Graphs

A graph is
* a set of nodes O

* aset of edges —
each connecting two nodes




Graphs

A directed graph is
* a set of nodes O

* aset of edges
each connecting one node to another node

We'll just use “graph” to mean “directed graph”

2-



Graphs: Lists

At most one outgoing edge = list

O—0O—0—0



Graphs: Trees

Reach each node in only one way = tree



Graphs: DAG

Can’t get to a node from itself =
directed acyclic graph (DAG)



Graphs: Cycles

Can get to a node from itself = graph



Roots

Some nodes might be considered roots — often nodes
that reach all others

O—0—0—0
O—0—0



Roots

Some nodes might be considered roots — often nodes
that reach all others

A graph containingly only trees is a forest

9-10



Roots

Some nodes might be considered roots — often nodes
that reach all others

Can reach all nodes from some root = a connected
graph

11-12



Roots

Some nodes might be considered roots — often nodes
that reach all others

Multiple candidate roots:

13-14



Representing Graphs

Graphs can be represented in different ways:
* Nodes as structs/objects, edges as pointers/references
* Nodes as objects, edges in a dictionary

* Nodes a integers, edges as a list of pairs of numbers

Unless you’re solving abstract graph problems, typically
you have an existing data definition that you might think
of as a graph — probably matching the first case

15-16



Designing Programs: Lists

O—0O—0—0

(define (F n)

(cond
[ (empty? n) ...]
[else ... (F (rest n))

for (n = root;
n !'= NULL;
n = n->next) {

..1))

17



Designing Programs: Trees

(define (F n)

(cond
[ (empty? n) ...]
[else ... (F (childl n))

(F (childN n)) ...1))

* Depth-first vs. breadth-first

* Might express recursion through a stack or queue

18



Designing Programs: DAGs

 Somtimes, treat a DAG as a tree

19-20



Designing Programs: DAGs

* Somtimes, treat a DAG as a graph...

21



Designing Programs: Graphs

Like a tree, but accumulate seen

(define (F n)

(cond
[ (seen? n) ...]
[else (seen! n)
(cond
[ (empty? n) ...]
[else ... (F (childl n))

(F (childN n)) ...1)1))

22



Designing Programs: Graphs

Depth-first:

23



Designing Programs: Graphs

Breadth-first:

24



Classical Graph Algorithm

Find the shortest path to a node:

25-26



Classical Graph Algorithm

Find the shortest weighted path to a node:

Neither breadth-first nor depth-first works

(A) (A)
® © @
© ©

27-28



Classical Graph Algorithm

Find the shortest weighted path to a node:

Solution: use a priority queue
* Enqueue node with distance so far
* Dequeue node that has shortest distance so far

A priority queue gives us “closest-first”
* Instead of a queue (breadth-first)
* Instead of a stack (depth-first)

29-30



Shortest Weighted Path

31



Shortest Weighted Path

32



Shortest Weighted Path

33



Shortest Weighted Path

D 10

34



Shortest Weighted Path

35



Shortest Weighted Path

D 10

36



Shortest Weighted Path

37



Tracking Seen Nodes

Two common ways to track “already seen” nodes:

* Reserve space in the node for a mutable boolean
+ Easy to implement (in C)

- Easy to pollute state

* Use a container
— More work to implement (in C)

+ Avoids extra state

38



