Introduction to Concurrency and Parallelism

Concurrency

Concurrency: two tasks, any order

Concurrency

Concurrency: two tasks, any order

Concurrency

Concurrency: two tasks, any order

Concurrency

Concurrency: two tasks, any order

Concurrency

Concurrency: two tasks, any order

Concurrency

Concurrency: two tasks, any order

Concurrency is non-deterministic

(whether FAY or B gets bricks first)

7-8

Parallelism

Parallelism: one task, faster

Parallelism

Parallelism: one task, faster

o

Parallelism can be deterministic

>

(same bricks always delivered to B)

10-11

Parallelism vs. Concurrency

Bricks to both A% and B as a single task:

12

Parallelism vs. Concurrency

Bricks to both A% and B as a single task:

13

Parallelism vs. Concurrency

Bricks to both A% and B as a single task:

Parallelism may have internal concurrency!

Whether you see the concurrency depends on your
layer of abstraction

14-16

Why Concurrency is Hard

17

Why Concurrency is Hard

18

Why Concurrency is Hard

When barrier is
removed, drive

19

Why Concurrency is Hard

When barrier is
removed, drive

20

Why Concurrency is Hard

When barrier is
removed, drive

no such method: drive in: Stk

General problem: shared resources

21-23

Why Parallelism is Hard: |

24

Why Parallelism is Hard: |

25

done!))

Why Parallelism is Hard: |

((¢ done!

26

Why Parallelism is Hard: |

danedond!

A =)

Concurrency is hard — including internal concurrency

“Systems” programmers deal with internal concurrency

27-29

Why Parallelism is Hard: 2

S

30

Why Parallelism is Hard: 2

UL a

It’s easy to ask for too much parallelism

(Each truck adds overhead)

31-32

Why Parallelism is Hard: 3

Sl S

Dependencies limit parallelism

Algorithm designers deal with dependencies

33-34

Parallelism in an Algorithm

(define (quicksort! vec n m)
(when (> (- m n) 1)
(let* ([pivot (vector-ref vec n)]
[pre
(for/fold ([pre n]) ([i (in-range (addl n) m)])
(let ([v (vector-ref wvec i)])
(cond
[(< v pivot)
(vector-set! vec pre v)
(vector-set! vec i (vector-ref vec (addl pre)))
(values (addl pre))]
[else (values pre)])))l])
(vector-set! vec pre pivot)
; Two recursive calls are independent:
(quicksort! vec n pre)
(quicksort! vec (addl pre) m))))

35

Parallelism in an Algorithm

(define (quicksort! vec n m)
(when (> (- m n) 1)
(let* ([pivot (vector-ref vec n)]
[pre
(for/fold ([pre n]) ([i (in-range (addl n) m)])
(let ([v (vector-ref wvec i)])
(cond
[(< v pivot)
(vector-set! vec pre v)
(vector-set! vec i (vector-ref vec (addl pre)))
(values (addl pre))]
[else (values pre)])))l])
(vector-set! vec pre pivot)
(parallel-begin ; ok, but...
(quicksort! vec n pre)
(quicksort! vec (addl pre) m)))))

Request too much parallelism = management overload

36-37

Parallelism in an Algorithm

(define (quicksort! vec n m)
(when (> (- m n) 1)
(let* ([pivot (vector-ref vec n)]
[pre
(for/fold ([pre n]) ([i (in-range (addl n) m)])
(let ([v (vector-ref wvec i)])
(cond
[(< v pivot)
(vector-set! vec pre v)
(vector-set! vec i (vector-ref vec (addl pre)))
(values (addl pre))]
[else (values pre)])))l])
(vector-set! vec pre pivot)
(if (> (- m n) (quotient (vector-length wvec) 100)) ; ugh
(parallel-begin
(quicksort! vec n pre)
(quicksort! vec (addl pre) m))
(begin
(quicksort! vec n pre)
(quicksort! vec (addl pre) m))))))

38

Concurrency vs. Parallelism

In principle:
Parallelism # Concurrency
* Parallelism is for higher throughput

« Concurrency is for lower latency

In practice (for now):
Parallelism <= Concurrency
* Parallelism via multiple processors

* Concurrency via multiple (virtual) processors

39-40

Threads

A thread is a virtual concurrent processor

 Racket: thread creates a thread

(define a

(thread (lambda () (printf "a\n"))))
(define b

(thread (lambda () (printf "b\n"))))
(sync a)
(sync b)

... but no parallelism!

41-43

Threads

A thread is a virtual concurrent processor

* C: pthread create () creates a thread

void *go (void *s) {
printf ("$s\n", (char *)s);
return NULL;

pthread t a, b;
pthread create(&a, NULL, go,
pthread create (&b, NULL, go,

pthread join(a, NULL) ;
pthread join(b, NULL);

"a") ;
"b") ;

44

Futures

A future is a task that can run in parallel

 Racket: future creates a future

(define a

(future (lambda () (+ 1 2))))
(define b

(future (lambda () (+ 3 4))))
(touch a)
(touch b)

... but no guaranteed concurrency!

45-46

OpenMP Tasks

A task is a task that can run in parallel

* C + OpenMP: #pragma omp task creates a task

#pragma omp task

vl = add one plus two();
#pragma omp task

v2 = add three plus four();

... and no guaranteed concurrency!

47-48

