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Abstract

In this paper, a new control scheme is presented for the doubly-fed induction machine with specific applications to renewable

energy (wind farms in particular). The proposed control algorithm offers the advantages of proven stability and remarkable

simplicity. In contrast with the classical vector control method, where the doubly-fed induction machine is represented in a stator-

flux oriented frame, a model with orientation of the stator voltage is adopted. This approach allows for a decomposition of the

active and reactive powers on the stator side and their regulation on the rotor side. A main contribution of the paper is the use

of a Hurwitz test for polynomials with complex coefficients that has had little prior application in control theory. Thisresults

in a proof that a PI control regulating the stator currents ensures global stability for a feedback-linearized doubly-fed induction

machine. The specific condition that the PI gains must satisfy is derived as a simple inequality. The PI controller has a particular

structure which directly relates the d-component of the rotor voltages to the q-component of the stator currents and vice-versa. The

feedback linearization stage only uses the direct measurement of the rotor and stator currents and is thus easily implementable.

Furthermore, it is also shown that the PI controller (without the feedback linearization terms) is also stable for a large range of

control gains and does not require the knowledge of the machine parameters. Finally, the control system is validated in simulations

and in experiments.

I. I NTRODUCTION

Doubly-fed induction machines (DFIM) have become very popular, especially in the field of renewable energy as hybrid

engines or high performance storage systems [1][2][3][4] and for wind turbines [5][6][7]. The attractiveness of the DFIM stems

primarily from its ability to handle large speed variationsaround the synchronous speed. Another advantage is that thepower

electronic equipment that controls the machine only has to handle a fraction of the total power (which is directly related to

the operating speed [2]), reducing losses and the cost of thepower electronic converter.

In this paper, a typical connection of the DFIM is considered. In this case, the stator is directly connected to the power grid,

while the machine is controlled through the rotor voltages.A back-to-back (B2B) converter, consisting of an AC-DC rectifier

and a DC-AC inverter stage, is used for generating the rotor voltages. For generation, the control goals for a DFIM are usually

the active and reactive powers delivered to the grid. For drive applications, the DFIM control is composed of an inner current

control loop and an external (and considerably slower) mechanical loop (see in [8] a counter example with a unique control

loop). This paper only focusses on the electrical loop, and assumes that, for driving applications or power management of

the whole DFIM and B2B, an outer mechanical loop (in terms of torque or speed) or a power supervisor (such as Maximum
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Power Point Tracking for wind generators), provides the active power reference for the electrical controller. The speed is also

assumed to vary slower than the electrical variables.

Most DFIM controllers proposed in the literature are based on vector control and decoupling [9][6][10][11], also known

as PQ control. The methodology is derived from the description of the electrical part of the DFIM in a stator flux-oriented

reference frame which allows the decoupling of the active and reactive powers of the stator side and their independent control

through the rotor currents. Moreover, some of the controllers that use the stator-flux oriented frame assume a fast stator flux

dynamics which, in steady state, is used to reduce the order of the system. To achieve the stator flux orientation, the flux angle

must be estimated and several operations implemented. In contrast to the stator flux-oriented frame, a model with orientation

along the stator voltage vector can be considered [12]. Assuming an ideal power grid, control of the stator currents in this

reference frame directly translates into the control of theactive and reactive powers absorbed or delivered by the machine.

Control algorithms are based on an inner rotor current loop,and an external PQ loop control. See recent examples in [13][14].

Examples on direct control of the stator currents using the stator voltage reference frame can be found in [1][2][8][15]. In

these cases the control scheme contains only one loop from the state (or output) measurement to the controller. In [1], the

control algorithm was designed disregarding the rotor dynamics and it results in a state-feedback controller plus a PI action.

However, the controller makes the whole closed loop system marginally stable, see discussion in [16]. The static state-feedback

control laws proposed in [2] and [8] were obtained using passivity-based techniques and ensure global asymptotic stability of

the DFIM (including the mechanical part), but they are very sensitive to the parameter variations. Also, advanced nonlinear

methods have been applied to the DFIM. In [17] the flatness of the model has been exploited to reduce the power losses, and

a controller based on the backstepping approach is proposed. Finally, in [15] a nonlinear technique based on the Lyapunov

function was used to design a direct current algorithm with afeedforward action that allows to track stator current references.

