive unstruc-
tured uncertainty, and it constitutes all the uncertainty, since it is the purpose of the

adaptive scheme to reduce to zero the structured or parametric uncertainty.

We assume that H,: L _, —L . is a causal operator satisfying

VH, (u) 1y Sy, by, H o+ B, (5.2.31)
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for all z 20. B, may include the effect of initial conditions in the unmodeled dynamics,

and the possible presence of bounded output disturbances.

The following theorem guarantees the stability of the adaptive system in the pres-

ence of unmodeled dynamics satisfying (5.2.28).

Theorem 5.2.3 Robustness to Unmodeled Dynamics

Consider the output error direct adaptive control scheme of section 3.3.2, assuming that
the relative degree of the plant is 1. Assume that the nominal plant output and actual
measured plant output satisfy (5.2.29)-(5.2.30), where P satisfies the assumptions of sec-

tion 3.3.2. and H, satisfies (5.2.31).
If w, is PE

Then  for x,. .. B, sufficiently small, the states trajectories of the adaptive system

remain bounded.

Proof of Theorem 5.2.3
Letn = H,(u), so that, by assumption
In, Voo € ol 1o+ B (5.2.32)
for all £ 20. On the other hand, by theorem 5.2.2, there exists ¥, . B, 20 such that
Ix, I <y, In b+ B, Sh (5.2.33)
for all ¢ 20, provided that #n, I, €c, (so that x € B,).
The input u is given by
u=0Tw=0"w+¢'w
= 07w, +6° Qe +9'rq,, n+¢’w, +¢'Qe+ +¢7g, n  (52.34)

where we used (5.2.24). Define v’ := 0°'"w,, . Assuming that x € B, there exists k 20

such that
by, B, Sl b+ (ix, U +in, 1) (5.2.35)
for all ¢ 20, so that, with (5.2.33)

T, | Sy, In U+ B, +lu i, (5.2.36)
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for some v, . B, 20, and for all ¢ 20.
Applying the small gain theorem (lemma 3.6.6), we find that all signals are bounded
if
Yo -Yu <1 (5.2.37)

and, to guarantee that kn I, Sc, (so that x € B, )

Bo +ya (B, + 10" 1)
¢,

(5.2.38)
1=YaYu

Although the proof in its form appears circular, since we assume that x € B, to
establish the inequalities used to prove the result, this can be resolved by imposing condi-
tions (5.2.37)-(5.2.38), then show that x must remain in B, for all? 2 0 by a contradic-

tion argument. O

Comments

Condition (5.2.24) is very general, since it includes possible nonlinearities, unmo-
deled dynamics, etc. provided that they can be represented by additive, bounded-input

bounded-output operators.

If the operator H, is linear time invariant, the stability condition is a condition on

the L, gain of H,. One can use

o0

Yo =Mkl = [ (T)1d7 (5.2.39)
[\]

where h, (7) is the impulse response of H ,. The constant B, depends on the initial con-

ditions in the unmodeled dynamics.

The proof of theorem 5.2.3 gives some margins of unmodeled dynamics that can be
tolerated without loss of stability of the adaptive system. Given y,.B8, itis actually pos-
sible to compute these values. The most difficult parameter to determine is possibly the
rate of convergence of the unperturbed system, but we saw in chapter 4 how some esti-
mate could be obtained. under the conditions of averaging. Needless to say the expression
of these robustness margins depends in a complex way from known parameters, and it is
likely that the estimates would be conservative. The importance of the result is to show

that if the unperturbed system is persistently excited, it will tolerate some amount of
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disturbance, or conversely that an arbitrary small disturbance cannot destabilize the sys-

tem, such as in example (R3).

5.3 Analysis of the Rohrs Examples

By considering the overall adaptive system, including the plant states, observer
states, and the adaptive parameters, we showed in section 5.2 the importance of the
exponential convergence to guarantee some robustness of the adaptive system. This con-
vergence depends especially on the parameter convergence, and therefore on conditions on
the input signal r (2 ).

A heuristic analysis of the Rohrs examples gives additional insight into the mechan-
isms leading to instability, and suggest practical methods to improve robustness. Such an
analysis can be found in Astrom (1983), and its success relies mainly on the separation of
time scales between the evolution of the plant/ observer states, and the evolution of the
adaptive parameters. This separation of time scales is especially suited for the application
of averaging methods (cf. chapter 4).

Following Astrom (1983), we will show that instability in the Rohrs examples are

due to one or more of the following factors
(a) the lack of PE signals to
- allow for parameter convergence in the nominal system,
- prevent the drift of the parameters due to unmodeled dynamics or output disturbances.

(b) the presence of significant excitation at high frequencies. originating either from
the reference input, or from output disturbances. These signals cause the adaptive loop to
try to get the plant loop to match the model at high frequencies, where it results in a

closed-loop unstable plant.

(c) a large reference input with a non-normalized identification algorithm and

unmodeled dynamics, resulting in the instability of the identification algorithm.

Analysis

Consider now the mechanisms of instability corresponding to these three cases.
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(a) Consider first the case when no unmodeled dynamics or output disturbances are

present.

