
LIBRARIES

 ™

GUIDE

ONLINER

0401410

TABLE OF CONTENTS

INDEX

GO TO OTHER BOOKS

Contents

Copyright 1993-1995 Xilinx Inc. All Rights Reserved.
Chapter 1 Xilinx Unified Libraries
Overview .. 1-1

Xilinx Unified Libraries .. 1-2
Selection Guide .. 1-2
Design Elements... 1-2
Attributes, Constraints, and Carry Logic 1-3

Naming Conventions.. 1-4
Flip-Flop, Counter, and Register Performance 1-5

Chapter 2 Selection Guide
Functional Categories .. 2-2

Arithmetic Functions ... 2-3
Buffers .. 2-5
Comparators ... 2-6
Counters ... 2-7
Data Registers .. 2-14
Decoders .. 2-14
Edge Decoders ... 2-15
Encoders... 2-15
Flip-Flops .. 2-16
General ... 2-19
Input/Output Flip-Flops ... 2-21
Input/Output Functions ... 2-23
Input Latches .. 2-24
Latches ... 2-24
Logic Primitives... 2-25
Map Elements... 2-30
Memory Elements... 2-30
Multiplexers... 2-31
PLD Elements... 2-32
Shift Registers .. 2-33
Shifters.. 2-35

Obsolete Macros.. 2-35
XC2000 Replacement and Obsolete Macro Functions........... 2-37
Libraries Guide — 0401410 01 i

Libraries Guide
XC3000 Replacement and Obsolete Macro Functions........... 2-43
XC4000 Replacement and Obsolete Macro Functions........... 2-52
XC7000 Replacement and Obsolete Macro Functions........... 2-62

Chapter 3 Design Elements
ACC1

1-Bit Loadable Cascadable Accumulator with
Carry-In, Carry-Out, and Synchronous Reset......................... 3-1

ACC1X1
1-Bit Loadable Cascadable Accumulator with
Carry-Out and Synchronous Reset for EPLD 3-4

ACC1X2
1-Bit Loadable Cascadable Accumulator with
Carry-In, Carry-Out, and Synchronous Reset......................... 3-6

ACC4
4-Bit Loadable Cascadable Accumulator with
Carry-In, Carry-Out, and Synchronous Reset......................... 3-8

ACC4X1
4-Bit Loadable Cascadable Accumulator with
Carry-Out and Synchronous Reset for EPLD 3-11

ACC4X2
4-Bit Loadable Cascadable Accumulator with
Carry-In, Carry-Out, and Synchronous Reset......................... 3-13

ACC8
8-Bit Loadable Cascadable Accumulator with
Carry-In, Carry-Out, and Synchronous Reset......................... 3-15

ACC8X1
8-Bit Loadable Cascadable Accumulator with
Carry-Out and Synchronous Reset for EPLD 3-21

ACC8X2
8-Bit Loadable Cascadable Accumulator with
Carry-In, Carry-Out, and Synchronous Reset......................... 3-23

ACC16
16-Bit Loadable Cascadable Accumulator with
Carry-In, Carry-Out, and Synchronous Reset......................... 3-25

ACC16X1
16-Bit Loadable Cascadable Accumulator with
Carry-Out and Synchronous Reset for EPLD 3-28

ACC16X2
16-Bit Loadable Cascadable Accumulator with
Carry-In, Carry-Out, and Synchronous Reset......................... 3-30
ii Xilinx Development System

ACLK
Alternate Clock Buffer ... 3-32

ADD1
1-Bit Full Adder with Carry-In and Carry-Out 3-33

ADD1X1
1-Bit Cascadable Full Adder with Carry-Out for EPLD 3-34

ADD1X2
1-Bit Cascadable Full Adder with Carry-In and
Carry-Out for EPLD .. 3-35

ADD4
4-Bit Cascadable Full Adder with Carry-In, Carry-Out,
and Overflow... 3-36

ADD4X1
4-Bit Cascadable Full Adder with Carry-Out for EPLD 3-38

ADD4X2
4-Bit Cascadable Full Adder with Carry-In and
Carry-Out for EPLD .. 3-39

ADD8
8-Bit Cascadable Full Adder with Carry-In, Carry-Out,
and Overflow... 3-40

ADD8X1
8-Bit Loadable Cascadable Full Adder with Carry-Out
for EPLD ... 3-44

ADD8X2
8-Bit Cascadable Full Adder with Carry-In and
Carry-Out for EPLD .. 3-45

ADD16
16-Bit Cascadable Full Adder with Carry-In,
Carry-Out, and Overflow... 3-46

ADD16X1
16-Bit Cascadable Full Adder with Carry-Out for EPLD 3-49

ADD16X2
16-Bit Cascadable Full Adder with Carry-In and Carry-Out
for EPLD ... 3-51

ADSU1
1-Bit Cascadable Adder/Subtracter with Carry-In and
Carry-Out .. 3-52

ADSU1X1
1-Bit Cascadable Adder/Subtracter with Carry-Out for
EPLD .. 3-54
Libraries Guide iii

Libraries Guide
ADSU1X2
1-Bit Cascadable Adder/Subtracter with Carry-In and
Carry-Out for EPLD... 3-55

ADSU4
4-Bit Cascadable Adder/Subtracter with Carry-In,
Carry-Out, and Overflow ... 3-56

ADSU4X1
4-Bit Cascadable Adder/Subtracter with Carry-Out
for EPLD ... 3-59

ADSU4X20
4-Bit Cascadable Adder/Subtracter with Carry-In and
Carry-Out for EPLD... 3-60

ADSU8
8-Bit Cascadable Adder/Subtracter with Carry-In,
Carry-Out, and Overflow ... 3-61

ADSU8X1
8-Bit Cascadable Adder/Subtracter with Carry-Out
for EPLD ... 3-66

ADSU8X2
8-Bit Cascadable Adder/Subtracter with Carry-In and
Carry-Out for EPLD... 3-67

ADSU16
16-Bit Cascadable Adder/Subtracter with Carry-In,
Carry-Out, and Overflow ... 3-68

ADSU16X1
16-Bit Cascadable Adder/Subtracter with Carry-Out
for EPLD ... 3-72

ADSU16X2
16-Bit Cascadable Adder/Subtracter with Carry-In and
Carry-Out for EPLD... 3-74

AND
2- to 9-Input AND Gates with Inverted and
Non-Inverted Inputs .. 3-76

BRLSHFT4
4-Bit Barrel Shifter... 3-78

BRLSHFT8
8-Bit Barrel Shifter... 3-79

BSCAN
Boundary Scan Logic Control Circuit 3-81

BUF, BUF4, BUF8, and BUF16
General-Purpose Buffers .. 3-82
iv Xilinx Development System

BUFCE
Global Clock-Enable Buffer for EPLD..................................... 3-83

BUFE, BUFE4, BUFE8, and BUFE16
Internal 3-State Buffers... 3-84

BUFFOE
Global Fast Output Enable Buffer for EPLD 3-86

BUFG
Global Clock Buffer ... 3-87

BUFGP
Primary Global Buffer for Driving Clocks or Longlines
(Four per PLD Device) .. 3-88

BUFGS
Secondary Global Buffer for Driving Clocks or Longlines
(Four per PLD Device) .. 3-90

BUFOD
Open-Drain Buffer... 3-92

BUFT, BUFT4, BUFT8, and BUFT16
Internal 3-State Buffers... 3-93

CB2CE
2-Bit Cascadable Binary Counter with Clock Enable and
Asynchronous Clear ... 3-95

CB2CLE
2-Bit Loadable Cascadable Binary Counter with Clock
Enable and Asynchronous Clear .. 3-97

CB2CLED
2-Bit Loadable Cascadable Bidirectional Binary Counter
with Clock Enable and Asynchronous Clear 3-99

CB2RE
2-Bit Cascadable Binary Counter with Clock Enable and
Synchronous Reset .. 3-101

CB2RLE
2-Bit Loadable Cascadable Binary Counter with Clock
Enable and Synchronous Reset ... 3-103

CB2X1
2-Bit Loadable Cascadable Bidirectional Binary Counter
with Clock Enable and Asynchronous Clear 3-105

CB2X2
2-Bit Loadable Cascadable Bidirectional Binary Counter
with Clock Enable and Synchronous Reset 3-107
Libraries Guide v

Libraries Guide
CB4CE
4-Bit Cascadable Binary Counter with Clock Enable and
 Asynchronous Clear... 3-109

CB4CLE
4-Bit Loadable Cascadable Binary Counter with Clock
Enable and Asynchronous Clear .. 3-111

CB4CLED
4-Bit Loadable Cascadable Bidirectional Binary Counter
with Clock Enable and Asynchronous Clear 3-113

CB4RE
4-Bit Cascadable Binary Counter with Clock Enable and
Asynchronous Reset... 3-115

CB4RLE
4-Bit Loadable Cascadable Binary Counter with Clock
Enable and Synchronous Reset ... 3-117

CB4X1
4-Bit Loadable Cascadable Bidirectional Binary Counter
with Clock Enable and Asynchronous Clear 3-119

CB4X2
4-Bit Loadable Cascadable Bidirectional Binary Counter
with Clock Enable and Synchronous Reset 3-121

CB8CE
8-Bit Cascadable Binary Counter with Clock Enable and
Asynchronous Clear.. 3-123

CB8CLE
8-Bit Loadable Cascadable Binary Counter with Clock
Enable and Asynchronous Clear .. 3-127

CB8CLED
8-Bit Loadable Cascadable Bidirectional Binary Counter
with Clock Enable and Asynchronous Clear 3-131

CB8RE
8-Bit Cascadable Binary Counter with Clock Enable and
Synchronous Reset... 3-136

CB8RLE
8-Bit Loadable Cascadable Binary Counter with Clock
Enable and Synchronous Reset ... 3-140

CB8X1
8-Bit Loadable Cascadable Bidirectional Binary Counter
with Clock Enable and Asynchronous Clear 3-142
vi Xilinx Development System

CB8X2
8-Bit Loadable Cascadable Bidirectional Binary Counter
with Clock Enable and Synchronous Reset 3-144

CB16CE
16-Bit Cascadable Binary Counter with Clock Enable and
Asynchronous Clear ... 3-146

CB16CLE
16-Bit Loadable Cascadable Binary Counter with Clock
Enable and Asynchronous Clear .. 3-148

CB16CLED
16-Bit Loadable Cascadable Bidirectional Binary Counter
with Clock Enable and Asynchronous Clear 3-150

CB16RE
16-Bit Cascadable Binary Counter with Clock Enable and
Synchronous Reset .. 3-152

CB16RLE
16-Bit Loadable Cascadable Binary Counter with Clock
Enable and Synchronous Reset ... 3-154

CB16X1
16-Bit Loadable Cascadable Bidirectional Binary Counter
with Clock Enable and Asynchronous Clear 3-156

CB16X2
16-Bit Loadable Cascadable Bidirectional Binary Counter
 with Clock Enable and Synchronous Reset 3-158

CC8CE
8-Bit Cascadable Binary Counter with Clock Enable and
 Asynchronous Clear .. 3-160

CC8CLE
8-Bit Loadable Cascadable Binary Counter with Clock
Enable and Asynchronous Clear .. 3-163

CC8CLED
8-Bit Loadable Cascadable Bidirectional Binary Counter
with Clock Enable and Asynchronous Clear 3-166

CC8RE
8-Bit Cascadable Binary Counter with Clock Enable and
Asynchronous Reset... 3-170

CC16CE
16-Bit Cascadable Binary Counter with Clock Enable and
Asynchronous Clear ... 3-173
Libraries Guide vii

Libraries Guide
CC16CLE
16-Bit Loadable Cascadable Binary Counter with Clock
Enable and Asynchronous Clear .. 3-175

CC16CLED
16-Bit Loadable Cascadable Bidirectional Binary Counter
 with Clock Enable and Asynchronous Clear 3-177

CC16RE
16-Bit Cascadable Binary Counter with Clock Enable and
Synchronous Reset... 3-179

CD4CE
4-Bit Cascadable BCD Counter with Clock Enable and
Asynchronous Clear.. 3-181

CD4CLE
4-Bit Loadable Cascadable BCD Counter with Clock
Enable and Asynchronous Clear .. 3-184

CD4RE
4-Bit Cascadable BCD Counter with Clock Enable and
Synchronous Reset... 3-187

CD4RLE
4-Bit Loadable Cascadable BCD Counter with Clock
Enable and Synchronous Reset ... 3-190

CJ4CE
4-Bit Johnson Counter with Clock Enable and Asynchronous
Clear ... 3-193

CJ4RE
4-Bit Johnson Counter with Clock Enable and Synchronous
Reset... 3-195

CJ5CE
5-Bit Johnson Counter with Clock Enable and Asynchronous
Clear ... 3-197

CJ5RE
5-Bit Johnson Counter with Clock Enable and Synchronous
Reset... 3-198

CJ8CE
8-Bit Johnson Counter with Clock Enable and Asynchronous
Clear ... 3-199

CJ8RE
8-Bit Johnson Counter with Clock Enable and Synchronous
Reset... 3-201

CLB
CLB Configuration Symbol.. 3-203
viii Xilinx Development System

CLBMAP
Logic-Partitioning Control Symbol .. 3-207

COMP2
2-Bit Identity Comparator .. 3-211

COMP4
4-Bit Identity Comparator .. 3-212

COMP8
8-Bit Identity Comparator .. 3-213

COMP16
16-Bit Identity Comparator .. 3-214

COMPM2
2-Bit Magnitude Comparator... 3-215

COMPM4
4-Bit Magnitude Comparator... 3-216

COMPM8
8-Bit Magnitude Comparator... 3-217

COMPM16
16-Bit Magnitude Comparator... 3-219

COMPMC8
8-Bit Magnitude Comparator... 3-220

COMPMC16
16-Bit Magnitude Comparator... 3-222

CR8CE
8-Bit Negative-Edge Binary Ripple Counter with Clock
Enable and Asynchronous Clear .. 3-224

CR16CE
16-Bit Negative-Edge Binary Ripple Counter with Clock
Enable and Asynchronous Clear .. 3-226

D2_4E
2- to 4-Line Decoder/Demultiplexer with Enable 3-227

D3_8E
3- to 8-Line Decoder/Demultiplexer with Enable 3-228

D4_16E
4- to 16-Line Decoder/Demultiplexer with Enable 3-230

DECODE4, DECODE8, and DECODE 16
4-, 8-, and 16-Bit Active-Low Edge Decoders......................... 3-232

FD, FD4, FD8, and FD16
Single and Multiple D Flip-Flops ... 3-234

FD_1
D Flip-Flop with Negative-Edge Clock 3-236
Libraries Guide ix

Libraries Guide
FD4CE
4-Bit Data Register with Clock Enable and Asynchronous
Clear ... 3-237

FD4RE
4-Bit Data Register with Clock Enable and Synchronous
Reset... 3-238

FD8CE
8-Bit Data Register with Clock Enable and Asynchronous
Clear ... 3-239

FD8RE
8-Bit Data Register with Clock Enable and Synchronous
 Reset.. 3-241

FD16CE
16-Bit Data Register with Clock Enable and Asynchronous
Clear ... 3-243

FD16RE
16-Bit Data Register with Clock Enable and Synchronous
Reset... 3-244

FDC
D Flip-Flop with Asynchronous Clear...................................... 3-245

FDC_1
D Flip-Flop with Negative-Edge Clock and Asynchronous
Clear ... 3-246

FDCE
D Flip-Flop with Clock Enable and Asynchronous Clear 3-248

FDCE_1
D Flip-Flop with Negative-Edge Clock, Clock Enable,
and Asynchronous Clear... 3-249

FDCP
D Flip-Flop with Asynchronous Preset and Clear 3-251

FDCPE
D Flip-Flop with Clock Enable and Asynchronous Preset
and Clear .. 3-252

FDP
D Flip-Flop with Asynchronous Preset.................................... 3-254

FDP_1
D Flip-Flop with Negative-Edge Clock and Asynchronous
Preset.. 3-255

FDPE
D Flip-Flop with Clock Enable and Asynchronous Preset....... 3-256
x Xilinx Development System

FDPE_1
D Flip-Flop with Negative-Edge Clock, Clock Enable,
and Asynchronous Preset... 3-257

FDR
D Flip-Flop with Synchronous Reset 3-258

FDRE
D Flip-Flop with Clock Enable and Synchronous Reset 3-259

FDRS
D Flip-Flop with Synchronous Reset and Synchronous
Set .. 3-260

FDRSE
D Flip-Flop with Synchronous Reset and Set and Clock
Enable... 3-261

FDS
D Flip-Flop with Synchronous Set .. 3-262

FDSE
D Flip-Flop with Clock Enable and Synchronous Set 3-263

FDSR
D Flip-Flop with Synchronous Set and Reset 3-264

FDSRE
D Flip-Flop with Synchronous Set and Reset and Clock
Enable... 3-265

FJKC
J-K Flip-Flop with Asynchronous Clear................................... 3-266

FJKCE
J-K Flip-Flop with Clock Enable and Asynchronous Clear 3-267

FJKCP
J-K Flip-Flop with Asynchronous Clear and Preset 3-269

FJKCPE
J-K Flip-Flop with Asynchronous Clear and Preset and
Clock Enable... 3-271

FJKP
J-K Flip-Flop with Asynchronous Preset 3-273

FJKPE
J-K Flip-Flop with Clock Enable and Asynchronous
Preset ... 3-274

FJKRSE
J-K Flip-Flop with Clock Enable and Synchronous Reset
and Set ... 3-276
Libraries Guide xi

Libraries Guide
FJKSRE
J-K Flip-Flop with Clock Enable and Synchronous Set and
Reset... 3-278

FMAP
F Function Generator Partitioning Control Symbol 3-280

FTC
Toggle Flip-Flop with Toggle Enable and Asynchronous
Clear ... 3-283

FTCE
Toggle Flip-Flop with Toggle and Clock Enable and
 Asynchronous Clear... 3-284

FTCLE
Toggle/Loadable Flip-Flop with Toggle and Clock Enable
and Asynchronous Clear... 3-285

FTCP
Toggle Flip-Flop with Toggle Enable and Asynchronous
Clear and Preset ... 3-287

FTCPE
Toggle Flip-Flop with Toggle and Clock Enable and
Asynchronous Clear and Preset ... 3-288

FTCPLE
Loadable Toggle Flip-Flop with Toggle and Clock Enable
and Asynchronous Clear and Preset 3-289

FTP
Toggle Flip-Flop with Toggle Enable and Asynchronous
Preset.. 3-291

FTPE
Toggle Flip-Flop with Toggle and Clock Enable and
 Asynchronous Preset... 3-292

FTPLE
Toggle/Loadable Flip-Flop with Toggle and Clock Enable
and Asynchronous Preset... 3-293

FTRSE
Toggle Flip-Flop with Toggle and Clock Enable and
Synchronous Reset and Set ... 3-295

FTRSLE
Toggle/Loadable Flip-Flop with Toggle and Clock Enable
and Synchronous Reset and Set .. 3-296

FTSRE
Toggle Flip-Flop with Toggle and Clock Enable and
Synchronous Set and Reset ... 3-298
xii Xilinx Development System

FTSRLE
Toggle/Loadable Flip-Flop with Toggle and Clock Enable
and Synchronous Set and Reset .. 3-299

GCLK
Global Clock Buffer ... 3-301

GND
Ground-Connection Signal Tag .. 3-302

GXTL
Crystal Oscillator with ACLK Buffer .. 3-303

HMAP
H Function Generator Partitioning Control Symbol................. 3-304

IBUF, IBUF4, IBUF8, and IBUF16
Single- and Multiple-Input Buffers... 3-306

IFD, IFD4, IFD8, and IFD16
Single- and Multiple-Input D Flip-Flops................................... 3-307

IFD_1
Input D Flip-Flop with Inverted Clock...................................... 3-310

IFDX1, IFD4X1, IFD8X1, and IFD16X1
Input D Flip-Flops for EPLD.. 3-312

IFDI
Input D Flip-Flop (Asynchronous Set)..................................... 3-314

IFDI_1
D Flip-Flop with Inverted Clock (Asynchronous Set) 3-316

ILD, ILD4, ILD8, and ILD16
Input Transparent Data Latches ... 3-318

ILD_1
Transparent Input Data Latch with Inverted Gate................... 3-322

ILDI
Input Transparent Data Latch (Asynchronous Set) 3-324

ILDI_1
Transparent Input Data Latch with Inverted Gate
(Asynchronous Set) .. 3-326

INV, INV4, INV8, and INV16
Single and Multiple Inverters .. 3-328

IOB
IOB Configuration Symbol .. 3-329

IOPAD, IOPAD4, IOPAD8, and IOPAD16
Input/Output Pads... 3-332

IPAD
Single- and Multiple-Input Pads.. 3-333
Libraries Guide xiii

Libraries Guide
LD, LD4, LD8, and LD16
Single and Multiple Transparent Data Latches 3-334

LD_1
Transparent Data Latch with Inverted Gate 3-335

LDC
Transparent Data Latch with Asynchronous Clear 3-336

LD4CE, LD8CE, and LD16CE
Transparent Data Latches with Asynchronous Clear
and Clock Enable.. 3-337

LDCP
Transparent Data Latch with Asynchronous Clear and
Preset.. 3-340

LDCPE
Transparent Data Latch with Asynchronous Clear and
Preset and Clock Enable .. 3-341

LDC_1
Transparent Data Latch with Asynchronous Clear and
Inverted Gate Input ... 3-343

MD0
Mode 0/Input Pad Used for Readback Trigger Input 3-344

MD1
Mode 1/Output Pad Used for Readback Data Output............. 3-345

MD2
Mode 2/Input Pad.. 3-346

M2_1
2-to-1 Multiplexer .. 3-347

M2_1B1
2-to-1 Multiplexer with D0 Inverted ... 3-348

M2_1B2
2-to-1 Multiplexer with D0 and D1 Inverted............................. 3-349

M2_1E
2-to-1 Multiplexer with Enable... 3-350

M4_1E
4-to-1 Multiplexer with Enable... 3-351

M8_1E
8-to-1 Multiplexer with Enable... 3-352

M16_1E
16-to-1 Multiplexer with Enable... 3-354

NAND
2- to 9-Input NAND Gates with Inverted and
Non-Inverted Inputs .. 3-355
xiv Xilinx Development System

NOR
2- to 9-Input NOR Gates with Inverted and
Non-Inverted Inputs .. 3-357

OBUF, OBUF4, OBUF8, and OBUF16
Single- and Multiple-Output Buffers.. 3-359

OBUFE, OBUFE4, OBUFE8, and OBUFE16
3-State Output Buffers with Active-High Output Enable 3-360

OBUFEX1, OBUFE4X1, OBUFE8X1, and OBUFEX2
EPLD 3-State Output Buffers with Active-High Output
Enable... 3-362

OBUFT, OBUFT4, OBUFT8, and OBUFT16
Single and Multiple 3-State Output Buffers with
Active-Low Output Enable .. 3-364

OFD, OFD4, OFD8, and OFD16
Single- and Multiple-Output D Flip-Flops................................ 3-366

OFD_1
Output D Flip-Flop with Inverted Clock 3-369

OFDE, OFDE4, OFDE8, and OFDE16
D Flip-Flops with Active-High Enable Output Buffers 3-370

OFDE_1
D Flip-Flop with Active-High Enable Output Buffer and
Inverted Clock... 3-373

OFDEI
D Flip-Flop with Active-High Enable Output Buffer
(Asynchronous Set) .. 3-374

OFDEI_1
D Flip-Flop with Active-High Enable Output Buffer and
Inverted Clock (Asynchronous Set) .. 3-375

OFDI
Output D Flip-Flop (Asynchronous Set) 3-376

OFDI_1
Output D Flip-Flop with Inverted Clock
(Asynchronous Set) .. 3-377

OFDT, OFDT4, OFDT8, and OFDT16
Single and Multiple D Flip-Flops with Active-High
3-State Active-Low Output Enable Buffers 3-378

OFDT_1
D Flip-Flop with Active-High 3-State and Active-Low
Output Buffer and Inverted Clock ... 3-381
Libraries Guide xv

Libraries Guide
OFDTI
D Flip-Flop with Active-High 3-State and Active-Low
Output Buffer (Asynchronous Set) .. 3-382

OFDTI_1
D Flip-Flop with Active-High 3-State, Active-Low Output
Buffer and Inverted Clock ... 3-383

OPAD, OPAD4, OPAD8, and OPAD16
Single- and Multiple-Output Pads ... 3-384

OR
2- to 9-Input OR Gates with Inverted and
Non-Inverted Inputs .. 3-385

OSC
Crystal Oscillator Amplifier.. 3-387

OSC4
Internal 5-Frequency Clock-Signal Generator 3-388

PL20PIN, PL24PIN, and PL48PIN
Generic PLD Symbols for EPLD ... 3-389

PL20V8
20V8-Compatible PLD Symbol for EPLD................................ 3-390

PL22V10
22V10-Compatible PLD Symbol for EPLD.............................. 3-393

PLFB9
EPLD High-Density Function Block PLD Symbol 3-396

PLFFB9
EPLD Fast Function Block PLD Symbol 3-400

PULLDOWN
Resistor to GND for Input Pads .. 3-402

PULLUP
Resistor to VCC for Input PADs, Open-Drain, and
3-State Outputs... 3-403

RAM16X1
16-Deep by 1-Wide Static RAM .. 3-404

RAM16X2
16-Deep by 2-Wide Static RAM .. 3-405

RAM16X4
16-Deep by 4-Wide Static Ram .. 3-406

RAM16X8
16-Deep by 8-Wide Static RAM .. 3-407

RAM32X1
32-Deep by 1-Wide Static RAM .. 3-409
xvi Xilinx Development System

RAM32X2
32-Deep by 2-Wide Static RAM.. 3-410

RAM32X4
32-Deep by 4-Wide Static RAM.. 3-411

RAM32X8
32-Deep by 8-Wide Static RAM.. 3-412

READBACK
FPGA Bitstream Readback Controller 3-414

ROM16X1
16-Deep by 1-Wide ROM ... 3-415

ROM32X1
32-Deep by 1-Wide ROM ... 3-416

SOP
Sum Of Products .. 3-417

SR4CE
4-Bit Serial-In Parallel-Out Shift Register with Clock
Enable and Asynchronous Clear .. 3-418

SR4CLE
4-Bit Loadable Serial/Parallel-In Parallel-Out Shift Register
with Clock Enable and Asynchronous Clear 3-419

SR4CLED
4-Bit Shift Register with Clock Enable and Asynchronous
Clear ... 3-420

SR4RE
4-Bit Serial-In Parallel-Out Shift Register with Clock
Enable and Synchronous Reset ... 3-421

SR4RLE
4-Bit Loadable Serial/Parallel-In Parallel-Out Shift Register
 with Clock Enable and Synchronous Reset 3-422

SR4RLED
4-Bit Shift Register with Clock Enable and Synchronous
Reset .. 3-423

SR8CE
8-Bit Serial-In Parallel-Out Shift Register with Clock Enable
and Asynchronous Clear .. 3-424

SR8CLE
8-Bit Loadable Serial/Parallel-In Parallel-Out Shift Register
with Clock Enable and Asynchronous Clear 3-426

SR8CLED
8-Bit Shift Register with Clock Enable and Asynchronous
Clear ... 3-428
Libraries Guide xvii

Libraries Guide
SR8RE
8-Bit Serial-In Parallel-Out Shift Register with Clock
Enable and Synchronous Reset ... 3-430

SR8RLE
8-Bit Loadable Serial/Parallel-In Parallel-Out Shift
Register with Clock Enable and Synchronous Reset.............. 3-432

SR8RLED
8-Bit Shift Register with Clock Enable and Synchronous
Reset... 3-434

SR16CE
16-Bit Serial-In Parallel-Out Shift Register with Clock
Enable and Asynchronous Clear .. 3-436

SR16CLE
16-Bit Loadable Serial/Parallel-In Parallel-Out Shift Register
with Clock Enable and Asynchronous Clear 3-437

SR16CLED
16-Bit Shift Register with Clock Enable and Asynchronous
Clear ... 3-438

SR16RE
16-Bit Serial-In Parallel-Out Shift Register with Clock
 Enable and Synchronous Reset .. 3-439

SR16RLE
16-Bit Loadable Serial/Parallel-In Parallel-Out Shift Register
with Clock Enable and Synchronous Reset 3-440

SR16RLED
16-Bit Shift Register with Clock Enable and Synchronous
Reset... 3-441

STARTUP
User Interface to Global Clock, Reset, and 3-State
Controls... 3-442

TCK
Boundary-Scan Test Clock Input Pad..................................... 3-443

TDI
Boundary-Scan Test Data Input Pad 3-444

TDO
Boundary-Scan Data Output Pad ... 3-445

TIMEGRP
Schematic-Level Table of Basic Timing Specification
Groups .. 3-446

TIMESPEC
Schematic-Level Timing Requirement Table 3-447
xviii Xilinx Development System

TMS
Boundary-Scan Test Mode Select Input Pad.......................... 3-448

UPAD
Connects the I/O Node of an IOB to the Internal PLD
Circuit.. 3-449

VCC
VCC-Connection Signal Tag... 3-450

WAND1, WAND4, WAND8, and WAND16
Open-Drain Buffers... 3-451

WOR2AND
2-Input OR Gate with Wired-AND Open-Drain Buffer
Output ... 3-452

XNOR
2- to 9-Input XNOR Gates with Non-Inverted Inputs 3-453

XOR
2- to 9-Input XOR Gates with Non-Inverted Inputs 3-455

X74_42
4- to 10-Line BCD-to-Decimal Decoder with
Active-Low Outputs... 3-457

X74_L85
4-Bit Expandable Magnitude Comparator............................... 3-459

X74_138
3- to 8-Line Decoder/Demultiplexer with Active-Low
Outputs and Three Enables.. 3-462

X74_139
2- to 4-Line Decoder/Demultiplexer with Active-Low
Outputs and Active-Low Enable ... 3-464

X74_147
10- to 4-Line Priority Encoder with Active-Low Inputs
and Outputs .. 3-465

X74_148
8- to 3-Line Cascadable Priority Encoder with
Active-Low Inputs and Outputs... 3-467

X74_150
16-to-1 Multiplexer with Active-Low Enable and Output 3-469

X74_151
8-to-1 Multiplexer with Active-Low Enable and
Complementary Outputs... 3-471

X74_152
8-to-1 Multiplexer with Active-Low Output 3-473
Libraries Guide xix

Libraries Guide
X74_153
Dual 4-to-1 Multiplexer with Active-Low Enables and
Common Select Input ... 3-475

X74_154
4- to 16-Line Decoder/Demultiplexer with Two Enables
and Active-Low Outputs.. 3-477

X74_157
Quadruple 2-to-1 Multiplexer with Common Select and
Active-Low Enable .. 3-479

X74_158
Quadruple 2-to-1 Multiplexer with Common Select,
Active-Low Enable, and Active-Low Outputs 3-480

X74_160
4-Bit BCD Counter with Parallel and Trickle Enables,
 Active-Low Load Enable, and Asynchronous Clear............... 3-481

X74_161
4-Bit Counter with Parallel and Trickle Enables
Active-Low Load Enable and Asynchronous Clear................. 3-484

X74_162
4-Bit Counter with Parallel and Trickle Enables and
Active-Low Load Enable and Synchronous Reset.................. 3-487

X74_163
4-Bit Counter with Parallel and Trickle Enables,
Active-Low Load Enable, and Synchronous Reset................. 3-490

X74_164
8-Bit Serial-In Parallel-Out Shift Register with
Active-Low Asynchronous Clear ... 3-493

X74_165S
8-Bit Loadable Serial/Parallel-In Parallel-Out Shift
Register with Clock Enable ... 3-495

X74_168
4-Bit BCD Bidirectional Counter with Parallel and Trickle
Clock Enables and Active-Low Load Enable 3-497

X74_174
6-Bit Data Register with Active-Low Asynchronous
Clear ... 3-500

X74_194
4-Bit Loadable Bidirectional Serial/Parallel-In Parallel-Out
Shift Register .. 3-502
xx Xilinx Development System

X74_195
4-Bit Loadable Serial/Parallel-In Parallel-Out Shift
Register .. 3-504

X74_273
8-Bit Data Register with Active-Low Asynchronous
Clear ... 3-506

X74_280
9-Bit Odd/Even Parity Generator/Checker.............................. 3-508