This scheme requires the reconstruction of the rotor flux references and the exact knowledge of several DFIM parameters.

The main contribution of this paper, which is based on [18], is the proof that a linear PI control for regulating the stator

currents does not allow to place the closed loop poles arbitrarily, but ensures stability for a large range of PI gain values. In

comparison with the PQ stator voltage oriented control approaches, the power regulation is achieved with one PI loop, instead

of the composition of an outer power regulator and an inner rotor current loop control. Moreover, the direct PI controller studied

in this paper is considerably simpler in comparison with other direct stator current schemes. Furthermore, global stability can

be guaranteed if a feedback linearizing term is added. This feedthrough term only uses the direct measurement of the stator

and rotor currents (both accessible for a DFIM), instead of the flux estimation required in the stator flux oriented methods.

The stability proofs are based on a little-known Hurwitz test for complex polynomials [19]. This method allows to significantly

reduce the complexity of obtaining the stability conditions by reducing the 6th order characteristic polynomial with real

coefficients to a cubic polynomial with complex coefficients. Interestingly, while a Routh-Hurwitz test for the 6th order

polynomial of [20] was found to be intractable, applicationof its version with complex polynomials yields a simple stability

test, requiring that a single quadratic inequality be satisfied by the PI gains. The method proposed in this paper is also applicable

to other control problems with certain symmetry properties. In [21], the Hurwitz test was used to find analytic conditions for

spontaneous self-excitation in induction generators. Thesame test was applied to the algorithm presented in [15], see[18].
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II. BACKGROUND: THE COMPLEX HURWITZ TEST

The extension of the well-known Routh-Hurwitz criterion topolynomials with complex coefficients is an old result of the

literature [19], possibly not well-known due to the lack of relevant applications. The main result presented in that paper is

summarized by the following Theorem.

Theorem 1: The polynomialP (s) = sn + α1s
n−1 + α2s

n−2 + . . .+ αn, whereαk = ak + jbk andk = 1, 2, . . . , n, has all

its zeros in the half-planeR(s) < 0 if and only if the determinants,∆1 . . .∆k,
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for k = 2, 3, . . . , n andar = br = 0 for r > n, are all positive.

Proof: See Theorem 3.2 of [19].

Based on the previous Theorem, the particular case of a cubicpolynomial with complex coefficients can be derived.

Lemma 1: Assuming thata0 is real and positive, the roots of a third-order polynomial with complex coefficients

P (s) = a0s
3 + (a1 + jb1)s

2 + (a2 + jb2)s+ a3 + jb3 (1)

are in the open left-half plane if and only if∆1 > 0, ∆2 > 0 and∆3 > 0, where

∆1 = a1, (2)

∆2 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 a3 −b2

a0 a2 −b1

0 b2 a1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (3)

∆3 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 a3 0 −b2 0

a0 a2 0 −b1 −b3

0 a1 a3 0 −b2

0 b2 0 a1 a3

0 b1 b3 a0 a2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (4)

We will show in Sections IV and V how the complex Hurwitz test can be used to prove stability of a DFIM control law in

an elegant and simple manner.
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III. M ODEL OF THEDOUBLY-FED INDUCTION MACHINE

The model comes from the three phase dynamical equations of aDFIM, assuming that the machine is symmetric (all

windings are identical), the stator-rotor mutual inductances are sinusoidal functions of the rotor angle [22][23], and the three

phase system is balanced. These assumptions enable the use of transformations, which greatly simplify the control problem.

The basic transformation (also known as Blondel–Park transformation) is widely used in the study of electric machines [23].

This mathematical transformation is used to decouple one ofthe (balanced) phases, to refer all variables to a common reference

frame, and to obtain state-space models whose parameters are independent of the relative angle between rotor and stator.