In the nominal case, the output error tends to zero. When the PE condition is not
satisfied, the controller parameter does not necessarily converge to its nominal value, but
to a value such that the closed-loop transfer function matches the model transfer func-
tion at the frequencies of the reference input. Consider for example Rohrs example,
without unmodeled dynamics. The closed-loop transfer function from r —y, . assuming

that ¢ and d ; are fixed is

yp 2CO
B S 5.3.1
r s+1—2d, ( )

If a constant reference input is used, only the DC gain of this transfer function must be

matched with the DC gain of the reference model. This implies the condition that

2C0

N 53.2
T=3a; 1 ( )

Any value of ¢, d, satisfying (5.3.2) will lead to y, —y, —0 as ¢ —co for a constant
reference input. Conversely, when e —0, so do ¢y, and d . so that the assumption that

cy. d o are fixed is justified.

If an output disturbance n (¢ ) enters the adaptive system, it can cause the parame-
ters cq,d o to move along the line (more generally the surface) defined by (5.3.2). leaving
€0 = Y, —¥Ym at zero. In particular, note that when output disturbances are present, the

actual update law for d  is not (5.1.6) anymore, but
do=-g ¥, (3 =Ym)—g ¥Ymn —gn? (5.3.3)

where we find the presence of the term —gn?, which will tend to make d o slowly drift

towards the negative direction.

In example (R3), unmodeled dynamics are present, so that the transfer function

from r —y, is in fact given by

~

Y _ 458¢ (5.3.4)
7 G +1) 2+ 305 +229)— 4584, =

which is identical to (5.3.1) for DC signals, but which is unstable for d, 21/ 2 and
dy,<$—17.03.
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The result is observed in figures 5.6 and 5.7. where d ; slowly drifts in the negative
direction, until it reaches the limit of stability of the closed-loop plant with unmodeled

dynamics.

This instability is called the slow drift instability. The error converges to a neighbor-
hood of zero, and the signal available for parameter update is very small and unreliable,
since it is indistinguishable fron the output noise n (¢ ). It is the accumulation of updates
based on incorrect information that leads to parameter drift, and eventually to instabil-
ity.

In terms of the discussion of section 5.2, we see that the constant disturbance —gn?
is not counteracted by any restoring force, as would be the case if the original system was
exponentially stable. For example, consider the case where n = 0.1 sin 16.1z. Figure 5.8
shows the evolution of the parameter d, in a simulation where (¢t ) = 2 and where
r(z) =2 sint. In the first case, the parameter slowly drifts, leading eventually to insta-
bility. When r (z ) = 2 sin ¢, so that PE conditions are satisfied, the parameter d ( deviates

from d, but remains close to the nominal value.

(b) Consider now the case when the reference input, or the output disturbance, contain a

large component at a frequency where unmodeled dynamics are significant.

Let us return to Rohrs example, with a sinusoidal reference input v (¢)=r, sin
(wot). With unmodeled dynamics, there are still unique values of ¢, d such that the
transfer function from r —y, matches M at the frequency of the reference input wg.
Without unmodeled dynamics, these would be the nominal co.dp, but now they are the
values ¢ . d ¢ . which are usually called the tuned values, such that

458c¢
(s + 1) (s2+30s +229)—458d

3
s+3

(5.3.5)

Jjwg Jjwg
where w, is the frequency of the reference input. Note that the tuned values depend on
M, P, the unmodeled dynamics, and also on the reference input r.

On the other hand, it may be verified through simulations, that the output error

tends to zero. and that the controller parameters converge to the following values ¢, and

d, (cf. Astrom (1983))
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Wy Co

58 o,

£33

1 169 -1.26
2 167 -144
5 153 -2.72
10 1.04 -7.31

It may be verified that these values are identical to the tuned values defined above.
Therefore, the adaptive control system updates the parameters, trying to match the
closed-loop transfer function - including the unmodeled dynamics - to the model refer-
ence transfer function. Note that the parameter d, = d§ quickly decreases for wgy > 5.
On the other hand, the closed-loop system is unstable when dy$—17.03, and
d¢ €—17.03, when w, 216.09. Therefore, by attempting to match the reference model
at a high frequency, the adaptive system leads to an unstable closed-loop system, and

thereby to an unstable overall system.

This is the instability observed in example (R2). In contrast, figure 5.9 shows a
simulation where r = 0.3+ 1.85 sin ¢, that is where the sinusoidal component of the
input is at a frequency where model matching is possible. Then, the parameters converge
to values ¢, d¢ close to ¢y, dg. and the adaptive system remains stable, despite the

unmodeled dynamics.

Finally, note that instabilities of this type can be obtained even without unmodeled

dynamics, and can lead to the so-called bursting phenomenon (cf. Anderson (1985)).
(c) Consider finally the mechanism of instability observed in example (R1).
This mechanism will be called the high-gain identifier instability. Although we do

not have explicitly a high adaptation gain g, we recall that the adaptation law is given by
co=—gre (5.3.6)
do=—gy,e (53.7)

Therefore, multiplying r by 2, means multiplying y, .y, and e by 2, and therefore is

equivalent to multiplying the adaptation gain by 4.