X74_283
4-Bit Full Adder with Carry-In and Carry-Out 3-509

X74_298
Quadruple 2-Input Multiplexer with Storage and
Negative-Edge Clock .. 3-511

X74_352
Dual 4-to-1 Multiplexer with Active-Low Enables and
Outputs ... 3-513

X74_377
8-Bit Data Register with Active-Low Clock Enable 3-515

X74_390
4-Bit BCD/Bi-Quinary Ripple Counter with
Negative-Edge Clocks and Asynchronous Clear 3-517

X74_518
8-Bit Identity Comparator with Active-Low Enable.................. 3-519

X74_521
8-Bit Identity Comparator with Active-Low Enable and
Output ... 3-520

Chapter 4 Attributes, Constraints, and Carry Logic
Attributes.. 4-1

BASE .. 4-2
Architectures.. 4-2
Description... 4-2
Syntax.. 4-4

BLKNM ... 4-4
Architectures.. 4-4
Description... 4-4
Syntax.. 4-6
Example... 4-6

CAP .. 4-6
Architectures.. 4-6
Description... 4-6
Syntax.. 4-7
Libraries Guide xxi

Libraries Guide
CLOCK_OPT .. 4-7
Architectures.. 4-7
Description... 4-7
Syntax.. 4-7

CMOS ... 4-8
Architectures.. 4-8
Description... 4-8
Syntax.. 4-8

CONFIG .. 4-8
Architectures.. 4-8
Description... 4-8
Syntax.. 4-9
Example... 4-10

DECODE... 4-11
Architectures.. 4-11
Description... 4-11
Syntax.. 4-11

DOUBLE ... 4-11
Architectures.. 4-11
Description... 4-11
Syntax.. 4-12

EQUATE_F and EQUATE_G ... 4-12
Architectures.. 4-12
Description... 4-12
Syntax.. 4-12
Example... 4-13

FAST... 4-13
Architectures.. 4-13
Description... 4-13
Syntax.. 4-13

FILE .. 4-13
Architectures.. 4-13
Description... 4-13
Syntax.. 4-14
Example... 4-14

FOE_OPT ... 4-15
Architectures.. 4-15
Description... 4-15
Syntax.. 4-15
xxii Xilinx Development System

HBLKNM... 4-16
Architectures.. 4-16
Description... 4-16
Syntax.. 4-17
Example... 4-17

HU_SET.. 4-17
Architectures.. 4-17
Description... 4-17
Syntax.. 4-18

INIT ... 4-18
Architectures.. 4-18
Description... 4-18
Syntax.. 4-18

LOC .. 4-19
Architectures.. 4-19
Description for FPGAs... 4-19
Description for EPLDs ... 4-20
Syntax for FPGAs.. 4-21
Syntax for EPLDs .. 4-22
Examples... 4-22
Single LOC Constraints ... 4-22
Area LOC Constraints ... 4-23
Prohibit LOC Constraints ... 4-23
Multiple LOC Constraints... 4-24
CLB Placement Examples... 4-24
IOB Placement Examples.. 4-25
BUFT Placement Examples .. 4-26
Global Buffer Placement Examples (XC4000 Only) 4-27
Decode Logic Placement Examples (XC4000 Only) 4-28

LOGIC_OPT ... 4-28
Architectures.. 4-28
Description... 4-28
Syntax.. 4-28

LOWPWR ... 4-29
Architectures.. 4-29
Description... 4-29
Syntax.. 4-29

MAP .. 4-29
Architectures.. 4-29
Description... 4-29
Syntax.. 4-30
Example... 4-30
Libraries Guide xxiii

Libraries Guide
MEDFAST and MEDSLOW .. 4-31
Architectures.. 4-31
Description... 4-31
Syntax.. 4-31

MINIMIZE.. 4-31
Architectures.. 4-31
Description... 4-31
Syntax.. 4-32

MRINPUT.. 4-32
Architectures.. 4-32
Description... 4-32
Syntax.. 4-32

Net .. 4-32
Architectures.. 4-32
Description... 4-33
Syntax.. 4-35

NODELAY... 4-35
Architectures.. 4-35
Description... 4-35
Syntax.. 4-36

OPT... 4-36
Architectures.. 4-36
Description... 4-36
Syntax.. 4-36

PLD ... 4-37
Architectures.. 4-37
Description... 4-37
Syntax.. 4-37

PRELOAD_OPT ... 4-38
Architectures.. 4-38
Description... 4-38
Syntax.. 4-38

REG_OPT... 4-39
Architectures.. 4-39
Description... 4-39
Syntax.. 4-39

RES... 4-39
Architectures.. 4-39
Description... 4-39
Syntax.. 4-40
xxiv Xilinx Development System

RLOC.. 4-40
Architectures.. 4-40
Description... 4-40
Syntax.. 4-40

RLOC_ORIGIN ... 4-41
Architectures.. 4-41
Syntax.. 4-41

RLOC_RANGE ... 4-42
Architectures.. 4-42
Description... 4-42
Syntax.. 4-42

TNM .. 4-42
Architectures.. 4-42
Description... 4-42
Syntax.. 4-43

TSidentifier.. 4-43
Architectures.. 4-43
Description... 4-43
Syntax.. 4-43

TTL ... 4-44
Architectures.. 4-44
Description... 4-44
Syntax.. 4-44

UIM_OPT.. 4-44
Architectures.. 4-44
Description... 4-44
Syntax.. 4-45

USE_RLOC .. 4-45
Architectures.. 4-45
Description... 4-45
Syntax.. 4-45

U_SET .. 4-45
Architectures.. 4-45
Description... 4-45
Syntax.. 4-46

PPR Placement Constraints .. 4-46
Schematic Syntax ... 4-46
Constraints File Syntax... 4-47

Instances and Blocks... 4-47
Place Instance Constraints .. 4-48
Place Block Constraints... 4-49
Syntactical Conventions .. 4-50
Libraries Guide xxv

Libraries Guide
Wildcards ... 4-50
Statements... 4-51
Place Constraints... 4-51
Flag Constraints... 4-52
Weight Constraints .. 4-52
TIMESPEC Constraints ... 4-52
TIMEGRP Constraints ... 4-54
Restrictions .. 4-54

Determining Symbol Names ... 4-54
Flip-Flop Constraints... 4-55

Example 1:... 4-55
Example 2:... 4-55
Example 3:... 4-56
Example 4:... 4-56
Example 5:... 4-56
Example 6:... 4-56

ROM and RAM Constraints .. 4-57
Example 1:... 4-57
Example 2:... 4-58
Example 3:... 4-58
Example 4:... 4-58

Mapping Constraints ... 4-59
FMAP and HMAP Constraints ... 4-59
Example 1:... 4-60
Example 2:... 4-61
Example 3:... 4-61
Example 4:... 4-61
CLBMAP Constraints... 4-61
Example 1:... 4-63
Example 2:... 4-63

CLB Constraints.. 4-63
Example 1:... 4-63
Example 2:... 4-63
Example 3:... 4-64
Example 4:... 4-64

I/O Constraints .. 4-64
Example 1:... 4-64
Example 2:... 4-65
Example 3:... 4-65
Example 4:... 4-66
Example 5:... 4-66
xxvi Xilinx Development System

IOB Constraints .. 4-67
BUFT Constraints ... 4-67

Example 1:... 4-68
Example 2:... 4-68
Example 3:... 4-68
Example 4:... 4-69

Edge Decoder Constraints.. 4-69
Global Buffer Constraints.. 4-70

Relative Location (RLOC) Constraints... 4-71
Description.. 4-71
Syntax... 4-72
RLOC Sets.. 4-74

U_SET ... 4-75
H_SET ... 4-76
Set Linkage.. 4-78
Set Modification ... 4-80
HU_SET .. 4-82

Set Modifiers... 4-85
RLOC... 4-86
RLOC_ORIGIN.. 4-86
RLOC_RANGE.. 4-89
USE_RLOC ... 4-90

Xilinx Macros .. 4-93
LOC Propagation Through Design Flattening......................... 4-94
Summary .. 4-94

Relationally Placed Macros (RPMs) .. 4-96
Carry Logic in XC4000 LCAs ... 4-97

Primitives and Symbols .. 4-98
Carry Logic Handling in XNFPrep... 4-100
Carry Mode Configuration Mnemonics 4-101
Carry Logic Configurations ... 4-102

ADD-F-CI ... 4-102
ADD-FG-CI .. 4-103
ADD-G-F1.. 4-103
ADD-G-CI .. 4-104
ADD-G-F3- .. 4-104
SUB-F-CI ... 4-105
SUB-FG-CI .. 4-105
SUB-G-1 .. 4-106
SUB-G-F1.. 4-106
SUB-G-CI .. 4-107
Libraries Guide xxvii

Libraries Guide
SUB-G-F3-... 4-107
ADDSUB-F-CI.. 4-108
ADDSUB-FG-CI... 4-108
ADDSUB-G-F1 .. 4-109
ADDSUB-G-CI ... 4-110
ADDSUB-G-F3- ... 4-110
INC-F-CI .. 4-111
INC-FG-CI.. 4-111
INC-G-1 ... 4-112
INC-G-F1 ... 4-112
INC-G-CI.. 4-113
INC-G-F3- .. 4-113
INC-FG-1 ... 4-114
DEC-F-CI ... 4-114
DEC-FG-CI .. 4-115
DEC-G-0 .. 4-115
DEC-G-F1.. 4-116
DEC-G-CI .. 4-116
DEC-G-F3-... 4-117
DEC-FG-0.. 4-117
INCDEC-F-CI... 4-118
INCDEC-FG-CI .. 4-118
INCDEC-G-0.. 4-119
INCDEC-G-F1.. 4-119
INCDEC-G-CI .. 4-120
INCDEC-FG-1.. 4-120
FORCE-0 ... 4-121
FORCE-1 ... 4-121
FORCE-F1... 4-121
FORCE-CI ... 4-121
FORCE-F3-.. 4-121
EXAMINE-CI.. 4-122

Index .. i

Trademark Information
xxviii Xilinx Development System

Chapter 1
Libraries Guide — 0401410 01 1-1

Xilinx Unified Libraries
Xilinx maintains software libraries with thousands of functional
design elements (primitives and macros) for different device
architectures. New functional elements are assembled with each
release of development system software. The latest catalog of design
elements are known as “Unified Libraries.” Elements in these
libraries are common to all Xilinx device architectures. This “unified”
approach means that you can use your circuit design created with
“unified” library elements across all current Xilinx device
architectures that recognize the element you are using.

Elements that exist in multiple architectures look and function the
same, but their implementations might differ to make them more effi-
cient for a particular architecture. A separate library still exists for
each architecture and common symbols are duplicated in each one,
which is necessary for simulation (especially board level) where
timing depends on a particular architecture.

Note: OrCAD symbols differ in appearance. They do not support
busing; each input and output pin appears on the symbol. Inputs and
outputs only appear on the left and right sides of symbols, respec-
tively (none appear on the top or bottom).

If you have active designs that were created with former Xilinx
library primitives or macros, you may need to change references to
the design elements that you were using to reflect the new Unified
Libraries’ elements.

Overview
The XACT Libraries Guide describes the primitive and macro logic
elements available in the new Unified Libraries for XC2000, XC3000,
XC4000, and XC7000 architectures. Common logic functions can be

Libraries Guide
implemented with these elements and more complex functions can be
built by combining macros and primitives. Several hundred design
elements (primitives and macros) are available across multiple device
architectures, providing a common base for programmable logic
designs.

This libraries guide provides a functional selection guide, describes
the design elements, and addresses attributes, constraints, and carry
logic.

This book is organized into four parts.

● Xilinx Unified Libraries

● Selection guide

● Design elements

● Constraints, attributes, and carry logic

Xilinx Unified Libraries
This chapter describes the Unified Libraries, briefly discusses the
contents of the other chapters, the general naming conventions, and
performance issues.

Selection Guide
The “Selection Guide” briefly describes, then tabularly lists the macro
logic elements that are described in detail in the “Design Elements”
chapter. The tables included in this section are organized into func-
tional categories specifying all the available elements from each of the
XC2000, XC3000, XC4000, and XC7000 families. Also included are
tables that list Unified Libraries’ replacements for existing and obso-
lete elements for each family.

Design Elements
Design elements are organized in alphanumeric order, with all
numeric suffixes in ascending order. For example, ADD4 precedes
ADD8 and FDR precedes FDRS.

The following information is provided for each library element.

● Graphic symbol

● Functional description
1-2 Xilinx Development System

Xilinx Unified Libraries
● Primitive versus macro table

● Truth table (when applicable)

● Topology (when applicable)

● Schematic for macros

Note: Schematics are included for each architecture if the implemen-
tation differs. Also, design elements with bused or multiple I/O pins
typically include just one schematic — generally the 8-bit version. (In
cases where no 8-bit version exists, an appropriate smaller or larger
element serves as the schematic example.)

Attributes, Constraints, and Carry Logic
The “Attributes, Constraints, and Carry Logic” chapter provides
information on all attributes and constraints. Attributes are instruc-
tions placed on symbols or nets in a schematic to indicate their place-
ment, implementation, naming, directionality, and so forth.
Constraints are a type of attribute used only to indicate where an
element should be placed. The chapter describes Partition, Place, and
Route (PPR) constraints, in particular, the relative location (RLOC)
constraint, as well as Relationally Placed Macros (RPMs), and carry
logic.
Libraries Guide 1-3

Libraries Guide
Naming Conventions
Examples of the general naming conventions for the Unified Libraries
are shown in the following figures.

Figure 1-1 Naming Conventions

Figure 1-2 Combinatorial Naming Conventions

Refer to the Selection Guide for examples of functional component
naming conventions.

X4565

Clear (Asynchronous)
4-BitCounter, Binary

Precendence of Control Pins

Load

Clock Enable

Bi-Directional

C B 4 C L E D

CONTROL PINSSIZEFUNCTION

Example 1

Example 2

16-BitFlip-Flop, D-type

Precendence of Control Pins

Reset (Synchronous)

Clock Enable

F D 1 6 R E

CONTROL PINSSIZEFUNCTION

X4316

AND3B2

Logic Function

Number of Inputs

Inverting (Bubble) Inputs

Number of Inverting Inputs
1-4 Xilinx Development System

Xilinx Unified Libraries
Flip-Flop, Counter, and Register Performance
All counter, register, and storage functions are derived from the flip-
flops (and latches in XC2000) available in the Configurable Logic
Blocks (CLBs).

The D flip-flop is the basic building block for all four architectures.
Differences occur from the availability of asynchronous Clear (CLR)
and Preset (PRE) inputs, and the source of the synchronous control
signals, such as, Clock Enable (CE), Clock (C), Load enable (L),
synchronous Reset (R), and synchronous Set (S). The basic flip-flop
configuration for each architecture follows.

The basic XC2000 and XC7000 flip-flops have both Clear and Preset
inputs.

The XC3000 has a direct-connect Clock Enable input and a Clear
input.

The XC4000 has a direct-connect Clock Enable input and a choice of
either the Clear or the Preset inputs, but not both.

Q

D

C

FDCP

PRE

CLR X4397

X3717
CLR

C

CE

QD
FDCE

X3717
CLR

C

CE

QD
FDCE

X3721

FDPE

C

CE

QD

PRE
Libraries Guide 1-5

Libraries Guide
The asynchronous and synchronous control functions, when used,
have a priority that is consistent across all devices and architectures.
These inputs can be either active-High or active-Low as defined by
the macro. The priority, from highest to lowest is as follows.

● Asynchronous Clear (C)

● Asynchronous Preset (PRE)

● Synchronous Set (S)

● Synchronous Reset (R)

● Load Enable (L)

● Shift Left/Right (LEFT)

● Clock Enable (CE)

Note: The asynchronous C and PRE inputs, by definition, have prior-
ity over all the synchronous control and clock inputs.

The Clock Enable (CE) function is implemented using two different
methods in the Xilinx Unified Libraries; both are shown in the
following figure. In method 1, CE is implemented by connecting the
CE pin of the macro directly to the dedicated Enable Clock (EC) pin of
the internal Configurable Logic Block (CLB) flip-flop. In method 2,
CE is implemented using function generator logic. CE takes prece-
dence over the L, S, and R inputs in method 1. CE has the same
priority as the L, S, and R inputs in method 2. The method used in a
particular macro is indicated in the macro’s description.
1-6 Xilinx Development System

Xilinx Unified Libraries
Figure 1-3 Clock Enable Implementation Methods

X4675

EC

Method 1
CE implemented

using dedicated EC pin.

Method 2
CE implemented as a

function generator input.

CE

C

EC

C

C

C

C1

C2

C1

C2

C1

CE

C2

C1

C2

CE
Q

Q
Function

Generator

Function
Generator

Function
Generator

Function
Generator
Libraries Guide 1-7

Libraries Guide
1-8 Xilinx Development System

Chapter 2
Libraries Guide — 0401410 01 2-1

Selection Guide
The Selection Guide briefly describes, then tabularly lists the macro
logic elements that are described in detail in the “Design Elements”
chapter. The tables included in this section are organized into func-
tional categories specifying all the available macros from each of the
XC2000, XC3000, XC4000, and XC7000 families. The tables categorize
the elements into sub-categories based on similar functions. The
sequence of each sub-category is based on an ascending order of
complexity. The categories are as follows.

● Arithmetic functions

● Buffers

● Comparators

● Counters

● Data registers

● Decoders

● Edge decoders

● Encoders

● Flip-Flops

● General

● Input/output flip-flops

● Input/output functions

● Input latches

● Latches

● Logic primitives

● Map elements

● Memory elements

Libraries Guide
● Multiplexers

● PLD elements

● Shift registers

● Shifters

The elements from each architecture that provide the same function
are listed adjacent to each other in the table, even though they might
not have the same name. For particular elements, use the name speci-
fied for the architecture of interest.

Note: When converting your design between FPGA families, use
macros that have equivalent functions in each of the families to mini-
mize re-designing.

There are a number of standard TTL 7400-type functions in the
XC2000, XC3000, XC4000, and XC7000 architectures. All 7400-type
functions are in alphanumeric order starting with “X,” and the
numeric sequence uses ascending numbers following the “74” prefix.
For example, X74_42 precedes X74_138.

Functional Categories
The following sections briefly describe, then tabularly list the Unified
Libraries design element functions by category. Elements are listed in
alphanumeric order according to architecture in each applicable
architecture column. N/A means the element does not exist in that
particular architecture.

Following these functional listings, replacement and obsolete
elements are discussed.
2-2 Xilinx Development System

Selection Guide
Arithmetic Functions
There are three types of arithmetic functions: accumulators (ACC),
adders (ADD), and adder/subtracters (ADSU). With an ADSU, either
unsigned binary or twos-complement operations cause an overflow.
If the result crosses the overflow boundary, an overflow is generated.
Similarly, when the result crosses the carry-out boundary, a carry-out
is generated. The following figure shows the ADSU carry-out and
overflow boundaries.

Figure 2-1 ADSU Carry-Out and Overflow Boundaries

XC2000 XC3000 XC4000 XC7000 Description

ACC1 N/A N/A ACC1 1-Bit Accumulator with Carry-In,
Carry-Out, and Synchronous Reset

N/A N/A N/A ACC1X1 1-Bit Accumulator with Carry-Out for
EPLD

N/A N/A N/A ACC1X2 1-Bit Accumulator with Carry-In and
Carry-Out for EPLD

N/A ACC4 ACC4 ACC4 4-Bit Accumulator with Carry-In,
Carry-Out, and Synchronous Reset

N/A N/A N/A ACC4X1 4-Bit Accumulator with Carry-Out for
EPLD

N/A N/A N/A ACC4X2 4-Bit Accumulator with Carry-In and
Carry-Out for EPLD

N/A ACC8 ACC8 ACC8 8-Bit Accumulator with Carry-In,
Carry-Out, and Synchronous Reset

TW
O

S
C

O
M

P
L

E
M

E
N

T
O

R
S

IG
NED

TW

OS
C

O
M

P
L

E
M

E
N

T
O

R
S

IG
N

ED

UN
S

IG
N

E
D

B
IN

A
R

Y

U
N

S
IG

N
E

D
B

IN
A

R
Y

X4720

255

-127 127

127128

0

0-1

Overflow

Carry-Out
Libraries Guide 2-3

Libraries Guide
N/A N/A N/A ACC8X1 8-Bit Accumulator with Carry-Out for
EPLD

N/A N/A N/A ACC8X2 8-Bit Accumulator with Carry-In and
Carry-Out for EPLD

N/A ACC16 ACC16 ACC16 16-Bit Accumulator with Carry-In,
Carry-Out, and Synchronous Reset

N/A N/A N/A ACC16X1 16-Bit Accumulator with Carry-Out for
EPLD

N/A N/A N/A ACC16X2 16-Bit Accumulator with Carry-In and
Carry-Out for EPLD

ADD1 N/A N/A ADD1 1-Bit Full Adder with Carry-In and
Carry-Out

N/A N/A N/A ADD1X1 1-Bit Adder with Carry-Out for EPLD
N/A N/A N/A ADD1X2 1-Bit Adder with Carry-In and Carry-

Out for EPLD
N/A ADD4 ADD4 ADD4 4-Bit Cascadable Full Adder with

Carry-In and Carry-Out
N/A N/A N/A ADD4X1 4-Bit Adder with Carry-Out for EPLD
N/A N/A N/A ADD4X2 4-Bit Adder with Carry-In and

Carry-Out for EPLD
N/A ADD8 ADD8 ADD8 8-Bit Cascadable Full Adder with

Carry-In and Carry-Out
N/A N/A N/A ADD8X1 8-Bit Adder with Carry-Out for EPLD
N/A N/A N/A ADD8X2 8-Bit Adder with Carry-In and

Carry-Out for EPLD
N/A ADD16 ADD16 ADD16 16-Bit Cascadable Full Adder with

Carry-In and Carry-Out
N/A N/A N/A ADD16X1 16-Bit Adder with Carry-Out for EPLD
N/A N/A N/A ADD16X2 16-Bit Adder with Carry-In and

Carry-Out for EPLD
ADSU1 N/A N/A ADSU1 1-Bit Adder/Substracter with Carry-In

and Carry-Out
N/A N/A N/A ADSU1X1 1-Bit Adder/Subtracter with

Carry-Out for EPLD
N/A N/A N/A ADSU1X2 1-Bit Adder/Subtracter with Carry-In

and Carry-Out for EPLD
N/A ADSU4 ADSU4 ADSU4 4-Bit Cascadable Adder/Subtracter

with Carry-In and Carry-Out

XC2000 XC3000 XC4000 XC7000 Description
2-4 Xilinx Development System

Selection Guide
Buffers
The buffers in this section route high fan-out signals, 3-state signals,
and clocks inside a PLD device. The “Input/Output Functions”
section later in this chapter covers off-chip interface buffers.

N/A N/A N/A ADSU4X1 4-Bit Adder/Subtracter with
Carry-Out for EPLD

N/A N/A N/A ADSU4X2 4-Bit Adder/Subtracter with Carry-In
and Carry-Out for EPLD

N/A ADSU8 ADSU8 ADSU8 8-Bit Adder/Subtracter with Carry-In,
Carry-Out, and Overflow

N/A N/A N/A ADSU8X1 8-Bit Adder/Subtracter with
Carry-Out for EPLD

N/A N/A N/A ADSU8X2 8-Bit Adder/Subtracter with Carry-In
and Carry-Out for EPLD

N/A ADSU16 ADSU16 ADSU16 16-Bit Adder/Subtracter with
Overflow

N/A N/A N/A ADSU16X1 16-Bit Adder/Subtracter with
Carry-Out for EPLD

N/A N/A N/A ADSU16X2 16-Bit Adder/Subtracter with
Carry-In and Carry-Out for EPLD

X74_280 X74_280 X74_280 X74_280 9-Bit Odd/Even Parity Generator/
Checker

X74_283 X74_283 X74_283 X74_283 4-Bit Full Adder with Carry-In and
Carry-Out

XC2000 XC3000 XC4000 XC7000 Description

ACLK ACLK N/A N/A Alternate Clock Buffer
BUF BUF BUF BUF General Purpose Buffers
N/A N/A N/A BUF4,

BUF8,
BUF16

N/A N/A N/A BUFCE Global Clock-Enable Input Buffer
for EPLD

XC2000 XC3000 XC4000 XC7000 Description
Libraries Guide 2-5

Libraries Guide
Comparators
There are two types of comparators, identity (COMP) and magnitude
(COMPM).

N/A BUFE,
BUFE4,
BUFE8,
BUFE16

BUFE,
BUFE4,
BUFE8,
BUFE16

BUFE,
BUFE4,
BUFE8,
BUFE16

Internal 3-State Buffers with
Active-High Enable

N/A N/A N/A BUFFOE Global Fast-Output-Enable (FOE)
Input Buffer for EPLD

BUFG BUFG BUFG BUFG Global Clock Buffer
N/A N/A BUFGP BUFGP Primary Global Buffer for Driving

Clocks or Longlines (4 per device)
N/A N/A BUFGS BUFGS Secondary Global Buffer for Driv-

ing Clocks or Longlines
N/A N/A BUFOD N/A Open-Drain Buffer
N/A BUFT,

BUFT4,
BUFT8,
BUFT16

BUFT,
BUFT4,
BUFT8,
BUFT16

BUFT,
BUFT4,
BUFT8,
BUFT16

Internal 3-State Buffers with
Active-Low Enable

GCLK GCLK N/A N/A Global Clock Buffer

XC2000 XC3000 XC4000 XC7000 Description

COMP2 COMP2 COMP2 COMP2 2-Bit Identity Comparator
COMP4 COMP4 COMP4 COMP4 4-Bit Identity Comparator
COMP8 COMP8 COMP8 COMP8 8-Bit Identity Comparator
COMP16 COMP16 COMP16 COMP16 16-Bit Identity Comparator
COMPM2 COMPM2 COMPM2 COMPM2 2-Bit Magnitude Comparator
COMPM4 COMPM4 COMPM4 COMPM4 4-Bit Magnitude Comparator
COMPM8 COMPM8 COMPM8 COMPM8 8-Bit Magnitude Comparator
COMPM16 COMPM16 COMPM16 N/A 16-Bit Magnitude Comparator
N/A N/A COMPMC8 N/A 8-Bit Magnitude Comparator
N/A N/A COMPMC16 N/A 16-Bit Magnitude Comparator
X74_L85 X74_L85 X74_L85 X74_L85 4-Bit Expandable Magnitude

Comparator

XC2000 XC3000 XC4000 XC7000 Description
2-6 Xilinx Development System

Selection Guide
Counters
There are six types of counters with various synchronous and asyn-
chronous inputs. The name of the counter defines the modulo or bit
size, the counter type, and which control functions are included. The
counter naming convention is shown in the following figure.

Figure 2-2 Counter Naming Convention

A carry-lookahead design accommodates large counters without
extra gating. On TTL 7400-type counters with trickle clock enable
(ENT), parallel clock enable (ENP), and ripple carry-out (RCO), both
the ENT and ENP inputs must be High to count. ENT is propagated
forward to enable RCO, which produces a High output with the
approximate duration of the QA output. The following figure illus-
trates a carry-lookahead design.

X74_518 X74_518 X74_518 X74_518 8-Bit Identity Comparator with
Active-Low Enable

X74_521 X74_521 X74_521 X74_521 8-Bit Identity Comparator with
Active-Low Enable and Output

XC2000 XC3000 XC4000 XC7000 Description

X4577

Binary (B)
BCD (D)
Binary, Carry Logic (C)
Johnson (J)
Ripple (R)

Counter

Asynchronous Clear (C)
Synchronous Reset (R)

Modulo (Bit Size)

Loadable

C B 1 6 C L E D

Clock Enable

Directional
Libraries Guide 2-7

Libraries Guide
Figure 2-3 Carry-Lookahead Design

The RCO output of the first stage of the ripple carry is connected to
the ENP input of the second stage and all subsequent stages. The
RCO output of second stage and all subsequent stages is connected to
the ENT input of the next stage. The ENT of the second stage is
always enabled/tied to VCC. CE is always connected to the ENT
input of the first stage. This cascading method allows the first stage of
the ripple carry to be built as a prescaler. In other words, the first
stage is built to count very fast.

