Multiple Programs

How do programs communicate!

-

-

Multiple Programs

How do programs communicate!? Files...

-

-

<

.

Multiple Programs

How do programs communicate! Files... Network...

L

Multiple Programs

How do programs communicate! Files... Network... Stdin...

L

Multiple Programs

How do programs communicate! Files... Network... Stdin... Etc.

L

But what’s in a file or sent over the network?

Byte Streams

Operating systems provide files, network connections,
etc. as byte stream objects
A byte is a number between 0 and 255

A stream is a sequence with a counter and an
operation: read-byte or write-byte

&

104 101 108 108 111
*

(read-byte in)

Byte Streams

Operating systems provide files, network connections,
etc. as byte stream objects
A byte is a number between 0 and 255

A stream is a sequence with a counter and an
operation: read-byte or write-byte

&

104 101 108 108 111
L

(read-byte in) - 104

Byte Streams

Operating systems provide files, network connections,
etc. as byte stream objects
A byte is a number between 0 and 255

A stream is a sequence with a counter and an
operation: read-byte or write-byte

g

104 101 108 108 111
L

(read-byte in) - 104
(read-byte in) - 101

Byte Streams

Operating systems provide files, network connections,
etc. as byte stream objects
A byte is a number between 0 and 255

A stream is a sequence with a counter and an
operation: read-byte or write-byte

g

104 101 108 108 111
*

(read-byte in) - 104
(read-byte in) - 101
(read-byte in) - 108

Byte Streams

Operating systems provide files, network connections,
etc. as byte stream objects
A byte is a number between 0 and 255

A stream is a sequence with a counter and an
operation: read-byte or write-byte

g

104 101 108 108 111
*

(read-byte in) - 104 (read-byte in) - 108
(read-byte in) - 101
(read-byte in) - 108

10

Byte Streams

Operating systems provide files, network connections,
etc. as byte stream objects
A byte is a number between 0 and 255

A stream is a sequence with a counter and an
operation: read-byte or write-byte

g

104 101 108 108 111
®

(read-byte in) - 104 (read-byte in) - 108
(read-byte in) - 101 (read-byte in) - 111
(read-byte in) - 108

11

Byte Streams

Operating systems provide files, network connections,
etc. as byte stream objects
A byte is a number between 0 and 255

A stream is a sequence with a counter and an
operation: read-byte or write-byte

g

104 101 108 108 111
®

(read-byte in) - 104 (read-byte in) - 108
(read-byte in) - 101 (read-byte in) - 111
(read-byte in) - 108 (read-byte in) - eof-object

12

Byte Streams

Operating systems provide files, network connections,
etc. as byte stream objects
A byte is a number between 0 and 255

A stream is a sequence with a counter and an
operation: read-byte or write-byte

&

104 101 108 108 111
*

fgetc (in)

13

Byte Streams

Operating systems provide files, network connections,
etc. as byte stream objects
A byte is a number between 0 and 255

A stream is a sequence with a counter and an
operation: read-byte or write-byte

&

104 101 108 108 111
L

fgetc(in) - 104

14

Byte Streams

Operating systems provide files, network connections,
etc. as byte stream objects
A byte is a number between 0 and 255

A stream is a sequence with a counter and an
operation: read-byte or write-byte

&

104 101 108 108 111
L

fgetc(in) - 104
fgetc(in) - 101

15

Byte Streams

Operating systems provide files, network connections,
etc. as byte stream objects
A byte is a number between 0 and 255

A stream is a sequence with a counter and an
operation: read-byte or write-byte

&

104 101 108 108 111
*

fgetc(in) - 104
fgetc(in) - 101
fgetc(in) - 108

16

Byte Streams

Operating systems provide files, network connections,
etc. as byte stream objects
A byte is a number between 0 and 255

A stream is a sequence with a counter and an
operation: read-byte or write-byte

&

104 101 108 108 111
*

fgetc(in) - 104 fgetc(in) - 108
fgetc(in) - 101
fgetc(in) - 108

17

Byte Streams

Operating systems provide files, network connections,
etc. as byte stream objects
A byte is a number between 0 and 255

A stream is a sequence with a counter and an
operation: read-byte or write-byte

&

104 101 108 108 111
®

fgetc(in) - 104 fgetc(in) - 108
fgetc(in) - 101 fgetc(in) - 111
fgetc(in) - 108

18

Byte Streams

Operating systems provide files, network connections,
etc. as byte stream objects
A byte is a number between 0 and 255

A stream is a sequence with a counter and an
operation: read-byte or write-byte

&

104 101 108 108 111
®

fgetc(in) - 104 fgetc(in) - 108
fgetc(in) - 101 fgetc(in) - 111
fgetc(in) - 108 fgetc(in) - -1