The instabilities obtained for high values of the adaptation gain are comparable to

instabilities caused by high gain feedback in LTI systems with relative degree greater than
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2 (cf. Astrom (1983) for a simple root-locus argument). A simple fix to these problems

is to replace the identification algorithm by a normalized algorithm.

5.4 Methods to Improve Robustness

From the discussions in the previous sections, we deduce some basic guidelines to

improve the robustness of adaptive systems.

Persistency of Excitation

Persistency of excitation should be used to ensure that parameters converge to the
neighborhood of their nominal values, and track these values if the plant is slowly vary-
ing. PE should be achieved by injecting inputs in the frequency range of interest (i.e. the
frequency where model matching is achievable). PE has the advantage of directly increas-
ing the information available to the identification algorithm. The disadvantage is that it
may not be practical, since inputs are generally restricted by external constraints. Some-
times, small signals may be added to the reference input with acceptable disturbance of
the system, and with sufficient excitation to ensure convergence of the parameters.
Another disadvantage of this method is however to lead to a robustness that is not inter-

nal (or "structural”), but instead depends on external signals.

Deadzone

This method consists in turning off the adaptation law when the identifier error is
below the threshold under which it only consists of measurement noise. The parameters
are therefore not updated if the identifier error is sufficiently small. A more complex ver-
sion of this is to monitor the frequency content of the control input, and to turn-off

adaptation when PE conditions are not met.

The use of a deadzone is simple and practical, but it absolutely requires the measure-
ment noise to be bounded. Otherwise, occasional disturbances may cause parameter drift,

and eventually instability.
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Slow Adaptation

As we saw in the previous section, fast adaptation can lead to’instability of the
identifier, and is in general nonrobust. Slow adaptation reduces the influence of noise by
averaging it. To some extent, this is therefore a method to increase robustness. In this
category, we can also include modifications of the update law where some signals are

replace by averaged or filtered signals.

Although fast adaptation is not recommended, very slow adaptation is not either.
First, slow adaptation goes against a basic performance consideration, which is to track
parameter variations. Second, the effect of slow adaptation on drift instabilities is only to

delay instabilities, not to prevent them.

Prior Information

Prior information is useful to constrain adaptive parameters to some arbitrary set
(with the use of projection in the update law for example). Drift instability can be
prevented in this manner. Also, if an approximate value 6, of the adaptive parameter 0

is known, the update law may be replaced by
6 = —0(0 —0,) + (previous update law) (5.4.1)

This modification includes the o modification proposed by loannou & Kokotovic (1984).
It has the advantage of being simple and efficient, but its efficiency depends strongly on
the approximate 6 ,. Note also that, even without unmodeled dynamics, the output error

and the parameter error do not tend to zero unless 8, = 0.
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5.5 Conclusions

In this chapter, we studied the problem of the robustness of adaptive systems, that

is their ability to maintain stability despite modeling errors and measurement noise.

We first reviewed the Rohrs examples, illustrating several mechanisms of instability.
Then, we derived a general result relating exponential stability to robustness. We also
showed how it could be used to compute robustness margins of an adaptive control
scheme in the presence of measurement noise or unmodeled dynamics. The result indi-
cated that the property of exponential stability is robust, although examples show that
the BIBS stability property is not (that is. BIBS stable systems can become unstable in the
presence of arbitrarily small disturbances). In practice, the amplitude of the disturbances
should be checked against robustness margins to determine if stability is guaranteed. The
complexity of the relationship between the robustness margins and known parameters,
and the dependence of these margins on external signals unfortunately made the result

more conceptual than practical.

The mechanisms of instability found in the Rohrs examples were discussed in view
of the relationship between exponential stability and robustness. Further explanations of
the mechanisms of instability were presented. Finally, various methods to improve

robustness were briefly reviewed.

Much research is still needed in the area of robustness. As for traditional control,
we confront the problem of the tradeoff between robustness and performance. It is also
necessary to develop useful methods of analysis of robustness of adaptive systems, and

methods to quantify robustness to allow comparison between different approaches.
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Conclusions

Specific Conclusions

In this thesis, we addressed three issues of prime importance to adaptive systems:
the stability under ideal conditions, the convergence of the adaptive parameters, and the
robustness to modeling errors and to measurement noise. Identification and model refer-
ence adaptive control schemes were considered, but the attention was focused on single-

input single-output, continuous time, linear time invariant systems.

New results were presented, as well as simplified and unified proofs of existing
results. Therefore, connections between different schemes, and apparently different issues
were found: for example, between input error and output error schemes, between direct
proofs of exponential convergence and proofs using averaging techniques, and between

parameter convergence and robustness.

First, some identification algorithms were reviewed, and their stability and parame-
ter convergence properties were established. It was shown that, under general conditions,
the identifier parameter was a bounded function of time, and the identifier error con-
verged to zero as time approached infinity. Similar results were found for gradient and
least-squares algorithms, and for linear as well as SPR error equations. Parameter con-

vergence followed from an additional persistency of excitation condition.

