Part |



From Shplait to Machine Code

=
A

/




From Shplait to Machine Code

=
A\




From Shplait to Machine Code

* Everything must be a number

=
A\

-



From Shplait to Machine Code

* Everything must be a number

4
‘ * No type or match
4




From Shplait to Machine Code

* Everything must be a number

4
\ * No type or match
4

* No implicit continuations

i



From Shplait to Machine Code

* Everything must be a number

4
‘ * No type or match
4

* No implicit continuations

* No implicit allocation

i



Part 2



Variable Names at Run Time

I
=

let x
let y = 2:
+



Identifier Address

Suppose that

let x = 88:
X +y

appears in a program; the body is eventually evaluated:

X +y

where will x be in the environment!?

Answer: always at the beginning:

x = 88

10-11



Identifier Address

Suppose that

let y = 1:
X +y

appears in a program; the body is eventually evaluated:

X +y

where will y be in the environment!?

Answer: always at the beginning:

y =1

12-13



Identifier Address

Suppose that

let y
let x
x +

appears in a program; the body is eventually evaluated:

where will y be in the environment!?

Answer: always second:

=

y

X +y

14-15



Identifier Address

Suppose that

let y = 1:
let x = 88:
(x +y) * 17

appears in a program; the body is eventually evaluated:

X +y

where will x and y be in the environment?

Answer: always first and second:

x = 88 y=1

16-17



Suppose that

appears in a program; the body is eventually evaluated:

Identifier Address

X +y

where will x and y be in the environment?

Answer: always first and fourth:

18-19



Identifier Address

Suppose that

let y = (let r = 9: r * 8):

let w = 10:

let z = (let g = 9: qg):

let x = 0:
X +y

appears in a program; the body is eventually evaluated:

X +y

where will x and y be in the environment?

Answer: always first and fourth:

20-21



Lexical Scope

* For any expression, we can tell which identifiers will be in the
environment at run time

* The order of the environment is predictable

22



Part 3

23



Comepilation of Variables

A compiler can transform an Exp expression to an expression without

identifiers — only lexical addresses

compile
type Exp
| intE(n :: Int)
| addE(1 :: Exp,
r :: Exp)
| multE(1 :: Exp,
:: Exp)
| idE (n Symbol)
| funE (n Symbol,
body :: Exp)
| appE(fn :: Exp,

arg :: Exp)

(Exp, .) —-> ExpD
type ExpD
| intD(n Int)
| addD(1 :: ExpD,
r :: ExpD)
| multD(1 :: ExpD,
r :: ExpD)
| atD (pos Int)
| funD (body :: ExpD)
| appD(fn :: ExpD,
arg :: ExpD)

24-25



compile (
compile (
compile (
compile (

= fun:

compile (

Compile Examples

1|, )= 1

1+2, ...) = 1+ 2

x|, ...) = compile:free identifier
fun (x): 1 + x|, ...)

1 + at(0)

fun (y): fun (x): x + y|,

= fun: fun: at(0) + at(l)

26-29



Implementing the Compiler

fun compile(a :: Exp, env :: EnvC):
match a

intE(n): intD(n)
pluskE(l, r): plusD(compile(l, env),
compile(r, env))
multE(l, r): multD(compile(l, env),
compile(r, env))
idE (n) : atD(locate(n, env))
funE (n, body expr):
funD (compile (body expr,
extend env(bindC(n),
env)))
appE (fun _expr, arg expr):
appD (compile (fun_expr, env),
compile (arg_expr, env))

30-33



Compile-Time Environment

Mimics the run-time environment, but without values:

type BindingC
| bindC (name :: Symbol)

type EnvC = Listof (BindingC)

fun locate (name, env):
match env
| []: error (#'locate, "free variable")
| cons(b, rst env): cond
| name == bindC.name (b) :
0
| ~else:
1 + locate(name, rst env)



interp for Compiled

Almost the same as interp for Exp:

fun interp(a :: ExpD, env :: Listof (Value)):

match a

intD(n) : intV(n)
plusD(1l, r): num plus(interp(l, env),
interp(r, env))
multD(l, r): num mult(interp(l, env),
interp(r, env))
atD(pos) : list get(env, pos)
funD (body expr) :
closV (body expr, env)
appD (fun_expr, arg expr):
def fun val = interp(fun _expr, env)
def arg val = interp(arg_expr, env)
interp (closV.body (fun val),
cons (arg_val,
closV.env (fun val)))

35



Timing Effect of Compilation

Given

def ¢ = | (fun (x):
fun (y):
fun (z): x + x + x + x) (1) (2) (3)

compile(c, mt_env)

def d

then

interp(d, [])

is significantly faster than

interp(c, mt_env)

Using the built-in 1ist get simulates machine array
indexing, but don’t take timings too seriously

36-37



Part 4

38



From Shplait to Machine Code

Step I:
Exp — ExpD

fun (x): fun:
1 + x 1 + at(0)

Eliminates all run-time names

39-40



From Shplait to Machine Code

Step 2:

interp > interp + continue

Eliminates implicit continuations

41-42



Step 3:

From Shplait to Machine Code

function calls = registers and goto

43



From Shplait to Machine Code

Step 3:
function calls = registers and goto
interp (1, exp reg := 1
env, k reg := plusSecondK(r,
plusSecondK (r, env_req,
env, k_req)
k)) interp ()

Makes argument passing explicit

44-45



Part 5

46



From Shplait to Machine Code

Step 4:
plusSecondK (r, —> malloc3(1,
env_reg, ref (exp _reg, 2),
k reqg) env_req,

k reg)

47



Step 4:

From Shplait to Machine Code

donekK
plusSecondK

intD
plusD

intVv
closV

\

\

\

\

\

15
16

48



From Shplait to Machine Code

Step 4:
match k_reg —> match ref(k reg, 0)
| .... | ...
| multSecondK(r, env, k): | 3:
. r .... ref(k_reqg,
. env .... ref(k_regqg,
koLl .... ref(k_reqg,

1)
2)
3)

49



From Shplait to Machine Code

Step 4:

def memory = make array (1500, O0)
def ptr reg = 0

fun malloc3(tag, a, b, c):
memory[ptr reg] := tag
memory [ptr reg + 1] :=
memory [ptr reg + 2] :=
memory [ptr reg + 3] := c
ptr reg := ptr reg + 4
ptr reg - 4

oo

Makes all allocation explicit

Makes everything a number

50-51