X4719

ENT

ENP

RCO

ENT

ENP

RCO

ENT

ENP

RCOVcc

Vcc

ENTCE

ENP

RCO
2-8 Xilinx Development System

Selection Guide
XC2000 XC3000 XC4000 XC7000 Description

CB2CE CB2CE CB2CE CB2CE 2-Bit Cascadable Binary Counter
with Clock Enable and Asynchro-
nous Clear

CB2CLE CB2CLE CB2CLE CB2CLE 2-Bit Loadable Cascadable Binary
Counter with Clock Enable and
Asynchronous Clear

CB2CLED CB2CLED CB2CLED CB2CLED 2-Bit Loadable Cascadable Bidi-
rectional Binary Counter with
Clock Enable and Asynchronous
Clear

CB2RE CB2RE CB2RE CB2RE 2-Bit Cascadable Binary Counter
with Clock Enable and Synchro-
nous Reset

N/A N/A N/A CB2RLE 2-Bit Loadable Cascadable Binary
Counter with Clock Enable and
Synchronous Reset

N/A N/A N/A CB2X1 2-Bit Loadable Cascadable Bidi-
rectional Binary Counter with
Asynchronous Clear for EPLD

N/A N/A N/A CB2X2 2-Bit Loadable Cascadable Bidi-
rectional Binary Counter with
Synchronous Reset for EPLD

CB4CE CB4CE CB4CE CB4CE 4-Bit Cascadable Binary Counter
with Clock Enable and Asynchro-
nous Clear

CB4CLE CB4CLE CB4CLE CB4CLE 4-Bit Loadable Cascadable Binary
Counter with Clock Enable and
Asynchronous Clear

CB4CLED CB4CLED CB4CLED CB4CLED 4-Bit Loadable Cascadable Bidi-
rectional Binary Counter with
Clock Enable and Asynchronous
Clear

CB4RE CB4RE CB4RE CB4RE 4-Bit Cascadable Binary Counter
with Clock Enable and Synchro-
nous Reset
Libraries Guide 2-9

Libraries Guide
N/A N/A N/A CB4RLE 4-Bit Loadable Cascadable Binary
Counter with Clock Enable and
Synchronous Reset

N/A N/A N/A CB4X1 4-Bit Loadable Cascadable Bidi-
rectional Binary Counter with
Asynchronous Clear for EPLD

N/A N/A N/A CB4X2 4-Bit Loadable Cascadable Bidi-
rectional Binary Counter with
Synchronous Reset for EPLD

CB8CE CB8CE CB8CE CB8CE 8-Bit Cascadable Binary Counter
with Clock Enable and Asynchro-
nous Clear

CB8CLE CB8CLE CB8CLE CB8CLE 8-Bit Loadable Cascadable Binary
Counter with Clock Enable and
Asynchronous Clear

CB8CLED CB8CLED CB8CLED CB8CLED 8-Bit Loadable Cascadable Bidi-
rectional Binary Counter with
Clock Enable and Asynchronous
Clear

CB8RE CB8RE CB8RE CB8RE 8-Bit Cascadable Binary Counter
with Clock Enable and Synchro-
nous Reset

N/A N/A N/A CB8RLE 8-Bit Loadable Cascadable Binary
Counter with Clock Enable and
Synchronous Reset

N/A N/A N/A CB8X1 8-Bit Loadable Cascadable Bidi-
rectional Binary Counter with
Asynchronous Clear for EPLD

N/A N/A N/A CB8X2 8-Bit Loadable Cascadable Bidi-
rectional Binary Counter with
Synchronous Reset for EPLD

CB16CE CB16CE CB16CE CB16CE 16-Bit Cascadable Binary Counter
with Clock Enable and Asynchro-
nous Clear

CB16CLE CB16CLE CB16CLE CB16CLE 16-Bit Loadable Cascadable
Binary Counter with Clock
Enable and Asynchronous Clear

XC2000 XC3000 XC4000 XC7000 Description
2-10 Xilinx Development System

Selection Guide
CB16CLED CB16CLED CB16CLED CB16CLED 16-Bit Loadable Cascadable Bidi-
rectional Binary Counter with
Clock Enable and Asynchronous
Clear

CB16RE CB16RE CB16RE CB16RE 16-Bit Cascadable Binary Counter
with Clock Enable and Synchro-
nous Reset

N/A N/A N/A CB16RLE 16-Bit Loadable Cascadable
Binary Counter with Clock
Enable and Synchronous Reset

N/A N/A N/A CB16X1 16-Bit Loadable Cascadable Bidi-
rectional Binary Counter with
Asynchronous Clear for EPLD

N/A N/A N/A CB16X2 16-Bit Loadable Cascadable Bidi-
rectional Binary Counter with
Synchronous Reset for EPLD

N/A N/A CC8CE N/A 8-Bit Cascadable Binary Counter
with Clock Enable and Asynchro-
nous Clear

N/A N/A CC8CLE N/A 8-Bit Loadable Cascadable Binary
Counter with Clock Enable and
Asynchronous Clear

N/A N/A CC8CLED N/A 8-Bit Loadable Cascadable Bidi-
rectional Binary Counter with
Clock Enable and Asynchronous
Clear

N/A N/A CC8RE N/A 8-Bit Cascadable Binary Counter
with Clock Enable and Synchro-
nous Reset

N/A N/A CC16CE N/A 16-Bit Cascadable Binary Counter
with Clock Enable and Asynchro-
nous Clear

N/A N/A CC16CLE N/A 16-Bit Loadable Cascadable
Binary Counter with Clock
Enable and Asynchronous Clear

XC2000 XC3000 XC4000 XC7000 Description
Libraries Guide 2-11

Libraries Guide
N/A N/A CC16CLED N/A 16-Bit Loadable Cascadable Bidi-
rectional Binary Counter with
Clock Enable and Asynchronous
Clear

N/A N/A CC16RE N/A 16-Bit Cascadable Binary Counter
with Clock Enable and Synchro-
nous Reset

CD4CE CD4CE CD4CE CD4CE 4-Bit Cascadable BCD Counter
with Clock Enable and Asynchro-
nous Clear

CD4CLE CD4CLE CD4CLE CD4CLE 4-Bit Loadable Cascadable BCD
Counter with Clock Enable and
Asynchronous Clear

CD4RE CD4RE CD4RE CD4RE 4-Bit Cascadable BCD Counter
with Clock Enable and Synchro-
nous Reset

CD4RLE CD4RLE CD4RLE CD4RLE 4-Bit Loadable Cascadable BCD
Counter with Clock Enable and
Synchronous Reset

CJ4CE CJ4CE CJ4CE CJ4CE 4-Bit Johnson Counter with Clock
Enable and Asynchronous Clear

CJ4RE CJ4RE CJ4RE CJ4RE 4-Bit Johnson Counter with Clock
Enable and Synchronous Reset

CJ5CE CJ5CE CJ5CE CJ5CE 5-Bit Johnson Counter with Clock
Enable and Asynchronous Clear

CJ5RE CJ5RE CJ5RE CJ5RE 5-Bit Johnson Counter with Clock
Enable and Synchronous Reset

CJ8CE CJ8CE CJ8CE CJ8CE 8-Bit Johnson Counter with Clock
Enable and Asynchronous Clear

CJ8RE CJ8RE CJ8RE CJ8RE 8-Bit Johnson Counter with Clock
Enable and Synchronous Reset

CR8CE CR8CE CR8CE CR8CE 8-Bit Negative-Edge Binary Rip-
ple Counter with Clock Enable
and Asynchronous Clear

CR16CE CR16CE CR16CE CR16CE 16-Bit Negative-Edge Binary Rip-
ple Counter with Clock Enable
and Asynchronous Clear

XC2000 XC3000 XC4000 XC7000 Description
2-12 Xilinx Development System

Selection Guide
X74_160 X74_160 X74_160 X74_160 4-Bit Loadable Cascadable BCD
Counter with Parallel and Trickle
Enables and Asynchronous Clear

X74_161 X74_161 X74_161 X74_161 4-Bit Loadable Cascadable Binary
Counter with Parallel and Trickle
Enables and Asynchronous Clear

X74_162 X74_162 X74_162 X74_162 4-Bit Loadable Cascadable BCD
Counter with Parallel and Trickle
Enables and Synchronous Reset

X74_163 X74_163 X74_163 X74_163 4-Bit Loadable Cascadable Binary
Counter with Parallel and Trickle
Enables and Synchronous Reset

X74_168 X74_168 X74_168 X74_168 4-Bit Loadable Cascadable Bidi-
rectional BCD Counter with Par-
allel and Trickle Enables

X74_390 X74_390 X74_390 X74_390 4-Bit BCD/Bi-Quinary Ripple
Counter with Negative-Edge
Clocks and Asynchronous Clear

XC2000 XC3000 XC4000 XC7000 Description
Libraries Guide 2-13

Libraries Guide
Data Registers
There are three TTL 7400-type data registers designed to function
exactly as the TTL elements for which they are named.

Decoders
Decoder names, shown in the following figure, indicate the number
of inputs and outputs and if an enable is available. Decoders with an
enable can be used as multiplexers. This group includes some stan-
dard TTL 7400-type decoders whose names have an “X74” prefix.

Figure 2-4 Decoder Naming Convention

XC2000 XC3000 XC4000 XC7000 Description

X74_174 X74_174 X74_174 X74_174 6-Bit Data Register with Active-
Low Asynchronous Clear

X74_273 X74_273 X74_273 X74_273 8-Bit Data Register with Active-
Low Asynchronous Clear

X74_377 X74_377 X74_377 X74_377 8-Bit Data Register with Active-
Low Clock Enable

XC2000 XC3000 XC4000 XC7000 Description

D2_4E D2_4E D2_4E D2_4E 2- to 4-Line Decoder/Demulti-
plexer with Enable

D3_8E D3_8E D3_8E D3_8E 3- to 8-Line Decoder/Demulti-
plexer with Enable

D4_16E D4_16E D4_16E D4_16E 4- to 16-Line Decoder/Demulti-
plexer with Enable

X74_42 X74_42 X74_42 X74_42 4- to 10-Line BCD-to-Decimal
Decoder with Active-Low Outputs

X4619

D 2 _ 4 E
Decoder

Number of Inputs

Number of Outputs

Output Enable
2-14 Xilinx Development System

Selection Guide
Edge Decoders
Edge decoders are open-drain wired-AND gates that are available in
different bit sizes.

Encoders
There are two priority encoders (ENCPR) that function like the TTL
7400-type elements they are named after. There is a 10- to 4-line BCD
encoder and an 8- to 3-line binary encoder.

X74_138 X74_138 X74_138 X74_138 3- to 8-Line Decoder/Demulti-
plexer with Active-Low Outputs
and Three Enables

X74_139 X74_139 X74_139 X74_139 2- to 4-Line Decoder/Demulti-
plexer with Active-Low Outputs
and Active-Low Enable

X74_154 X74_154 X74_154 X74_154 4- to 16-Line Decoder/Demulti-
plexer with Two Enables and
Active-Low Outputs

XC2000 XC3000 XC4000 XC7000 Description

N/A N/A DECODE4 N/A 4-Bit Active-Low Decoder
N/A N/A DECODE8 N/A 8-Bit Active-Low Decoder
N/A N/A DECODE16 N/A 16-Bit Active-Low Decoder

XC2000 XC3000 XC4000 XC7000 Description

X74_147 X74_147 X74_147 X74_147 10- to 4-Line Priority Encoder with
Active-Low Inputs and Outputs

X74_148 X74_148 X74_148 X74_148 8- to 3-Line Cascadable Priority
Encoder with Active-Low Inputs
and Outputs

XC2000 XC3000 XC4000 XC7000 Description
Libraries Guide 2-15

Libraries Guide
Flip-Flops
There are three types of flip-flops (D, J-K, toggle) with various
synchronous and asynchronous inputs. Some are available with
inverted clock inputs and/or the ability to set in response to global
set/reset rather than reset. The naming convention shown in the
following figure provides a description for each flip-flop. D-type flip-
flops are available in multiples of up to 16 in one macro.

Figure 2-5 Flip-Flop Naming Convention

XC2000 XC3000 XC4000 XC7000 Description

FD FD FD FD Single and Multiple D Flip-Flops
N/A N/A N/A FD4,

FD8,
FD16

FD4CE FD4CE FD4CE FD4CE 4-Bit Data Register with Clock
Enable and Asynchronous Clear

FD4RE FD4RE FD4RE FD4RE 4-Bit Data Register with Clock
Enable and Synchronous Reset

FD8CE FD8CE FD8CE FD8CE 8-Bit Data Register with Clock
Enable and Asynchronous Clear

FD8RE FD8RE FD8RE FD8RE 8-Bit Data Register with Clock
Enable and Synchronous Reset

FD16CE FD16CE FD16CE FD16CE 16-Bit Data Register with Clock
Enable and Asynchronous Clear

FD16RE FD16RE FD16RE FD16RE 16-Bit Data Register with Clock
Enable and Synchronous Reset

FD_1 FD_1 FD_1 N/A D Flip-Flop with Negative-Edge
Clock

X4579

D-Type (D)

Flip-Flop

JK-Type (JK)
Toggle-Type (T)

Asynchronous Preset (P)
Asynchronous Clear (C)
Synchronous Set (S)
Synchronous Reset (R)

Inverted Clock

Clock Enable

F D P E _ 1
2-16 Xilinx Development System

Selection Guide
FDC FDC FDC FDC D Flip-Flop with Asynchronous
Clear

FDC_1 FDC_1 FDC_1 N/A D Flip-Flop with Negative-Edge
Clock and Asynchronous Clear

FDCE FDCE FDCE FDCE D Flip-Flop with Clock Enable and
Asynchronous Clear

FDCE_1 FDCE_1 FDCE_1 N/A D Flip-Flop with Negative-Edge
Clock, Clock Enable, and Asyn-
chronous Clear

FDCP N/A N/A FDCP D Flip-Flop with Asynchronous
Preset and Clear

FDCPE N/A N/A FDCPE D Flip-Flop with Clock Enable and
Asynchronous Preset and Clear

N/A N/A FDP FDP D Flip-Flop with Asynchronous
Preset

N/A N/A FDP_1 N/A D Flip-Flop with Negative-Edge
Clock and Asynchronous Preset

N/A N/A FDPE FDPE D Flip-Flop with Clock Enable and
Asynchronous Preset

N/A N/A FDPE_1 N/A D Flip-Flop with Negative-Edge
Clock, Clock Enable, and Asyn-
chronous Preset

FDR FDR FDR FDR D Flip-Flop with Synchronous
Reset

FDRE FDRE FDRE FDRE D Flip-Flop with Clock Enable and
Synchronous Reset

FDRS FDRS FDRS FDRS D Flip-Flop with Synchronous
Reset and Synchronous Set

FDRSE FDRSE FDRSE FDRSE D Flip-Flop with Synchronous
Reset and Set and Clock Enable

FDS FDS FDS FDS D Flip-Flop with Synchronous Set
FDSE FDSE FDSE FDSE D Flip-Flop with Clock Enable and

Synchronous Set
FDSR FDSR FDSR FDSR D Flip-Flop with Synchronous Set

and Reset
FDSRE FDSRE FDSRE FDSRE D Flip-Flop with Synchronous Set

and Reset and Clock Enable

XC2000 XC3000 XC4000 XC7000 Description
Libraries Guide 2-17

Libraries Guide
FJKC FJKC FJKC FJKC J-K Flip-Flop with Asynchronous
Clear

FJKCE FJKCE FJKCE FJKCE J-K Flip-Flop with Clock Enable
and Asynchronous Clear

FJKCP N/A N/A FJKCP J-K Flip-Flop with Asynchronous
Clear and Preset

FJKCPE N/A N/A FJKCPE J-K Flip-Flop with Asynchronous
Clear and Preset and Clock Enable

N/A N/A FJKP FJKP J-K Flip-Flop with Asynchronous
Preset

N/A N/A FJKPE FJKPE J-K Flip-Flop with Clock Enable
and Asynchronous Preset

FJKRSE FJKRSE FJKRSE FJKRSE J-K Flip-Flop with Clock Enable
and Synchronous Reset and Set

FJKSRE FJKSRE FJKSRE FJKSRE J-K Flip-Flop with Clock Enable
and Synchronous Set and Reset

FTC FTC FTC FTC Toggle Flip-Flop with Toggle
Enable and Asynchronous Clear

FTCE FTCE FTCE FTCE Toggle Flip-Flop with Toggle and
Clock Enable and Asynchronous
Clear

FTCLE FTCLE FTCLE FTCLE Toggle/Loadable Flip-Flop with
Toggle and Clock Enable and Asyn-
chronous Clear

FTCP N/A N/A FTCP Toggle Flip-Flop with Toggle
Enable and Asynchronous Clear
and Preset

FTCPE N/A N/A FTCPE Toggle Flip-Flop with Toggle and
Clock Enable and Asynchronous
Clear and Preset

FTCPLE N/A N/A FTCPLE Loadable Toggle Flip-Flop with
Toggle and Clock Enable and Asyn-
chronous Clear and Preset

N/A N/A FTP FTP Toggle Flip-Flop with Toggle
Enable and Asynchronous Preset

N/A N/A FTPE FTPE Toggle Flip-Flop with Toggle and
Clock Enable and Asynchronous
Preset

XC2000 XC3000 XC4000 XC7000 Description
2-18 Xilinx Development System

Selection Guide
General
General elements include FPGA configuration functions, oscillators,
boundary-scan logic, and other functions not classified in other
sections.

N/A N/A FTPLE FTPLE Toggle/Loadable Flip-Flop with
Toggle and Clock Enable and Asyn-
chronous Preset

FTRSE FTRSE FTRSE FTRSE Toggle Flip-Flop with Toggle and
Clock Enable and Synchronous
Reset and Set

FTRSLE FTRSLE FTRSLE FTRSLE Toggle/Loadable Flip-Flop with
Toggle and Clock Enable and Syn-
chronous Reset and Set

FTSRE FTSRE FTSRE FTSRE Toggle Flip-Flop with Toggle and
Clock Enable and Synchronous Set
and Reset

FTSRLE FTSRLE FTSRLE FTSRLE Toggle/Loadable Flip-Flop with
Toggle and Clock Enable and Syn-
chronous Set and Reset

XC2000 XC3000 XC4000 XC7000 Description

N/A N/A BSCAN N/A Boundary Scan Logic Con-
trol Circuit

CLB CLB N/A N/A CLB Configuration Symbol
GND GND GND GND Ground-Connection Signal

Tag
GXTL GXTL N/A N/A Crystal Oscillator with

ACLK Buffer
IOB IOB N/A N/A IOB Configuration Symbol
N/A N/A MD0 N/A Mode 0/Input Pad Used for

Readback Trigger Input
N/A N/A MD1 N/A Mode 1/Output Pad Used

for Readback Data Output
N/A N/A MD2 N/A Mode 2/Input Pad
OSC OSC N/A N/A Crystal Oscillator

XC2000 XC3000 XC4000 XC7000 Description
Libraries Guide 2-19

Libraries Guide
N/A N/A OSC4 N/A Internal 5-Frequency Clock-
Signal Generator

N/A N/A PULLDOWN N/A Resistor to GND for Input
Pads

N/A PULLUP PULLUP PULLUP Resistor to VCC for Input
PADs, Open-Drain and
3-State Outputs

N/A N/A READBACK N/A FPGA Bitstream Readback
Controller

N/A N/A STARTUP N/A User Interface to Global
Clock, Reset, and 3-State
Controls

N/A N/A TCK N/A Boundary-Scan Test Clock
Input Pad

N/A N/A TDI N/A Boundary-Scan Test Data
Input Pad

N/A N/A TDO N/A Boundary-Scan Data Out-
put Pad

N/A TIMEGRP TIMEGRP N/A Schematic-Level Table of
Basic Timing Specification
Groups

N/A TIMESPEC TIMESPEC TIMESPEC Schematic-Level Timing
Requirement Table

N/A N/A TMS N/A Boundary-Scan Test Mode
Select Input Pad

XC2000 XC3000 XC4000 XC7000 Description
2-20 Xilinx Development System

Selection Guide
Input/Output Flip-Flops
Input/output flip-flops are configured in IOBs. They include flip-
flops whose outputs are enabled by 3-state buffers, flip-flops that can
be set upon global set/reset rather than reset, and flip-flops with
inverted clock inputs. The naming convention specifies each flip-flop
function and is illustrated in the following figure.

Figure 2-6 Input/Output Flip-Flop Naming Convention

XC2000 XC3000 XC4000 XC7000 Description

IFD,
IFD4,
IFD8,
IFD16

IFD,
IFD4,
IFD8,
IFD16

IFD,
IFD4,
IFD8,
IFD16

IFD,
IFD4,
IFD8,
IFD16

Single- and Multiple-Input
D Flip-Flops

IFD_1 IFD_1 IFD_1 N/A D Flip-Flop with Inverted Clock
N/A N/A N/A IFDX1,

IFD4X1,
IFD8X1,
IFD16X1

Input D Flip-Flops with Clock
Enable for EPLD

N/A N/A IFDI N/A Input D Flip-Flop (Asynchronous
Set)

N/A N/A IFDI_1 N/A D Flip-Flop with Inverted Clock
(Asynchronous Set)

N/A OFD,
OFD4,
OFD8,
OFD16

OFD,
OFD4,
OFD8,
OFD16

OFD,
OFD4,
OFD8,
OFD16

Single- and Multiple-Output
D Flip-Flops

N/A OFD_1 OFD_1 N/A Output D Flip-Flop with Inverted
Clock

X4580

Output (O), Input (I)

Flip-Flop

D-Type

Active High Enable (E)
Active Low Enable (T)

Inverse of Normal Initial State

Inverted Clock

O F D E I _ 1
Libraries Guide 2-21

Libraries Guide
N/A OFDE,
OFDE4,
OFDE8,
OFDE16

OFDE,
OFDE4,
OFDE8,
OFDE16

OFDE,
OFDE4,
OFDE8,
OFDE16

D Flip-Flops with Active-High
3-State Output Buffers

N/A OFDE_1 OFDE_1 N/A D Flip-Flop with Active-High
3-State Output Buffer and Inverted
Clock

N/A N/A OFDEI N/A D Flip-Flop with Active-High
3-State Output Buffer (Asynchro-
nous Set)

N/A N/A OFDEI_1 N/A D Flip-Flop with Active-High
3-State Output Buffer and Inverted
Clock (Asynchronous Set)

N/A N/A OFDI N/A Output D Flip-Flop (Asynchronous
Set)

N/A N/A OFDI_1 N/A Output D Flip-Flop with Inverted
Clock (Asynchronous Set)

N/A OFDT,
OFDT4,
OFDT8,
OFDT16

OFDT,
OFDT4,
OFDT8,
OFDT16

OFDT,
OFDT4,
OFDT8,
OFDT16

Single and Multiple D Flip-Flops
with Active-Low 3-State Output
Buffers

N/A OFDT_1 OFDT_1 N/A D Flip-Flop with Active-Low
3-State Output Buffer and Inverted
Clock

N/A N/A OFDTI N/A D Flip-Flop with Active-Low
3-State Output Buffer (Asynchro-
nous Set)

N/A N/A OFDTI_1 N/A D Flip-Flop with Active-Low
3-State Output Buffer and Inverted
Clock (Asynchronous Set)

XC2000 XC3000 XC4000 XC7000 Description
2-22 Xilinx Development System

Selection Guide
Input/Output Functions
Input/Output Block (IOB) resources are configured into various
I/O primitives and macros for convenience, such as, output buffers
(OBUFs) and output buffers with an enable (OBUFEs). Pads used to
connect the circuit to PLD device pins are also included.

XC2000 XC3000 XC4000 XC7000 Description

IBUF,
IBUF4,
IBUF8,
IBUF16

IBUF,
IBUF4,
IBUF8,
IBUF16

IBUF,
IBUF4,
IBUF8,
IBUF16

IBUF,
IBUF4,
IBUF8,
IBUF16

Single- and Multiple-Input
Buffers

IOPAD,
IOPAD4,
IOPAD8,
IOPAD16

IOPAD,
IOPAD4,
IOPAD8,
IOPAD16

IOPAD,
IOPAD4,
IOPAD8,
IOPAD16

IOPAD,
IOPAD4,
IOPAD8,
IOPAD16

Single- and Multiple-Input/
Output Pads

IPAD,
IPAD4,
IPAD8,
IPAD16

IPAD,
IPAD4,
IPAD8,
IPAD16

IPAD,
IPAD4,
IPAD8,
IPAD16

IPAD,
IPAD4,
IPAD8,
IPAD16

Single- and Multiple-Input Pads

OBUF,
OBUF4,
OBUF8,
OBUF16

OBUF,
OBUF4,
OBUF8,
OBUF16

OBUF,
OBUF4,
OBUF8,
OBUF16

OBUF,
OBUF4,
OBUF8,
OBUF16

Single- and Multiple-Output
Buffers

OBUFE,
OBUFE4,
OBUFE8,
OBUFE16

OBUFE,
OBUFE4,
OBUFE8,
OBUFE16

OBUFE,
OBUFE4,
OBUFE8,
OBUFE16

OBUFE,
OBUFE4,
OBUFE8,
OBUFE16

3-State Output Buffers with
Active-High Fast Output Enable

N/A N/A N/A OBUFEX1,
OBUFE4X1,
OBUFE8X1,
OBUFEX2

3-State Output Buffers with
Active-High Fast Output Enable
for EPLD

OBUFT,
OBUFT4,
OBUFT8,
OBUFT16

OBUFT,
OBUFT4,
OBUFT8,
OBUFT16

OBUFT,
OBUFT4,
OBUFT8,
OBUFT16

OBUFT,
OBUFT4,
OBUFT8,
OBUFT16

Single and Multiple 3-State
Output Buffers with Active-Low
Enable

OPAD,
OPAD4,
OPAD8,
OPAD16

OPAD,
OPAD4,
OPAD8,
OPAD16

OPAD,
OPAD4,
OPAD8,
OPAD16

OPAD,
OPAD4,
OPAD8,
OPAD16

Single- and Multiple-Output Pads
Libraries Guide 2-23

Libraries Guide
Input Latches
Single and multiple input latches can hold transient data entering a
chip. Input latches use the same naming convention as I/O flip-flops.

Latches
Latches (LD) are only available in the XC2000 and XC7000 architec-
tures. XC3000 and XC4000 latches that existed in previous macro
libraries are not recommended for new designs.

UPAD UPAD UPAD UPAD Connects the I/O Node of an IOB
to the Internal PLD Circuit

VCC VCC VCC VCC VCC Connection Signal Tag

XC2000 XC3000 XC4000 XC7000 Description

N/A ILD,
ILD4,
ILD8,
ILD16

ILD,
ILD4,
ILD8,
ILD16

ILD,
ILD4,
ILD8,
ILD16

Input Transparent Data Latches

N/A ILD_1 ILD_1 N/A Transparent Input Data Latch with
Inverted Gate

N/A N/A ILDI N/A Input Transparent Data Latch
(Asynchronous Set)

N/A N/A ILDI_1 N/A Transparent Input Data Latch with
Inverted Gate (Synchronous Set)

XC2000 XC3000 XC4000 XC7000 Description

LD N/A N/A LD Single and Multiple Transparent
Data LatchesN/A N/A N/A LD4,

LD8,
LD16

LD_1 N/A N/A N/A Transparent Data Latch with
Inverted Gate

LDC N/A N/A N/A Transparent Data Latch with Asyn-
chronous Clear

LD4CE,
LD8CE,
LD16CE

N/A N/A N/A Transparent Data Latches with
Asynchronous Clear and Clock
Enable

XC2000 XC3000 XC4000 XC7000 Description
2-24 Xilinx Development System

Selection Guide
Logic Primitives
Combinatorial logic gates that implement the basic Boolean functions
are available in XC2000, XC3000, XC4000, and XC7000 architectures
with up to five inputs in all combinations of inverted and non-
inverted inputs, and with six to nine inputs non-inverted.

LDCP N/A N/A N/A Transparent Data Latch with Asyn-
chronous Clear and Preset

LDCPE N/A N/A N/A Transparent Data Latch with Asyn-
chronous Clear and Preset and
Clock Enable

LDC_1 N/A N/A N/A Transparent Data Latch with Asyn-
chronous Clear and Inverted Gate
Input

XC2000 XC3000 XC4000 XC7000 Description

AND2,
AND2B1,
AND2B2,
AND3,
AND3B1,
AND3B2,
AND3B3,
AND4,
AND4B1,
AND4B2,
AND4B3,
AND4B4,
AND5,
AND5B1,
AND5B2,
AND5B3,
AND5B4,
AND5B5,
AND6,
AND7,
AND8,
AND9

AND2,
AND2B1,
AND2B2,
AND3,
AND3B1,
AND3B2,
AND3B3,
AND4,
AND4B1,
AND4B2,
AND4B3,
AND4B4,
AND5,
AND5B1,
AND5B2,
AND5B3,
AND5B4,
AND5B5,
AND6,
AND7,
AND8,
AND9

AND2,
AND2B1,
AND2B2,
AND3,
AND3B1,
AND3B2,
AND3B3,
AND4,
AND4B1,
AND4B2,
AND4B3,
AND4B4,
AND5,
AND5B1,
AND5B2,
AND5B3,
AND5B4,
AND5B5,
AND6,
AND7,
AND8,
AND9

AND2,
AND2B1,
AND2B2,
AND3,
AND3B1,
AND3B2,
AND3B3,
AND4,
AND4B1,
AND4B2,
AND4B3,
AND4B4,
AND5,
AND5B1,
AND5B2,
AND5B3,
AND5B4,
AND5B5,
AND6,
AND7,
AND8,
AND9

2- to 9-Input AND Gates
with Inverted and
Non-Inverted Inputs

XC2000 XC3000 XC4000 XC7000 Description
Libraries Guide 2-25

Libraries Guide
INV,
INV4,
INV8,
INV16

INV,
INV4,
INV8,
INV16

INV,
INV4,
INV8,
INV16

INV,
INV4,
INV8,
INV16

Single and Multiple
Inverters

NAND2,
NAND2B1,
NAND2B2,
NAND3,
NAND3B1,
NAND3B2,
NAND3B3,
NAND4,
NAND4B1,
NAND4B2,
NAND4B3,
NAND4B4,
NAND5,
NAND5B1,
NAND5B2,
NAND5B3,
NAND5B4,
NAND5B5,
NAND6,
NAND7,
NAND8,
NAND9

NAND2,
NAND2B1,
NAND2B2,
NAND3,
NAND3B1,
NAND3B2,
NAND3B3,
NAND4,
NAND4B1,
NAND4B2,
NAND4B3,
NAND4B4,
NAND5,
NAND5B1,
NAND5B2,
NAND5B3,
NAND5B4,
NAND5B5,
NAND6,
NAND7,
NAND8,
NAND9

NAND2,
NAND2B1,
NAND2B2,
NAND3,
NAND3B1,
NAND3B2,
NAND3B3,
NAND4,
NAND4B1,
NAND4B2,
NAND4B3,
NAND4B4,
NAND5,
NAND5B1,
NAND5B2,
NAND5B3,
NAND5B4,
NAND5B5,
NAND6,
NAND7,
NAND8,
NAND9

NAND2,
NAND2B1,
NAND2B2,
NAND3,
NAND3B1,
NAND3B2,
NAND3B3,
NAND4,
NAND4B1,
NAND4B2,
NAND4B3,
NAND4B4,
NAND5,
NAND5B1,
NAND5B2,
NAND5B3,
NAND5B4,
NAND5B5,
NAND6,
NAND7,
NAND8,
NAND9

2- to 9-Input NAND
Gates with Inverted and
Non-Inverted Inputs

XC2000 XC3000 XC4000 XC7000 Description
2-26 Xilinx Development System

Selection Guide
NOR2,
NOR2B1,
NOR2B2,
NOR3,
NOR3B1,
NOR3B2,
NOR3B3,
NOR4,
NOR4B1,
NOR4B2,
NOR4B3,
NOR4B4,
NOR5,
NOR5B1,
NOR5B2,
NOR5B3,
NOR5B4,
NOR5B5,
NOR6,
NOR7,
NOR8,
NOR9

NOR2,
NOR2B1,
NOR2B2,
NOR3,
NOR3B1,
NOR3B2,
NOR3B3,
NOR4,
NOR4B1,
NOR4B2,
NOR4B3,
NOR4B4,
NOR5,
NOR5B1,
NOR5B2,
NOR5B3,
NOR5B4,
NOR5B5,
NOR6,
NOR7,
NOR8,
NOR9

NOR2,
NOR2B1,
NOR2B2,
NOR3,
NOR3B1,
NOR3B2,
NOR3B3,
NOR4,
NOR4B1,
NOR4B2,
NOR4B3,
NOR4B4,
NOR5,
NOR5B1,
NOR5B2,
NOR5B3,
NOR5B4,
NOR5B5,
NOR6,
NOR7,
NOR8,
NOR9

NOR2,
NOR2B1,
NOR2B2,
NOR3,
NOR3B1,
NOR3B2,
NOR3B3,
NOR4,
NOR4B1,
NOR4B2,
NOR4B3,
NOR4B4,
NOR5,
NOR5B1,
NOR5B2,
NOR5B3,
NOR5B4,
NOR5B5,
NOR6,
NOR7,
NOR8,
NOR9

2- to 9-Input NOR Gates
with Inverted and
Non-Inverted Inputs

XC2000 XC3000 XC4000 XC7000 Description
Libraries Guide 2-27

Libraries Guide
OR2,
OR2B1,
OR2B2,
OR3,
OR3B1,
OR3B2,
OR3B3,
OR4,
OR4B1,
OR4B2,
OR4B3,
OR4B4,
OR5,
OR5B1,
OR5B2,
OR5B3,
OR5B4,
OR5B5,
OR6,
OR7,
OR8,
OR9

OR2,
OR2B1,
OR2B2,
OR3,
OR3B1,
OR3B2,
OR3B3,
OR4,
OR4B1,
OR4B2,
OR4B3,
OR4B4,
OR5,
OR5B1,
OR5B2,
OR5B3,
OR5B4,
OR5B5,
OR6,
OR7,
OR8,
OR9

OR2,
OR2B1,
OR2B2,
OR3,
OR3B1,
OR3B2,
OR3B3,
OR4,
OR4B1,
OR4B2,
OR4B3,
OR4B4,
OR5,
OR5B1,
OR5B2,
OR5B3,
OR5B4,
OR5B5,
OR6,
OR7,
OR8,
OR9

OR2,
OR2B1,
OR2B2,
OR3,
OR3B1,
OR3B2,
OR3B3,
OR4,
OR4B1,
OR4B2,
OR4B3,
OR4B4,
OR5,
OR5B1,
OR5B2,
OR5B3,
OR5B4,
OR5B5,
OR6,
OR7,
OR8,
OR9

2- to 9-Input OR Gates
with Inverted and
Non-Inverted Inputs

SOP3,
SOP3B1A,
SOP3B1B,
SOP3B2A,
SOP3B2B,
SOP3B3,
SOP4,
SOP4B1,
SOP4B2A,
SOP4B2B,
SOP4B3,
SOP4B4

SOP3,
SOP3B1A,
SOP3B1B,
SOP3B2A,
SOP3B2B,
SOP3B3,
SOP4,
SOP4B1,
SOP4B2A,
SOP4B2B,
SOP4B3,
SOP4B4

SOP3,
SOP3B1A,
SOP3B1B,
SOP3B2A,
SOP3B2B,
SOP3B3,
SOP4,
SOP4B1,
SOP4B2A,
SOP4B2B,
SOP4B3,
SOP4B4

SOP3,
SOP3B1A,
SOP3B1B,
SOP3B2A,
SOP3B2B,
SOP3B3,
SOP4,
SOP4B1,
SOP4B2A,
SOP4B2B,
SOP4B3,
SOP4B4

Sum of Products

N/A N/A WAND1,
WAND4,
WAND8,
WAND16

N/A Open-Drain Buffers

XC2000 XC3000 XC4000 XC7000 Description
2-28 Xilinx Development System

Selection Guide
N/A N/A WOR2AND N/A 2-Input OR Gate with
Wired-AND Open-Drain
Buffer Output

XNOR2,
XNOR3,
XNOR4,
XNOR5,
XNOR6,
XNOR7,
XNOR8,
XNOR9

XNOR2,
XNOR3,
XNOR4,
XNOR5,
XNOR6,
XNOR7,
XNOR8,
XNOR9

XNOR2,
XNOR3,
XNOR4,
XNOR5,
XNOR6,
XNOR7,
XNOR8,
XNOR9

XNOR2,
XNOR3,
XNOR4,
XNOR5,
XNOR6,
XNOR7,
XNOR8,
XNOR9

2- to 9-Input XNOR Gates
with Non-Inverted Inputs

XOR2,
XOR3,
XOR4,
XOR5,
XOR6,
XOR7,
XOR8,
XOR9

XOR2,
XOR3,
XOR4,
XOR5,
XOR6,
XOR7,
XOR8,
XOR9

XOR2,
XOR3,
XOR4,
XOR5,
XOR6,
XOR7,
XOR8,
XOR9

XOR2,
XOR3,
XOR4,
XOR5,
XOR6,
XOR7,
XOR8,
XOR9

2- to 9-Input XOR Gates
with Non-Inverted Inputs

XC2000 XC3000 XC4000 XC7000 Description
Libraries Guide 2-29

Libraries Guide
Map Elements
Map elements are used in conjunction with logic symbols to constrain
the logic to particular CLBs or particular F or H function generators.