Three model reference adaptive control schemes were presented. One was the output
error adaptive control scheme of Narendra, Lin, and Valavani. Another was a simple
indirect adaptive control scheme. The third was a new, input error, direct adaptive con-
trol scheme, that was an alternate scheme to the Narendra, Lin, and Valavani algorithm.
It did not require a strictly positive real condition on the reference model, and no over-

parametrization was needed when the high-frequency gain was unknown.

Useful lemmas were presented., and unified stability proofs were derived for the

input and output error schemes, as well as for the indirect adaptive control scheme. The
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results showed that all three schemes had similar stability properties: the state trajec-
tories were bounded functions of time. and the error between the plant and the reference
model converged to zero as time approached infinity. Therefore, stability was not an
argument in selecting one scheme instead of the other. In practice however, differences
appeared. The input error and the indirect schemes had the advantage of leading to a
linear error equation, and of allowing for a useful separation between identification and
control. Parameter convergence was also established for the adaptive control schemes,

under persistency of excitation conditions on model signals.

The parameter convergence of the adaptive schemes was further analyzed using
averaging techniques. For this, we assumed that the reference input possessed some sta-
tionarity properties. and that the adaptation gain was sufficiently small. It was shown
that the nonautonomous adaptive systems could be approximated by autonomous sys-
tems, thereby considerably simplifying the analysis. In particular, estimates of the rates
of exponential convergence of the parameters were obtained for the linear identification

scheme, as well for a nonlinear adaptive control scheme.

Although the class of inputs under consideration was restricted to stationary inputs,
this class was quite large (more general than almost periodic inputs). and resulting
expressions in the frequency domain were especially appealing. The assumption of slow
adaptation was not really restrictive, and it appeared to simply require that adaptive
parameters vary slower than other states and signals in the adaptive system. Practical
considerations in chapter 5 suggested that this should be the normal operation of adaptive
systems, and that fast adaptation was essentially non robust. It should not be deduced
however that very slow adaptation would be desirable for robustness, or required for the

applicability of averaging methods.

Finally, the robustness of adaptive algorithms was investigated. The Rohrs exam-
ples were first reviewed. A connection between exponential convergence and robustness
was established in a general framework. The result was applied to a model reference
adaptive control scheme, and stressed the importance of the persistency of excitation con-
dition for robustness. Robustness margins were also obtained. An important parameter
of the analysis was the rate of exponential convergence of the adaptive algorithm, which
can be obtained - or approximated - using methods described earlier. The mechanisms of

instability observed in the Rohrs examples were explained, and methods to improve
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robustness were briefly investigated.

General Conclusions

Appropriate techniques are needed for the analysis of the nonlinear time varying
dynamics of adaptive systems. Among these, averaging methods constitute a very suc-
cessful, and promising approach. The success of the application of averaging methods to
adaptive systems partially relies on the separation between the adaptive parameters and
the remaining states of the adaptive system. This is probably due to the fact that we can
exploit the linearity of the underlying system for fixed adaptive parameters. In fact, we
saw in chapter 4 that, by this mean, we could eventually deal with the nonlinear dynam-
ics without linearization of any type, and even obtain frequency domain results. Using a
similar decomposition in chapter 5, we found interesting explanations of the mechanisms

of instability observed in Rohrs examples.

In general. it is curious to note that many results, besides those using averaging,
were proved by relying on a fixed parameter approximation. This was found in the
proofs of exponential convergence in chapter 2, and in the proofs of stability in chapter 3
(swapping lemma). It is therefore likely that successful approaches will keep in mind the

separation between the adaptive parameters and the other states of the adaptive system.

Robustness is a very important topic that needs to be better understood to stimulate
practical applications. Again, averaging methods are a very promising approach in this
direction. Practical solutions are needed to enhance the robustness of adaptive systems,
but some methods to quantify robustness and compare different methodologies of control
would be desirable. We hope that the basic work of this thesis will help to strengthen

the foundations on which such research can be built.

Suggestions for Future Research

The thesis suggests several avenues for future research. As mentioned above, an
important area is that of the robustness of adaptive systems to measurement noise and
unmodeled dynamics. We need practical methods to improve robustness, tools for the
analysis of robustness, and in general a better understanding of what the problem is.

The relationship between reference input, nominal plant, unmodeled dynamics, and tuned
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parameters is a particular topic of interest in that regard.

The development of averaging methods, and their application to specific problems is
worth special interest. Among these problems is the robustness of adaptive systems, but
also the optimum input design for parameter convergence. and the comparison of adaptive

algorithms (gradient vs. least squares. MIT rule vs. others), etc.

We did not address numerical considerations in this thesis. It is clear that the choice
of structure, parametrization, and identification algorithms will strongly influence the
numerical stability of the algorithms, and research in that area would definitely be

beneficial.