Similarly to [1] or [2], a transformation to a synchronous frame rotating at the constant frequency of the stator voltageof

the grid is proposed. Following standard convention, all electrical (two–dimensional vector) signals are partitioned into their

so–calledd andq components. This yields the electrical equations

Ls

disd
dt

+ Lsr

dird
dt

= −Rsisd + ωsLsisq + ωsLsrirq + vsd (5)

Ls

disq
dt

+ Lsr

dirq
dt

= −ωsLsisd −Rsisq − ωsLsrird + vsq (6)

Lsr

disd
dt

+ Lr

dird
dt

= (ωs − ω)Lsrisq −Rrird + (ωs − ω)Lrirq + vrd (7)

Lsr

disq
dt

+ Lr

dirq
dt

= −(ωs − ω)Lsrisd − (ωs − ω)Lrird −Rrirq + vrq (8)

whereisd, isq, ird, irq are stator and rotor currents, respectively,vsd, vsq are the stator voltages,vrd, vrq are the rotor voltages

(and play the role of the control inputs),ω is the mechanical speed, andωs is the stator frequency.Rs, Rr are the stator and

rotor resistances,Ls, Lr andLsr are the stator and rotor self–inductances and mutual inductance, withLsLr > L2
sr.

The mechanical equation is given by

J
dω
dt

= Lsr(isqird − isdirq)−Brω − τL (9)

whereJ is the inertia,Br is the friction coefficient, andτL is an external constant torque.

The use of the stator-voltage oriented synchronous frame,vsd = Vs andvsq = 0 (with Vs the amplitude of the three-phase

stator voltage), allows us to express the stator active and reactive powers in terms ofisd and isq, respectively, so that,

Ps = vsdisd + vsqisq (10)

Qs = vsqisd − vsdisq (11)

simplify to

Ps = Vsisd (12)

Qs = −Vsisq. (13)

In particular, assigning a desired valuei∗sq allows one to regulate the power factor of the stator side of the machine, while

i∗sd can be used to control the active power (delivered or consumed) by the DFIM. In a drive application,i∗sd is fixed as a
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Fig. 1. Proposed feedback-linearizing control scheme for aDFIM.

desired value to achieve the target torque in the presence ofvoltage constraints. This paper concentrates only on the problem

of robust regulation ofis to its desired value.

IV. FEEDBACK-LINEARIZING CURRENT CONTROLLER

The proposed control scheme is presented in Figure 1. It is composed of the current control block and the well-known

Blondel-Park transformation to recover the dq-measurements of the currents and the stator voltages, and its inverse togenerate

the three-phase rotor voltages from the computedvr values (in the dq-framework). Thanks to the use of the statorvoltage

reference (already used in [1] or [12] among others) the proposed algorithm is simpler than the classic stator-flux oriented

control [6], where the stator flux estimation (or reconstruction) is required for the reference frame orientation. Furthermore,

the stator voltage oriented framework allows us to directlyuse the stator currentsis to regulate the active and reactive stator

power, see equations (12) and (13). This fact also simplifiesthe algorithm compared with the standard approach.

The control algorithm can be also used as the inner-current loop for drive applications. Fixingisq for the reactive power

compensation, a suitableisd can be obtained from a mechanical outer-loop for the torque,or speed regulation (from the

mechanical dynamics (9)).

A. Feedback-linearizing current controller

The proposed controller consists of a partial feedback linearizing feedback stage

vrd = −(ωs − ω)Lsrisq +Rrird − (ωs − ω)Lrirq + ud (14)

vrq = (ωs − ω)Lsrisd + (ωs − ω)Lrird +Rrirq + uq (15)

and a PI action

ud = −kP (i
∗

sq − isq)− kI

∫ t

t0

(i∗sq − isq)dτ (16)

uq = kP (i
∗

sd − isd) + kI

∫ t

t0

(i∗sd − isd)dτ (17)

with the scalar proportional and integral gainskP andkI , respectively.

Remark 1: The first three terms in (14) and (15) exactly cancel the first three terms in (7) and (8), respectively, feedback-

linearizing the system and transforming the rotor equations toLsr
disd
dt + Lr

dird
dt = ud andLsr

disq
dt + Lr

dirq
dt = uq.
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Remark 2: In contrast to [1], the PI controller is defined relating the d-rotor voltage component with (minus) the error of

the q-stator current (16), and the q-rotor voltage with (plus) the error of the d-stator current (17). This fact turns outto be

critical for the stability analysis and solves the marginally stability problem of [1], see [16]. As explained in [24], this structure

was suggested by applying passivity-based nonlinear control techniques which, precisely, takes into account the original DFIM

dynamics where the dq stator currents appear rotated in the equations of the rotor fluxes (7)-(8). In [15] the cross-termswere

also required to prove global stability, see Fig. 3 in [15].