Memory Elements
The XC4000 architecture has a number of static RAM configurations
defined as macros. These 16- or 32-word RAMs are 1, 2, 4, and 8 bits
wide. There are also two ROMs in the XC4000 architecture, 16X1 and
32X1. ROMs only exist in XC4000.

XC2000 XC3000 XC4000 XC7000 Description

CLBMAP CLBMAP N/A N/A Logic Partitioning Control Symbol
N/A N/A FMAP N/A F Function Generator Partitioning

Control Symbol
N/A N/A HMAP N/A Random-Logic Design Constraint

Symbol

XC2000 XC3000 XC4000 XC7000 Description

N/A N/A RAM16X1 N/A 16-Deep by 1-Wide Static RAM
N/A N/A RAM16X2 N/A 16-Deep by 2-Wide Static RAM
N/A N/A RAM16X4 N/A 16-Deep by 4-Wide Static RAM
N/A N/A RAM16X8 N/A 16-Deep by 8-Wide Static RAM
N/A N/A RAM32X1 N/A 32-Deep by 1-Wide Static RAM
N/A N/A RAM32X2 N/A 32-Deep by 2-Wide Static RAM
N/A N/A RAM32X4 N/A 32-Deep by 4-Wide Static RAM
N/A N/A RAM32X8 N/A 32-Deep by 8-Wide Static RAM
N/A N/A ROM16X1 N/A 16-Deep by 1-Wide ROM
N/A N/A ROM32X1 N/A 32-Deep by 1-Wide ROM
2-30 Xilinx Development System

Selection Guide
Multiplexers
The multiplexer naming convention shown in the following figure,
indicates the number of inputs and outputs and if an enable is avail-
able. There are a number of TTL 7400-type multiplexers that have
active-Low or inverted outputs.

Figure 2-7 Multiplexer Naming Convention

XC2000 XC3000 XC4000 XC7000 Description

M2_1 M2_1 M2_1 M2_1 2-to-1 Multiplexer
M2_1B1 M2_1B1 M2_1B1 M2_1B1 2-to-1 Multiplexer with D0

Inverted
M2_1B2 M2_1B2 M2_1B2 M2_1B2 2-to-1 Multiplexer with D0 and D1

Inverted
M2_1E M2_1E M2_1E M2_1E 2-to-1 Multiplexer with Enable
M4_1E M4_1E M4_1E M4_1E 4-to-1 Multiplexer with Enable
M8_1E M8_1E M8_1E M8_1E 8-to-1 Multiplexer with Enable
M16_1E M16_1E M16_1E M16_1E 16-to-1 Multiplexer with Enable
X74_150 X74_150 X74_150 X74_150 16-to-1 Multiplexer with Active-

Low Enable and Output
X74_151 X74_151 X74_151 X74_151 8-to-1 Multiplexer with Active-

Low Enable and Complementary
Outputs

X74_152 X74_152 X74_152 X74_152 8-to-1 Multiplexer with Active-
Low Output

X74_153 X74_153 X74_153 X74_153 Dual 4-to-1 Multiplexer with
Active-Low Enables and Common
Select Input

X74_157 X74_157 X74_157 X74_157 Quadruple 2-to-1 Multiplexer with
Common Select and Active-Low
Enable

X4620

M 8 _ 1 E
Multiplexer

Number of Inputs

Number of Outputs

Output Enable
Libraries Guide 2-31

Libraries Guide
PLD Elements
PLD elements represent custom logic functions that are defined by an
equation file in EPLD designs.

X74_158 X74_158 X74_158 X74_158 Quadruple 2-to-1 Multiplexer with
Common Select, Active-Low
Enable, and Active-Low Outputs

X74_298 X74_298 X74_298 X74_298 Quadruple 2-Input Multiplexer
with Storage and Negative-Edge
Clock

X74_352 X74_352 X74_352 X74_352 Dual 4-to-1 Multiplexer with
Active-Low Enables and Outputs

XC2000 XC3000 XC4000 XC7000 Description

N/A N/A N/A PL20PIN Generic PLD Symbols for EPLD
N/A N/A N/A PL24PIN
N/A N/A N/A PL48PIN
N/A N/A N/A PL20V8 20V8-Compatible PLD Symbol for

EPLD
N/A N/A N/A PL22V10 22V10-Compatible PLD Symbol for

EPLD
N/A N/A N/A PLFB9 EPLD High-Density Function

Block PLD Symbol
N/A N/A N/A PLFFB9 EPLD Fast Function Block PLD

Symbol

XC2000 XC3000 XC4000 XC7000 Description
2-32 Xilinx Development System

Selection Guide
Shift Registers
Shift registers are available in a variety of sizes and capabilities. The
naming convention shown in the following figure illustrates avail-
able features.

Figure 2-8 Shift Register Naming Convention

XC2000 XC3000 XC4000 XC7000 Description

SR4CE SR4CE SR4CE SR4CE 4-Bit Serial-In Parallel-Out Shift
Register with Clock Enable and
Asynchronous Clear

SR4CLE SR4CLE SR4CLE SR4CLE 4-Bit Loadable Serial/Parallel-In
Parallel-Out Shift Register with
Clock Enable and Asynchronous
Clear

SR4CLED SR4CLED SR4CLED SR4CLED 4-Bit Shift Register with Clock
Enable and Asynchronous Clear

SR4RE SR4RE SR4RE SR4RE 4-Bit Serial-In Parallel-Out Shift
Register with Clock Enable and
Synchronous Reset

SR4RLE SR4RLE SR4RLE SR4RLE 4-Bit Loadable Serial/Parallel-In
Parallel-Out Shift Register with
Clock Enable and Synchronous
Reset

SR4RLED SR4RLED SR4RLED SR4RLED 4-Bit Shift Register with Clock
Enable and Synchronous Reset

SR8CE SR8CE SR8CE SR8CE 8-Bit Serial-In Parallel-Out Shift
Register with Clock Enable and
Asynchronous Clear

X4578

Bit Size

Shift Register

Asynchronous Clear (C)
Synchronous Reset (R)

Clock Enable

Loadable

S R 8 R L E D

Directional
Libraries Guide 2-33

Libraries Guide
SR8CLE SR8CLE SR8CLE SR8CLE 8-Bit Loadable Serial/Parallel-In
Parallel-Out Shift Register with
Clock Enable and Asynchronous
Clear

SR8CLED SR8CLED SR8CLED SR8CLED 8-Bit Shift Register with Clock
Enable and Asynchronous Clear

SR8RE SR8RE SR8RE SR8RE 8-Bit Serial-In Parallel-Out Shift
Register with Clock Enable and
Synchronous Reset

SR8RLE SR8RLE SR8RLE SR8RLE 8-Bit Loadable Serial/Parallel-In
Parallel-Out Shift Register with
Clock Enable and Synchronous
Reset

SR8RLED SR8RLED SR8RLED SR8RLED 8-Bit Shift Register with Clock
Enable and Synchronous Reset

SR16CE SR16CE SR16CE SR16CE 16-Bit Serial-In Parallel-Out Shift
Register with Clock Enable and
Asynchronous Clear

SR16CLE SR16CLE SR16CLE SR16CLE 16-Bit Loadable Serial/Parallel-In
Parallel-Out Shift Register with
Clock Enable and Asynchronous
Clear

SR16CLED SR16CLED SR16CLED SR16CLED 16-Bit Shift Register with Clock
Enable and Asynchronous Clear

SR16RE SR16RE SR16RE SR16RE 16-Bit Serial-In Parallel-Out Shift
Register with Clock Enable and
Synchronous Reset

SR16RLE SR16RLE SR16RLE SR16RLE 16-Bit Loadable Serial/Parallel-In
Parallel-Out Shift Register with
Clock Enable and Synchronous
Reset

SR16RLED SR16RLED SR16RLED SR16RLED 16-Bit Shift Register with Clock
Enable and Synchronous Reset

X74_164 X74_164 X74_164 X74_164 8-Bit Serial-In Parallel-Out Shift
Register with Active-Low Asyn-
chronous Clear

XC2000 XC3000 XC4000 XC7000 Description
2-34 Xilinx Development System

Selection Guide
Shifters
Shifters are barrel shifters (BRLSHFT) of four and eight bits.

Obsolete Macros
Xilinx maintains software libraries with thousands of functional
design elements (primitives and macros) for different device architec-
tures. When new elements are introduced that can provide additional
functions, greater flexibility, increased speed, or enhanced system
performance, it is necessary to remove or replace existing elements.

In some cases, design elements in the following tables have been
obsoleted because their names changed to conform with the Unified
Libraries’ naming conventions. In other cases, duplicate functions
have been eliminated. If you want a function that appears in the
following tables, and an exact or functionally similar replacement
does not exist, check the appropriate functional table listed in the
Selection Guide, earlier in this chapter to determine the appropriate
current macro.

X74_165S X74_165S X74_165S X74_165S 8-Bit Loadable Serial/Parallel-In
Parallel-Out Shift Register with
Clock Enable

X74_194 X74_194 X74_194 X74_194 4-Bit Loadable Directional Serial/
Parallel-In Parallel-Out Shift Regis-
ter

X74_195 X74_195 X74_195 X74_195 4-Bit Loadable Serial/Parallel-In
Parallel-Out Shift Register

XC2000 XC3000 XC4000 XC7000 Description

N/A BRLSHFT4 BRLSHFT4 BRLSHFT4 4-Bit Barrel Shifter
N/A BRLSHFT8 BRLSHFT8 BRLSHFT8 8-Bit Barrel Shifter

XC2000 XC3000 XC4000 XC7000 Description
Libraries Guide 2-35

Libraries Guide
The Unified Libraries make certain types of elements obsolete for the
following reasons.

● Simple gates with names ending in B.

(Bs indicate inversion of all inputs) The gates are still available as
options for the generic macro (for example, for AND3B, refer to
AND).

● Some redundancies have been eliminated.

● Some macros have been eliminated because they were meaning-
less inside an FPGA (for example, X74-240).

● Some macros have been eliminated because they were inefficient
or had sub–optimal implementation.

If you have active designs that were created with former Xilinx
libraries’ primitives or macros, you may need to change references to
the design elements that you were using to reflect the new Unified
Libraries elements.

The following tables list Unified Libraries exact replacements and
substitutions for existing elements that you can use to update your
designs. Exact replacements are just that; you can use them for
exactly the same function(s) as before. Substitutions provide at least
the same functionality, but may afford additional advantages.
Elements listed as obsolete are not recommended for new designs.
They can still be found in some macro libraries, but support for them
is being discontinued.

The elements are listed in alphanumeric order by architecture.
Previous library element names appear in the left-most column
followed by their exact Unified Libraries’ replacement, if available. If
an exact replacement does not exist, the closest substitution/an
element with similar functions is provided in the third column. If you
are not sure of the function provided by an exact replacement or
substitution, refer to the Selection Guide, earlier in this chapter.
Macro functions that are no longer supported are indicated in the
Obsolete column.
2-36 Xilinx Development System

Selection Guide
XC2000 Replacement and Obsolete Macro Functions

Existing
XC2000
Name

Exact
Unified

Replacement

Closest
Unified

Replacement
Obsolete

ASHEET ASHEETP
BPAD IOPAD
BSHEET BSHEETL
C2BCR CB2RE
C2BCRD CB2CE
C2BP CB2CLE
C2BR CB2RE
C2BRD CB2CLE
C4BCP CB4CLE
C4BCR CB2RE
C4BCRD CB2CE
C4JCR CJ4RE
C6JCR CJ4RE
C8BCP CB4CLE
C8BCR CB4RE
C8BCRD CB4CLE
C8JCR CJ4RE
C10BCPRD CD4CLE
C10BCRD CD4CE
C10BPRD CD4CLE
C10JCR CJ5RE
C12JCR CJ8RE
C16BARD CB4CE
C16BCPR CB4CLE
C16BCPRD CB4CLE
C16BCRD CB4CE
C16BPRD CB4CLE
C16BUDRD CB4CLED
Libraries Guide 2-37

Libraries Guide
C16JCR CJ8RE
C256FCRD CB8CLED
CSHEET CSHEETL
D2-4 D2_4E
D2-4E D2_4E
D3-8 D3_8E
D3-8E D3_8E
DFF FD
DLAT LDCP
DSHEET DSHEETL
ESHEET ESHEETL
FDC FDCE
FDCR FDRE
FDCS FDSE
FDM Obsolete
FDMR Obsolete
FDMRD Obsolete
FDMS Obsolete
FDMSD Obsolete
FDRD FDC
FDSD FDCP
FDSRD FDCP
FJK FJKC
FJKRD FJKC
FJKS FJKSRE
FJKSD FJKCP
FJKSRD FJKCP
FRS Obsolete
FSR Obsolete
FT FTC

Existing
XC2000
Name

Exact
Unified

Replacement

Closest
Unified

Replacement
Obsolete
2-38 Xilinx Development System

Selection Guide
FT0 FTC
FT0R FTRSE
FT2 FTCE
FT2R FTRSE
FTP FTCP
FTPRD FTRSLE
FTR FTSRE
FTRD FTC
FTS FTSRE
GADD ADD1
GCOMP COMP2
GEQGT Obsolete
GMAJ Obsolete
GMUX M2_1
GOSC Obsolete
GPAR Obsolete
GXOR XOR2
GXOR2 Obsolete
INFF IFD
LDM Obsolete
LDMRD Obsolete
LDMSD Obsolete
LDRD LDC
LDSD LDP
LDSRD LDCP
M3-1 M4_1
M3-1E M4_1E
M4-1 M4_1
M4-1E M4_1E
M8-1 M8_1

Existing
XC2000
Name

Exact
Unified

Replacement

Closest
Unified

Replacement
Obsolete
Libraries Guide 2-39

Libraries Guide
M8-1E M8_1E
NDFF Obsolete
OBUFZ OBUFT
OUTFF OFD
PAD IOPAD
PAL2RA10 Obsolete
PAL6L16A Obsolete
PAL8L14A Obsolete
PAL10H8 Obsolete
PAL10H20 Obsolete
PAL10L8 Obsolete
PAL12H6 Obsolete
PAL12L6 Obsolete
PAL12L10 Obsolete
PAL14H4 Obsolete
PAL14L4 Obsolete
PAL14L8 Obsolete
PAL16A4 Obsolete
PAL16C1 Obsolete
PAL16H2 Obsolete
PAL16L2 Obsolete
PAL16L6 Obsolete
PAL16L8 Obsolete
PAL16P8 Obsolete
PAL16P8A Obsolete
PAL16R4 Obsolete
PAL16R4A Obsolete
PAL16R6 Obsolete
PAL16R6A Obsolete
PAL16R8 Obsolete

Existing
XC2000
Name

Exact
Unified

Replacement

Closest
Unified

Replacement
Obsolete
2-40 Xilinx Development System

Selection Guide
PAL16R8A Obsolete
PAL16X4 Obsolete
PAL16RA8 Obsolete
PAL16RP4 Obsolete
PAL16RP6 Obsolete
PAL16RP8 Obsolete
PAL18L4 Obsolete
PAL20C1 Obsolete
PAL20L2 Obsolete
PAL20L8 Obsolete
PAL20L10 Obsolete
PAL20R4 Obsolete
PAL20R6 Obsolete
PAL20R8 Obsolete
PAL20R10 Obsolete
PAL20RS4 Obsolete
PAL20RS8 Obsolete
PAL20S10 Obsolete
PAL20X4 Obsolete
PAL20X8 Obsolete
PAL20X10 Obsolete
PAL22RX8 Obsolete
PAL22V10 Obsolete
PAL32R16 Obsolete
PAL32V10 Obsolete
PAL64R32 Obsolete
RD4 FD4RE
RD8 FD8CE
RD8CR FD8RE
RS4 SR4CE

Existing
XC2000
Name

Exact
Unified

Replacement

Closest
Unified

Replacement
Obsolete
Libraries Guide 2-41

Libraries Guide
RS8 SR8CE
RS8CR SR8RE
RS8PR SR8RLE
RS8R SR8RE
ZMX2000 Obsolete
ZXPAL Obsolete
ZX2000 Obsolete
74-42 X74_42
74-138 X74_138
74-139 X74_139
74-151 X74_151
74-152 X74_152
74-160 X74_160
74-161 X74_161
74-164 X74_164
74-194 X74_194
74-195 X74_195
74-352 X74_352

Existing
XC2000
Name

Exact
Unified

Replacement

Closest
Unified

Replacement
Obsolete
2-42 Xilinx Development System

Selection Guide
XC3000 Replacement and Obsolete Macro Functions

Existing
XC3000
Name

Exact
Unified

Replacement

Closest
Unified

Replacement
Obsolete

ASHEET ASHEETP
BPAD IOPAD
BRM Obsolete
BRM2 Obsolete
BSHEET BSHEETL
CBINRIP Obsolete
CDECRIP CD4CE
CSHEET CSHEETL
C2BCP Obsolete
C2BCPRD CB2CLE
C2BCR CB2RE
C2BCRD CB2CE
C2BP CB2CLE
C2BR CB2RE
C2BRD CB2CLE
C3BIT8 Obsolete
C3BIT8O7 Obsolete
C3SQUARE Obsolete
C4BCP CB4CLE
C4BCPRD CB2CLE
C4BCR CB2RE
C4BCRD CB2CE
C4JX CJ4CE
C4JXC CJ4CE
C4JXCR CJ4RE
C4JXCRD CJ4CE
C4JXRD CJ4CE
C5BIT32 Obsolete
Libraries Guide 2-43

Libraries Guide
C5SQUARE Obsolete
C6JCR CJ4RE
C8BCP CB4CLE
C8BCPRD CB4CLE
C8BCR CB4RE
C8BCRD CB4CLE
C8JCR CJ4RE
C8UDLD Obsolete
C10BCPRD CD4CLE
C10BCRD CD4CE
C10BPRD CD4CLE
C10JCR CJ5RE
C12JCR CJ8RE
C16BARD CB4CE
C16BCP CB4CLE
C16BCPR CB4CLE
C16BCPRD CB4CLE
C16BCRD CB4CE
C16BPRD CB4CLE
C16BUDRD CB4CLED
C16DNLD CB4CLED
C16JCR CJ8RE
C16UDLD CB4CLED
C16UPLD CB4CLED
C256BCP CB8CLE
C256BCPR CB8CLE
C256BCR CB8RE
C256BCRD CB8CE
C256FCRD CB8CLED
DFF FD

Existing
XC3000
Name

Exact
Unified

Replacement

Closest
Unified

Replacement
Obsolete
2-44 Xilinx Development System

Selection Guide
DSHEET DSHEETL
D2-4 D2_4E
D2-4E D2_4E
D3-8 D3_8E
D3-8E D3_8E
ESHEET ESHEETL
FDC FDCE
FDCR FDRE
FDCRD FDCE
FDCS FDSE
FDM Obsolete
FDMR Obsolete
FDMRD Obsolete
FDMS Obsolete
FDRD FDC
FJK FJKC
FJKRD FJKC
FJKS FJKSRE
FRS Obsolete
FSR Obsolete
FT FTC
FT0 FTC
FT0R FTRSE
FTP FTCP
FTPRD FTRSLE
FTRD FTC
FTS FTSRE
GADD ADD1
GCOMP COMP2
GLTGT COMPM2

Existing
XC3000
Name

Exact
Unified

Replacement

Closest
Unified

Replacement
Obsolete
Libraries Guide 2-45

Libraries Guide
GMUX M2_1
GOSC Obsolete
HX42 X74_42
HX48 Obsolete
HX77 Obsolete
HX125 Obsolete
HX138 X74_138
HX139 X74_139
HX147 X74_147
HX148 X74_148
HX151 X74_151
HX152 X74_152
HX153 X74_153
HX154 X74_154
HX157 X74_157
HX158 X74_158
HX160 X74_160
HX161 X74_161
HX162 X74_162
HX163 X74_163
HX164 X74_164
HX166 Obsolete
HX168 X74_168
HX169 Obsolete
HX174 X74_174
HX179 Obsolete
HX194 X74_194
HX195 X74_195
HX198 Obsolete
HX199 Obsolete

Existing
XC3000
Name

Exact
Unified

Replacement

Closest
Unified

Replacement
Obsolete
2-46 Xilinx Development System

Selection Guide
HX240 Obsolete
HX241 Obsolete
HX244 Obsolete
HX257 Obsolete
HX258 Obsolete
HX259 Obsolete
HX273 X74_273
HX278 Obsolete
HX280 X74_280
HX283 X74_283
HX298 X74_298
HX352 X74_352
HX373 Obsolete
HX374 Obsolete
HX377 X74_377
HX390 X74_390
HX393 Obsolete
HX518 X74_518
HX521 X74_521
HX541 Obsolete
HX577 Obsolete
HX590 Obsolete
HX595 Obsolete
INFF IFD
INLAT ILD
M3-1 M4_1
M3-1E M4_1E
M4-1 M4_1
M4-1C Obsolete
M4-1E M4_1E

Existing
XC3000
Name

Exact
Unified

Replacement

Closest
Unified

Replacement
Obsolete
Libraries Guide 2-47

Libraries Guide
M4-2 M2_1
M8-1 M8_1
M8-1E M8_1E
OBUFZ OBUFT
OUTFF OFD
OUTFFT OFDT
OUTFFZ OFDT
PAD IOPAD
PAL2RA10 Obsolete
PAL6L16A Obsolete
PAL8L14A Obsolete
PAL10H8 Obsolete
PAL10H20 Obsolete
PAL10L8 Obsolete
PAL12H6 Obsolete
PAL12L6 Obsolete
PAL12L10 Obsolete
PAL14H4 Obsolete
PAL14L4 Obsolete
PAL14L8 Obsolete
PAL16A4 Obsolete
PAL16C1 Obsolete
PAL16H2 Obsolete
PAL16L2 Obsolete
PAL16L6 Obsolete
PAL16L8 Obsolete
PAL16P8 Obsolete
PAL16P8A Obsolete
PAL16RA8 Obsolete
PAL16RP4 Obsolete

Existing
XC3000
Name

Exact
Unified

Replacement

Closest
Unified

Replacement
Obsolete
2-48 Xilinx Development System

Selection Guide
PAL16RP6 Obsolete
PAL16RP8 Obsolete
PAL16R4 Obsolete
PAL16R4A Obsolete
PAL16R6 Obsolete
PAL16R6A Obsolete
PAL16R8 Obsolete
PAL16R8A Obsolete
PAL16X4 Obsolete
PAL18L4 Obsolete
PAL20C1 Obsolete
PAL20L2 Obsolete
PAL20L8 Obsolete
PAL20L10 Obsolete
PAL20RS4 Obsolete
PAL20RS8 Obsolete
PAL20R4 Obsolete
PAL20R6 Obsolete
PAL20R8 Obsolete
PAL20R10 Obsolete
PAL20S10 Obsolete
PAL20X4 Obsolete
PAL20X8 Obsolete
PAL20X10 Obsolete
PAL22RX8 Obsolete
PAL22V10 Obsolete
PAL32R16 Obsolete
PAL32V10 Obsolete
PAL64R32 Obsolete
PHFRCOMP Obsolete

Existing
XC3000
Name

Exact
Unified

Replacement

Closest
Unified

Replacement
Obsolete
Libraries Guide 2-49

Libraries Guide
RD4 FD4RE
RD4RD FD4RE
RD8 FD8CE
RD8CR FD8RE
RD8RD FD8RE
RS4 SR4CE
RS4C SR4CE
RS4CR SR4RE
RS4CRD SR4CE
RS4RD SR4RE
RS8 SR8CE
RS8C SR8CE
RS8CR SR8RE
RS8CRD SR8CE
RS8PR SR8RLE
RS8R SR8RE
RS8RD SR8RE
SAR Obsolete
TBUF BUFT
WM8-1 Obsolete
WM16-1 Obsolete
X74160D Obsolete
X74160U X74_160
X74161D Obsolete
X74161U X74_161
X74165A X74_165S
X74165S X74_165S
X7474 FDCP
ZMX3000 Obsolete
ZX3000 Obsolete

Existing
XC3000
Name

Exact
Unified

Replacement

Closest
Unified

Replacement
Obsolete
2-50 Xilinx Development System

Selection Guide
ZXPAL Obsolete
ZXTTL Obsolete
74-42 X74_42
74-138 X74_138
74-139 X74_139
74-151 X74_151
74-152 X74_152
74-160 X74_160
74-161 X74_161
74-162 X74_162
74-163 X74_163
74-164 X74_164
74-194 X74_194
74-195 X74_195
74-352 X74_352

Existing
XC3000
Name

Exact
Unified

Replacement

Closest
Unified

Replacement
Obsolete
Libraries Guide 2-51

Libraries Guide
XC4000 Replacement and Obsolete Macro Functions

Existing
XC4000
Name

Exact
Unified

Replacement

Closest
Unified

Replacement
Obsolete

ACC8H ACC8
ACC16H ACC16
ADD1 ADD4
ADD2 ADD4
ADD12 ADD16
ADD24 Obsolete
ADD32 Obsolete
ADDSUB1 ADSU4
ADSU8H ADSU8
ADSU16H ADSU16
ASHEET ASHEETP
BIDI4 Obsolete
BIDI8 Obsolete
BIDI16 Obsolete
BPAD IOPAD
BSHEET BSHEETL
CDECRIP CD4CE
COMP8H COMP8
COMP16H COMP16
COMP32 Obsolete
COMPM8H COMPMC8
COMPM16H COMPMC16
COMPM32 Obsolete
CSHEET CSHEETL
CUP8H CB8CLE
CUP16H CB16CLE
C2BCPRD CB2CLE
C2BCR CB2RE
2-52 Xilinx Development System

Selection Guide
C2BCRD CB2CE
C2BINRIP CB2CE
C4BCPRD CB2CLE
C4BCR CB2RE
C4BCRD CB2CE
C4BINRIP CB4CE
C4JXCR CJ4RE
C4JXCRD CJ4CE
C8BCPRD CB4CLE
C8BCR CB4RE
C8BCRD CB4CLE
C8JCR CJ4RE
C8JCRD CJ4CE
C10BCPRD CD4CLE
C10BCRD CD4CE
C10JCR CJ5RE
C10JCRD CJ5CE
C16BCPRD CB4CLE
C16BCR CB4RE
C16BCRD CB4CE
C16BUDRD CB4CLED
C16JCR CJ8RE
C16JCRD CJ8CE
C32BUDRD CB8CLED
C64BUDRD CB8CLED
C256BCPR CB8CLE
C256BCR CB8RE
C256BCRD CB8CE
DEC2-4EH X74_139
DEC3-8EH X74_138

Existing
XC4000
Name

Exact
Unified

Replacement

Closest
Unified

Replacement
Obsolete
Libraries Guide 2-53

Libraries Guide
DECODE24 Obsolete
DSHEET DSHEETL
D2-4 D2_4E
D2-4E D2_4E
D3-8 D3_8E
D3-8E D3_8E
D4-16 Obsolete
D4-16E D4_16E
D7SEGH Obsolete
D7SEGMH Obsolete
ENCPR8H X74_148
ESHEET ESHEETL
FDCR FDRE
FDCS FDSE
FDMRD Obsolete
FDMSD Obsolete
FDRD FDCE
FDRDKN FDCE_1
FDSD FDPE
FDSDKN FDPE_1
FJKRD FJKCE
FJKSD FJKPE
FRD FDRSE
FSD FDRSE
FTPRD FTRSLE
IN4 IBUF4
IN8 IBUF8
IN16 IBUF16
INFF IFD
INFF4 IFD4

Existing
XC4000
Name

Exact
Unified

Replacement

Closest
Unified

Replacement
Obsolete
2-54 Xilinx Development System

Selection Guide
INFF8 IFD8
INFF16 IFD16
INFFS IFDI
INLAT ILD
INLAT4 ILD4
INLAT8 ILD8
INLAT16 ILD16
INLATS ILDI
INREG Obsolete
INREGS Obsolete
LD Obsolete
LDE Obsolete
LDM Obsolete
LDRD Obsolete
LDSD Obsolete
LRS Obsolete
LSR Obsolete
MAJ4 Obsolete
MUX4-1H M4_1
MUX8-1H M8_1
MUX16-1H M16_1
M2-1 M2_1
M2-1E M2_1E
M4-1 M4_1
M4-1E M4_1E
M8-1 M8_1
M8-1E M8_1E
M16-1 M16_1
M16-1E M16_1E
OUT4 OBUF4

Existing
XC4000
Name

Exact
Unified

Replacement

Closest
Unified

Replacement
Obsolete
Libraries Guide 2-55

Libraries Guide
OUT8 OBUF8
OUT16 OBUF16
OUTFF OFD
OUTFF4 OFD4
OUTFF8 OFD8
OUTFF16 OFD16
OUTFFS OFDT
OUTFFT OFDT
OUTFFTS OFDT
PAD IOPAD
PADU UPAD
PAL2RA10 Obsolete
PAL6L16A Obsolete
PAL8L14A Obsolete
PAL10H8 Obsolete
PAL10H20 Obsolete
PAL10L8 Obsolete
PAL12H6 Obsolete
PAL12L6 Obsolete
PAL12L10 Obsolete
PAL14H4 Obsolete
PAL14L4 Obsolete
PAL14L8 Obsolete
PAL16A4 Obsolete
PAL16C1 Obsolete
PAL16H2 Obsolete
PAL16L2 Obsolete
PAL16L6 Obsolete
PAL16L8 Obsolete
PAL16P8 Obsolete

Existing
XC4000
Name

Exact
Unified

Replacement

Closest
Unified

Replacement
Obsolete
2-56 Xilinx Development System

Selection Guide
PAL16P8A Obsolete
PAL16R4 Obsolete
PAL16R4A Obsolete
PAL16R6 Obsolete
PAL16R6A Obsolete
PAL16R8 Obsolete
PAL16R8A Obsolete
PAL16RA8 Obsolete
PAL16RP4 Obsolete
PAL16RP6 Obsolete
PAL16RP8 Obsolete
PAL16X4 Obsolete
PAL18L4 Obsolete
PAL20C1 Obsolete
PAL20L2 Obsolete
PAL20L8 Obsolete
PAL20L10 Obsolete
PAL20R4 Obsolete
PAL20R6 Obsolete
PAL20R8 Obsolete
PAL20R10 Obsolete
PAL20RS4 Obsolete
PAL20RS8 Obsolete
PAL20S10 Obsolete
PAL20X4 Obsolete
PAL20X8 Obsolete
PAL20X10 Obsolete
PAL22RX8 Obsolete
PAL22V10 Obsolete
PAL32R16 Obsolete

Existing
XC4000
Name

Exact
Unified

Replacement

Closest
Unified

Replacement
Obsolete
Libraries Guide 2-57

Libraries Guide
PAL32V10 Obsolete
PAL64R32 Obsolete
PARE9H X74_280
PARO9H X74_280
PHFRCOMP Obsolete
PRSC8-9 Obsolete
RAM64X4 RAM32X4
RAM64X8 RAM32X8
RAM128X4 RAM32X4
RAM128X8 RAM32X8
RD4 FD4CE
RD4R FD4RE
RD8 FD8CE
RD8H FD8RE
RD8R FD8RE
RD16 FD16CE
RD16H RAM16X1
RD16R FD16RE
RF16X4 Obsolete
RF16X8 Obsolete
RF16X16 Obsolete
RF32X4 Obsolete
RF32X8 Obsolete
RF32X16 Obsolete
RM16X2H RAM16X2
RM16X4H RAM16X4
RM16X8H RAM16X8
RM32X4H RAM32X4
RM32X8H RAM32X8
RM64X4H RAM32X4