Proof of Lemma 1.4.2

Let

1

r(t)=fa(7)x('r)d1

0

so that, by assumption
Fe)=a()x()<a@)r@)+a(e)ult)
i.e. for some positive s (¢ )
rt)—a(@)rt)—a@u)+s)=0

Solving the differential equation with r(0) = 0

t

t fa(a)da
r(t)=fe’ (a(Dul(r)—s(t)dr
0

Since exp(.) and s(.) are positive functions

a({o)d o
a(t)ulr)dr

a—

r(t)€]e
()

(A1.4.1)

(A1.42)

(A1.4.3)

(A1.4.4)

(A1.4.5)

By assumption x(z) $r(t)+u(¢) so that (1.4.11) follows. Inequality (A1.4.12) is

obtained by integrating (A1.4.11) by parts. O

Proof of Lemma 2.5.2

We consider the system
i(@)=A@)x ()

y@)=C@)x ()

(A2.5.1)
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and the system, under output injection
wt)=(A@)+K)C(@Dw(e)
z()=C@)w(e) (A2.52)
where x . w €R”, A €ER®> ,C €R™** , K €R"™ ,and y .z €ER™.
It is sufficient to derive equations the inequalities giving B,", 8,". B3’
(a) Derivation of B’

Consider the trajectories x(7) and w(7), corresponding to systems (A2.5.1) and

(A2.5.2) respectively, with identical initial conditions x (¢ o)=w (¢,). Then
w(t)—x(1)= [ ®1.00K (0)C(aIw(o)do (A2.5.3)
Let e (0) = K (0)C (o)w (o) / 1K (o)C(odw (o) | € R", so that

IC (7 )w (T)=x (1) =1 [ C(1)®(7.0)K (a)C (0Iw (0)d o P
<(f1C()0(1.0)e (MK (0N C (0w (o) d 0)?

<fic@w@dy [IC(1)7.0%e (@ IK (0Wd o (A2.5.4)

to
using the definition of the induced norm, and Schwartz inequality. On the other hand,
using the triangular inequality

1948 1g+6

([rcEmw@ERarV22( [ I1C()x(r)’d )V 2

tg+d

— (f1C@w @)=x (1) PdT IV 2 (A2.5.5)

so that, using (A2.5.4), and the UCO of the original system

tg+b

([ icGw@ERdrV?

1445 , r
2VBilw—( [ [1Ic@ww@idv [1C()r o) (GPIK (oW dodT)V ?




2 Bilw (o)

19+8 14+ o
—( [ 1Cc@w @)V 2( [ N1k @PIC(@)Wr.0)e (o dad )2 (A2.56)

Changing the order of integration, the integral in the last parenthesis becomes

1g+5 19+
J 1k ©@P [1C()N1.0)(0dTdo (A2.5.7)

Note that o+ 8 — 0 <8, le(0)l= 1, while &7 .0)e (0) is the solution of system (A2.5.1)
starting at e (0). Therefore, using the UCO property on the original system, and the con-

dition on K (.), (A2.5.7) becomes

10+6 to+8
f 1K (o)I? f IC(r)r.0)e(Pdrda<ksB, (A2.5.8)

Inequality (2.5.12) follows directly from (A2.5.6) and (A2.5.8).
{b) Derivation of B,'

We use a similar procedure, using (A2.5.4)

IC(rw (T LIC(1)x (7)2 + IfC (1)W7.0)K (0)C (w (0)d o
<IC(1)x (1R + (1€ (@w (NIC (1)8(7.0)e (o) 1 K (0)Nd 0)°
SIC(7)x (1)

+ [Ic@w @Pdv [1C(r)r.0)e(0F 1K (oW do (A2.5.9)

lo

and, for all o £t Szo+8

¢ 15+8
Jicw@Rar < [1C@Ex(Pdr
‘o ‘e

+ [ [1c@w @Pdy [1C(1)¥(7.0)e (0 1K (0)WPd od 7(A2.5.10)

tolo
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and, using the Bellman-Gronwall lemma (lemma 1.4.2), together with the UCO of the

original system

flC(T)W (T)ed 7

<Bylw (t oW exp ([ [1C ()7 0)e (0IF 1K (oWdodT) (A2.5.11)

folto
for all t, and in particular for ¢ =t o+8.

The integral in the exponential can be transformed, by changing the order of integration,

as in (A2.5.8). Inequality (2.5.13) follows directly from (A2.5.8) and (A2.5.11).
(c) Derivation of B3'(.)

Using (A2.5.3)

lw (I <lx @1+ f Iz Ol K (M C (w (o)ld o

Lo

g

SBy(1z —1oDIw (ol +  sup ]B3(ITI)fIK(cr)l!IC(O')w(O')IdO'
Tt g

<B3(It _t0|)|W(t0)|+T€[SoliP_( ]B3(ITI) (k,_,oflC(O')w (U)'zd 0')1/ 2 (A2.5.12)\

Inequality (2.5.14) follows directly from (A2.5.12). O

Proof of Lemma 2.6.5

We wish to prove that for some 8, a;, a, >0, and for all x with lx =1

1945

2 [ (Wl +el )x Pdr 2ay for all ¢ 20 (A2.6.1)
‘e

By assumption, e € L,, so that f (eTx)?d7 <m for some m 20. Since w is PE, there
()

exist 0, B;, 8, >0 such that

tgto

B,2 [ wix)d7r 2B for all £ 20 (A2.6.2)
to
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let 8§ 20(1+ 2 ), a;=Br.oax=m + B, (l+-g-l— ) so that
1 1