19

Byte Streams

)

(write-byte 104 o)

— (void)

Byte Streams

-

-

104

21

(write-byte 104 o)

— (void)

(write-byte 101 o)

— (void)

Byte Streams

-

-

101

104

22

(write-byte 104 o)

— (void)

(write-byte 101 o)

— (void)

Byte Streams

-

-

101

(read-byte i)
— 104

23

(write-byte 104 o)

— (void)

(write-byte 101 o)

— (void)

Byte Streams

-

-

(read-byte i)
— 104

(read-byte i)
— 101

24

Encoding

To communicate information other than small numbers,
it must be encoded

To encode English text, map each character to a byte

#\a = 97
#\b = 98
#\e¢ = 99
A o 65
#\(= 40
#\) = 41

#\1 = 48

Character Streams

This character encoding is so popular that byte streams
are sometimes viewed as character streams

—

#;h #\e #\1 #\1 #\o

(read-char in)

26

Character Streams

This character encoding is so popular that byte streams
are sometimes viewed as character streams

—

#\h #}e #\1 #\1 #\o

(read-char in) — #\h

27

Character Streams

This character encoding is so popular that byte streams
are sometimes viewed as character streams

—

#\h #\e #;l #\1 #\o

(read-char in) — #\h

(read-char in) - #\e

Character Streams

This character encoding is so popular that byte streams
are sometimes viewed as character streams

—

#\h #\e #\1 #\1 #;o

(read-char in) — #\h

(read-char in) - #\e

(read-char in) - eof-object

29

Character Streams

This character encoding is so popular that byte streams
are sometimes viewed as character streams

—

#;h #\e #\1 #\1 #\o

fgetc (in)

Character Streams

This character encoding is so popular that byte streams
are sometimes viewed as character streams

—

#\h #;e #\1 #\1 #\o

fgetc(in) - 'h' /* = 104 */

31

Character Streams

This character encoding is so popular that byte streams
are sometimes viewed as character streams

—
#\h #\e #\1 #\1 #\o
:)
fgetc(in) - 'h' /* = 104 */
fgetc(in) - 'e' /* = 101 */

32

Character Streams

This character encoding is so popular that byte streams
are sometimes viewed as character streams

—
#\h #\e #\1 #\1 #\o
-
fgetc(in) - 'h' /* = 104 */
fgetc(in) - 'e' /* = 101 */

fgetc(in) - -1

33

Accessing Streams

Stream types:

* Racket:
© input port
© output port
* Java:

© InputStream
O PrintStream

. C:
O FILE*

34

Accessing Streams

Getting standard input, output, and error-output:

* Racket:
O (current-input-port)
© (current-output-port)
© (current-error-port)

* Java:
© System.out
© System.in
© System.err

« C with #include <stdio.h>:
© stdin
© stdout
© stderr

35

Accessing Streams

Reading or writing a file:

* Racket:
O (open-input-file filename)
© (open-output-file filename)

* Java:
© new BufferedReader (new FileReader (filename))
0 new BufferedWriter (new FileWriter (filename))

« C with #include <stdio.h>:
© fopen (filename, "rb'")
© fopen (filename, "wb")

36

Character Streams in Racket

(define o (open-output-file "exl"))
(write-char #\h o)

(write-char #\e o)
(close-output-port o)

(define i (open-input-file "exl1l"))
(check-expect (read-char i) #\h)

(check-expect (read-char i) #\e)

(close-input-port 1)

Note: Racket term for stream is port

37

Encoding: Characters in Racket

In Racket, characters are actually encoded in multiple
bytes, sometimes

[~

97 206 187 98
L

Encoding: Characters in Racket

In Racket, characters are actually encoded in multiple
bytes, sometimes

[~

97 206 187 98
*

(read-char in) - #\a

39

Encoding: Characters in Racket

In Racket, characters are actually encoded in multiple
bytes, sometimes

[~

97 206 187 98
*

(read-char in) - #\a

(read-char in) — #\A

40

Encoding: Characters in Racket

In Racket, characters are actually encoded in multiple
bytes, sometimes

[~

97 206 187 98
®

(read-char in) - #\a
(read-char in) — #\A

(read-char in) — #\b

41

Encoding: Characters in C

In C, char just means “byte”

[~

97 206 187 98
L

42

Encoding: Characters in C

In C, char just means “byte”

[~

97 206 187 98
*

fgetc(in) - 'a’

43

Encoding: Characters in C

In C, char just means “byte”

*

[~

97 206 187 98

fgetc(in) - 'a’

fgetc(in) - 'I"

44

Encoding: Characters in C

In C, char just means “byte”