Existing
XC4000
Name

Exact
Unified

Replacement

Closest
Unified

Replacement
Obsolete
2-58 Xilinx Development System

Selection Guide
RM64X8H RAM32X8
RM128X4H RAM16X4
RM128X8H RAM16X8
RS4 SR4CE
RS4P SR4CLE
RS4R SR4RE
RS8 SR8CE
RS8P SR8CLE
RS8PH SR8RLE
RS8R SR8RE
RS16 SR16CE
RS16P SR16CLE
RS16PH SR16RLE
RS16R SR16RE
TBUF BUFT
WM8-1 Obsolete
WM16-1 Obsolete
X74-42 X74_42
X74-48 Obsolete
X74-83 X74_283
X74-85 X74_L85
X74-138 X74_138
X74-139 X74_139
X74-147 X74_147
X74-148 X74_148
X74-150 X74_150
X74-151 X74_151
X74-152 X74_152
X74-153 X74_153
X74-154 X74_154

Existing
XC4000
Name

Exact
Unified

Replacement

Closest
Unified

Replacement
Obsolete
Libraries Guide 2-59

Libraries Guide
X74-157 X74_157
X74-158 X74_158
X74-160 X74_160
X74-161 X74_161
X74-162 X74_162
X74-163 X74_163
X74-164 X74_164
X74-165S X74_165S
X74-166 SR8CLE
X74-168 X74_168
X74-174 X74_174
X74-194 X74_194
X74-195 X74_195
X74-198 X74_195
X74-199 X74_195
X74-240 BUFT8
X74-241 BUFT8
X74-244 Obsolete
X74-245 Obsolete
X74-257 M2_1
X74-258 M2_1
X74-259 Obsolete
X74-273 X74_273 FD8CE
X74-278 Obsolete
X74-280 X74_280
X74-283 X74_283
X74-298 X74_298
X74-352 X74_352
X74-373 Obsolete
X74-374 Obsolete

Existing
XC4000
Name

Exact
Unified

Replacement

Closest
Unified

Replacement
Obsolete
2-60 Xilinx Development System

Selection Guide
X74-377 X74_377
X74-390 X74_390
X74-518 X74_518
X74-521 X74_521
X74-540 Obsolete
X74-541 Obsolete
X74-577 Obsolete
X74-595 SR8CE
X74160D X74_160
X74160U X74_160
X74161D X74_161
X74161U X74_161
X74_162 X74_163
ZHM4000 Obsolete
ZMX4000 Obsolete
ZX4000 Obsolete
ZXPAL Obsolete

Existing
XC4000
Name

Exact
Unified

Replacement

Closest
Unified

Replacement
Obsolete
Libraries Guide 2-61

Libraries Guide
XC7000 Replacement and Obsolete Macro Functions

Existing
XC7000
Name

Exact
Unified

Replacement

Closest
Unified

Replacement
Obsolete

PA7236A Obsolete
PA7272A Obsolete
PA7272B Obsolete
PA7272C Obsolete
PA73108A Obsolete
PA73108B Obsolete
PL00 NAND2
PL02 NOR2
PL04 INV
PL08 AND2
PL10 NAND3
PL11 AND3
PL20 NAND4
PL21 AND4
PL27 NOR3
PL30 NAND8
PL32 OR2
PL74 FDCP
PL74PZ FD
PL76P FJKCP
PL83 ADD4
PL85 X74_L85
PL86 XOR2
PL126 BUFE
PL138 X74_138
PL139 X74_139
PL148P X74_148
PL150 X74_150
PL151 X74_151
2-62 Xilinx Development System

Selection Guide
PL153 X74_153
PL157 X74_157
PL161 X74_161
PL163 X74_163
PL164 X74_164
PL166 Obsolete
PL191P CB4X2
PL194 SR4CLED
PL198P SR8RLED
PL240 Obsolete
PL244 BUFT4
PL266 XNOR2
PL298P X74_298
PL373P LD8
PL374 FD8
PL374PZ FD8
PL377 X74_377
PL518P X74_518
PL869P CB8X2
PLADD4 ADD4
PLADD8 ADD8
PLALU8 ACC8X1
PLALU8H ACC8X2
PLAND2 AND2
PLAND3 AND3
PLAND4 AND4
PLAND8 AND8
PLBI Obsolete
PLBI8 Obsolete
PLBUF BUF

Existing
XC7000
Name

Exact
Unified

Replacement

Closest
Unified

Replacement
Obsolete
Libraries Guide 2-63

Libraries Guide
PLBUFT BUFE
PLBUFT4 BUFT4
PLCE BUFCE
PLCEIO Obsolete
PLCOMP8 COMP8
PLCOMP8R Obsolete
PLCTR4A X74_161
PLCTR4S X74_163
PLCTR8 CB8RLE
PLCTR8T Obsolete
PLDECOD2 X74_139
PLDECOD3 X74_138
PLDFF FD
PLDFF8 FD8
PLDFFE8 X74_377
PLDFFEI IFDX1
PLDFFEI8 IFD8X1
PLDFFEIO Obsolete
PLDFFI IFD
PLDFFI8 IFD8
PLDFFIO Obsolete
PLDFFRSC FDCP
PLDFFT8 FD8
PLDLAT LD
PLDLAT8 LD8
PLDLATI ILD
PLDLATI8 ILD8
PLDLATIO Obsolete
PLENCOD8 X74_148
PLFCLKIO Obsolete

Existing
XC7000
Name

Exact
Unified

Replacement

Closest
Unified

Replacement
Obsolete
2-64 Xilinx Development System

Selection Guide
PLFCOMP Obsolete
PLFOE BUFFOE
PLFOEIO Obsolete
PLFPLA48 PL48PIN
PLFSTCLK BUFG
PLIN IBUF
PLIN8 IBUF8
PLIN8A IBUF8
PLIO Obsolete
PLIO8 Obsolete
PLJKFFC FJKCP
PLMAG4 X74_L85
PLMAG8 COMPM8
PLMAG4R Obsolete
PLMAG8R Obsolete
PLMUX2 M2_1
PLMUX4 M4_1E
PLMUX8 X74_151
PLMUX16 X74_150
PLMUX2R4 X74_298
PLMUX2X4 X74_157
PLMUX4X2 X74_153
PLNAND2 NAND2
PLNAND3 NAND3
PLNAND4 NAND4
PLNAND8 NAND8
PLNOR2 NOR2
PLNOR3 NOR3
PLNOR4 NOR4
PLNOR8 NOR8

Existing
XC7000
Name

Exact
Unified

Replacement

Closest
Unified

Replacement
Obsolete
Libraries Guide 2-65

Libraries Guide
PLNOT INV
PLNOTT4 Obsolete
PLOR2 OR2
PLOR3 OR3
PLOR4 OR4
PLOR8 OR8
PLOUT OBUF
PLOUT8 OBUF8
PLOUT8A OBUF8
PLOUTT OBUFEX1
PLOUTT8 OBUFE8X1
PLPLD9 PLFB9
PLPLD9F PLFFB9
PLSHIF4 SR4RLED
PLSHIF4A SR4CLED
PLSHIF8 SR8RLED
PLSHIF8I X74_164
PLSHIF8O Obsolete
PLUPDN4 CB4X2
PLUPDN8 CB8X2
PLUPDN8T Obsolete
PLXNOR2 XNOR2
PLXOR2 XOR2
PLXOR3 XOR3
PLXOR4 XOR4
PLXOR5 XOR5
PLXOR6 XOR6
PLXOR7 XOR7
PLXOR8 XOR8
PLXOR9 XOR9

Existing
XC7000
Name

Exact
Unified

Replacement

Closest
Unified

Replacement
Obsolete
2-66 Xilinx Development System

Chapter 3
Libraries Guide — 0401410 01 3-1

Design Elements
This chapter contains design elements for the XC2000, XC3000,
XC4000, and XC7000 architectures. The elements are organized in
alphanumeric order, with all numeric suffixes in ascending order.

ACC1

1-Bit Loadable Cascadable Accumulator with
Carry-In, Carry-Out, and Synchronous Reset

* not supported for XC7272 or XC7336 designs

ACC1 can add or subtract a 1-bit unsigned-binary word to or from
the contents of a 1-bit data register and store the results in the
register. The register can be loaded with a 1-bit word. The synchro-
nous reset (R) has priority over all other inputs and, when High,
causes the output to go to logic level zero. Clock (C) transitions are
ignored when clock enable (CE) is Low.

The accumulator is asynchronously reset, output Low, when power is
applied or when global reset, GR, is active (Low).

Load
When the load input (L) is High, CE is ignored and the data on the
input D0 is loaded into the 1-bit register.

XC2000 XC3000 XC4000 XC7000

Macro N/A N/A Primitive*

X3862

ACC1

C

D0

B0

CI Q0

CO

L

CE

ADD

R

Libraries Guide
Add
When control inputs ADD and CE are both High, the accumulator
adds a 1-bit word (B0) and carry-in (CI) to the contents of the 1-bit
register. The result is stored in the register and appears on output Q0
during the Low-to-High clock transition. The carry-out (CO) is not
registered synchronously with the data output. CO always reflects
the accumulation of input B0 and the contents of the register, which
allows cascading of ACC1s by connecting CO of one stage to CI of the
next stage. In add mode, CO acts as a carry-out, and CO and CI are
active-High.

Subtract
When ADD is Low and CE is High, the 1-bit word B0 and CI are
subtracted from the contents of the register. The result is stored in the
register and appears on output Q0 during the Low-to-High clock
transition. The carry-out (CO) is not registered synchronously with
the data output. CO always reflects the accumulation of input B0 and
the contents of the register, which allows cascading of ACC1s by
connecting CO of one stage to CI of the next stage. In subtract mode,
CO acts as a borrow, and CO and CI are active-Low.

Figure 3-1 ACC1 XC2000 Implementation

R

CE

B0

C

R_L_CE

R_SD0

COADD

CI

D0

Q0

Q0SD0

L

S0

GND

SD0

D0

D1
O

S0

M2_1

CI

COB0
ADD

ADSU1

A0

S0

OR3

AND2B1

Q0

FDCE

QD

CLR

CE

C

3-2 Xilinx Development System

Design Elements
For the XC7000 EPLD architecture, the CO output is not valid during
load (L=High), during reset (R=High), or while CE is inactive (Low).
Also, the CI and CO pins are not implemented using the EPLD arith-
metic carry path and should be used to cascade accumulators. Refer
to “ACC1X1” and “ACC1X2” for descriptions of cascadable EPLD
accumulators.
Libraries Guide 3-3

Libraries Guide
ACC1X1

1-Bit Loadable Cascadable Accumulator with
Carry-Out and Synchronous Reset for EPLD

*not supported for XC7272 or XC7336 designs

ACC1X1 is implemented using the EPLD arithmetic carry-logic chain
for high-speed ripple-carry addition. ACC1X1 is a low-order adder
component that can be used as a stand-alone or cascaded with high-
order accumulators through its CO output. ACC1X1 adds or
subtracts a 1-bit binary word (B0) to or from the contents of a 1-bit
data register and stores the results in the register. The register can be
loaded with a 1-bit word. When the load input (L) is High, CE is
ignored and the data on input D0 is loaded into the 1-bit register. The
synchronous reset (R) has priority over all other inputs and, when
High, causes all outputs to go to logic level zero. When reset (R) and
load (L) are inactive, clock (C) transitions are ignored when clock
enable (CE) is Low.

Add
When control inputs ADD and CE are both High, the accumulator
adds a 1-bit word (B0) to the contents of the 1-bit register. The result is
stored in the register and appears on output Q0 during the Low-to-
High clock transition. In add mode, CO acts as a carry-out and is
active-High.

Subtract
When ADD is Low and CE is High, the 1-bit word B0 is subtracted
from the contents of the register. The result is stored in the register
and appears on output Q0 during the Low-to-High clock transition.
In subtract mode, CO acts as a borrow and is active-Low.

The CO output is passed into the EPLD carry chain, and therefore can
only be connected to the CI input of another EPLD-specific arithmetic
component. To generate a carry-out signal for general-purpose logic,
connect an ADD1X2 to the CO output of the accumulator and tie its A

XC2000 XC3000 XC4000 XC7000

N/A N/A N/A Primitive*

X4240

ACC1X1

C

D0

B0

Q0

CO

L

CE

ADD

R

3-4 Xilinx Development System

Design Elements
and B inputs to GND; the S output becomes the carry-out. If a carry-
in is required from general-purpose logic, use an ACC1X2 for the
least-significant accumulator and connect an ADD1X1 to its CI input.
Then connect your carry-in signal to both the A and B inputs of the
ADD1X1 (the S output is not used) to generate a carry into the carry
chain for the first bit of the accumulator. The accumulator register is
initialized to zero when powered is applied or when the device
Master Reset input is activated. The clock (C) input can be driven by
either the EPLD FastCLK global net (represented by a BUFG symbol),
an ordinary input, or other on-chip logic.

d, q, b = state of referenced input one set-up time prior to active clock transition

Inputs Outputs

R L CE B0 D0 C ADD Q0 CO

1 X X X X ↑ X 0 0
0 1 X X D0 ↑ X d 0
0 0 0 X X X X No Chg 0
0 0 1 B0 X ↑ 1 q+b CO
0 0 1 B0 X ↑ 0 q-b CO
Libraries Guide 3-5

Libraries Guide
ACC1X2

1-Bit Loadable Cascadable Accumulator with
Carry-In, Carry-Out, and Synchronous Reset

* not supported for XC7272 or XC7336 designs

ACC1X2 is implemented using the EPLD arithmetic carry-logic chain
for high-speed ripple-carry addition. ACC1X2 is a high-order adder
component cascaded to lower-order accumulators through its CI
input. ACC1X2 adds or subtracts a 1-bit binary word (B0) to or from
the contents of a 1-bit data register and stores the results in the
register. The register can be loaded with a 1-bit word. When the load
input (L) is High, CE is ignored and the data on input D0 is loaded
into the 1-bit register. The synchronous reset (R) has priority over all
other inputs and, when High, causes all outputs to go to logic level
zero. When reset (R) and load (L) are inactive, clock (C) transitions are
ignored when clock enable (CE) is Low.

Add
When control inputs ADD and CE are both High, the accumulator
adds a 1-bit word (B0) and carry-in (CI) to the contents of the 1-bit
register. The result is stored in the register and appears on output Q0
during the Low-to-High clock transition. In add mode, CO acts as a
carry-out, and CO and CI are active-High.

Subtract
When ADD is Low and CE is High, the 1-bit word B0 and CI are
subtracted from the contents of the register. The result is stored in the
register and appears on output Q0 during the Low-to-High clock
transition. In subtract mode, CO acts as a borrow, and CO and CI are
active-Low.

The CI input is taken from the EPLD carry chain, and therefore, must
only be connected to the CO output of another EPLD-specific arith-
metic component. The CO output is passed into the EPLD carry
chain, and can only be connected to the CI input of another

XC2000 XC3000 XC4000 XC7000

N/A N/A N/A Primitive*

X4241

ACC1X2

C

D0

B0

CI Q0

CO

L

CE

ADD

R

3-6 Xilinx Development System

Design Elements
EPLD-specific arithmetic component. To generate a carry-out signal
for general-purpose logic, connect an ADD1X2 to the CO output of
the accumulator and tie its A and B inputs to GND; the S output
becomes the carry-out.

The accumulator register is initialized to zero when power is applied
or when the device Master Reset input is activated. The clock (C)
input can be driven by either the EPLD FastCLK global net (repre-
sented by a BUFG symbol), an ordinary input, or other on-chip logic.

d, q, b, ci = state of referenced input one set-up time prior to active clock
transition

Inputs Outputs

R L CE B0 D0 CI C ADD Q0 CO

1 X X X X X ↑ X 0 0
0 1 X X D0 X ↑ X d 0
0 0 0 X X X X X No Chg 0
0 0 1 B0 X CI ↑ 1 q+b+ci CO
0 0 1 B0 X CI ↑ 0 q-b-ci CO
Libraries Guide 3-7

Libraries Guide
ACC4

4-Bit Loadable Cascadable Accumulator with
Carry-In, Carry-Out, and Synchronous Reset

* not supported for XC7272 or XC7336 designs

ACC4 can add or subtract a 4-bit unsigned-binary or twos-comple-
ment word to or from the contents of a 4-bit data register and store
the results in the register. The register can be loaded with a 4-bit
word. In the XC4000 family, the accumulator is implemented using
carry logic and relative location constraints, which assure most effi-
cient logic placement. The synchronous reset (R) has priority over all
other inputs, and when High, causes all outputs to go to logic level
zero. Clock (C) transitions are ignored when clock enable (CE) is Low.

The accumulator is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC3000) or global set/reset
(GSR for XC4000) is active. GR is active Low; the GSR active level is
programmable.

Load
When the load input (L) is High, CE is ignored and the data on inputs
D3 – D0 is loaded into the 4-bit register.

Unsigned Binary Versus Twos-Complement
ACC4 can operate on either 4-bit unsigned binary numbers or 4-bit
twos-complement numbers. If the inputs are interpreted as unsigned
binary, the result can be interpreted as unsigned binary. If the inputs
are interpreted as twos complement, the output can be interpreted as
twos complement. The only functional difference between an
unsigned binary operation and a twos-complement operation is how
they determine when “overflow” occurs. Unsigned binary uses CO,
while twos-complement uses OFL to determine when “overflow”
occurs.

For the XC7000 EPLD architecture, the CO output is not valid during
load (L=High), during reset (R=High), or while CE is inactive (Low).

XC2000 XC3000 XC4000 XC7000

N/A Macro Macro Primitive*

X3863

ACC4

C

D3

D2

D1

Q3

CO

L

CE

ADD

D0

B0

CI

B1

B3

B2

OFL

Q1

Q2

Q0

R

3-8 Xilinx Development System

Design Elements
Also, the CI and CO pins are not implemented using the EPLD
arithmetic carry path and should be used to cascade accumulators.
Refer to “ACC1X1” and “ACC1X2” for descriptions of cascadable
EPLD accumulators. The OFL output is not provided on the ACC4
symbol in XC7000.

Unsigned Binary Operation
For unsigned binary operation, the ACC4 can represent numbers
between 0 and 15, inclusive. In add mode, CO is active (High) when
the sum exceeds the bounds of the adder/subtracter. In subtract
mode, CO is an active-Low borrow-out and goes Low when the
difference exceeds the bounds. The carry-out (CO) is not registered
synchronously with the data outputs. CO always reflects the accumu-
lation of inputs B3 – B0 and the contents of the register, which allows
cascading of ACC4s by connecting CO of one stage to CI of the next
stage. An unsigned binary “overflow” that is always active-High can
be generated by gating the ADD signal and CO as follows.

unsigned overflow = CO XOR ADD

OFL should be ignored in unsigned binary operation.

Twos-Complement Operation
For twos-complement operation, ACC4 can represent numbers
between -8 and +7, inclusive. If an addition or subtraction operation
result exceeds this range, the OFL output goes High. The overflow
(OFL) is not registered synchronously with the data outputs. OFL
always reflects the accumulation of inputs B3 – B0 and the contents of
the register, which allows cascading of ACC4s by connecting OFL of
one stage to CI of the next stage.

CO should be ignored in twos-complement operation.
Libraries Guide 3-9

Libraries Guide
XC4000 Topology

X3662

Q 3

CO

OFL

Q 2

Q 1

Q 0

B 3A 3

B 2A 2

B 1A 1

B 0A 0

CI
3-10 Xilinx Development System

Design Elements
ACC4X1

4-Bit Loadable Cascadable Accumulator with
Carry-Out and Synchronous Reset for EPLD

* not supported for XC7272 or XC7336 designs

ACC4X1 is implemented using the EPLD arithmetic carry-logic chain
for high-speed ripple-carry addition. ACC4X1 is a low-order adder
component, which can be used as a stand-alone or cascaded with
high-order accumulators through its CO output. ACC4X1 adds or
subtracts a 4-bit binary word (B3 – B0) to or from the contents of a
4-bit data register and stores the results in the register. The register
can be loaded with a 4-bit word. When the load input (L) is High, CE
is ignored and the data on inputs D3 – D0 is loaded into the 4-bit
register. The synchronous reset (R) has priority over all other inputs
and, when High, causes all outputs to go to logic level zero. When
reset (R) and load (L) are inactive, clock (C) transitions are ignored
when clock enable (CE) is Low.

Add
When control inputs ADD and CE are both High, the accumulator
adds a 4-bit word (B3 – B0) to the contents of the 4-bit register. The
result is stored in the register and appears on outputs Q3 – Q0 during
the Low-to-High clock transition. In add mode, CO acts as a carry-
out and is active-High.

Subtract
When ADD is Low and CE is High, the 4-bit word B3 – B0 is
subtracted from the contents of the register. The result is stored in the
register and appears on outputs Q3 – Q0 during the Low-to-High
clock transition. In subtract mode, CO acts as a borrow and is active-
Low.

The CO output is passed into the EPLD carry chain, and therefore can
only be connected to the CI input of another EPLD-specific arithmetic
component. To generate a carry-out signal for general-purpose logic,

XC2000 XC3000 XC4000 XC7000

N/A N/A N/A Primitive*

X4244

ACC4X1

C

D3

D2

D1

Q3

CO

L

CE

ADD

D0

B0

B1

B3

B2

Q1

Q2

Q0

R

Libraries Guide 3-11

Libraries Guide
connect an ADD1X2 to the CO output of the accumulator and tie its A
and B inputs to GND; the S output becomes the carry-out. If a
carry-in is required from general-purpose logic, use an ACC4X2 for
the least-significant accumulator and connect an ADD1X1 to its CI
input. Then connect your carry-in signal to both the A and B inputs of
the ADD1X1 (the S output is not used) to generate a carry into the
carry chain for the first bit of the accumulator.

The accumulator register is initialized to zero when power is applied
or when the device Master Reset pin is activated. The clock (C) input
can be driven by either the EPLD FastCLK global net (represented by
a BUFG symbol), an ordinary input, or other on-chip logic.

Refer to “ACC1X1” for truth table derivation.
3-12 Xilinx Development System

Design Elements
ACC4X2

4-Bit Loadable Cascadable Accumulator with
Carry-In, Carry-Out, and Synchronous Reset

* not supported for XC7272 or XC7336 designs

ACC4X2 is implemented using the EPLD arithmetic carry-logic chain
for high-speed ripple-carry addition. ACC4X2 is a high-order adder
component cascaded to lower-order accumulators through its CI
input. ACC4X2 adds or subtracts a 4-bit binary word (B3 – B0) to or
from the contents of a 4-bit data register and stores the results in the
register. The register can be loaded with a 4-bit word. When the load
input (L) is High, CE is ignored and the data on inputs D3 – D0 is
loaded into the 4-bit register. The synchronous reset (R) has priority
over all other inputs and, when High, causes all outputs to go to logic
level zero. When reset (R) and load (L) are inactive, clock (C) transi-
tions are ignored when clock enable (CE) is Low.

Add
When control inputs ADD and CE are both High, the accumulator
adds a 4-bit word (B3 – B0) and carry-in (CI) to the contents of the
4-bit register. The result is stored in the register and appears on
outputs Q3 – Q0 during the Low-to-High clock transition. In add
mode, CO acts as a carry-out, and CO and CI are active-High.

Subtract
When ADD is Low and CE is High, the 4-bit word B3 – B0 and CI are
subtracted from the contents of the register. The result is stored in the
register and appears on outputs Q3 – Q0 during the Low-to-High
clock transition. In subtract mode, CO acts as a borrow, and CO and
CI are active-Low.

The CI input is taken from the EPLD carry chain, and therefore must
only be connected to the CO output of another EPLD-specific arith-
metic component. The CO output is passed into the EPLD carry chain
and can only be connected to the CI input of another EPLD-specific

XC2000 XC3000 XC4000 XC7000

N/A N/A N/A Primitive*

X4245

ACC4X2

C

D3

D2

D1

Q3

CO

L

CE

ADD

D0

B0

CI

B1

B3

B2

Q1

Q2

Q0

R

Libraries Guide 3-13

Libraries Guide
arithmetic component. To generate a carry-out signal for general-
purpose logic, connect an ADD1X2 to the CO output of the accumu-
lator and tie its A and B inputs to GND; the S output becomes the
carry-out.

The accumulator register is initialized to zero when power is applied
or when the device Master Reset pin is activated. The clock (C) input
can be driven by either the EPLD FastCLK global net (represented by
a BUFG symbol), an ordinary input, or other on-chip logic.

Refer to “ACC1X2” for truth table derivation.
3-14 Xilinx Development System

Design Elements
ACC8

8-Bit Loadable Cascadable Accumulator with
Carry-In, Carry-Out, and Synchronous Reset

* not supported for XC7272 or XC7336 designs

ACC8 can add or subtract an 8-bit unsigned-binary or twos- comple-
ment word to or from the contents of an 8-bit data register and store
the results in the register. The register can be loaded with an 8-bit
word. In the XC4000 family, the accumulator is implemented using
carry logic and relative location constraints, which assure most effi-
cient logic placement. The synchronous reset (R) has priority over all
other inputs, and when High, causes all outputs to go to logic level
zero. Clock (C) transitions are ignored when clock enable (CE) is Low.

The accumulator is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC3000) or global set/reset
(GSR for XC4000) is active. GR is active Low; the GSR active level is
programmable.

Load
When the load input (L) is High, CE is ignored and the data on inputs
D7 – D0 is loaded into the 8-bit register.

Unsigned Binary Versus Twos-Complement
ACC8 can operate on either 8-bit unsigned binary numbers or 8-bit
twos-complement numbers. If the inputs are interpreted as unsigned
binary, the result can be interpreted as unsigned binary. If the inputs
are interpreted as twos complement, the output can be interpreted as
twos complement. The only functional difference between an
unsigned binary operation and a twos-complement operation is how
they determine when “overflow” occurs. Unsigned binary uses CO,
while twos-complement uses OFL to determine when “overflow”
occurs.

For the XC7000 EPLD architecture, the CO output is not valid during
load (L=High), during reset (R=High), or while CE is inactive (Low).

XC2000 XC3000 XC4000 XC7000

N/A Macro Macro Macro*

X4374

ACC8

C

D[7:0]

B[7:0]

CI

L

CE

ADD

R

CO

Q[7:0]

OFL
Libraries Guide 3-15

Libraries Guide
Also, the CI and CO pins are not implemented using the EPLD
arithmetic carry path and should be used to cascade accumulators.
Refer to “ACC8X1” and “ACC8X2” for descriptions of cascadable
EPLD accumulators. The OFL output is not provided on the ACC8
symbol in XC7000.

Unsigned Binary Operation
For unsigned binary operation, ACC8 can represent numbers
between 0 and 255, inclusive. In add mode, CO is active (High) when
the sum exceeds the bounds of the adder/subtracter. In subtract
mode, CO is an active-Low borrow-out and goes Low when the
difference exceeds the bounds. The carry-out (CO) is not registered
synchronously with the data outputs. CO always reflects the accumu-
lation of inputs B7 – B0 and the contents of the register, which allows
cascading of ACC8s by connecting CO of one stage to CI of the next
stage. An unsigned binary “overflow” that is always active-High can
be generated by gating the ADD signal and CO as follows.

unsigned overflow = CO XOR ADD

OFL should be ignored in unsigned binary operation.

Twos-Complement Operation
For twos-complement operation, ACC8 can represent numbers
between -128 and +127, inclusive. If an addition or subtraction opera-
tion result exceeds this range, the OFL output goes High. The over-
flow (OFL) is not registered synchronously with the data outputs.
OFL always reflects the accumulation of inputs B7 – B0 and the
contents of the register, which allows cascading of ACC8s by
connecting OFL of one stage to CI of the next stage.

CO should be ignored in twos-complement operation.
3-16 Xilinx Development System

Design Elements
XC4000 Topology

X3663

Q 7

CO

OFL

Q 6

Q 5

Q 4

B 7A 7

B 6A 6

B 5A 5

B 4A 4

CI

Q 3

Q 2

Q 1

Q 0

B 3A 3

B 2A 2

B 1A 1

B 0A 0
Libraries Guide 3-17

Libraries Guide
Figure 3-2 ACC8 XC3000 Implementation

R_SD3

R_L_CE

CI

ADD

D[7:0]

D0

D1

D2

D3

D4

D5

D6

D7

B[7:0]

L
CE

OFL
CO

Q7

Q5

Q3

Q1

Q0

Q[7:0]

Q2

Q4

Q6

S4

S3

S2

S1

S[7:0]

S0

S5

S6

S7

C

Q1

FDCE

QD

CLR

CE
C

SD7

D0
D1

O

S0

M2_1

SD6

D0
D1

O

S0

M2_1

GND

SD3

D0
D1

O

S0

M2_1

SD0

D0
D1

O

S0

M2_1

SD1

D0
D1

O

S0

M2_1

SD2

D0
D1

O

S0

M2_1

SD4

D0
D1

O

S0

M2_1

SD5

D0
D1

O

S0

M2_1

Q0

FDCE

QD

CLR

CE
C

Q2

FDCE

QD

CLR

CE
C

Q3

FDCE

QD

CLR

CE
C

Q4

FDCE

QD

CLR

CE
C

Q5

FDCE

QD

CLR

CE
C

Q6

FDCE

QD

CLR

CE
C

Q7

FDCE

QD

CLR

CE
C

OFL
CO

A[7:0]

ADSU8

R_SD1SD1

AND2B1

SD0 R_SD0

AND2B1

R_SD2SD2

AND2B1

SD3

AND2B1

SD6 R_SD6

AND2B1

R_SD5SD5

AND2B1

SD4 R_SD4

AND2B1

R_SD7

AND2B1

SD7

R
OR3

A[7:0]
S[7:0]

B[7:0]
ADD

OFL

CI

CO
3-18 Xilinx Development System

Design Elements
Figure 3-3 ACC8 XC4000 Implementation

Q1
RLOC=R4C1.FFY

FDCE

QD

CLR

CE
C

Q5
RLOC=R2C1.FFY

FDCE

QD

CLR

CE
C

Q4
RLOC=R2C1.FFX

FDCE

QD

CLR

CE
C

ADD

CI

ADSU8

B[7:0]

A[7:0]

CO
OFL

OR3

R_L_CE

R

SD7

AND2B1

R_SD7

AND2B1

R_SD4SD4

AND2B1

SD5 R_SD5

AND2B1

R_SD6SD6

AND2B1

R_SD3SD3

AND2B1

SD2 R_SD2

AND2B1

R_SD0SD0

AND2B1

SD1 R_SD1

Q7
RLOC=R1C1.FFY

FDCE

QD

CLR

CE
C

Q6
RLOC=R1C1.FFX

FDCE

QD

CLR

CE
C

Q3
RLOC=R3C1.FFY

FDCE

QD

CLR

CE
C

Q2
RLOC=R3C1.FFX

FDCE

QD

CLR

CE
C

Q0
RLOC=R4C1.FFX

FDCE

QD

CLR

CE
C

SD5

D0
D1 O

S0

M2_1

SD4

D0
D1 O

S0

M2_1

SD2

D0
D1 O

S0

M2_1

RLOC=R2C1.F

I1
I2
I3
I4

O

FMAP

RLOC=R1C1.G

I1
I2
I3
I4

O

FMAP

RLOC=R4C1.F

I1
I2
I3
I4

O

FMAP

RLOC=R4C1.G

I1
I2
I3
I4

O

FMAP

RLOC=R3C1.F

I1
I2
I3
I4

O

FMAP

RLOC=R3C1.G

I1
I2
I3
I4

O

FMAP

RLOC=R2C1.G

I1
I2
I3
I4

O

FMAP

RLOC=R1C1.F

I1
I2
I3
I4

O

FMAP

SD1

D0
D1 O

S0

M2_1

SD0

D0
D1 O

S0

M2_1

SD3

D0
D1 O

S0

M2_1

GND

SD6

D0
D1 O

S0

M2_1

SD7

D0
D1 O

S0

M2_1

C

S7

S6

S5

S0

S[7:0]

S1

S2

S3

S4

R

L

S1

S2

S3
D3

D2

D1

L

L

L

L

S0
D0

S4

S5

S6

S7
D7

D6

D5

D4

L

L

L

R

R

RR

R

R

R

Q6

Q4

Q2

Q[7:0]

Q0

Q1

Q3

Q5

Q7

CO
OFL

CE
L

B[7:0]

D7

D6

D5

D4

D3

D2

D1

D0

D[7:0]

ADD

CI

R_SD2

R_SD1

R_SD3

R_SD0 R_SD4

R_SD5

R_SD6

R_SD7

ACC8.4K
Libraries Guide 3-19

Libraries Guide
Figure 3-4 ACC8 XC7000 Implementation

ADD1X2

S0
B0

A0

CO

CI

CO6

ADD1X2

S0
B0

A0

CO

CI

Q7

D0
B0

Q0

L
ADD
CE
C R

CI
CO

ACC1X2

Q0

D0
B0 Q0

L
ADD
CE
C R

CI
CO

ACC1X2

Q7

Q3

Q[7:0]Q0
Q1
Q2

Q7
Q6
Q5
Q4

D2

D7
D6
D5
D4
D3

D[7:0]D0
D1

B2

B7
B6
B5
B4
B3

B[7:0]B0
B1

GND

GND

VCC

CO

Q0

CI

R
C

CE
ADD

L
D0
B0

B1

B2

B3

B4

B5

B6

D1

D2

D3

D4

D5

D6

L

L

L

L

L

L

ADD

ADD

ADD

ADD

ADD

ADD

CE

CE

CE

CE

CE

CE

C

C

C

C

C

C

R

R

R

R

R

R

L

CE
ADD

C
R

B7
D7

Q1

Q2

Q3

Q4

Q5

Q6

CI

CO

ADD1X1

S0
B0

A0

Q1

D0
B0

Q0

L
ADD
CE
C R

CI
CO

ACC1X2

Q2

D0
B0

Q0

L
ADD
CE
C R

CI
CO

ACC1X2

Q3

D0
B0

Q0

L
ADD
CE
C R

CI
CO

ACC1X2

Q4

D0
B0

Q0

L
ADD
CE
C R

CI
CO

ACC1X2

Q5

D0
B0

Q0

L
ADD
CE
C R

CI
CO

ACC1X2

Q6

D0
B0

Q0

L
ADD
CE
C R

CI
CO

ACC1X2

ACC8.7K
3-20 Xilinx Development System

Design Elements
ACC8X1

8-Bit Loadable Cascadable Accumulator with
Carry-Out and Synchronous Reset for EPLD

* not supported for XC7272 or XC7336 designs

ACC8X1 is implemented using the EPLD arithmetic carry-logic chain
for high-speed ripple-carry addition. ACC8X1 is a low-order adder
component, which can be used as a stand-alone or cascaded with
high-order accumulators through its CO output. ACC8X1 adds or
subtracts an 8-bit binary word (B7 – B0) to or from the contents of an
8-bit data register and stores the results in the register. The register
can be loaded with an 8-bit word. When the load input (L) is High,
CE is ignored and the data on inputs D7 – D0 is loaded into the 8-bit
register. The synchronous reset (R) has priority over all other inputs
and, when High, causes all outputs to go to logic level zero. When
reset (R) and load (L) are inactive, clock (C) transitions are ignored
when clock enable (CE) is Low.