1o+ totd tgtd

f (wT +el)x )2d‘r>f (wa)zd‘r—f (eTx)dr

231(1+_g_’ Y—m =a, (A2.6.3)
1
and
zo+8 to+d 1gt+d
f (wT +el)x Ydr <€ f wix)dr+ f (eTx)dr
to te to
<32(1+Bi Y+m =0y (A2.6.4)
1
O

Proof of Lemma 2.6.6

We wish to prove that for some 8, o, &, >0, and for all x withix|=1
1g+5

a2 f (B wl)x ?dt 24 for all 4 20 (A2.6.5)
Ig

\

Denoteu =w’x,and y =B (w)=H(wTx)=H (wT)x (where the last inequality is true
because x does not depend on ¢ ). We thus wish to show that
1g+5
a2 [ yA(Ddr 2 for all £ 20 (A2.6.6)
o

Since w is PE, there exists 7, 8;, 82 >0 such that

10+0
B, > f v¥r)dT 28, for all £o =0 (A2.6.7)

‘o

In this form, the problem appears on the relationship between truncated L, norms of the
input and output of a stable, minimum phase LTI system. Similar problems are

addressed in section 3.6, and we will therefore use results from lemmas in that section.

Let 8§ =m 0, where m is an integer to be defined later. Since v is bounded. and

3 = A (), it follows that y is bounded (lemma 3.6.1), and the upper bound in (A2.6.6)
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is satisfied. The lower bound is obtained now, by inversing H in a similar way as is used

in the proof of lemma 3.6.2. We let

N _ a’ -
z(s)= vy a u(s) (A2.6.8)

where @ >0 will be defined later, and r is the relative degree of A (s ). Thus

y(s)= g—f—“—)— A(s)z(s) (A2.6.9)

a

The transfer function from z (s ) to y(s) has relative degree 0. Being minimum phase, it

has a proper and stable inverse. By lemma 3.6.1, there exist k1, &k 20 such that

tg+b 1o+d
[ 2y d 7 <k, [ y*mdr+k, (A2.6.10)
lg LE)
Since u is bounded
ty+6
[ ¥ (1) dr Skyd (A2.6.11)
to

for some k3 20. Using the results in the proof of lemma 3.6.2 ((A3.6.14)), we can also

show that, with the properties of the transfer functiona’/ (s +a)’

to+6 to+6
f )T sf 22(7)d7+—;— k3® + kg (A2.6.12)
iy g

where k 4 is another constant due to initial conditions. It follows that

10+8 to+6
[ ymar> ([udr)dr—L k3s—k, =k
1o kl To a
>kL(m(ﬁl—§ k30) —kp—ka) (A2.6.13)
1

Note that 7/ a is arbitrary, and although &, depends on r/ a, the constants B,, k3, and O
do not. Consequently, we can let r/ a sufficiently small that 8; —(r/ a Ykyo 2B,/ 2.
We can also let m be sufficiently large that mBy/ 2 —k,— k4 Z B1 . Then the lower bound
in (A2.6.6) is satisfied with

oy = — (A2.6.14)
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Proof of Lemma 3.6.2
The proof of lemma 3.6.2 relies on the auxiliary lemma presented herafter.
Auxiliary Lemma

Consider the transfer function

a >0 (A36.1)

where r is a positive integer.

Let k (¢ ) be the corresponding impulse response and define

-3 T
gt-m)= [k(@do= [k@e—0)do 1—720 (A3.6.2)
R 4 -0
Then
=@ grlgm 4320 A3.63
and k(¢ )=0 fort <O. It follows that k (¢ ) 20 for all 7, and
oo t
k= [k(@do= [k(t-0)do=1 (A3.6.4)
0 —co
Similarly
C)zea ¥ U " > (A3.6.5)
t)y=e @ re t 20 .6.
g e kz=:1 T=F © 2
and g (z ) =0 for ¢ <0. It follows that g (¢) 20 for all ¢, and
o t r
Iglll=£g(o)d0=£og(t—a)do=-E (A3.6.6)
0

We are now ready to prove lemma 3.6.2. Let r be the relative degree of H.and

-~ _ a’ N
z(s)= Giay u(s) (A3.6.7)

where @ >0 is an arbitrary constant to be defined later. Using (A3.6.7)
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3’(5):55_*1);]?(5) z(s) (A3.6.8)

ar
Since the transfer function from z(s) to y(s) has relative degree 0. and is minimum

phase, it has a proper and stable inverse. By lemma 3.6.1

Iz, L, by L, +b> (A3.6.9)
We will prove that

by, b, Scylz b, +c2 (A3.6.10)
so that the lemma will be verified with a;=cb,. a,=c btc,.

