Introduction to Concurrency and Parallelism
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Concurrency

Concurrency: two tasks, any order

Concurrency is non-deterministic

(whether FAY or B gets bricks first)
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Parallelism

Parallelism: one task, faster

o

Parallelism can be deterministic

>

(same bricks always delivered to B)
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Parallelism vs. Concurrency

Bricks to both A% and B as a single task:

Parallelism may have internal concurrency!

Whether you see the concurrency depends on your
layer of abstraction
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Why Concurrency is Hard

When barrier is
removed, drive

no such method: drive in: Stk

General problem: shared resources
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Why Parallelism is Hard: |

( (¢ done!
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Why Parallelism is Hard: |

danedond!

A =)

Concurrency is hard — including internal concurrency

“Systems” programmers deal with internal concurrency
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Why Parallelism is Hard: 2

UL a

It’s easy to ask for too much parallelism

(Each truck adds overhead)
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Why Parallelism is Hard: 3

Sl S

Dependencies limit parallelism

Algorithm designers deal with dependencies
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Parallelism in an Algorithm

(define (quicksort! vec n m)
(when (> (- m n) 1)
(let* ([pivot (vector-ref vec n)]
[pre
(for/fold ([pre n]) ([i (in-range (addl n) m)])
(let ([v (vector-ref wvec i)])
(cond
[ (< v pivot)
(vector-set! vec pre v)
(vector-set! vec i (vector-ref vec (addl pre)))
(values (addl pre))]
[else (values pre)])))l])
(vector-set! vec pre pivot)
; Two recursive calls are independent:
(quicksort! vec n pre)
(quicksort! vec (addl pre) m))))
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Parallelism in an Algorithm

(define (quicksort! vec n m)
(when (> (- m n) 1)
(let* ([pivot (vector-ref vec n)]
[pre
(for/fold ([pre n]) ([i (in-range (addl n) m)])
(let ([v (vector-ref wvec i)])
(cond
[ (< v pivot)
(vector-set! vec pre v)
(vector-set! vec i (vector-ref vec (addl pre)))
(values (addl pre))]
[else (values pre)])))l])
(vector-set! vec pre pivot)
(parallel-begin ; ok, but...
(quicksort! vec n pre)
(quicksort! vec (addl pre) m)))))

Request too much parallelism = management overload
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Parallelism in an Algorithm

(define (quicksort! vec n m)
(when (> (- m n) 1)
(let* ([pivot (vector-ref vec n)]
[pre
(for/fold ([pre n]) ([i (in-range (addl n) m)])
(let ([v (vector-ref wvec i)])
(cond
[ (< v pivot)
(vector-set! vec pre v)
(vector-set! vec i (vector-ref vec (addl pre)))
(values (addl pre))]
[else (values pre)])))l])
(vector-set! vec pre pivot)
(if (> (- m n) (quotient (vector-length wvec) 100)) ; ugh
(parallel-begin
(quicksort! vec n pre)
(quicksort! vec (addl pre) m))
(begin
(quicksort! vec n pre)
(quicksort! vec (addl pre) m))))))
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Concurrency vs. Parallelism

In principle:
Parallelism # Concurrency
* Parallelism is for higher throughput

« Concurrency is for lower latency

In practice (for now):
Parallelism <= Concurrency
* Parallelism via multiple processors

* Concurrency via multiple (virtual) processors
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Threads

A thread is a virtual concurrent processor

 Racket: thread creates a thread

(define a

(thread (lambda () (printf "a\n"))))
(define b

(thread (lambda () (printf "b\n"))))
(sync a)
(sync b)

... but no parallelism!
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Threads

A thread is a virtual concurrent processor

* C: pthread create () creates a thread

void *go (void *s) {
printf ("$s\n", (char *)s);
return NULL;

pthread t a, b;
pthread create(&a, NULL, go,
pthread create (&b, NULL, go,

pthread join(a, NULL) ;
pthread join(b, NULL);

"a") ;
"b") ;
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Futures

A future is a task that can run in parallel

 Racket: future creates a future

(define a

(future (lambda () (+ 1 2))))
(define b

(future (lambda () (+ 3 4))))
(touch a)
(touch b)

... but no guaranteed concurrency!
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OpenMP Tasks

A task is a task that can run in parallel

* C + OpenMP: #pragma omp task creates a task

#pragma omp task

vl = add one plus two();
#pragma omp task

v2 = add three plus four();

... and no guaranteed concurrency!
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