Substituting (14)-(15) in (7)-(8), a linear closed-loop system is obtained. Applying the Laplace transform, stability of the

system is determined by a 6th order characteristic polynomial, which was analyzed in [20] but without reaching complete

analytic conditions for stability. Interestingly, this sixth order characteristic polynomial with real coefficientscan be reduced

into a 3rd order polynomial with complex coefficients for which complete analysis is possible.

Defining Is(s) = Isd(s) + jIsq(s), Ir(s) = Ird(s) + jIrq(s), Vs(s) = Vsd(s) + jVsq(s), Vr(s) = Vrd(s) + jVrq(s), the

closed loop system can be written as

A(s)













Is(s)

Ir(s)

Vr(s)













=













Vs(s)

0

j(kP s+ kI)I
∗

s (s)













(18)

where

A(s) =













Lss+Rs + jωsLs Lsrs+ jωsLsr 0

Lsrs Lrs −1

j(kP s+ kI) 0 s













. (19)

Notice that the polynomialdetA(s) has 3 roots that are not required to be real or appear as complex pairs. The complex

polynomial has the form

detA(s) = a0s
3 + (a1 + jb1)s

2 + (a2 + jb2)s+ a3 + jb3 (20)

where the parameter values are given in [18].

Now the stability of the closed loop system (5)-(8) with (14)-(15), can be analyzed with Lemma 1, wherea0 = µ > 0

(µ = LsLr − L2
sr > 0, in all electrical machines) is fulfilled. Computing conditions (2)-(4) yields

∆1 = LrRs (21)

∆2 = Lsr

(

kPωsL
2

rR
2

s + kP kILsrLrRs − 2kIωsµLrRs − k2IµLsr

)

(22)

∆3 = kIω
3

sL
2

srLrRs

(

k2PLsrLrRs − kP kIµLsr − kIωsµ
2
)

. (23)

The first condition is automatically fulfilled becauseLr, Rs > 0. It can be shown (see[18]) that one must havekI > 0, and the

third condition is more restrictive than the second one. Consequently, the Hurwitz conditions reduce to∆3 > 0. Notice that

the stability condition does not depend on the mechanical speed. This stability condition has as asymptote the result presented

in [20], which implies a generalization of the previous work.
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Proposition 1: Consider the DFIM system (5)-(8) in closed-loop with the control law (14)-(15). If

0 < kI <
k2PLsrLrRs

µ (µωs + kPLsr)
(24)

the closed-loop system is asymptotically stable.

Proof: See [18].

Finally, it is worth mentioning that the degrees of freedom provided by the PI gains does not allow us to place the poles in

arbitrary locations, which are depending on the DFIM parameters and, consequently, the convergence speed can be bounded by

the machine parameters (see example in Figure 8). A qualitative design rule can be obtained numerically using a Root Locus

Analisys. Moreover, for generation applications, it is crucial to have resistanceRs andRr as low as possible which tends to

have∆1 ≈ 0. This fact could affect the stability if there are delay effects in the feedback loop. The use of both “direct” and

cross-terms of the stator current errors, as [15], is a possible solution to relax the influence of theRs andRr values.

B. Effect of an incorrect rotor resistance estimation

As seen from (14)-(15), the feedback linearization term requires the knowledge ofRr, Ls andLsr, which are in general

uncertain and time-varying parameters. In particular, dueto thermal effects, the value ofRr is highly varying. In order to

evaluate the effect of a possibly incorrect estimation ofRr, let us assume that one uses in (14)-(15) an estimated valueR̂r,

which can differ from the actual value of the rotor resistance. Then, definingR̃r := Rr − R̂r, (19) slightly modifies to

Ar(s) =













Lss+Rs + jωsLs Lsrs+ jωsLsr 0

Lsrs Lrs+ R̃r −1

j(kP s+ kI) 0 s













. (25)

Applying again Lemma 1 to the new matrixAr(s), it is possible to obtain a set of conditions given by∆1,∆2,∆3 > 0.

