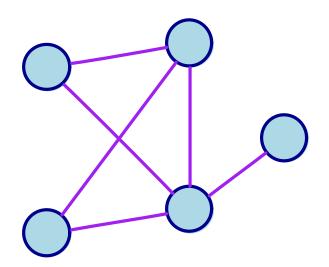
Graphs

A graph is

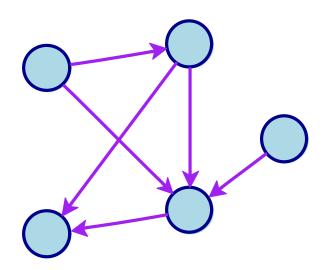
- a set of **nodes** \bigcirc
- a set of **edges**each connecting two nodes



Graphs

A directed graph is

- a set of **nodes**
- a set of **edges** →
 each connecting one node to another node



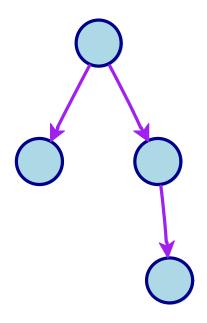
We'll just use "graph" to mean "directed graph"

Graphs: Lists

At most one outgoing edge ⇒ *list*

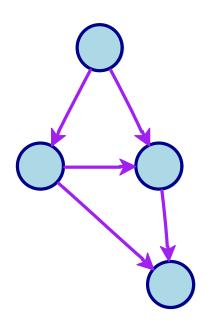
Graphs: Trees

Reach each node in only one way ⇒ **tree**



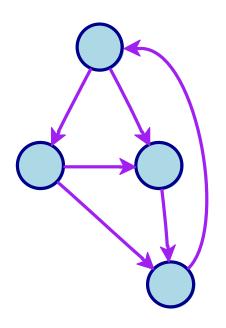
Graphs: DAG

Can't get to a node from itself ⇒ directed acyclic graph (DAG)

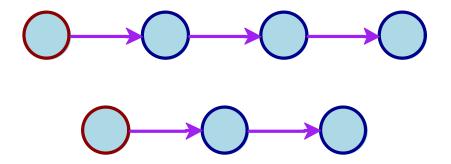


Graphs: Cycles

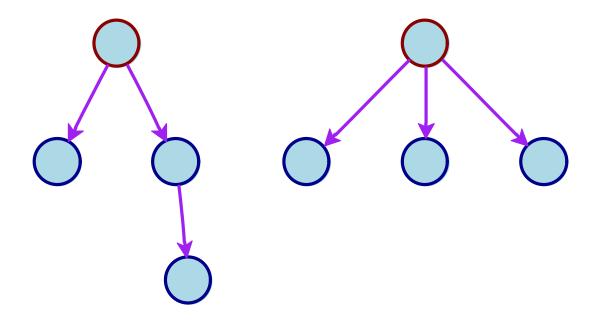
Can get to a node from itself ⇒ **graph**



Some nodes might be considered **roots** — often nodes that reach all others

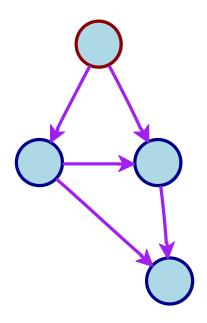


Some nodes might be considered **roots** — often nodes that reach all others



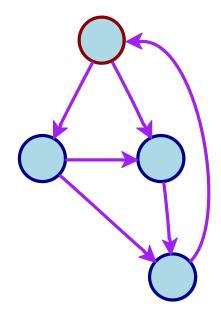
A graph containingly only trees is a forest

Some nodes might be considered **roots** — often nodes that reach all others

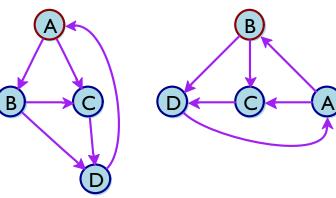


Can reach all nodes from some root ⇒ a **connected** graph

Some nodes might be considered **roots** — often nodes that reach all others



Multiple candidate roots:



Representing Graphs

Graphs can be represented in different ways:

- Nodes as structs/objects, edges as pointers/references
- Nodes as objects, edges in a dictionary
- Nodes a integers, edges as a list of pairs of numbers