Add
When control inputs ADD and CE are both High, the accumulator
adds an 8-bit word (B7 – B0) to the contents of the 8-bit register. The
result is stored in the register and appears on outputs Q7 – Q0 during
the Low-to-High clock transition. In add mode, CO acts as a carry-
out and is active-High.

Subtract
When ADD is Low and CE is High, the 8-bit word B7 – B0 is
subtracted from the contents of the register. The result is stored in the
register and appears on outputs Q7 – Q0 during the Low-to-High
clock transition. In subtract mode, CO acts as a borrow and is active-
Low.

The CO output is passed into the EPLD carry chain, and therefore can
only be connected to the CI input of another EPLD-specific arithmetic
component. To generate a carry-out signal for general-purpose logic,

XC2000 XC3000 XC4000 XC7000

N/A N/A N/A Primitive*

X4246

ACC8X1

C

D[7:0]

B[7:0]

L

CE

ADD

R

CO

Q[7:0]
Libraries Guide 3-21

Libraries Guide
connect an ADD1X2 to the CO output of the accumulator and tie its A
and B inputs to GND; the S output becomes the carry-out. If a
carry-in is required from general-purpose logic, use an ACC8X2 for
the least-significant accumulator and connect an ADD1X1 to its CI
input. Then connect your carry-in signal to both the A and B inputs of
the ADD1X1 (the S output is not used) to generate a carry into the
carry chain for the first bit of the accumulator.

The accumulator register is initialized to zero when power is applied
or when the device Master Reset pin is activated. The clock (C) input
can be driven by either the EPLD FastCLK global net (represented by
a BUFG symbol), an ordinary input, or other on-chip logic.

Refer to “ACC1X1” for truth table derivation.
3-22 Xilinx Development System

Design Elements
ACC8X2

8-Bit Loadable Cascadable Accumulator with
Carry-In, Carry-Out, and Synchronous Reset

* not supported for XC7272 or XC7336 designs

ACC8X2 is implemented using the EPLD arithmetic carry-logic chain
for high-speed ripple-carry addition. ACC8X2 is a high-order adder
component cascaded to lower-order accumulators though its CI
input. ACC8X2 adds or subtracts an 8-bit binary word (B7 – B0) to or
from the contents of an 8-bit data register and stores the results in the
register. The register can be loaded with an 8-bit word. When the load
input (L) is High, CE is ignored and the data on inputs D7 – D0 is
loaded into the 8-bit register. The synchronous reset (R) has priority
over all other inputs and, when High, causes all outputs to go to logic
level zero. When reset (R) and load (L) are inactive, clock (C) transi-
tions are ignored when clock enable (CE) is Low.

Add
When control inputs ADD and CE are both High, the accumulator
adds an 8-bit word (B7 – B0) and carry-in (CI) to the contents of the
8-bit register. The result is stored in the register and appears on
outputs Q7 – Q0 during the Low-to-High clock transition. In add
mode, CO acts as a carry-out, and CO and CI are active-High.

Subtract
When ADD is Low and CE is High, the 8-bit word B7 – B0 and CI are
subtracted from the contents of the register. The result is stored in the
register and appears on outputs Q7 – Q0 during the Low-to-High
clock transition. In subtract mode, CO acts as a borrow, and CO and
CI are active-Low.

The CI input is taken from the EPLD carry chain, and therefore must
only be connected to the CO output of another EPLD-specific arith-
metic component. The CO output is passed into the EPLD carry
chain, and therefore can only be connected to the CI input of another

XC2000 XC3000 XC4000 XC7000

N/A N/A N/A Primitive*

X4247

ACC8X2

C

D[7:0]

B[7:0]

L

CE

ADD

R

CO

Q[7:0]CI
Libraries Guide 3-23

Libraries Guide
EPLD-specific arithmetic component. To generate a carry-out signal
for general-purpose logic, connect an ADD1X2 to the CO output of
the accumulator and tie its A and B inputs to GND; the S output
becomes the carry-out.

The accumulator register is initialized to zero when power is applied
or when the device Master Reset pin is activated. The clock (C) input
can be driven by either the EPLD FastCLK global net (represented by
a BUFG symbol), an ordinary input, or other on-chip logic.

Refer to “ACC1X2” for truth table derivation.
3-24 Xilinx Development System

Design Elements
ACC16

16-Bit Loadable Cascadable Accumulator with
Carry-In, Carry-Out, and Synchronous Reset

* not supported for XC7272 or XC7336 designs

ACC16 can add or subtract a 16-bit unsigned-binary or twos-comple-
ment word to or from the contents of a 16-bit data register and store
the results in the register. The register can be loaded with a 16-bit
word. In the XC4000 family, the accumulator is implemented using
carry logic and relative location constraints, which assure most effi-
cient logic placement. The synchronous reset (R) has priority over all
other inputs, and when High, causes all outputs to go to logic level
zero. Clock (C) transitions are ignored when clock enable (CE) is Low.

The accumulator is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC3000) or global set/reset
(GSR for XC4000) is active. GR is active Low; the GSR active level is
programmable.

Load
When the load input (L) is High, CE is ignored and the data on inputs
D15 – D0 is loaded into the 16-bit register.

Unsigned Binary Versus Twos-Complement
ACC16 can operate on either 16-bit unsigned binary numbers or
16-bit twos-complement numbers. If the inputs are interpreted as
unsigned binary, the result can be interpreted as unsigned binary. If
the inputs are interpreted as twos complement, the output can be
interpreted as twos complement. The only functional difference
between an unsigned binary operation and a twos-complement oper-
ation is how they determine when “overflow” occurs. Unsigned
binary uses CO, while twos-complement uses OFL to determine
when “overflow” occurs.

For the XC7000 EPLD architecture, the CO output is not valid during
load (L=High), during reset (R=High), or while CE is inactive (Low).

XC2000 XC3000 XC4000 XC7000

N/A Macro Macro Macro*

X4375

ACC16

C

D[15:0]

B[15:0]

CI

L

CE

ADD

R

CO

Q[15:0]

OFL
Libraries Guide 3-25

Libraries Guide
Also, the CI and CO pins are not implemented using the EPLD arith-
metic carry path and should be used to cascade accumulators. Refer
to “ACC8X1” and “ACC8X2” for descriptions of cascadable EPLD
accumulators. The OFL output is not provided on the ACC16 symbol
in XC7000.

Unsigned Binary Operation
For unsigned binary operation, ACC16 can represent numbers
between 0 and 65535, inclusive. In add mode, CO is active (High)
when the sum exceeds the bounds of the adder/subtracter. In
subtract mode, CO is an active-Low borrow-out and goes Low when
the difference exceeds the bounds. The carry-out (CO) is not regis-
tered synchronously with the data outputs. CO always reflects the
accumulation of inputs B15 – B0 and the contents of the register,
which allows cascading of ACC16s by connecting CO of one stage to
CI of the next stage. An unsigned binary “overflow” that is always
active-High can be generated by gating the ADD signal and CO as
follows.

unsigned overflow = CO XOR ADD

OFL should be ignored in unsigned binary operation.

Twos-Complement Operation
For twos-complement operation, ACC16 can represent numbers
between -32768 and +32767, inclusive. If an addition or subtraction
operation result exceeds this range, the OFL output goes High. The
overflow (OFL) is not registered synchronously with the data
outputs. OFL always reflects the accumulation of inputs B15 – B0 and
the contents of the register, which allows cascading of ACC16s by
connecting OFL of one stage to CI of the next stage.

CO should be ignored in twos-complement operation.
3-26 Xilinx Development System

Design Elements
XC4000 Topology

X3664

Q 15

CO

OFL

Q 14

Q 13

Q 12

B 15A 15

CI

Q 11

Q 10

Q 9

Q 8

B 9A 9

B 8A 8

Q 7

Q 6

Q 5

Q 4

B 7A 7

B 6A 6

B 5A 5

B 4A 4

Q 3

Q 2

Q 1

Q 0

B 3A 3

B 2A 2

B 1A 1

B 0A 0

B 14A 14

B 13A 13

B 12A 12

B 11A 11

B 10A 10
Libraries Guide 3-27

Libraries Guide
ACC16X1

16-Bit Loadable Cascadable Accumulator with
Carry-Out and Synchronous Reset for EPLD

* not supported for XC7272 or XC7336 designs

ACC16X1 is implemented using the EPLD arithmetic carry-logic
chain for high-speed ripple-carry addition. ACC16X1 is a low-order
adder component, which can be used as a stand-alone or cascaded
with high-order accumulators though its CO output. ACC16X1 adds
or subtracts a 16-bit binary word (B15 – B0) to or from the contents of
a 16-bit data register and stores the results in the register. The register
can be loaded with a 16-bit word. When the load input (L) is High, CE
is ignored and the data on inputs D15 – D0 is loaded into the
16-bit register. The synchronous reset (R) has priority over all other
inputs and, when High, causes all outputs to go to logic level zero.
When reset (R) and load (L) are inactive, clock (C) transitions are
ignored when clock enable (CE) is Low.

Add
When control inputs ADD and CE are both High, the accumulator
adds a 16-bit word (B15 – B0) to the contents of the 16-bit register. The
result is stored in the register and appears on outputs Q15 – Q0
during the Low-to-High clock transition. In add mode, CO acts as a
carry-out and is active-High.

Subtract
When ADD is Low and CE is High, the 16-bit word B15 – B0 is
subtracted from the contents of the register. The result is stored in the
register and appears on outputs Q15 – Q0 during the Low-to-High
clock transition. In subtract mode, CO acts as a borrow and is active-
Low.

The CO output is passed into the EPLD carry chain, and therefore can
only be connected to the CI input of another EPLD-specific arithmetic
component. To generate a carry-out signal for general-purpose logic,

XC2000 XC3000 XC4000 XC7000

N/A N/A N/A Macro*

X4321

ACC16X1

C

D[15:0]

B[15:0]

L

CE

ADD

R

CO

Q[15:0]
3-28 Xilinx Development System

Design Elements
connect an ADD1X2 to the CO output of the accumulator and tie its
A and B inputs to GND; the S output becomes the carry-out. If a
carry-in is required from general-purpose logic, use an ACC16X2 for
the least-significant accumulator and connect an ADD1X1 to its CI
input. Then connect your carry-in signal to both the A and B inputs of
the ADD1X1 (the S output is not used) to generate a carry into the
carry chain for the first bit of the accumulator.

The accumulator register is initialized to zero when power is applied
or when the device Master Reset pin is activated. The clock (C) input
can be driven by either the EPLD FastCLK global net (represented by
a BUFG symbol), an ordinary input, or other on-chip logic.

Refer to “ACC1X1” for truth table derivation.

Figure 3-5 ACC16X1 XC7000 Implementation

R

C
CE

L

B[15:8]

B[15:0]

B[7:0]

D[15:0]

D
[7

:0
]

D[15:8]

ADD

CO

Q[15:0]

Q[15:8]

Q[7:0]

S7_0

R
C
CE

D[7:0]

ADD
L

B[7:0]

ACC8X1

Q[7:0]
CO

S15_8

ACC8X2

CI

R
C
CE

D[7:0]

ADD
L

Q[7:0]
B[7:0] CO
Libraries Guide 3-29

Libraries Guide
ACC16X2

16-Bit Loadable Cascadable Accumulator with
Carry-In, Carry-Out, and Synchronous Reset

* not supported for XC7272 or XC7336 designs

ACC16X2 is implemented using the EPLD arithmetic carry-logic
chain for high-speed ripple-carry addition. ACC16X2 is a high-order
adder component cascaded to lower-order accumulators through its
CI input. ACC16X2 adds or subtracts a 16-bit binary word (B15 – B0)
to or from the contents of a 16-bit data register and stores the results
in the register. The register can be loaded with a 16-bit word. When
the load input (L) is High, CE is ignored and the data on inputs
D15 – D0 is loaded into the 16-bit register. The synchronous reset (R)
has priority over all other inputs and, when High, causes all outputs
to go to logic level zero. When reset (R) and load (L) are inactive,
clock (C) transitions are ignored when clock enable (CE) is Low.

Add
When control inputs ADD and CE are both High, the accumulator
adds a 16-bit word (B15 – B0) and carry-in (CI) to the contents of the
16-bit register. The result is stored in the register and appears on
outputs Q15 – Q0 during the Low-to-High clock transition. In add
mode, CO acts as a carry-out, and CO and CI are active-High.

Subtract
When ADD is Low and CE is High, the 16-bit word B15 – B0 and CI
are subtracted from the contents of the register. The result is stored in
the register and appears on outputs Q15 – Q0 during the Low-to-
High clock transition. In subtract mode, CO acts as a borrow, and CO
and CI are active-Low.

The CI input is taken from the EPLD carry chain, and therefore must
only be connected to the CO output of another EPLD-specific arith-
metic component. The CO output is passed into the EPLD carry
chain, and therefore can only be connected to the CI input of another

XC2000 XC3000 XC4000 XC7000

N/A N/A N/A Macro*

X4322

ACC16X2

C

D[15:0]

B[15:0]

L

CE

ADD

R

CO

Q[15:0]CI
3-30 Xilinx Development System

Design Elements
EPLD-specific arithmetic component. To generate a carry-out signal
for general-purpose logic, connect an ADD1X2 to the CO output of
the accumulator and tie its A and B inputs to GND; the S output
becomes the carry-out.

The accumulator register is initialized to zero when power is applied
or when the device Master Reset pin is activated. The clock (C) input
can be driven by either the EPLD FastCLK global net (represented by
a BUFG symbol), an ordinary input, or other on-chip logic.

Refer to “ACC1X2” for truth table derivation.

Figure 3-6 ACC16X2 XC7000 Implementation

R

C
CE

L

B[15:8]

B[15:0]

B[7:0]

D[15:0]

D
[7

:0
]

D[15:8]

ADD

CI

CO

Q[15:0]

Q[15:8]

Q[7:0]

S7_0

ACC8X2

CI

RC
CE

D[7:0]

ADD
L

Q[7:0]

B[7:0] CO

S15_8

ACC8X2

CI

RC
CE

D[7:0]

ADD
L

Q[7:0]

B[7:0] CO
Libraries Guide 3-31

Libraries Guide
ACLK

Alternate Clock Buffer

ACLK, the alternate clock buffer, is used to distribute high fan-out
clock signals throughout a PLD device. One ACLK buffer on each
device provides direct access to every Configurable Logic Block
(CLB) and Input Output Block (IOB) clock pin. The ACLK buffer is
slightly slower than the global clock buffer (GCLK) but otherwise
similar. Unlike GCLK, the routing resources used for the ACLK
network can be used to route other signals if it is not used. For this
reason, if only one of the GCLK and ACLK buffers is used, GCLK is
preferred. The ACLK input (I) can come from one of the following
sources.

● A CMOS-level signal on the dedicated BCLKIN pin (XC3000
only). BCLKIN is a direct CMOS-only input to the ACLK buffer.
To use the BCLKIN pin, connect the input of the ACLK element
directly to the PAD element (without using an IBUF in between).

● A CMOS- or TTL-level external signal. To connect an external
input to the ACLK buffer, connect the input of the ACLK element
to the output of the IBUF for that signal. Unless the corresponding
PAD element is constrained otherwise, APR or PPR typically
places that IOB directly adjacent to the ACLK buffer.

● The on-chip crystal oscillator. The output of the XTAL oscillator on
XC2000 and XC3000 devices is directly adjacent to the ACLK
buffer input. If the GXTL element is used, the output of the XTAL
oscillator is automatically connected to the ACLK buffer; do not
use the ACLK element for anything else.

● An internal signal. To drive the ACLK buffer with an internal sig-
nal, connect that signal directly to the input of the ACLK element.

For a negative-edge clock, insert an INV (inverter) element between
the ACLK output and the clock input. Inversion is performed inside
the CLB, or in the case of IOB clock pins, on the IOB clock line (that
controls the clock sense for the IOBs on an entire edge of the chip).

XC2000 XC3000 XC4000 XC7000

Primitive Primitive N/A N/A

ACLK

X3883
3-32 Xilinx Development System

Design Elements
ADD1

1-Bit Full Adder with Carry-In and Carry-Out

* not supported for XC7336 designs

ADD1, a cascadable 1-bit full adder with carry-in and carry-out, adds
two 1-bit words (A and B) and a carry-in (CI), producing a binary
sum (S0) output and a carry-out (CO). For XC7000 cascadable adders,
refer to “ADD1X1” and “ADD1X2.”

Figure 3-7 ADD1 XC2000 Implementation

XC2000 XC3000 XC4000 XC7000

Macro N/A N/A Primitive*

Inputs Outputs

A0 B0 CI S0 CO

0 0 0 0 0
1 0 0 1 0
0 1 0 1 0
1 1 0 0 1
0 0 1 1 0
1 0 1 0 1
0 1 1 0 1
1 1 1 1 1

A0

S0

CO

CI

X4034

B0

AND2

AND2

AND2

XOR3

OR3
B0CI

A0CI

AB0

CI

A0

S0

B0

CO
Libraries Guide 3-33

Libraries Guide
ADD1X1

1-Bit Cascadable Full Adder with Carry-Out for EPLD

* not supported for XC7336 designs

ADD1X1 is implemented using the EPLD arithmetic carry-logic chain
for high-speed ripple-carry addition. ADD1X1 is a low-order adder
component, which can be used as a stand-alone or cascaded with
high-order adders through its CO output. ADD1X2 adds two words
(A0 and B0) and produces a sum output (ADD1X2) and carry-out
(CO).

The CO output is passed into the EPLD carry chain, and therefore can
only be connected to the CI input of another EPLD-specific arithmetic
component. To generate a carry-out for general-purpose logic, use an
adder (or cascaded adders) with one extra bit and tie the most-signif-
icant A and B inputs to GND; the most-significant S output becomes
the carry-out. If a carry-in is required from general-purpose logic,
extend the length of the adder by one additional bit and connect the
carry-in signal to both the least-significant A and B inputs (the least-
significant S output is not used) to generate a carry into the carry
chain for the second bit of the adder.

Refer to “ADD1” for truth table derivation.

XC2000 XC3000 XC4000 XC7000

N/A N/A N/A Primitive*

A0

S0

CO

X4224

B0
3-34 Xilinx Development System

Design Elements
ADD1X2

1-Bit Cascadable Full Adder with Carry-In and
Carry-Out for EPLD

* not supported for XC7336 designs

ADD1X2 is implemented using the EPLD arithmetic carry-logic chain
for high-speed ripple-carry addition. ADD1X2 is a high-order adder
component cascaded to lower-order adders through its CI input.
ADD1X2 adds two words (A0 and B0) and a carry-in (CI), producing
a sum output (S0) and carry-out (CO).

The CI input is taken from the EPLD carry chain, and therefore must
only be connected to the CO output of another EPLD-specific arith-
metic component. The CO output is passed into the EPLD carry
chain, and therefore can only be connected to the CI input of another
EPLD-specific arithmetic component. To generate a carry-out for
general-purpose logic, use an adder (or cascaded adders) with one
extra bit and tie the most-significant A and B inputs to GND; the
most-significant S output becomes the carry-out.

Refer to “ADD1” for truth table derivation.

XC2000 XC3000 XC4000 XC7000

N/A N/A N/A Primitive*
A0

S0

CO

CI

X4225

B0
Libraries Guide 3-35

Libraries Guide
ADD4

4-Bit Cascadable Full Adder with Carry-In, Carry-Out,
and Overflow

* not supported for XC7336 designs

ADD4 is implemented in the XC4000 family using carry logic and
relative location constraints, which assure most efficient logic place-
ment. ADD4 adds two words (A3 – A0 and B3 – B0) and a carry-in
(CI), producing a sum output (S3 – S0) and carry-out (CO) or over-
flow (OFL). For XC7000 cascadable adders, refer to “ADD4X1” and
“ADD4X2.” The ADD4 CI and CO pins do not use the EPLD carry
chain.

Unsigned Binary Versus Twos Complement
ADD4 can operate on either 4-bit unsigned binary numbers or 4-bit
twos-complement numbers. If the inputs are interpreted as unsigned
binary, the result can be interpreted as unsigned binary. If the inputs
are interpreted as twos complement, the output can be interpreted as
twos complement. The only functional difference between an
unsigned binary operation and a twos-complement operation is how
they determine when “overflow” occurs. Unsigned binary uses CO,
while twos-complement uses OFL to determine when “overflow”
occurs.

Unsigned Binary Operation
For unsigned binary operation, ADD4 can represent numbers
between 0 and 15, inclusive. CO is active (High) when the sum
exceeds the bounds of the adder.

An unsigned binary “overflow” that is always active-High can be
generated by gating the ADD signal and CO as follows.

unsigned overflow = CO XOR ADD

OFL is ignored in unsigned binary operation.

XC2000 XC3000 XC4000 XC7000

N/A Macro Macro Macro*
A0

CI

ADD4

CO
X4376

A1
A2
A3

B0
B1
B2
B3

S0
S1
S2
S3

OFL
3-36 Xilinx Development System

Design Elements
Twos-Complement Operation
For twos-complement operation, ADD4 can represent numbers
between -8 and +7, inclusive. OFL is active (High) when the sum
exceeds the bounds of the adder.

CO is ignored in twos-complement operation.

XC4000 Topology

X3665

S 3

CO

OFL

S 2

S 1

S 0

B 3A 3

B 2A 2

B 1A 1

B 0A 0

CI
Libraries Guide 3-37

Libraries Guide
ADD4X1

4-Bit Cascadable Full Adder with Carry-Out for EPLD

* not supported for XC7336 designs

ADD4X1 is implemented using the EPLD arithmetic carry-logic chain
for high-speed ripple-carry addition. ADD4X1 is a low-order adder
component, which can be used as a stand-alone or cascaded with
high-order adders through its CO output. ADD4X2 adds two words
(A3 – A0 and B3 – B0), producing a sum output (S3 – S0) and carry-
out (CO).

The CO output is passed into the EPLD carry chain, and therefore can
only be connected to the CI input of another EPLD-specific arithmetic
component. To generate a carry-out for general-purpose logic, use an
adder (or cascaded adders) with one extra bit and tie the most-signif-
icant A and B inputs to GND; the most-significant S output becomes
the carry-out. If a carry-in is required from general-purpose logic,
extend the length of the adder by one additional bit and connect the
carry-in signal to both the least-significant A and B inputs (the least-
significant S output is not used) to generate a carry into the carry
chain for the second bit of the adder.

Refer to “ADD1” for truth table derivation.

XC2000 XC3000 XC4000 XC7000

N/A N/A N/A Primitive*A2
A1

A3

B0
B1
B2
B3

S2
S1
S0

S3

CO

A0

X4232
3-38 Xilinx Development System

Design Elements
ADD4X2

4-Bit Cascadable Full Adder with Carry-In and
Carry-Out for EPLD

* not supported for XC7336 designs

ADD4X2 is implemented using the EPLD arithmetic carry-logic chain
for high-speed ripple-carry addition. ADD4X2 is a high-order adder
component cascaded to lower-order adders through its CI input.
ADD4X2 adds two words (A3 – A0 and B3 – B0) and a carry-in (CI),
producing a sum output (S3 – S0) and carry-out (CO).

The CI input is taken from the EPLD carry chain, and therefore must
only be connected to the CO output of another EPLD-specific arith-
metic component. The CO output is passed into the EPLD carry
chain, and therefore can only be connected to the CI input of another
EPLD-specific arithmetic component. To generate a carry-out for
general-purpose logic, use an adder (or cascaded adders) with one
extra bit and tie the most-significant A and B inputs to GND; the
most-significant S output becomes the carry-out.

Refer to “ADD1” for truth table derivation.

XC2000 XC3000 XC4000 XC7000

N/A N/A N/A Primitive*
A2
A1

CI

A3

B0
B1
B2
B3

S2
S1
S0

S3

CO

A0

X4233
Libraries Guide 3-39

Libraries Guide
ADD8

8-Bit Cascadable Full Adder with Carry-In, Carry-Out,
and Overflow

* not supported for XC7336 designs

ADD8 is implemented in the XC4000 family using carry logic and
relative location constraints, which assure most efficient logic place-
ment. ADD8 adds two words (A7 – A0 and B7 – B0) and a carry-in
(CI), producing a sum output (S7 – S0) and carry-out (CO) or over-
flow (OFL). For XC7000 cascadable adders, refer to “ADD8X1” and
“ADD8X2.” The ADD8 CI and CO pins do not use the EPLD carry
chain.

Unsigned Binary Versus Twos-Complement
ADD8 can operate on either 8-bit unsigned binary numbers or 8-bit
twos-complement numbers. If the inputs are interpreted as unsigned
binary, the result can be interpreted as unsigned binary. If the inputs
are interpreted as twos complement, the output can be interpreted as
twos complement. The only functional difference between an
unsigned binary operation and a twos-complement operation is how
they determine when “overflow” occurs. Unsigned binary uses CO,
while twos-complement uses OFL to determine when “overflow”
occurs.

Unsigned Binary Operation
For unsigned binary operation, ADD8 can represent numbers
between 0 and 255, inclusive. CO is active (High) when the sum
exceeds the bounds of the adder.

An unsigned binary “overflow” that is always active-High can be
generated by gating the ADD signal and CO as follows.

unsigned overflow = CO XOR ADD

OFL is ignored in unsigned binary operation.

XC2000 XC3000 XC4000 XC7000

N/A Macro Macro Macro*
A[7:0]

S[7:0]

CO

CI

X4377

B[7:0]

OFL
3-40 Xilinx Development System

Design Elements
Twos-Complement Operation
For twos-complement operation, ADD8 can represent numbers
between -128 and +127, inclusive. OFL is active (High) when the sum
exceeds the bounds of the adder.

CO is ignored in twos-complement operation.

XC4000 Topology

X3666

S 7

CO

OFL

S 6

S 5

S 4

B 7A 7

B 6A 6

B 5A 5

B 4A 4

CI

S 3

S 2

S 1

S 0

B 3A 3

B 2A 2

B 1A 1

B 0A 0
Libraries Guide 3-41

Libraries Guide
Figure 3-8 ADD8 XC3000 Implementation

OFL

OR3

XOR3

XOR3

OR3

XOR3

XOR3

OR3

OR3AND2

AND2

AND2

AND2

AND2

AND2

AND2

AND2

AND2 AND2

AND2

AND2

AND2

AND2

AND2

AND2

AND2

OR3

XOR3

OR3

XOR3

OR3

XOR3

AND2

AND2 AND2

AND2

AND2

OR3

XOR3

AND2

A7C6

AB6

AB5

AB4

AB3

AB2

AB1

A1C0

A2C1

A3C2

A4C3

A5C4

A6C5

B7C6

B6C5

B5C4

B4C3

B3C2

B2C1

B1C0

B0CI

AB0

C4

C5

C6C2

C1

CI

C0

CO

C3

A0CI

AB7

AND2XOR2

XNOR2

AND2

AABXSAAB

AXB

B7

B4

B5

B6

B[7:0]

B3

B0

B1

B2
A2

A7

A6

A5

A4

A[7:0]

A3

A1

A0

S2

S3

S1

S0 S4

S5

S6

S7

S[7:0]

AND2
3-42 Xilinx Development System

Design Elements
Figure 3-9 ADD8 XC4000 Implementation

CO

OFL

OOR3

XOR2

OR3

OOR1

OOR2

I1
I2
I3
I4

O

FMAPOR3

COR2

CO

COR1

COR3

C6
A7

S6

S7B7

S[7:0]S7

C5

C4

C3

B4

B5

B6
A6

A5

A4

S3

S4

S5

S6

S4

S5

C2

C1

B2

B3
A3

A2
S2

S2

S3

C0

B1
A1

S1

S1

A0

ADD

B1

A1

B0

CY4

CIN

COUT

(F3)

(F1)

(F2)

(G4)

(G1)

CARRY MODE

S2
XOR3

S1
XOR3

C1

A0

ADD

B1
A1
B0

CY4

CIN

COUT

COUT0

(F3)

(F1)
(F2)
(G4)
(G1)

CARRY MODE

C_INCY4_13
ADDSUB-FG-CI

CY4_13

S0

XOR3

B0
A0
C_IN

S0

I1
I2
I3
I4

O

FMAP

CI

B[7:0]

B0

B1

CY4_39
FORCE-F1

A[7:0]

A0

A1

S0

C3

A0

ADD

B1

A1

B0

CIN

COUT

COUT0

(F3)

(F1)

(F2)

(G4)

(G1)

CARRY MODE

CY4_13

S3
XOR3

S4
XOR3

B2

B3

A3

A2

A0

ADD

B1

A1

B0

CY4

CIN

COUT

COUT0

(F1)

(F2)

(G4)

(G1)

CARRY MODE

ADDSUB-FG-CI

S6

XOR3
S5

XOR3

B5

B4
A5

A4

C5
CY4_12
ADDSUB-F-CI

S7
XOR3

B6
A6

A7

AND2

AND2

AND2

A0

ADD

B1

A1

B0

CY4

CIN

COUT

COUT0

(F3)

(F1)

(F2)

(G4)

(G1)

CARRY MODE

CY4_42
EXAMINE-CI

C7

B7
A7
C7

AND2

B7

B7

AND2

AND2

A7

C7_M

C4

C2

C0

I1
I2
I3
I4

O

FMAP

I1
I2
I3
I4

O

FMAP

I1
I2
I3
I4

O

FMAP

I1
I2
I3
I4

O

FMAP

I1
I2
I3
I4

O

FMAP

I1
I2
I3
I4

O

FMAP

I1
I2
I3
I4

O

FMAP

OFL
A7
C7

B7

I1
I2
I3
I4

O

FMAP

X4333

C6

COUT0

COUT0

A0

ADD

B1

A1

B0

(F3)

(F1)

(F2)

(G4)

(G1) COUT

CY4

CY4

CARRY MODE

ADDSUB-FG-CI

(F3)

RLOC=R0C0.F

RLOC=R0C0.G

RLOC=R1C0.G

RLOC=R1C0.F

RLOC=R2C0.G

RLOC=R2C0.F

RLOC=R3C0.G

RLOC=R3C0.F

RLOC=R4C0.G

RLOC=R4C0.F

RLOC=R0C0

RLOC=R1C0

RLOC=R2C0

RLOC=R3C0

RLOC=R4C0

RLOC=R5C0
Libraries Guide 3-43

Libraries Guide
ADD8X1

8-Bit Loadable Cascadable Full Adder with Carry-Out
for EPLD

* not supported for XC7336 designs

ADD8X1 is implemented using the EPLD arithmetic carry-logic chain
for high-speed ripple-carry addition. ADD8X1 is a low-order adder
component that can be used stand-alone or cascaded with high-order
adders through its CO output. ADD8X2 adds two words (A7 – A0
and B7 – B0), producing a sum output (S7 – S0) and carry-out (CO).
The CO output passes into the EPLD carry chain, and therefore can
only be connected to the CI input of another EPLD-specific arithmetic
component. To generate a carry-out for general-purpose logic, use an
adder (or cascaded adders) with one extra bit and tie the most-signif-
icant A and B inputs to GND; the most-significant S output becomes
the carry-out. If a carry-in is required from general-purpose logic,
extend the length of the adder by one additional bit and connect the
carry-in signal to both the least-significant A and B inputs (the least-
significant S output is not used). This procedure generates a carry
into the carry chain for the second bit of the adder.