The determinant ofAr(s) still has the form of (20), with the same parameters of [18] except for the following three:

a1 = LrRs + LsR̃r (26)

a2 = kPωsLsr +RsR̃r (27)

b2 = −kILsr + ωsLsR̃r. (28)

First, note thata1 > 0, and consequently∆1 > 0, if and only if R̂r < Rr +
Lr

Ls
Rs, which warns against an overestimation

of Rr. Conditions∆2 > 0 and∆3 > 0 are quite more complicated,

∆2 = c1k
2

I + c2kPkI + c3kI + c4kP + c5 (29)

∆3 = d1k
3

I + d2kP k
2

I + d3k
2

I + d4k
2

P kI + d5kPkI + d6kI (30)

where the parameters are detailed in Appendix A.
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Fig. 2. Stability boundaries given by (29) and (30) for the proposed control law (14)-(15) with an uncertain value ofRr.

At this point, in order to simplify the stability conditions, it is possible to compute the positive slope asymptotes of (29)

and (30), which turn out to be the same and given by

kI =
LrRs + LsR̃r

µ
kP −

ωsLrRs

Lsr

. (31)

Notice that forR̃r = 0, this corresponds to the asymptote of (24), and the stability condition presented in [20] is recovered.

Also, it is worth mentioning that negative values forR̂r will increase the slope of (31) which implies a larger stability region.

However, this selection will affect the performance of the controller with a longer stabilization time.

Figure 2, shows a numerical example of the stability region for different values ofR̂r. With the parameters of the machine

described in Section VI, and considering a 10% error in theRr estimation,∆3 > 0 is more restrictive than∆2 > 0. In Figure

2, the∆3 = 0 for different errors in the rotor resistance estimation areshown. This numerical example shows that a positive

error, i.e. R̃r > 0, in the estimation ofR̂r is preferred. In other words, overestimating the rotor resistance implies decreasing

the stability region and, as pointed out before, can even destabilize the system. Moreover, for small values ofR̃r, a small

stable region appears forkP < 0. This can be easily seen from the asymptote (31), whereR̃r < 0 implies a lower slope. This

fact suggests takinĝRr = 0 to have a larger stability region, and also simplify the control law. Then, asymptote (31) yields,

kI =
LrRs + LsRr

µ
kP −

ωsLrRs

Lsr

. (32)

V. PI STATOR CURRENT CONTROLLER

The control law introduced in the previous section guarantees stability for a large range of the PI parameter values. However,

in order to implement the control algorithm, it is necessaryto know some machine parameters and both the stator and the rotor

currents. In this section a simplification of the proposed controller (14)-(15) is analyzed that only keeps the PI action, i.e.,

vrd = −kP (i
∗

sq − isq)− kI

∫ t

t0

(i∗sq − isq)dτ (33)

vrq = kP (i
∗

sd − isd) + kI

∫ t

t0

(i∗sd − isd)dτ. (34)

For this scheme, shown in Figure 3, the rotor currents are notrequired, and only the stator currents need to be measured.
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Notice that, in a torque controller application, the rotor currents could be required to set thei∗d value in an outer control loop.

At this point, for the stability analysis, a constant mechanical speed is assumed. Using the same idea as before, the closed-loop

dynamics can be written as (18) withA(s) becoming

API(s) =













Lss+Rs + jωsLs Lsrs+ jωsLsr 0

Lsrs+ j(ωs − ω)Lsr Lrs+Rr + j(ωs − ω)Lr −1

j(kP s+ kI) 0 s













. (35)

The polynomialdetAPI(s) still has 3 roots, and the Hurwitz test described in Lemma 1 can be used. The determinant of

(35) has the same form as (20) with the coefficients given in Appendix B. The stability of the closed loop system (5)-(8) with

(33)-(34) can be analyzed by computing∆1, ∆2, ∆3. ∆1 = a1 so that∆1 > 0, while ∆2 and∆3 are in the same form as

(29) and (30), respectively, where the coefficients now takethe values given in Appendix C.

To obtain an expression for the stability region becomes complicated. As a first result, conditions can be plotted for a

numerical case. Using the machine parameters of Section VI,equations (29) and (30) are obtained for different values ofthe

mechanical speed. Figure 4 shows the stability regions for the mechanical speed.