Derivation of (A3.6.10)

We have that
z@)=el)+ [kG-u(r)dr (A3.6.11)
0

where €(z ) is an exponentially decaying term due to the initial conditions, and k (¢) is the
impulse response corresponding to the transfer function in (A3.6.7) (derived in the auxili-

ary lemma). Integrate (A3.6.11) by parts to obtain

t 0
z@)=e@)+u(t) [kt—0)do—u(0) [k(t—0)do

~ [ ([fr@-0)do)ul(r)dr (A3.6.12)

Using the results of the auxiliary lemma
r
() =e@)+u@)—u(0) g)— [¢Gt—m)u()d 7 (A3.6.13)
0

Since g (¢ ) is exponentially decaying, u(0)g (¢ ) can be included in €(z ). Also, using again
the auxiliary lemma, together with lemma 3.6.1, and then the assumption on u, it follows

that

r .
b ), Shz, | +le 1, + 2 04,

Stz b e b + 2 kil b + Z k2 (A3.6.14)
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Since a is arbitrary, let it be sufficiently large that % k; <1. Consequently

. iel, + 2 k>
b, S——— Iz 4, +
r r
1—— k] 1—— kl
a a
=cyliz bl e, (A3.6.15)

Proof of Corollary 3.6.3
(a) From lemma 3.6.2.
(b) Since A is strictly proper, both y and y are bounded.

(c) We have that y = A (¢) and y = A (). Using succesively lemma 3.6.1, the regularity

of u, and lemma 3.6.2, it follows that for some constants X ;,...k¢
Iy | <k My, I,+k,
Skalu, I+ kg4
Skshy, I+ kg (3.6.16)

The proof can easily be extended to the vector case. [

Proof of Lemma 3.6.4

Let
H(s)=ho+H,(s) (A3.6.17)

where A ; is strictly proper (and stable). Let & be the impulse response corresponding to

H,. The output y (¢) is given by
4
y(@)=el)+hou@)+ [ht—1u(r)dr (A3.6.18)
0
where €(z ) is due to the initial conditions. Inequality (3.6.9) follows, if we define

y1() =1holBy@) + [1h e =B () d T (A3.6.19)
[4]
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and

y2(€):=lele N +1ho Bt )+ [1h (=1 BAT)d T (A3.6.20)
[1]

Since € € L,, and h;€L; NL_ , we also have that €| € L,, lhyl€eL; 0L, . Since
By.B; € L,, it follows that the last term of (A3.6.19), and similarly the last term of
(A3.6.20) belong to L, NL,, . and go to zero as ¢ ~oo (see e.g. Desoer and Vidyasagar

(1975), exercise 5. p. 242). The conclusions follow directly from this observation. 0

Proof of Lemma 3.6.5

Let [A.b.c7.d] be a minimal realization of H, with A € R™™", b €R"™, c €R™,
andd €R. Let x:R,—R™, and y: R, —R such that

x=Ax+bWwl¢)
yi=cl x (A3.6.21)
and W:R,—=R™*, y,:R,—R such that

W=AW<+bw’

y2=c' W (A3.6.22)
Thus
Hwlig)=y,+d (Wl ¢) Bwhe=y,+(dwi)¢ (A3.6.23)
Since
gt-(w¢)=W¢+w¢=A Wo+bwl ¢+ Wo (A3.6.24)

it follows that
Ed? (x—W@=Ax-We)—-W¢
yi—y2=c (x =W @) (A3.6.25)

The result then follows since

HwT¢)—Aw )¢p=y,—y,=B . W¢)=H_(H,w")d) (A3.626)




Proof of Lemma 4.2.1

Define
t
w(t x)= fd('r.x Ye €t d 1
[]
and
4
wolt x)= [d(z.x)dT

[¢]

From the assumptions
IWO(t +t0,x )— Wo(t oX ) i S‘y (t ).t

for all¢.t, 20, x €B, . Integrating (A4.2.1) by parts
t
we(t x)=wyt x)—¢€ f e~y (rx)dr
0
Using the fact that
4
efe"e("'”wo(t x)dT=wolt x)—wolt x)e™
0
(A4.2.4) can be rewritten as
t
welt x)=wolt x)e™ +e fe"("’) (wolt x)—wolrx))dr
0
and, using (A4.2.3) and the fact that wo(0,x) =0
1
lwe(t xSyt e~ +e [ e (—1)yt—1)d 7
0
Consequently

< t_' v, =t T I_’_ =7 '
Iewe(t,x)l\ts'gg'y( < Jt'e +4y( < )r'e T dT

174

(A42.1)

(A42.2)

(A4.2.3)

(A4.2.4)

(A42.5)

(A4.2.6)

(A42.7)

(A4.2.8)

Since, for some B. Id (z . x )1 <B. we also have that y(z ) <. Note that, forallz’ 20,

t'e" Se ! and t'e”" <t', so that

lew(z x)IS sup_

t' —_
(=—)te™
1'€joVel Y €

+ sup_
t'2Ve

t'y,,
'Y(—é—)t e ]
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Ve , o ,
+ fy( 16— YreTTdT + fy( -2— YrleTd T (A42.9)
0 Ve
This, in turn, implies that

BV 3 et 4 BE 4y ) (LD
lew (t . x )1 SBVE+ ¥( Jg)e +82+y( JE)(1+Je)e

= ¢(e) (A4.2.10)

From the assumption on ¥, it follows that {(e)€X . From (A4.2.1)

dw et x)

—d(tx)=—ew(t.x) (A4.2.11)
ot

so that the first part of the lemma is verified.