Refer to “ADD1” for truth table derivation.

XC2000 XC3000 XC4000 XC7000

N/A N/A N/A Primitive*

A[7:0]

S[7:0]

CO

X4236

B[7:0]
3-44 Xilinx Development System

Design Elements
ADD8X2

8-Bit Cascadable Full Adder with Carry-In and
Carry-Out for EPLD

* not supported for XC7336 designs

ADD8X2 is implemented using the EPLD arithmetic carry-logic chain
for high-speed ripple-carry addition. ADD8X2 is a high-order adder
component cascaded to lower-order adders through its CI input.
ADD8X2 adds two words (A7 – A0 and B7 – B0) and a carry-in (CI),
producing a sum output (S7 – S0) and carry-out (CO).

The CI input is taken from the EPLD carry chain, and therefore must
only be connected to the CO output of another EPLD-specific arith-
metic component. The CO output is passed into the EPLD carry
chain, and therefore can only be connected to the CI input of another
EPLD-specific arithmetic component. To generate a carry-out for
general-purpose logic, use an adder (or cascaded adders) with one
extra bit and tie the most-significant A and B inputs to GND; the
most-significant S output becomes the carry-out.

Refer to “ADD1” for truth table derivation.

XC2000 XC3000 XC4000 XC7000

N/A N/A N/A Primitive*
A[7:0]

S[7:0]

CO

CI

X4237

B[7:0]
Libraries Guide 3-45

Libraries Guide
ADD16

16-Bit Cascadable Full Adder with Carry-In,
Carry-Out, and Overflow

* not supported for XC7336 designs

ADD16 is implemented in the XC4000 family using carry logic and
relative location constraints, which assure most efficient logic place-
ment. ADD16 adds two words (A15 – A0 and B15 – B0) and a carry-in
(CI), producing a sum output (S15 – S0) and carry-out (CO) or over-
flow (OFL). For XC7000 cascadable adders, refer to “ADD16X1” and
“ADD16X2.” The ADD16 CI and CO pins do not use the EPLD carry
chain.

Unsigned Binary Versus Twos-Complement
ADD16 can operate on either 16-bit unsigned binary numbers or
16-bit twos-complement numbers. If the inputs are interpreted as
unsigned binary, the result can be interpreted as unsigned binary. If
the inputs are interpreted as twos complement, the output can be
interpreted as twos complement. The only functional difference
between an unsigned binary operation and a twos-complement oper-
ation is how they determine when “overflow” occurs. Unsigned
binary uses CO, while twos-complement uses OFL to determine
when “overflow” occurs.

Unsigned Binary Operation
For unsigned binary operation, ADD16 can represent numbers
between 0 and 65535, inclusive. CO is active (High) when the sum
exceeds the bounds of the adder.

An unsigned binary “overflow” that is always active-High can be
generated by gating the ADD signal and CO as follows.

unsigned overflow = CO XOR ADD

OFL is ignored in unsigned binary operation.

XC2000 XC3000 XC4000 XC7000

N/A Macro Macro Macro*

A[15:0]

S[15:0]

CO

CI

X4378

B[15:0]

OFL
3-46 Xilinx Development System

Design Elements
Twos-Complement Operation
For twos-complement operation, ADD16 can represent numbers
between -32768 and +32767, inclusive. OFL is active (High) when the
sum exceeds the bounds of the adder.

CO is ignored in twos-complement operation.

XC4000 Topology

X3667

S 15

CO

OFL

S 14

S 13

S 12

B 15A 15

CI

S 11

S 10

S 9

S 8

B 9A 9

B 8A 8

S 7

S 6

S 5

S 4

B 7A 7

B 6A 6

B 5A 5

B 4A 4

S 3

S 2

S 1

S 0

B 3A 3

B 2A 2

B 1A 1

B 0A 0

B 14A 14

B 13A 13

B 12A 12

B 11A 11

B 10A 10
Libraries Guide 3-47

Libraries Guide
Figure 3-10 ADD16 XC7000 Implementation

B[15:8]

B15

B[15:0]

B[7:0]

A[15:8]

A15

A[15:0]

A[7:0]

S15

S[15:0]

S[7:0]

S[15:8]

OFL_OUT

OR2

OFL_NEG

AND3B1

OFL_POS

AND3B2

CO15

ADD1X2

S0
B0

A0

CO

CI

CI0

CO

ADD1X1

S0
B0

A0

OFL

CO

S7_0

ADD8X2

CO

A[7:0]

B[7:0]
S[7:0]

CI

S15_8

ADD8X2

CO

A[7:0]

B[7:0]
S[7:0]

CI

CI

GND
3-48 Xilinx Development System

Design Elements
ADD16X1

16-Bit Cascadable Full Adder with Carry-Out for
EPLD

* not supported for XC7336 designs

ADD16X1 is implemented using the EPLD arithmetic carry-logic
chain for high-speed ripple-carry addition. ADD16X1 is a low-order
adder component, which can be used as a stand-alone or cascaded
with high-order adders through its CO output. ADD16X2 adds two
words (A15 – A0 and B15 – B0), producing a sum output (S15 – S0)
and carry-out (CO).

The CO output is passed into the EPLD carry chain, and therefore can
only be connected to the CI input of another EPLD-specific arithmetic
component. To generate a carry-out for general-purpose logic, use an
adder (or cascaded adders) with one extra bit and tie the most-signif-
icant A and B inputs to GND; the most-significant S output becomes
the carry-out. If a carry-in is required from general-purpose logic,
extend the length of the adder by one additional bit and connect the
carry-in signal to both the least-significant A and B inputs (the least-
significant S output is not used) to generate a carry into the carry
chain for the second bit of the adder.

Refer to “ADD1” for truth table derivation.

XC2000 XC3000 XC4000 XC7000

N/A N/A N/A Macro*

A[15:0]

S[15:0]

CO

X4317

B[15:0]
Libraries Guide 3-49

Libraries Guide
Figure 3-11 ADD16X1 XC7000 Implementation

S[15:0]

S[15:8]

S[7:0]

B[15:0]

B[7:0]

B[15:8]

A[15:0]

A[15:8]

A[7:0]

CO

S15_8

ADD8X2

CO

A[7:0]

B[7:0]

S[7:0]

CI

S7_0

ADD8X1

S[7:0]
B[7:0]

A[7:0]

CO
3-50 Xilinx Development System

Design Elements
ADD16X2

16-Bit Cascadable Full Adder with Carry-In and
Carry-Out for EPLD

* not supported for XC7336 designs

ADD16X2 is implemented using the EPLD arithmetic carry-logic
chain for high-speed ripple-carry addition. ADD16X2 is a high-order
adder component cascaded to lower-order adders through its CI
input. ADD16X2 adds two words (A15 – A0 and B15 – B0) and a
carry-in (CI), producing a sum output (S15 – S0) and carry-out (CO).

The CI input is taken from the EPLD carry chain, and therefore must
only be connected to the CO output of another EPLD-specific arith-
metic component. The CO output is passed into the EPLD carry
chain, and therefore can only be connected to the CI input of another
EPLD-specific arithmetic component. To generate a carry-out for
general-purpose logic, use an adder (or cascaded adders) with one
extra bit and tie the most-significant A and B inputs to GND; the
most-significant S output becomes the carry-out. Refer to “ADD1” for
truth table derivation.

Figure 3-12 ADD16X2 XC7000 Implementation

XC2000 XC3000 XC4000 XC7000

N/A N/A N/A Macro*
A[15:0]

S[15:0]

CO

CI

X4318

B[15:0]

CI

S15_8

ADD8X2

CO

A[7:0]

B[7:0]
S[7:0]

CI

CO

A[7:0]

A[15:8]

A[15:0]

B[15:8]

B[7:0]

B[15:0]

S[7:0]

S[15:8]

S[15:0]

S7_0

ADD8X2

CO

A[7:0]

B[7:0]
S[7:0]

CI
Libraries Guide 3-51

Libraries Guide
ADSU1

1-Bit Cascadable Adder/Subtracter with Carry-In and
Carry-Out

* not supported for XC7336 designs

When the ADD input is High, two 1-bit words (A0 and B0) are added
with a carry-in (CI), producing a 1-bit output (S0) and a carry-out
(CO). When the ADD input is Low, B0 is subtracted from A0,
producing a result (S0) and borrow (CO). In add mode, CO represents
a carry-out, and CO and CI are active-High. In subtract mode, CO
represents a borrow, and CO and CI are active-Low. Refer to
“ADSU1X1” and “ADSU1X2” for cascadable EPLD symbols.

Add Function, ADD=1

XC2000 XC3000 XC4000 XC7000

Macro N/A N/A Primitive*

Inputs Outputs

A0 B0 CI S0 CO

0 0 0 0 0
0 1 0 1 0
1 0 0 1 0
1 1 0 0 1
0 0 1 1 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 1

A0

S0

ADD CO

CI

X4035

B0
3-52 Xilinx Development System

Design Elements
Subtract Function, ADD=0

Figure 3-13 ADSU1 XC2000 Implementation

Inputs Outputs

A0 B0 CI S0 CO

0 0 0 1 0
0 1 0 0 0
1 0 0 0 1
1 1 0 1 0
0 0 1 0 1
0 1 1 1 0
1 0 1 1 1
1 1 1 0 1

ADD

ADD_C0

SUB_C0
A1CI

A3_0

A2_0

A1_0

A0_0

CO

B0
A0

CI

S0

A2CI
CO

D0
D1

O

S0

M2_1AND2B1

OR2B1

OR2

AND2

AND2 OR2

AND2
OR2

XNOR4
Libraries Guide 3-53

Libraries Guide
ADSU1X1

1-Bit Cascadable Adder/Subtracter with Carry-Out
for EPLD

* not supported for XC7336 designs

ADSU1X1 is implemented using the EPLD arithmetic carry-logic
chain for high-speed ripple-carry addition. ADSU1X1 is a low-order
adder component, which can be used as a stand-alone or cascaded
with high-order adders through its CO output. When the ADD input
is High, two 1-bit words (A0 and B0) are added, producing and a
1-bit output (S0) and carry-out (CO). When the ADD input is Low, B0
is subtracted from A0, producing a result (S0) and borrow (CO). In
add mode, CO represents a carry-out and is active-High. In subtract
mode, CO represents a borrow and is active-Low.

The CO output is passed into the EPLD carry chain, and therefore can
only be connected to the CI input of another EPLD-specific arithmetic
component. To generate a carry-out for general-purpose logic,
connect an ADD1X2 to the CO output of the adder/subtracter and tie
its A and B inputs to GND; the S output becomes the carry-out. If a
carry-in is required from general-purpose logic, use an ADSU1X2 for
the least-significant adder/subtracter and connect an ADD1X1 to its
CI input. Connect your carry-in signal to both the A and B inputs of
the ADD1X1 (the S output is not used) to generate a carry into the
carry chain for the first bit of the adder/subtracter.

Refer to “ADSU1” for truth table derivation.

XC2000 XC3000 XC4000 XC7000

N/A N/A N/A Primitive*

A0

S0

ADD CO

X4226

B0
3-54 Xilinx Development System

Design Elements
ADSU1X2

1-Bit Cascadable Adder/Subtracter with Carry-In and
Carry-Out for EPLD

* not supported for XC7336 designs

ADSU1X2 is implemented using the EPLD arithmetic carry-logic
chain for high-speed ripple-carry addition. ADSU1X2 is a high-order
adder component cascaded to lower-order adders through its CI
input. When the ADD input is High, two 1-bit words (A0 and B0) are
added with a carry-in (CI), producing a 1-bit output (S0) and carry-
out (CO). When the ADD input is Low, B0 is subtracted from A0,
producing a result (S0) and borrow (CO). In add mode, CO repre-
sents a carry-out, and CO and CI are active-High. In subtract mode,
CO represents a borrow, and CO and CI are active-Low.

The CI input is taken from the EPLD carry chain, and therefore must
only be connected to the CO output of another EPLD-specific arith-
metic component. The CO output is passed into the EPLD carry
chain, and therefore can only be connected to the CI input of another
EPLD-specific arithmetic component. To generate a carry-out signal
for general-purpose logic, connect an ADD1X2 to the CO output of
the adder/subtracter and tie its A and B inputs to GND; the S output
becomes the carry-out.

Refer to “ADSU1” for truth table derivation.

XC2000 XC3000 XC4000 XC7000

N/A N/A N/A Primitive*
A0

S0

ADD CO

CI

X4227

B0
Libraries Guide 3-55

Libraries Guide
ADSU4

4-Bit Cascadable Adder/Subtracter with Carry-In,
Carry-Out, and Overflow

* not supported for XC7336 designs

ADSU4 is implemented in the XC4000 family using carry logic and
relative location constraints, which assure most efficient logic place-
ment. When the ADD input is High, two 4-bit words (A3 – A0 and
B3 – B0) are added with a carry-in (CI), producing a 4-bit sum
(S3 – S0) and carry-out (CO) or overflow (OFL). When the ADD input
is Low, B3 – B0 is subtracted from A3 – A0, producing a 4-bit differ-
ence (S3 – S0) and CO or OFL. In add mode, CO and CI are active-
High. In subtract mode, CO and CI are active-Low. For cascadable
EPLD symbols, refer to “ADSU4X1” and “ADSU4X2.” ADSU4 CI and
CO pins do not use the EPLD carry chain.

Unsigned Binary Versus Twos-Complement
ADSU4 can operate on either 4-bit unsigned binary numbers or 4-bit
twos-complement numbers. If the inputs are interpreted as unsigned
binary, the result can be interpreted as unsigned binary. If the inputs
are interpreted as twos complement, the output can be interpreted as
twos complement. The only functional difference between an
unsigned binary operation and a twos-complement operation is how
they determine when “overflow” occurs. Unsigned binary uses CO,
while twos-complement uses OFL to determine when “overflow”
occurs.

With adder/subtracters, either unsigned binary or twos-complement
operations cause an overflow. If the result crosses the overflow
boundary, an overflow is generated. Similarly, when the result crosses
the carry-out boundary, a carry-out is generated. The following figure
shows the ADSU carry-out and overflow boundaries.

XC2000 XC3000 XC4000 XC7000

N/A Macro Macro Macro*A2
A1

CI

A3

B0
B1
B2
B3
ADD

S2
S1
S0

S3

CO

A0

X4379

OFL
3-56 Xilinx Development System

Design Elements
Figure 3-14 ADSU Carry-Out and Overflow Boundaries

Unsigned Binary Operation
For unsigned binary operation, ADSU4 can represent numbers
between 0 and 15, inclusive. In add mode, CO is active (High) when
the sum exceeds the bounds of the adder/subtracter. In subtract
mode, CO is an active-Low borrow-out and goes Low when the
difference exceeds the bounds.

An unsigned binary “overflow” that is always active-High can be
generated by gating the ADD signal and CO as follows.

unsigned overflow = CO XOR ADD

OFL is ignored in unsigned binary operation.

Twos-Complement Operation
For twos-complement operation, ADSU4 can represent numbers
between -8 and +7, inclusive. If an addition or subtraction operation
result exceeds this range, the OFL output goes High.

CO is ignored in twos-complement operation.

TW
O

S
C

O
M

P
L

E
M

E
N

T
O

R
S

IG
NED

TW

OS
C

O
M

P
L

E
M

E
N

T
O

R
S

IG
N

ED

UN
S

IG
N

E
D

B
IN

A
R

Y

U
N

S
IG

N
E

D
B

IN
A

R
Y

X4720

255

-127 127

127128

0

0-1

Overflow

Carry-Out
Libraries Guide 3-57

Libraries Guide
XC4000 Topology

X3668

CO

OFL

CI

S 3

S 2

S 1

S 0

B 3A 3

B 2A 2

B 1A 1

B 0A 0
3-58 Xilinx Development System

Design Elements
ADSU4X1

4-Bit Cascadable Adder/Subtracter with Carry-Out
for EPLD

* not supported for XC7336 designs

ADSU4X1 is implemented using the EPLD arithmetic carry-logic
chain for high-speed ripple-carry addition. ADSU4X1 is a low-order
adder component, which can be used as a stand-alone or cascaded
with high-order adders through its CO output. When the ADD input
is High, two 4-bit words (A3 – A0 and B3 – B0) are added, producing
a 4-bit output (S3 – S0) and carry-out (CO). When the ADD input is
Low, B3 – B0 is subtracted from A3 – A0, producing a result (S3 – S0)
and borrow (CO). In add mode, CO represents a carry-out and is
active-High. In subtract mode, CO represents a borrow and is active-
Low.

The CO output is passed into the EPLD carry chain, and therefore can
only be connected to the CI input of another EPLD-specific arithmetic
component. To generate a carry-out for general-purpose logic,
connect an ADD1X2 to the CO output of the adder/subtracter and tie
its A and B inputs to GND; the S output becomes the carry-out. If a
carry-in is required from general-purpose logic, use an ADSU4X2 for
the least-significant adder/subtracter and connect an ADD1X1 to its
CI input. Connect your carry-in signal to both the A and B inputs of
the ADD1X1 (the S output is not used) to generate a carry into the
carry chain for the first bit of the adder/subtracter.

Refer to “ADSU1” for truth table derivation.

XC2000 XC3000 XC4000 XC7000

N/A N/A N/A Primitive*
A2
A1

A3

B0
B1
B2
B3
ADD

S2
S1
S0

S3

CO

A0

X4234
Libraries Guide 3-59

Libraries Guide
ADSU4X2

4-Bit Cascadable Adder/Subtracter with Carry-In and
Carry-Out for EPLD

* not supported for XC7336 designs

ADSU4X2 is implemented using the EPLD arithmetic carry-logic
chain for high-speed ripple-carry addition. ADSU4X2 is a high-order
adder component cascaded to lower-order adders through its CI
input. When the ADD input is High, two 4-bit words (A3 – A0 and
B3 – B0) are added with a carry-in (CI), producing a 4-bit output
(S3 – S0) and carry-out (CO). When the ADD input is Low, B3 – B0 is
subtracted from A3 – A0, producing a result (S3 – S0) and borrow
(CO). In add mode, CO represents a carry-out, and CO and CI are
active-High. In subtract mode, CO represents a borrow, and CO and
CI are active-Low.

The CI input is taken from the EPLD carry chain, and therefore must
only be connected to the CO output of another EPLD-specific arith-
metic component. The CO output is passed into the EPLD carry
chain, and therefore can only be connected to the CI input of another
EPLD-specific arithmetic component. To generate a carry-out signal
for general-purpose logic, connect an ADD1X2 to the CO output of
the adder/subtracter and tie its A and B inputs to GND; the S output
becomes the carry-out.

Refer to “ADSU1” for truth table derivation.

XC2000 XC3000 XC4000 XC7000

N/A N/A N/A Primitive*A2
A1

CI

A3

B0
B1
B2
B3
ADD

S2
S1
S0

S3

CO

A0

X4235
3-60 Xilinx Development System

Design Elements
ADSU8

8-Bit Cascadable Adder/Subtracter with Carry-In,
Carry-Out, and Overflow

* not supported for XC7336 designs

ADSU8 is implemented in the XC4000 family using carry logic and
relative location constraints, which assure most efficient logic place-
ment. When the ADD input is High, two 8-bit words (A7 – A0 and
B7 – B0) are added with a carry-in (CI), producing an 8-bit sum
(S7 – S0) and carry-out (CO) or overflow (OFL). When the ADD input
is Low, B7 – B0 is subtracted from A7 – A0, producing an 8-bit differ-
ence (S7 – S0) and CO or OFL. In add mode, CO and CI are active-
High. In subtract mode, CO and CI are active-Low. OFL is active-
High in add and subtract modes. For cascadable EPLD symbols, refer
to “ADSU8X1” and “ADSU8X2.” ADSU8 CI and CO pins do not use
the EPLD carry chain.

Unsigned Binary Versus Twos-Complement
ADSU8 can operate on either 8-bit unsigned binary numbers or 8-bit
twos-complement numbers. If the inputs are interpreted as unsigned
binary, the result can be interpreted as unsigned binary. If the inputs
are interpreted as twos complement, the output can be interpreted as
twos complement. The only functional difference between an
unsigned binary operation and a twos-complement operation is how
they determine when “overflow” occurs. Unsigned binary uses CO,
while twos-complement uses OFL to determine when “overflow”
occurs.

With adder/subtracters, either unsigned binary or twos-complement
operations cause an overflow. If the result crosses the overflow
boundary, an overflow is generated. Similarly, when the result
crosses the carry-out boundary, a carry-out is generated. The
following figure shows the ADSU carry-out and overflow bound-
aries.

XC2000 XC3000 XC4000 XC7000

N/A Macro Macro Macro*

A[7:0]

S[7:0]

ADD
CO

CI

X4380

B[7:0]

OFL
Libraries Guide 3-61

Libraries Guide
Figure 3-15 ADSU Carry-Out and Overflow Boundaries

Unsigned Binary Operation
For unsigned binary operation, ADSU8 can represent numbers
between 0 and 255, inclusive. In add mode, CO is active (High) when
the sum exceeds the bounds of the adder/subtracter. In subtract
mode, CO is an active-Low borrow-out and goes Low when the
difference exceeds the bounds.

An unsigned binary “overflow” that is always active-High can be
generated by gating the ADD signal and CO as follows.

unsigned overflow = CO XOR ADD

OFL is ignored in unsigned binary operation.

Twos-Complement Operation
For twos-complement operation, ADSU8 can represent numbers
between -128 and +127, inclusive. If an addition or subtraction opera-
tion result exceeds this range, the OFL output goes High.

CO is ignored in twos complement operation.

TW
O

S
C

O
M

P
L

E
M

E
N

T
O

R
S

IG
NED

TW

OS
C

O
M

P
L

E
M

E
N

T
O

R
S

IG
N

ED

UN
S

IG
N

E
D

B
IN

A
R

Y

U
N

S
IG

N
E

D
B

IN
A

R
Y

X4720

255

-127 127

127128

0

0-1

Overflow

Carry-Out
3-62 Xilinx Development System

Design Elements
XC4000 Topology

X3669

S 7

CO

OFL

S 6

S 5

S 4

B 7A 7

B 6A 6

B 5A 5

B 4A 4

CI

S 3

S 2

S 1

S 0

B 3A 3

B 2A 2

B 1A 1

B 0A 0
Libraries Guide 3-63

Libraries Guide
Figure 3-16 ADSU8 XC3000 Implementation

S7

S0

S1

S2

S3

S[7:0]

S4

S5

S6

ADD

A7

A[7:0]

A1

A0

A2

A3

A5

A4

A6

ADD_COA2C6

A3_7 OR2

C6

D0
D1 O

S0

M2_1

C5

D0
D1 O

S0

M2_1

C4

D0
D1 O

S0

M2_1AND2B1

C0

D0
D1 O

S0

M2_1

OR2OR2B1

AND2

OR2 AND2 OR2

AND2

XNOR4

C3

D0
D1 O

S0

M2_1

OR2B1

AND2

AND2 OR2

AND2 OR2

C1

D0
D1 O

S0

M2_1

XNOR4

AND2B1

XNOR4

OR2AND2

OR2AND2

XNOR4

OR2AND2

OR2AND2OR2

OR2B1

AND2B1

C2

D0
D1 O

S0

M2_1

AND2

OR2

OR2B1

AND2B1

OR2

AND2 AND2

OR2

AND2B1

OR2B1

OR2

AND2

AND2B1

OR2B1

OR2 AND2 OR2

AND2 OR2

XNOR4

AND2 OR2

AND2 OR2

XNOR4

AND2B1

XNOR4

OR2AND2

AND2

AND2

OR2B1 CO

D0
D1

O

S0

M2_1

XNOR4

AND2

OR2AND2
OR2

AND2

OR2B1 OR2

AND2B1

A1C6

A0_7

A3_6

A2_6

C5

A1_6

A0_6

A2_5

A1_5

A0_5

A2_7

A1_7

A3_5

A3_4

A2_4

A1_4

A0_4

A1_3

A0_3

A3_3

A2_3

A3_2

A2_2

A1_2

A3_1

A2_1

A1_1

A0_1

A3_0

A1CI

A2_0

A0_0

A1_0

A2C5

A1C5

A2C4

A2C3

A2C2

A1C2

A2C1

A1C1

A1C0

SUB_CO

ADD_C6

SUB_C6

A1C4

ADD_C5

SUB_C5

ADD_C4

C4
SUB_C4

C3

C2

ADD_C3

CI

SUB_C0

ADD_C0A2CI

SUB_C3

SUB_C2

ADD_C2

A2C0

SUB_C1

ADD_C1

C0

C1

C6

A1C3

A0_2

CO

B7

B0

B1

B2

B3

B[7:0]

B6

B5

B4

XNOR2

AND2XOR2

XNOR2

AND2

AABXSAAB

B_M

OFL

AXB
3-64 Xilinx Development System

Design Elements
Figure 3-17 ADSU8 XC4000 Implementation

CO

OFL

OFOR3

XOR2

OR3

OFOR1

OFOR2

OR3

OFL

COR2

COR1

COR3

C6
A7

S6

S7B7
ADD

A7

ADD

C7_M

B7

S[7:0]
S7

ADD

ADD

ADD

C5

C4

C3

B4

B5

B6
A6

A5

A4

S3

S4

S5

S6

S4

S5

ADD

ADD

C2

C1

B2

B3
A3

A2
S2

S2

S3

ADD

C0

B1
A1

S1

S1

A0

ADD

B1

A1

B0

CY4

CIN

COUT

(F3)

(F1)

(F2)

(G4)

(G1)

CARRY MODE

S2
XNOR4

S1
XNOR4

C1

A0

ADD

B1
A1
B0

CY4

CIN

COUT

COUT0

(F3)

(F1)
(F2)
(G4)
(G1)

CARRY MODE

C_IN
CY4_13
ADDSUB-FG-CI

CY4_13

S0

XNOR4

ADD
B0
A0
C_IN

S0

I1
I2
I3
I4

O

FMAP

CI

B[7:0]

B0

B1

ADD

CY4_39
FORCE-F1

A[7:0]

A0

A1

S0

C3

A0

ADD

B1

A1

B0

CIN

COUT

COUT0

(F3)

(F1)

(F2)

(G4)

(G1)

CARRY MODE

CY4_13

S3
XNOR4

S4
XNOR4

B2

B3

A3

A2

A0

ADD

B1

A1

B0

CY4

CIN

COUT

COUT0

(F1)

(F2)

(G4)

(G1)

CARRY MODE

ADDSUB-FG-CI

S6

XNOR4
S5

XNOR4

B5

B4
A5

A4

C5

CY4_12
ADDSUB-F-CI

S7
XNOR4

B6
A6

A7

AND2

B7_M2
XNOR2

AND2

AND2A0

ADD

B1

A1

B0

CY4

CIN

COUT

COUT0

(F3)

(F1)

(F2)

(G4)

(G1)

CARRY MODE

CY4_42
EXAMINE-CI

C7

AND2XNOR2

B7

B7

B7

B7_M1

AND2

AND2

A7

C7_M

C4

C2

C0

I1
I2
I3
I4

O

FMAP

I1
I2
I3
I4

O

FMAP

I1
I2
I3
I4

O

FMAP

I1
I2
I3
I4

O

FMAP

I1
I2
I3
I4

O

FMAP

I1
I2
I3
I4

O

FMAP

I1
I2
I3
I4

O

FMAP

I1
I2
I3
I4

O

FMAP

X4280

C6

COUT0

COUT0

A0

ADD

B1

A1

B0

(F3)

(F1)

(F2)

(G4)

(G1) COUT

CY4

CY4

CARRY MODE

ADDSUB-FG-CI

I1
I2
I3
I4

O

FMAP

CO

ADD
B7
A7
C7_M

RLOC=R0C0.G

RLOC=R0C0.F

RLOC=R1C0.G

RLOC=R1C0.F

RLOC=R2C0.G

RLOC=R2C0.F

RLOC=R3C0.G

RLOC=R3C0.F

RLOC=R4C0.G

RLOC=R4C0.F

RLOC=R0C0
Libraries Guide 3-65

Libraries Guide
ADSU8X1

8-Bit Cascadable Adder/Subtracter with Carry-Out
for EPLD

* not supported for XC7336 designs

ADSU8X1 is implemented using the EPLD arithmetic carry-logic
chain for high-speed ripple-carry addition. ADSU8X1 is a low-order
adder component, which can be used as a stand-alone or cascaded
with high-order adders through its CO output. When the ADD input
is High, two 8-bit words (A7 – A0 and B7 – B0) are added, producing
an 8-bit output (S7 – S0) and carry-out (CO). When the ADD input is
Low, B7 – B0 is subtracted from A7 – A0, producing a result (S7 – S0)
and borrow (CO). In add mode, CO represents a carry-out and is
active-High. In subtract mode, CO represents a borrow and is active-
Low.

The CO output is passed into the EPLD carry chain, and therefore can
only be connected to the CI input of another EPLD-specific arithmetic
component. To generate a carry-out for general-purpose logic,
connect an ADD1X2 to the CO output of the adder/subtracter and tie
its A and B inputs to GND; the S output becomes the carry-out. If a
carry-in is required from general-purpose logic, use an ADSU8X2 for
the least-significant adder/subtracter and connect an ADD1X1 to its
CI input. Connect your carry-in signal to both the A and B inputs of
the ADD1X1 (the S output is not used) to generate a carry into the
carry chain for the first bit of the adder/subtracter.

Refer to “ADSU1” for truth table derivation.

XC2000 XC3000 XC4000 XC7000

N/A N/A N/A Primitive*

A[7:0]

S[7:0]

ADD CO

X4238

B[7:0]
3-66 Xilinx Development System

Design Elements
ADSU8X2

8-Bit Cascadable Adder/Subtracter with Carry-In and
Carry-Out for EPLD

* not supported for XC7336 designs

ADSU8X2 is implemented using the EPLD arithmetic carry-logic
chain for high-speed ripple-carry addition. ADSU8X2 is a high-order
adder component cascaded to lower-order adders through its CI
input. When the ADD input is High, two 8-bit words (A7 – A0 and
B7 – B0) are added with a carry-in (CI), producing an 8-bit output
(S7 – S0) and carry-out (CO). When the ADD input is Low, B7 – B0 is
subtracted from A7 – A0, producing a result (S7 – S0) and borrow
(CO). In add mode, CO represents a carry-out, and CO and CI are
active-High. In subtract mode, CO represents a borrow, and CO and
CI are active-Low.

The CI input is taken from the EPLD carry chain, and therefore must
only be connected to the CO output of another EPLD-specific arith-
metic component. The CO output is passed into the EPLD carry
chain, and therefore can only be connected to the CI input of another
EPLD-specific arithmetic component. To generate a carry-out signal
for general-purpose logic, connect an ADD1X2 to the CO output of
the adder/subtracter and tie its A and B inputs to GND; the S output
becomes the carry-out.

Refer to “ADSU1” for truth table derivation.