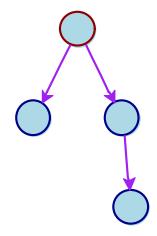
Unless you're solving abstract graph problems, typically you have an existing data definition that you might think of as a graph — probably matching the first case

Designing Programs: Lists


```
(define (F n)
  (cond
  [(empty? n) ...]
  [else ... (F (rest n)) ...]))

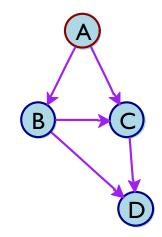
for (n = root;
    n != NULL;
    n = n->next) {
    ....
}
```

Designing Programs: Trees

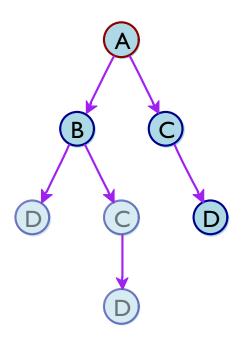


- Depth-first vs. breadth-first
- Might express recursion through a stack or queue

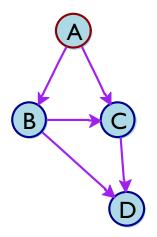
Designing Programs: DAGs



• Somtimes, treat a DAG as a tree

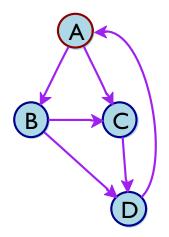


Designing Programs: DAGs



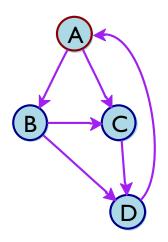
• Somtimes, treat a DAG as a graph...

Designing Programs: Graphs

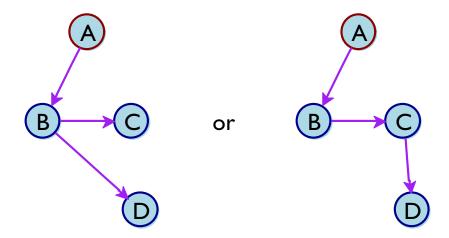


Like a tree, but accumulate seen

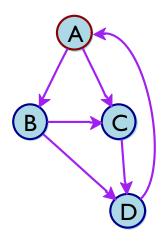
Designing Programs: Graphs



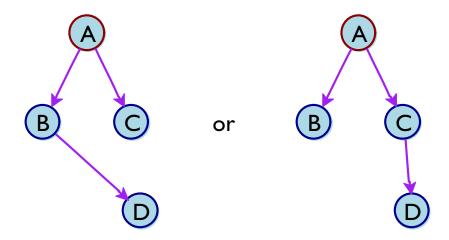
Depth-first:



Designing Programs: Graphs

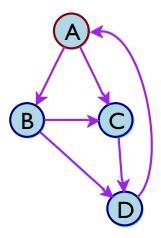


Breadth-first:

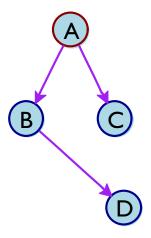


Classical Graph Algorithm

Find the shortest path to a node:

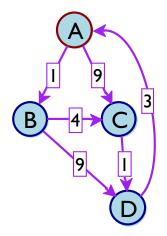


Solution: breadth-first search

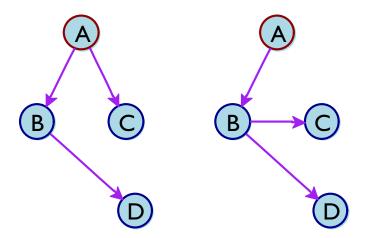


Classical Graph Algorithm

Find the shortest weighted path to a node:

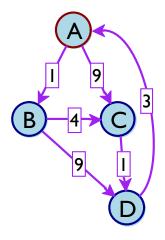


Neither breadth-first nor depth-first works



Classical Graph Algorithm

Find the shortest weighted path to a node:

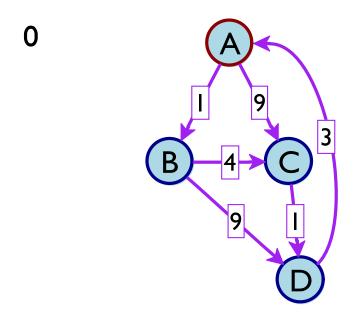


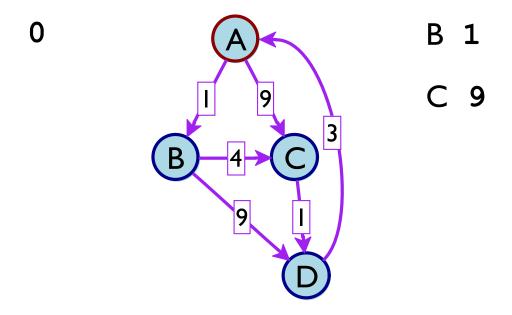
Solution: use a priority queue

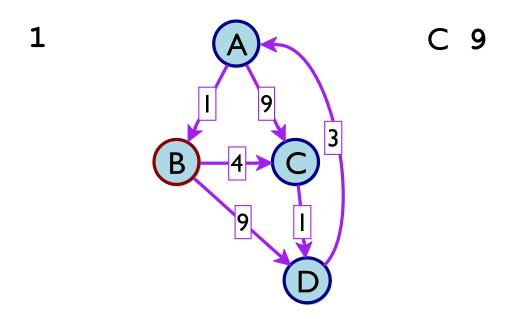
- Enqueue node with distance so far
- Dequeue node that has shortest distance so far

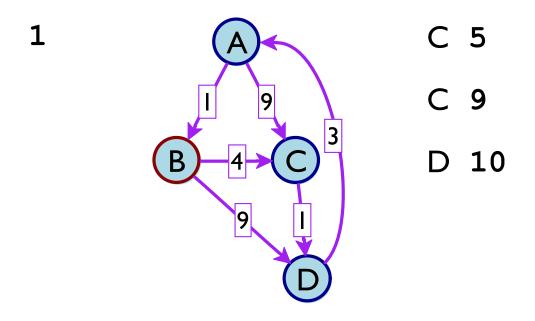
A priority queue gives us "closest-first"

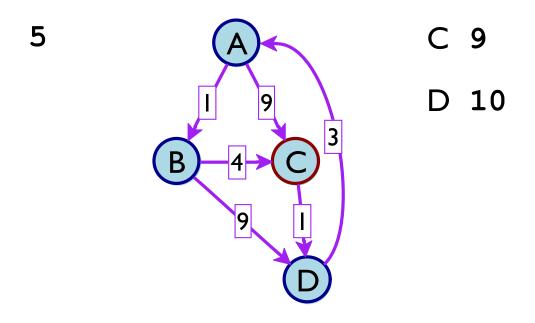
- Instead of a queue (breadth-first)
- Instead of a stack (depth-first)

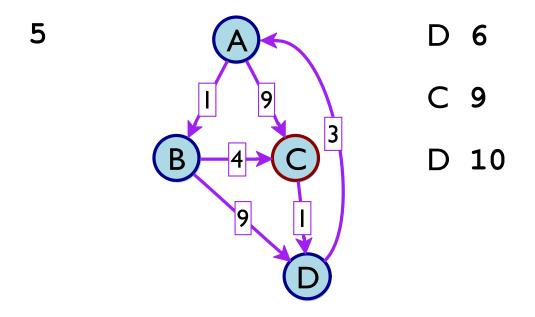


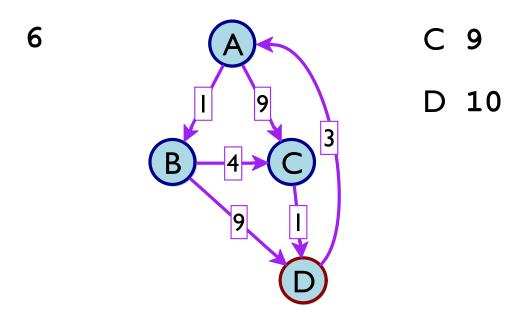












Tracking Seen Nodes

Two common ways to track "already seen" nodes:

- Reserve space in the node for a mutable boolean
 - + Easy to implement (in C)
 - Easy to pollute state
- Use a container
 - More work to implement (in C)
 - + Avoids extra state