If y(T)=a/ T . then the right-hand side of (A4.2.8) can be computed explicitly

sup @ etV e =ae (1-r)"e " Sa€’ (A42.12)
and, with T denoting the standard gamma function
]Oa e () 7eTdr =a€e T(2—r) Sa¥€’ (A4.2.13)
()
Defining £(€)=2a €", the second part of the lemma is verified. O

Proof of Lemma 4.2.2

Define w(t ,x ) as in lemma 4.2.1. Consequently.

g

dd (¢ x) od (¢ x)
T ¥x Tox

is zero mean, and is bounded. lemma 4.2.1 can be applied to EY:

and inequality (4.2.6) of lemma 4.2.1 becomes inequality (4.2.10) of lemma 4.2.2. Note

welt x) _

e g7 (A4.2.14)
dx

g_x [d(?‘,x)e—‘('_’)df -(%d (rx)

Since

that since _a-f%il is bounded, and d (¢ .0)=0 for all ¢ 20, d (¢ .x) is Lipschitz.

Since d (¢ ,x ) is zero mean, with convergence function (7 )lx|, the proof of lemma
42.1 can be extended, with an additional factor Ixl This leads directly to (4.2.8) and

h 6d(t.x)'

(4.2.9) (although the function £(€) may be different from that obtained wit 3
x
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these functions can be replaced by a single £(€)). O

Proof of Lemma 4.2.3
The proof proceeds in two steps.
Step 1: for € sufficiently small, and for ¢ fixed, the transformation is a homeomorphism.

Apply lemma 4.2.2, and let €; such that £(€;) <1. Let € <e;. Given z €B,, the

corresponding x such that
x=z+ew(t.z) (A4.2.15)

may not belong to By . Similarly, given x €Bj . the solution 2 of (A4.2.15) may not exist

in B,. However, for any x,z satisfying (A4.2.15), inequality (4.2.8) implies (4.2.16)

and
(1—£&(eN 1z Slx | K(1+£(e)) 1 2] (A4.2.16)
Define
£ (€)= min 11(1—g(e)).1_1;’é(a =h (1—£(€)) (A4.2.17)

and note that A '(e)—h as € 0.

We now show that
- for all z €B,,.. there exists a unique x €B; such that (A4.2.15) is satisfied,
- for all x €B, ., there exists a unique z € B, such that (A4.2.15) is satisfied.
In both cases, |x —z| <&(edh.

The first part follows directly from (A4.2.15), (A4.2.16). The fact that
lx —zI <&e)h also follows from (A4.2.15), (4.2.8), and implies that. if a solution z
exists to (A4.2.15), it must lie in the closed ball U of radius £(€)h around x. It can be
checked, using (4.2.10), that the mapping F, (z)=x —e€w(¢ .z) is a contraction mapping
in U, provided that £(e) <1. Consequently, F has a unique fixed point z in U. This
solution is also a solution of (A4.2.15), and since it is unique in U , it is also unique in B,
(and actually in R"). For x €B, . but outside B, there is no guarantee that a solution z
exists in B,., but if it exists, it is again unique in B,. Consequently, the map x =z

defined by (A4.2.15) is well-defined. From the smoothness of w (¢ .z) with respect to z,
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it follows that the map is a homeomorphism.
Step 2 the transformation of variable leads to the differential equation (4.217)

Applying (A4.2.15) to the system (4.2.1)

ove

(')2)

(I +e€

a;vz‘ Yi=€efn(z)+e(f(t.2.00—fq(z)—

+e(ft.zrewee—ft.zeN+e(f(t.ze)f (t.z,0))

=€fq(z)+ep'(t x.z.€) (A4.2.18)

where, using the assumptions, and the results of lemma 422

1p'(t 2 .€) | SEENz 1+ E€N 121+ €l 2] (A4.2.19)
w
For € <e,, (4.2.10) implies that (/ +€-aa-—zi) has a bounded inverse for all ¢ 20, z €B,.

Consequently, z satisfies the differential equation

-1
7= 1+eag; ] (ef(z)+ep'(t.z€))
=€f,(z)+ep(t.z€) z(0)=x, (A4.2.20)
where
-1
_ 0We . _ W e
plt.z.e)=|I+e 3z p'(t.z€e)—¢ 3z far(2) (A4.2.21)
and

Ip(t .z .€) SFEIIG (E(e)+E(E) el +E(EL,, iz

= y(e)lzl (A4.2.22)

forallt 20,€ <€,,z€B,. O
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Proof of Lemma 4.4.1
The proof is similar to the proof of lemma 4.2.3. We consider the transformation of

variable
x=z+tewlt,z) (A4.4.1)

with € <€, such that £(€;) <1. (4.4.1) becomes

i=U +ea§: e lfo )+ (f (2.0 falz)- "’;‘ )
+(f@t.ztew0)—f(t.2.0))
+(ft.z+ewey)—f(t.z +ew,..0)) (A4.42)
or
s=€f(z)+epy(t.z.€)+epy(t.z.y.€) z(0)=x, (A4.4.3)
where
1p it .2 €l sT:&a (E(e)L,, +E(E+EEN ) 1z 1= () k121 (Ad.4.0)
and )
1 —
lpz(z.z,y,e)lsl__ge_l)-zzlyl.—kzly| (A4.4.5)
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