In order to bound the stability region, it is possible to find the asymptote of (29) and (30). Similarly to the case for an

unknown rotor resistance presented in the previous section, the asymptotes for the∆2 = 0 and∆3 = 0 are equal and given by

kI =
LrRs + LsRr

µ
kP +

ωLsRr − ωs(LrRs + LsRr)

Lsr

. (36)

Note that the slope of the stability boundary does not dependon the mechanical speed. As the worst case is whenω = 0, the
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stability for the PI controller proposed can be ensured by setting

kI <
LrRs + LsRr

µ
kP −

ωs(LrRs + LsRr)

Lsr

. (37)

VI. SIMULATIONS

The proposed controllers were tested in numerical experiments using Matlab. The DFIM parameters are the same than ones

used in Section VII. The DFIM is connected to a380V and 50Hz power grid. Using a power preserving transformation and

the stator-voltage oriented frame, this corresponds to a constant stator voltage vectorvs = [380, 0]V andωs = 100πrad s−1.

A first simulation consists in a comparison between the two presented control schemes. For this test, the dq-model (5)-(8)

is in a closed loop with the control schemes (14)-(15) and (33)-(34). The knowledge of all the parameters is assumed for

the feedback linearizing control scheme and the control gains of the PI action are fixed atkP = 0.5VA−1, kI = 3VA−1s−1

for the FL+PI controller andkP = 5VA−1, kI = 50VA−1s−1 for the Direct PI controller. The mechanical speed is set to

ω = 325rad s−1. As shown in Figure 5, both algorithms perform in a similar way. This result suggests the use of the direct PI

controller because it is easily implementable; rotor currents are not needed, and the knowledge of the machine parameters is

not required. However, the stability of the control law (33)-(34) is based on the assumption of constant mechanical speed. In

the simulation depicted in Figure 6, the current referencesare i∗s = [0.5, 0]A and the mechanical speed is modified. When a

sudden change of the velocity occurs, both d and q stator currents reach the desired values after a short time. Also, note that

during the acceleration of the mechanical speed (fromt = 0.5s to t = 1.5s), the d-stator current tracks the reference value but,

in the Direct PI algorithm the q-stator current has some steady-state error. This suggests the proposed controller in Section

IV-A for applications with mechanical speed variations.

The second test compares the proposed method (the so-calleddirect PI controller) with an existing PQ control which also

uses the stator voltage oriented frame and splits the problem in two loops: a first rotor current loop, and an outer power

control loop, see details in [13], pp. 2-18 to 2-22. At this point, two main differences arises with respect to the proposed

controller (33)-(34): the stability of the PQ method is based on the assumption of a fast inner loop with respect the power

control loop, and the use of current sensors for the rotor side is required. Figure 7, compares the behavior of the stator currents
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Fig. 6. Simulation results: stator currents under a change of the mechanical speed, from300rads−1 to 295rads−1 at t = 0.1s, and acceleration of50rads−2

and−50rads−2, from t = 0.5s to t = 1s, andt = 1s to t = 1.5s, respectively.
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Fig. 7. Simulation results: comparison of the direct PI-controller algorithm with the stator voltage PQ control.

using the proposed algorithm versus the PQ control approachin [13], where the control gains were set tokPp = 0.01AW−1,

kIp = 10AW−1s−1 (for the PQ controller) andkPc = 5VA−1, kIc = 0.1VA−1s−1 (for the rotor current controller). Notice

that performance is similar although the proposed control law is easier to implement and less complex.

The third set of simulations test the direct PI controller. In this case, the model is implemented using the SimPowerSystems

toolbox of Matlab, which contains a library with realistic implementations of some elements such as sources, electrical machines

and measurement elements. For this simulation, the Blondel-Park transformations had to be coded, as well as the obtained

control action,vr, that is converted to the three-phase voltage,Vr , to be applied to the rotor side of the DFIM. Also, the effects

of a real implementation are included,i.e. sampling, quantification and saturation. The sampling frequency is set at 10kHz,

all the variables are quantified as in a 16bit processor, and the rotor voltages which are saturated at±120V, are delayed with

one sampling time period. The control parameters arekP = 5VA−1 andkI = 50VA−1s−1. This simulation is performed with

the same parameters used in Section VII (which consists in a small DFIM with large stator and rotor resistances), but a test

using five times smallerRs andRr values, is also provided in order to show the performance in alarge DFIM.

Figure 8 shows how the obtained dq-stator currents stabilize at the desired values under several reference changes. Notusing

feedback linearizing terms implies that the dq-currents are coupled and changes onisd affect in isq (and vice-versa), but the

currents recover the set point. It is worth mentioning that the controller is able to operate for both signs of theisd current,
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Fig. 8. Simulation results: dq-stator currents depending on the DFIM resistance values.

showing that this algorithm can be used for both generation of either electrical power or mechanical power (as in driving

applications). As expected because the closed loop poles depend on the resistance values, with the same control gains, the

response of a DFIM with small resistances is faster (with an overshoot) than the machine with larger ones.