97 206 187

»gy

()

fgetc (in) -

(o M

fgetc (in) -

v

fgetc (in) -

45

Encoding: Characters in C

In C, char just means “byte”

T~
97 206 187 98
O

()

fgetc (in) -
fgetc(in) - 'I"
fgetc(in) - "»'

fgetc(in) - 'b'

Some Character Encoding Standards

ASCII
© “Characters” 0 to 127
© A kind of English plus computer creole

Latin- |
O “Characters” 0 to 255

O A kind of Western Europe plus computer creole
© A superset of ASCII

UTF-8
O “Characters” 0 to 917999 or so

© Roughly covers all languages on Earth
© A superset of ASCII

UTF-16

O Same coverage as UTF-8
© Uses 2 or 4 bytes for each character

47

Communicating Strings

One string: encode as a sequence of characters

Multiple strings: need a way to mark the end of one string

48

Communicating Strings

One string: encode as a sequence of characters

Multiple strings: need a way to mark the end of one string

The most popular encoding is line-based:
* Use a newline (encoded as |10) to separate strings
© #\newline or '\n'
* Works for strings that don’t contain newlines
* Racket:
© (read-line input-port)

- C:
© fgets (buffer, len, stream)

49

CRLF versus LF

Sometimes, lines are separated by two characters
(CRLF: 13 then 10) instead of one (LF: 10):

"one\ntwo\n" versus "one\r\ntwo\r\n"

The encoding convention depends on the platform

Opening a file in “text mode” reads CRLF or LF as newline, as
appropriate for a given platform

* Racket:
© (open-input-file #:mode 'text filename)
© (open-output-file #:mode 'text filename)

- C:
© fopen (filename, "r")
© fopen (filename, "w'")

50

Communicating More Than Characters

To read and write aquariums, we need to communicate
lists of (large) numbers

51

Communicating More Than Characters

To read and write aquariums, we need to communicate
lists of (large) numbers

Again, we must encode:

empty = #\.
'(10000) = #\1 #\O0 #\0 #\O #\space #\.
'(1 2) #\1 #\space #\2 #\space #\.

]

52

Number List Serialization

A <numlist> is either
#\.

<num> #\space <numlist>

A <num> is either
<digit>
<num> <digit>

A <digit> is either
#\0
#\1

#\9

53

Number List Writer

; write-numlist : list-of-num output-port -> void

(define (write-numlist 1 p)
(cond
[(empty? 1) (write-char #\. p)]
[else (begin
(write-num (first 1) p)
(write-char #\space p)
(write-numlist (rest 1) p))1))

; write-num : num output-port -> wvoid
(define (write-num n p)
(cond
[(n 10) (write-digit n p)]
[else (begin
(write-num (quotient n 10) p)
(write-digit (remainder n 10) p))1]1))

; write-digit : num [0-9] output-port -> void
(define (write-digit n p)

(cond

[(= n 0) (write-char #\0 p)]

[(; n 9) (write-char #\9 p)1))

54

Number List Parsing

Parse using an equivalent but more convenient form:

A <numlist> is either = A <numlist> is either
#\. #\.
<num> #\space <numlist> #\0 <num> <numlist>

A <num> is either
#\9 <num> <numlist>

<digit>
<num> <digit> A <num> is either
#\space
A <digit> is either P
#\0 <num>
#\0
#\1 #\9 <num>

#\9

55

Number List Reader

; read-numlist : input-port -> list-of-num
(define (read-numlist p)
(local [(define ¢ (read-char p))]
(cond
[(char=? #\. c) empty]
[(char-digit? c) (cons (read-number p (digit-val c))
(read-numlist p))]1)))

; read-number : input-port num -> num
(define (read-number p n)
(local [(define ¢ (read-char p))]
(cond
[(char=? #\space c) n]
[(char-digit? c)
(read-number p (+ (* n 10) (digit-val c)))1)))

; char-digit? : char -> bool

; digit-val : char -> num

56

|/O Libraries

You don’t always have to start from scratch

* Racket:
© read and write
© read-line and displayln
© read-xml and write-xml
O ...

- C:
© fscanf and fprintf

O (XN

57

Dear Sir:

¥
) D

Buffers

- I

iL

58

Buffers

A buffer is why you see no output from

int main() {
printf ("hello") ;
crash () ;

59

Buffers

A buffer is why you see no output from

int main() {
printf ("hello") ;
crash () ;

Line-buffering is why you do see output from

int main() {
printf ("hello\n") ;
crash () ;

}

... unless you redirect to an output file

60

Buffers

Flushing buffers:

* Racket:
© (flush-output output-port)

- C:
© f£fflush (stream)

61