VII. E XPERIMENTAL RESULTS

The proposed controller has been tested experimetally as well. The DFIM is a 1.1kVA, 2 poles three-phase machine

(DeLorenzo DL 1022K), with the following parameters:Rs = 4.92Ω, Rr = 4.42Ω, Ls = 725mH, Lr = 715mH and

Lsr = 710mH. The DFIM is moved by a 3kW DC motor used to provide a constant speed (at 2950rpm). Assuming a balanced

grid, by using two voltage differential sensors and two Halleffect currents sensors, the three phase stator voltages and currents

are measured. Position is measured as well in order to compute the dq transformation. The sample time is fixed to10−4s,

which corresponds to 10kHz as a maximum frequency.

The first test corresponds to a change on the d-stator currentcomponent. The DFIM starts with references ati∗s = [0, 0]A

and the d-component is set toi∗sd = 0.5A (Figure 9) and changed back toi∗sd = 0A (Figure 10). Figures 9 and 10 show the

transient of the dq-stator currents and its references. Small oscillations of the transformed dq-currents corresponds to the effect

of unbalanced phases of the actual machine. As in the simulation tests, the controller is able to control the active powerby

means of the d-stator current component. However, the transients of the stator currents are worst than the ones obtainedin the

simulations due to the interaction between the control required to keep the mechanical speed of the DC machine and the tested

control algorithm. In a practical scenario with larger inertia values than the one used in the experiment, the mechanical time

constant will smooth the current oscillations. Figure 11 shows the stator voltage and current for the a-phase fori∗s = [0.5, 0]A.

Note that as the reactive power in the stator side is zero (isq = 0), the stator voltage and current are in phase.

The second test consists in to modify the reactive power of the DFIM. In this case the q-stator current component changes

from i∗s = [0.5,−0.5]A to i∗s = [0.5, 0.5]A. Figure 12 shows the a-phase stator voltage and current at the beginning of the test

where the phase of the current lags that of the voltage. The dq-stator currents behavior is shown in Figure 13. This test shows

that the reactive power can be modified using the q-stator current component. Finally, the a-phase stator voltage and current in

steady state are in Figure 14. In this case, the voltage lags the current. As the change in the q-component does not affect the

active power, the mechanical speed is only slightly affected and the current performances are better than the previous cases.
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Fig. 9. Experimental results: dq-stator currents for a change reference fromi∗s = [0, 0]A to i∗s = [0.5, 0]A. (CH1): d-stator current reference. (CH2): q-stator
current reference. (CH3): d-stator current. (CH4): q-stator current.

Fig. 10. Experimental results: dq-stator currents for a change reference fromi∗s = [0.5, 0]A to i∗s = [0, 0]A. (CH1): d-stator current reference. (CH2):
q-stator current reference. (CH3): d-stator current. (CH4): q-stator current.

VIII. C ONCLUSIONS

In this paper, a particularly simple controller for the DFIMwas presented. It consists of a PI regulator for the stator currents

and (possibly) a feedback linearizing term. As the proposedscheme is defined in the stator voltage reference frame, the active

and reactive powers are directly related to the d and q statorcurrents, respectively, and the power regulation does not require

extra loops or computations. Moreover, no stator flux estimation is required. Consequently, the algorithm is simpler than

classical vector control.

In contrast with the standard decoupling controllers, the PI action is defined with a particular structure (relating thed-rotor

Fig. 11. Experimental results: a-phase stator voltage (CH1), a-phase stator current (CH2), d-stator current (CH3) andq-stator current (CH4), fori∗s = [0.5, 0]A.
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Fig. 12. Experimental results: a-phase stator voltage (CH1), a-phase stator current (CH2), d-stator current (CH3) andq-stator current (CH4), fori∗s =
[0.5,−0.5]A.

Fig. 13. Experimental results: dq-stator currents for a change reference fromi∗s = [0.5, 0.5]A to i∗s = [0.5,−0.5]A. (CH1): d-stator current reference.
(CH2): q-stator current reference. (CH3): d-stator current. (CH4): q-stator current.

voltage component with (minus) the error of the q-stator current, and the q-rotor voltage with (plus) the error of the d-stator

current). Stability is analyzed with a Routh-Hurwitz test for polynomials with complex coefficients. This method provides a

simple analysis tool to determine the stability regions of the control gains.

The paper presents two approaches. The first algorithm consists of a feedback linearization stage plus a PI action. This scheme

is particularly attractive because the resulting system islinear and independent of the mechanical speed. The influence of an

incorrect estimation of the rotor resistance is also studied. The second algorithm only uses the PI term, so that it is extremely

Fig. 14. Experimental results: a-phase stator voltage (CH1), a-phase stator current (CH2), d-stator current (CH3) andq-stator current (CH4), fori∗s =
[0.5, 0.5]A.
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easy to implement. This current loop does not require eitherthe knowledge of the machine parameters or measurements of

the rotor currents. As opposed to the previous algorithm, the stability of the second approach is based on the assumption

of constant mechanical speed. However, this restriction iswidely assumed and can be accepted when the time constant of

the mechanical dynamics is much higher than the electrical one. As a consequence of using a direct regulation of the stator

currents (measurements of the rotor currents are not required), neither of the proposed algorithms allows to assign theclosed

loop poles, that are dependent on the DFIM parameters.

The proposed controllers are verified in simulations. First, a dq-model of the DFIM is used to compare both controllers,

resulting in a similar behavior. Secondly, a comparison is done with respect to the common PQ control. The presented algorithm

is found easy to tune and cheaper to implement because it doesnot requires sensors for the rotor currents. And third, the direct

PI algorithm is tested in a more accurate scenario. The modelused in the simulation contains some parasitic elements and

non-ideal effects such as sampling, quantification and somedelay, in order to emulate a real experiment. The result demonstrate

good performance and validate the proposed control scheme.Finally, some experimental results using the direct PI algorithm

for a real setup are provided. These experimental tests confirm the advantages predicted in the simulation stage.
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APPENDIX

Appendix A: Parameters of the ∆2 and ∆3 conditions in Subsection IV-B. Parameters of (29) and (30) are

c1 = −µL2

sr c2 = L2

srβ c3 = −2ωsµLsrLrRs

c4 = ωsLsrLrRsβ c5 = RsR̃r

(

β2 + ω2

sµLsLr

)

and

d1 = −ωsµL
3

srRsR̃r d2 = ωsL
3

srRs

(

R̃rβ − ω2

sµLr

)

d3 = −ω2
sµL

2
srRs(LsR̃

2
r + ω2

sµLr + 3LrRsR̃r) d4 = ω3
sL

3
srLrRsβ

d5 = ω2
sL

2
srRsR̃r

(

ω2
sµLsLr + β2 + LrRsβ

)

d6 = ωsLsrR
2
sR̃

2
r

(

ω2
sµLsLr + β2

)

whereβ = LrRs + LsR̃r.

Appendix B: Parameters of the complex polynomial detA(s) in Section V. Parameters of (20) in Section V area0 = µ,

a1 = LrRs + LsRr a2 = RsRr − ωs(ωs − ω)µ+ kPωsLsr a3 = kIωsLsr

b1 = µ(2ωs − ω)− kPLsr b2 = (ωs − ω)LrRs + ωsLsRr − kILsr b3 = 0

Appendix C: Parameters of the ∆2 and ∆3 conditions in Section V. Parameters of (29) and (30) in Section V are

c1 = −µL2
sr c2 = L2

srγ c3 = µLsr (ω(LsRr − LrRs)− ωsγ)

c4 = ωLsrLrRsγ c5 = RsRrγ
2

and

d1 = −ωsµL
3

srRsRr d3 = ωsµL
2

srRs

(

−2ωsRrγ − ωsω
2µLr − ωRr(LrRs − LsRr)

)

d2 = ωsL
3

srRs (Rrγ − ωsωµLr) d5 = ωω2

sµL
2

srLrRs (ωLsRr − (ωs − ω)γ) + ωsL
2

srRsRrγ (ωsγ + ωLrRs)

d4 = ωω2

sL
3

srLrRsγ d6 = ωsLsrRsRr (RsRr − (ωs − ω)ωsµ)
(

γ2 + ω2µLsLr

)

whereγ = LrRs + LsRr.