XC2000 XC3000 XC4000 XC7000

N/A N/A N/A Primitive*
A[7:0]

S[7:0]

ADD CO

CI

X4239

B[7:0]
Libraries Guide 3-67

Libraries Guide
ADSU16

16-Bit Cascadable Adder/Subtracter with Carry-In,
Carry-Out, and Overflow

* not supported for XC7336 designs

ADSU16 is implemented in the XC4000 family using carry logic and
relative location constraints, which assure most efficient logic place-
ment. When the ADD input is High, two 16-bit words (A15 – A0 and
B15 – B0) are added with a carry-in (CI), producing a 16-bit sum
(S15 – S0) and carry-out (CO) or overflow (OFL). When the ADD
input is Low, B15 – B0 is subtracted from A15 – A0, producing a 16-bit
difference (S15 – S0) and CO or OFL. In add mode, CO and CI are
active-High. In subtract mode, CO and CI are active-Low. OFL is
active-High in add and subtract modes. For cascadable EPLD
symbols, refer to “ADSU16X1” and “ADSU16X2.” ADSU16 CI and
CO pins do not use the EPLD carry chain.

Unsigned Binary Versus Twos-Complement
ADSU16 can operate on either 16-bit unsigned binary numbers or
16-bit twos-complement numbers. If the inputs are interpreted as
unsigned binary, the result can be interpreted as unsigned binary. If
the inputs are interpreted as twos complement, the output can be
interpreted as twos complement. The only functional difference
between an unsigned binary operation and a twos-complement oper-
ation is how they determine when “overflow” occurs. Unsigned
binary uses CO, while twos-complement uses OFL to determine
when “overflow” occurs.

With adder/subtracters, either unsigned binary or twos-complement
operations cause an overflow. If the result crosses the overflow
boundary, an overflow is generated. Similarly, when the result crosses
the carry-out boundary, a carry-out is generated. The following figure
shows the ADSU carry-out and overflow boundaries.

XC2000 XC3000 XC4000 XC7000

N/A Macro Macro Macro*
A[15:0]

B[15:0]
S[15:0]

ADD
OFL

CI

X4381

CO
3-68 Xilinx Development System

Design Elements
Figure 3-18 ADSU Carry-Out and Overflow Boundaries

Unsigned Binary Operation
For unsigned binary operation, ADSU16 can represent numbers
between 0 and 65535, inclusive. In add mode, CO is active (High)
when the sum exceeds the bounds of the adder/subtracter. In
subtract mode, CO is an active-Low borrow-out and goes Low when
the difference exceeds the bounds.

An unsigned binary “overflow” that is always active-High can be
generated by gating the ADD signal and CO as follows.

unsigned overflow = CO XOR ADD

OFL is ignored in unsigned binary operation.

Twos-Complement Operation
For twos-complement operation, ADSU16 can represent numbers
between -32768 and +32767, inclusive. If an addition or subtraction
operation result exceeds this range, the OFL output goes High.

CO is ignored in twos-complement operation.

TW
O

S
C

O
M

P
L

E
M

E
N

T
O

R
S

IG
NED

TW

OS
C

O
M

P
L

E
M

E
N

T
O

R
S

IG
N

ED

UN
S

IG
N

E
D

B
IN

A
R

Y

U
N

S
IG

N
E

D
B

IN
A

R
Y

X4720

255

-127 127

127128

0

0-1

Overflow

Carry-Out
Libraries Guide 3-69

Libraries Guide
XC4000 Topology

X3670

S 15

CO

OFL

S 14

S 13

S 12

B 15A 15

CI

S 11

S 10

S 9

S 8

B 9A 9

B 8A 8

S 7

S 6

S 5

S 4

B 7A 7

B 6A 6

B 5A 5

B 4A 4

S 3

S 2

S 1

S 0

B 3A 3

B 2A 2

B 1A 1

B 0A 0

B 14A 14

B 13A 13

B 12A 12

B 11A 11

B 10A 10
3-70 Xilinx Development System

Design Elements
Figure 3-19 ADSU16 XC7000 Implementation

ADD

CO

ADD1X1

S0
B0

A0

OFL_OUT

OFL_NEG_SUB

OFL_POS_SUB

OFL_NEG_ADD

OFL_POS_ADD

OFL

B[15:0]

B[15:8]

B[7:0]

ADD1X2

S0

B0

A0

CO

CI

CO15

CO

CI

S15_8

S7_0

CI0

A[7:0]

A[15:0]

A[15:8]

ADSU8X2

ADD

CI

S[7:0]
B[7:0]

A[7:0]

CO

S[7:0]

ADSU8X2

ADD

CI

S[7:0]
B[7:0]

A[7:0]

CO
S[15:8]

GND

AND4B2

AND4B1

AND4B2

AND4B3

OR4

S[15:0]

B15
A15

S15
Libraries Guide 3-71

Libraries Guide
ADSU16X1

16-Bit Cascadable Adder/Subtracter with Carry-Out
for EPLD

* not supported for XC7336 designs

ADSU16X1 is implemented using the EPLD arithmetic carry-logic
chain for high-speed ripple-carry addition. ADSU16X1 is a low-order
adder component, which can be used as a stand-alone or cascaded
with high-order adders through its CO output. When the ADD input
is High, two 16-bit words (A15 – A0 and B15 – B0) are added,
producing a 16-bit output (S15 – S0) and carry-out (CO). When the
ADD input is Low, B15 – B0 is subtracted from A15 – A0, producing a
result (S15 – S0) and borrow (CO). In add mode, CO represents a
carry-out and is active-High. In subtract mode, CO represents a
borrow and is active-Low.

The CO output is passed into the EPLD carry chain, and therefore can
only be connected to the CI input of another EPLD-specific arithmetic
component. To generate a carry-out for general-purpose logic,
connect an ADD1X2 to the CO output of the adder/subtracter and tie
its A and B inputs to GND; the S output becomes the carry-out. If a
carry-in is required from general-purpose logic, use an ADSU16X2
for the least-significant adder/subtracter and connect an ADD1X1 to
its CI input. Connect your carry-in signal to both the A and B inputs
of the ADD1X1 (the S output is not used) to generate a carry into the
carry chain for the first bit of the adder/subtracter.

Refer to “ADSU1” for truth table derivation.

XC2000 XC3000 XC4000 XC7000

N/A N/A N/A Macro*

A[15:0]

S[15:0]

ADD CO

X4319

B[15:0]
3-72 Xilinx Development System

Design Elements
Figure 3-20 ADSU16X1 XC7000 Implementation

S15_8

ADSU8X2

ADD

CI

S[7:0]
B[7:0]

A[7:0]

CO

CO

A[7:0]

A[15:8]

A[15:0]

B[15:8]

B[7:0]

B[15:0]

S[7:0]

S[15:8]

S[15:0]

ADD

S7_0

ADSU8X1

ADD

S[7:0]
B[7:0]

A[7:0]

CO
Libraries Guide 3-73

Libraries Guide
ADSU16X2

16-Bit Cascadable Adder/Subtracter with Carry-In
and Carry-Out for EPLD

* not supported for XC7336 designs

ADSU16X2 is implemented using the EPLD arithmetic carry-logic
chain for high-speed ripple-carry addition. ADSU16X2 is a high-
order adder component cascaded to lower-order adders through its
CI input. When the ADD input is High, two 16-bit words (A15 – A0
and B15 – B0) are added with a carry-in (CI), producing a 16-bit
output (S15 – S0) and carry-out (CO). When the ADD input is Low,
B15 – B0 is subtracted from A15 – A0, producing a result (S15 – S0)
and borrow (CO). In add mode, CO represents a carry-out, and CO
and CI are active-High. In subtract mode, CO represents a borrow,
and CO and CI are active-Low.

The CI input is taken from the EPLD carry chain, and therefore must
only be connected to the CO output of another EPLD-specific arith-
metic component. The CO output is passed into the EPLD carry
chain, and therefore can only be connected to the CI input of another
EPLD-specific arithmetic component. To generate a carry-out signal
for general-purpose logic, connect an ADD1X2 to the CO output of
the adder/subtracter and tie its A and B inputs to GND; the S output
becomes the carry-out.

Refer to “ADSU1” for truth table derivation.

XC2000 XC3000 XC4000 XC7000

N/A N/A N/A Macro*
A[15:0]

S[15:0]

ADD CO

CI

X4320

B[15:0]
3-74 Xilinx Development System

Design Elements
Figure 3-21 ADSU16X2 XC7000 Implementation

S15_8

ADSU8X2

ADD

CI

S[7:0]
B[7:0]

A[7:0]

CO

S7_0

ADSU8X2

ADD

CI

S[7:0]
B[7:0]

A[7:0]

CO

CI

CO

A[7:0]

A[15:8]

A[15:0]

B[15:8]

B[7:0]

B[15:0]

S[7:0]

S[15:8]

S[15:0]

ADD
Libraries Guide 3-75

Libraries Guide
AND

2- to 9-Input AND Gates with Inverted and
Non-Inverted Inputs

The AND function is performed in the Configurable Logic Block
(CLB) function generators for XC2000, XC3000, and XC4000 architec-
tures. AND functions of up to five inputs are available in any combi-
nation of inverting and non-inverting inputs. AND functions of six to
nine inputs are available with only non-inverting inputs. To make
some or all inputs inverting, use external inverters. Because each
input uses a CLB resource in FPGAs, replace functions with unused
inputs with functions having the appropriate number of inputs.

Available AND gates are shown in the following figure. Refer to the
Overview chapter for the combinatorial/AND gate naming conven-
tion.

Name XC2000 XC3000 XC4000 XC7000

AND2 – AND4B4 Primitive Primitive Primitive Primitive
AND5 – AND5B5 Macro Primitive Primitive Primitive
AND6, AND7, AND8, AND9 Macro Macro Macro Primitive
3-76 Xilinx Development System

Design Elements
Figure 3-22 AND Gate Representations

AND2B1

AND2B2

AND3

AND3B1

AND3B2

AND3B3

AND4

AND4B2

AND4B3

AND4B4

AND5

AND5B1

AND5B2

AND5B3

AND5B5

AND6

AND7

AND8

AND9

AND4B1

AND2

AND5B4
Libraries Guide 3-77

Libraries Guide
BRLSHFT4

4-Bit Barrel Shifter

BRLSHFT4, a 4-bit barrel shifter, can rotate four inputs (I3 – I0) up to
four places. The control inputs (S1 and S0) determine the number of
positions, from one to four that the data is rotated. The four outputs
(O3 – O0) reflect the shifted data inputs.

XC2000 XC3000 XC4000 XC7000

N/A Macro Macro Primitive

Inputs Outputs

S1 S0 I0 I1 I2 I3 O0 O1 O2 O3

0 0 a b c d a b c d
0 1 a b c d b c d a
1 0 a b c d c d a b
1 1 a b c d d a b c

X3856

BRLSHFT4

S1

I2

I1

I0 O0

O3

O1

O2

I3

S0
3-78 Xilinx Development System

Design Elements
BRLSHFT8

8-Bit Barrel Shifter

BRLSHFT8, an 8-bit barrel shifter, can rotate the eight inputs, I7 – I0,
up to eight places. The control inputs (S2 – S0) determine the number
of positions, from one to eight that the data is rotated. The eight
outputs (O7 – O0) reflect the shifted data inputs.

XC2000 XC3000 XC4000 XC7000

N/A Macro Macro Primitive

Inputs Output

S2 S1 S0 I0 I1 I2 I3 I4 I5 I6 I7 O0 O1 O2 O3 O4 O5 O6 O7

0 0 0 a b c d e f g h a b c d e f g h
0 0 1 a b c d e f g h b c d e f g h a
0 1 0 a b c d e f g h c d e f g h a b
0 1 1 a b c d e f g h d e f g h a b c
1 0 0 a b c d e f g h e f g h a b c d
1 0 1 a b c d e f g h f g h a b c d e
1 1 0 a b c d e f g h g h a b c d e f
1 1 1 a b c d e f g h h a b c d e f g

X3857

BRLSHFT8

S2

O4

O7

O5

O6

O0

O3

O1

O2

I6

I5

I4

I7

I2

I1

I0

I3

S0

S1
Libraries Guide 3-79

Libraries Guide
Figure 3-23 BRLSHFT8 XC3000/XC4000 Implementation

O0

D0
D1 O

S0

M2_1

O1

D0
D1 O

S0

M2_1

O7

D0
D1 O

S0

M2_1
O6

D0
D1 O

S0

M2_1
O5

D0
D1 O

S0

M2_1
O4

D0
D1 O

S0

M2_1
O3

D0
D1 O

S0

M2_1
O2

D0
D1 O

S0

M2_1

M45

D0
D1 O

S0

M2_1

M56

D0
D1 O

S0

M2_1

M67

D0
D1 O

S0

M2_1

M34

D0
D1 O

S0

M2_1

M01

D0
D1 O

S0

M2_1

M12

D0
D1 O

S0

M2_1

M23

D0
D1 O

S0

M2_1

O0

MO4

MO5

MO6

MO7 O7

O6

O5

O4

O3

O2

O1
M12

M34

M45

M23

M56

M67

M70

S0

MO0

I1

I2

I3

I4

I5

I6

I7

MO3

MO2

MO7

D0
D1 O

S0

M2_1

S1
S2

M70

D0
D1 O

S0

M2_1

I0 M01

MO1

MO0

D0
D1 O

S0

M2_1

MO1

D0
D1 O

S0

M2_1

MO2

D0
D1 O

S0

M2_1

MO3

D0
D1 O

S0

M2_1

MO4

D0
D1 O

S0

M2_1

MO5

D0
D1 O

S0

M2_1

MO6

D0
D1 O

S0

M2_1
3-80 Xilinx Development System

Design Elements
BSCAN

Boundary Scan Logic Control Circuit

The BSCAN symbol indicates that boundary scan logic should be
enabled after PLD configuration is complete. It also provides optional
access to some special features of the XC4000 boundary scan logic.
An overview of the boundary scan interface follows, for complete
details, refer to the application note “Boundary Scan in XC4000
Devices” in the Programmable Logic Data Book.

To indicate that boundary scan remain enabled after configuration,
connect the BSCAN symbol to the TDI, TMS, TCK, and TDO pads
shown in the following figure. The other pins on BSCAN do not need
to be connected, unless those special functions are needed. A signal
on the TDO1 input is passed to the external TDO output when the
USER1 instruction is executed; the SEL1 output goes High to indicate
that the USER1 instruction is active. The TDO2 and SEL2 pins
perform a similar function for the USER2 instruction. The DRCK
output provides access to the data register clock (generated by the
TAP controller). The IDLE output provides access to a version of the
TCK input, which is only active while the TAP controller is in the
Run-Test-Idle state.

If boundary scan is used only before configuration is complete, do
not include the BSCAN symbol in the design, so the TDI, TMS, TCK,
and TDO pins can be used for user functions.

XC2000 XC3000 XC4000 XC7000

N/A N/A Primitive N/A

X3910

TDO2

TDO1

TCK

TMS

SEL2

BSCANTDI

SEL1

IDLE

DRCK

TDO

X4323

BSCAN

TDO1

TDO2

TDO

IDLE

DRCK

SEL2

SEL1

TDI

TMS

TCK To
User
LogicFrom

User
Logic
Libraries Guide 3-81

Libraries Guide
BUF, BUF4, BUF8, and BUF16

General-Purpose Buffers

BUF is a general purpose, non-inverting buffer. In FPGA architecture,
BUF is usually not necessary and is removed by the partitioning soft-
ware (XNFMap for XC2000/XC3000 and PPR for XC4000). The BUF
element can be preserved for reducing the delay on a high fan-out
net, for example, by splitting the net and reducing capacitive loading.
In this case, the buffer is preserved by attaching an X (explicit)
attribute to both the input and output nets of the BUF.

In EPLD architecture, BUF is usually removed, unless you inhibit
optimization by applying the OPT=OFF attribute to the BUF symbol
or by using the LOGIC_OPT=OFF global attribute.

Name XC2000 XC3000 XC4000 XC7000

BUF Primitive Primitive Primitive Primitive
BUF4, BUF8, BUF16 N/A N/A N/A Primitive

X3830

X4614

BUF4

BUF8

X4615

BUF16

X4616
3-82 Xilinx Development System

Design Elements
BUFCE

Global Clock-Enable Buffer for EPLD

* not supported for XC7236, XC7272, or XC7336 designs

BUFCE, an EPLD-specific global buffer, distributes global clock-
enable signals throughout the input-pad registers of an EPLD device.
Global clock-enable pins are available on most XC7300 series devices;
consult device data sheets for applicability.

BUFCE always acts as an input buffer. To use it in a schematic,
connect the input of the BUFCE symbol to an IPAD or an IOPAD that
represents the clock-enable signal source. Clock-enable signals gener-
ated on-chip must be passed through an OBUF-type buffer before
they are connected to a BUFCE. The output of a BUFCE can only be
connected to the CE input of an EPLD-specific input-pad register
symbol, IFDX1. Each BUFCE can drive any number of IFDX1 regis-
ters in a design. The CE input of IFDX1 is active-Low and cannot be
inverted.

XC2000 XC3000 XC4000 XC7000

N/A N/A N/A Primitive*X4209
Libraries Guide 3-83

Libraries Guide
BUFE, BUFE4, BUFE8, and BUFE16

Internal 3-State Buffers

BUFE, BUFE4, BUFE8, and BUFE16 are single or multiple 3-state
buffers with inputs I, I3 – I0, I7 – I0, and so forth; outputs O, O3 – O0,
O7 – O0, and so forth; and active-High output enable (E). When E is
High, data on the inputs of the buffers is transferred to the corre-
sponding outputs. When E is Low, the output is high impedance
(Z state or off). The outputs of the buffers are connected to horizontal
longlines in FPGA architectures.

The outputs of separate BUFE symbols can be tied together to form a
bus or a multiplexer. Make sure that only one E is High at one time. If
none of the E inputs is active-High, a “weak-keeper” circuit (FPGA)
keeps the output bus from floating, but does not guarantee that the
bus remains at the last value driven onto it.

The E in XC3000/XC4000 BUFE macros is implemented by using a
BUFT with an inverter on the active-Low enable (T) pin. This inverter
can add an extra level of logic to the data path. Pull-up resistors can
be used to establish a High logic level if all BUFE elements are off.
Pull-up resistors are always assumed for EPLD designs. The
following figure shows BUFE XC3000/XC4000 implementation.

Figure 3-24 BUFE XC3000/XC4000 Implementation

XC2000 XC3000 XC4000 XC7000

N/A Macro Macro Primitive

BUFE

X3790

E

X3797

BUFE4

E

BUFE8

X3809

E

BUFE16

X3821

E

BUFT

X4716

TE

I O
3-84 Xilinx Development System

Design Elements
Figure 3-25 BUFE8 XC3000/4000 Implementation

Inputs Outputs

E I O

0 X Z
1 1 1
1 0 0

E

I[7:0]

I7

I6

I5

I4

I3

I2

I1

I0

O7

O5

O4

O3

O2

O1

O0

O[7:0]

O6
BUFE

E BUFE

E BUFE

E BUFE

E BUFE

E BUFE

E BUFE

E

BUFE

E

Libraries Guide 3-85

Libraries Guide
BUFFOE

Global Fast Output Enable Buffer for EPLD

* not supported for XC7272 designs

BUFFOE, an EPLD-specific global buffer, distributes global output-
enable signals throughout the output pad drivers of an EPLD device.
Global Fast Output Enable (FOE) pins are available on most XC7000
architecture devices; consult device data sheets for applicability.

BUFFOE always acts as an input buffer. To use it in a schematic,
connect the input of the BUFFOE symbol to an IPAD or an IOPAD
representing the FOE signal source. FOE signals generated on-chip
must be passed through an OBUF-type buffer before they are
connected to the BUFFOE. The output of a BUFFOE can only connect
to the E input of an EPLD-specific 3-state output buffer symbol,
OBUFEX1. Each BUFFOE can drive any number of OBUFEX1 buffers
in a design. The E input of OBUFEX1 is active-High and cannot be
inverted.

XC2000 XC3000 XC4000 XC7000

N/A N/A N/A Primitive*X4210
3-86 Xilinx Development System

Design Elements
BUFG

Global Clock Buffer

BUFG, an architecture-independent global buffer, distributes high
fan-out clock signals throughout a PLD device. The Xilinx implemen-
tation software converts each BUFG to an appropriate type of global
buffer for the target PLD device (GCLK or ACLK for XC2000 and
XC3000, BUFGP or BUFGS for XC4000, and FastCLK for XC7000).

For an XC2000 or XC3000 design, you can use a maximum of two
BUFG symbols (assuming that no specific GCLK or ACLK buffer is
specified). For an XC4000 design, you can use a maximum of eight
BUFG symbols (assuming that no specific BUFGP or BUFGS buffers
are specified). For an XC7000 design, consult the device date sheet for
the number of available FastCLK pins.

To use a BUFG in a schematic, connect the input of the BUFG symbol
to the clock source. Depending on the target PLD family, the clock
source can be an external PAD symbol, an IBUF symbol, or internal
logic. For XC2000 designs, the BUFG cannot be sourced directly from
the PAD symbol; an IBUF must be included between the PAD and
BUFG. For a negative-edge clock input, insert an INV (inverter)
symbol between the BUFG output and the clock input. The inversion
is implemented at the Configurable Logic Block (CLB) or Input
Output Block (IOB) clock pin.

Note: For XC2000 and XC3000 designs, XNFPrep always selects an
ACLK, then a GCLK. For XC4000 designs, it always selects a BUFGS
before a BUFGP. If you want to use a specific type of buffer, manually
instantiate it.

For XC7000 designs, BUFG always acts as an input buffer. Connect
the input of BUFG to an IPAD or an IOPAD that represents the
FastCLK signal source. FastCLK signals generated on-chip must be
passed through an OBUF-type buffer before connecting to BUFG.
Each BUFG can drive any number of register clocks (or ILD latch-
enable inputs) in a design. All clock inputs driven by BUFG are
active-High and cannot be inverted.

XC2000 XC3000 XC4000 XC7000

Primitive Primitive Primitive PrimitiveX3831
Libraries Guide 3-87

Libraries Guide
BUFGP

Primary Global Buffer for Driving Clocks or
Longlines (Four per PLD Device)

BUFGP, a primary global buffer, is used to distribute high fan-out
clock or control signals throughout PLD devices. In XC7000 EPLD
designs, BUFGP is treated like BUFG. A BUFGP provides direct
access to Configurable Logic Block (CLB) and Input Output Block
(IOB) clock pins and limited access to other CLB inputs. Four
BUFGPs are available on each XC4000 device, one in each corner. The
input to a BUFGP comes only from a dedicated IOB.

Alongside each column of CLBs in an XC4000 device are four global
vertical lines, which are in addition to the standard vertical longlines.
Each one of the four global vertical lines can drive the CLB clock (K)
pin directly. In addition, one of the four lines can drive the F3 pin, a
second line can drive the G1 pin, a third can drive the C3 pin, and a
fourth can drive the C1 pin. Each of the four BUFGPs drives one of
these global vertical lines. These same vertical lines are also used for
the secondary global buffers (refer to “BUFGS” for more informa-
tion).

Because of its structure, a BUFGP can always access a clock pin
directly. However, it can access only one of the F3, G1, C3, or C1 pins,
depending on the corner in which the BUFGP is placed. When the
required pin cannot be accessed directly from the vertical line, PPR
feeds the signal through another CLB and uses general purpose
routing to access the load pin.

To use a BUFGP in a schematic, connect the input of the BUFGP
element directly to the PAD symbol. Do not use any IBUFs, because
the signal comes directly from a dedicated IOB. The output of the
BUFGP is then used throughout the schematic. For a negative-edge
clock, insert an INV (inverter) element between the output of the
BUFGP and the clock input. This inversion is performed inside each
CLB or IOB.

XC2000 XC3000 XC4000 XC7000

N/A N/A Primitive PrimitiveX3902
3-88 Xilinx Development System

Design Elements
A BUFGP can be sourced by an internal signal, but PPR must use the
dedicated IOB to drive the BUFGP, which means that the IOB is not
available for use by other signals. If possible, use a BUFGS instead,
because they can be sourced internally without using an IOB.

The dedicated inputs for BUFGPs are identified by the names PGCK1
through PGCK4 in XC4000 pinouts. The package pin that drives the
BUFGP depends on which corner the BUFGP is placed by PPR.
Libraries Guide 3-89

Libraries Guide
BUFGS

Secondary Global Buffer for Driving Clocks or
Longlines (Four per PLD Device)

BUFGS, a secondary global buffer, distributes high fan-out clock or
control signals throughout a PLD device. In XC7000 EPLD designs,
BUFGS is treated like BUFG. BUFGS provides direct access to Config-
urable Logic Block (CLB) clock pins and limited access to other CLB
inputs. Four BUFGSs are available on each XC4000 device, one in
each corner. The input to a BUFGS comes either from a dedicated
Input Output Block (IOB) or from an internal signal.

Alongside each column of CLBs in an XC4000 device are four global
vertical lines, which are in addition to the standard vertical longlines.
Each one of the four global vertical lines can drive the CLB clock (K)
pin directly. In addition, one of the four lines can drive the F3 pin, a
second line can drive the G1 pin, a third can drive the C3 pin, and a
fourth can drive the C1 pin. Each of the four BUFGSs can drive any of
these global vertical lines and are also used as the primary global
buffers (refer also to BUFGP for information).

Because of its structure, a BUFGS can always access a clock pin
directly. Because the BUFGS is more flexible than the BUFGP, it can
use additional global vertical lines to access the F3, G1, C3, and C1
pins, but requires multiple vertical lines in the same column. If the
vertical lines in a given column are already used for BUFGPs or
another BUFGS, PPR might have to feed signals through other CLBs
to reach the load pins.

To use a BUFGS in a schematic, connect the input of the BUFGS
element either directly to the PAD symbol (for an external input) or to
an internally sourced net. For an external signal, do not use any
IBUFs, because the signal comes directly from the dedicated IOB. The
output of the BUFGS is then used throughout the schematic. For a
negative-edge clock, insert an INV (inverter) element between the
output of the BUFGS and the clock input. This inversion is performed
inside each CLB or IOB.

XC2000 XC3000 XC4000 XC7000

N/A N/A Primitive PrimitiveX3904
3-90 Xilinx Development System

Design Elements
The dedicated inputs for BUFGSs are identified by the names SGCK1
through SGCK4 in XC4000 pinouts. The package pin that drives the
BUFGS depends on which corner the BUFGS is placed by PPR.
Libraries Guide 3-91

Libraries Guide
BUFOD

Open-Drain Buffer

BUFOD is a buffer with input (I) and open-drain output (O). When
the input is Low, the output is Low. When the input is High, the
output is off. To establish an output High level, a pull-up resistors is
tied to output O. One pull-up resistor uses the least power; two pull-
up resistors achieve the fastest Low-to-High speed.

To indicate two pull-up resistors, append a DOUBLE parameter to
the pull-up symbol attached to the output (O) node. Refer to the
appropriate CAE tool interface user guide for details.

Figure 3-26 BUFOD XC4000 Implementation

XC2000 XC3000 XC4000 XC7000

N/A N/A Macro N/AX3903

WAND1

OI
3-92 Xilinx Development System

Design Elements
BUFT, BUFT4, BUFT8, and BUFT16

Internal 3-State Buffers

BUFT, BUFT4, BUFT8, and BUFT16 are single or multiple 3-state
buffers with inputs I, I3 – I0, I7 – I0, and so forth; outputs O, O3 – O0,
O7 – O0, and so forth; and active-Low output enable (T). When T is
Low, data on the inputs of the buffers is transferred to the corre-
sponding outputs. When T is High, the output is high impedance
(Z state or off). The outputs of the buffers are connected to horizontal
longlines in FPGA architectures.

The outputs of separate BUFT symbols can be tied together to form a
bus or a multiplexer. Make sure that only one T is Low at one time. If
none of the T inputs is active (Low), a “weak-keeper” circuit (FPGAs)
prevents the output bus from floating, but does not guarantee that
the bus remains at the last value driven onto it. Pull-up resistors can
be used to establish a High logic level if all BUFT elements are off.
Pull-up resistors are always assumed for EPLD designs.

Name XC2000 XC3000 XC4000 XC7000

BUFT N/A Primitive Primitive Primitive
BUFT4, BUFT8, BUFT16 N/A Macro Macro Primitive

Inputs Outputs

T I O

1 X Z
0 1 1
0 0 0

BUFT

X3789

T

X3796

BUFT4

T

BUFT8

X3808

T

BUFT16

X3820

T

Libraries Guide 3-93

Libraries Guide
Figure 3-27 BUFT8 XC3000/4000 Implementation

O6

O[7:0]

O0

O1

O2

O3

O4

O5

O7

I0

I1

I2

I3

I4

I5

I6

I7

I[7:0]
BUFT

T

BUFT

T

BUFT

T

BUFT

T

BUFT

T

BUFT

T

BUFT

T

BUFT

T

T

3-94 Xilinx Development System

Design Elements
CB2CE

2-Bit Cascadable Binary Counter with Clock Enable
and Asynchronous Clear

CB2CE is a 2-stage, 2-bit, synchronous, clearable, cascadable binary
counter. The asynchronous clear (CLR) is the highest priority input.
When CLR is High, all other inputs are ignored and data (Q1 – Q0)
and terminal count (TC) outputs go to logic level zero, independent
of clock transitions. The outputs (Q1 – Q0) increment when the clock
enable input (CE) is High during the Low-to-High clock (C) transi-
tion. The counter ignores clock transitions when CE is Low. The TC
output is High when both Q outputs are High.

Larger counters are created by connecting the count enable out (CEO)
output of the first stage to the CE input of the next stage and
connecting the C and CLR inputs in parallel. CEO is active (High)
when TC and CE are High. The maximum length of the counter is
determined by the accumulated CE-to-TC propagation delays versus
the clock period. The clock period must be greater than n(tCE-TC),
where “n” is the number of stages and “tCE-TC” is the CE-to-TC
propagation delay of each stage.

The counter is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable. When cascading counters, use the CEO
output if the counter uses the CE input; use the TC output if it does
not.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro PrimitiveQ1

X4353CLR

C

CB2CE

CE CEO

TC

Q0
Libraries Guide 3-95

Libraries Guide
TC = (Q1•Q0)

CEO = (TC•CE)

Inputs Outputs

CLR CE C Q1 – Q0 TC CEO

1 X X 0 0 0
0 0 X No Chg No Chg 0
0 1 ↑ Inc TC CEO
3-96 Xilinx Development System

Design Elements
CB2CLE

2-Bit Loadable Cascadable Binary Counter with
Clock Enable and Asynchronous Clear

CB2CLE is a 2-stage, 2-bit, synchronous, loadable, clearable, cascad-
able binary counter. The asynchronous clear (CLR) is the highest
priority input. When CLR is High, all other inputs are ignored and
data (Q1 – Q0) and terminal count (TC) outputs go to logic level zero
on the Low-to-High clock (C) transition. The data on the D1 – D0
inputs is loaded into the counter when the load enable input (L) is
High during the Low-to-High clock transition, independent of the
state of clock enable (CE). The outputs (Q1 – Q0) increment when CE
is High during the Low-to-High clock transition. The counter ignores
clock transitions when CE is Low. The TC output is High when both
Q outputs are High.

Larger counters are created by connecting the count enable out (CEO)
output of the first stage to the CE input of the next stage and
connecting the C, L, and CLR inputs in parallel. CEO is active (High)
when TC and CE are High. The maximum length of the counter is
determined by the accumulated CE-to-TC propagation delays versus
the clock period. The clock period must be greater than n(tCE-TC),
where “n” is the number of stages and “tCE-TC” is the CE-to-TC
propagation delay of each stage.

The counter is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable. When cascading counters, use the CEO
output if the counter uses the CE input; use the TC output if it does
not.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Q0

X4354

CB2CLE

C

CLR

CE

Q1

TC

CEO

L

D1

D0
Libraries Guide 3-97

Libraries Guide
TC = (Q1•Q0)

CEO = (TC•CE)

dn = state of referenced input one set-up time prior to active clock transition

Inputs Outputs

CLR L CE C D1 – D0 Q1 – Q0 TC CEO

1 X X X X 0 0 0
0 1 X ↑ D d1 – d0 TC CEO
0 0 0 X X No Chg No Chg 0
0 0 1 ↑ X Inc TC CEO
3-98 Xilinx Development System

Design Elements
CB2CLED

2-Bit Loadable Cascadable Bidirectional Binary
Counter with Clock Enable and Asynchronous Clear

CB2CLED is a 2-stage, 2-bit, synchronous, loadable, clearable, cascad-
able, bidirectional binary counter. The asynchronous clear (CLR) is
the highest priority input. When CLR is High, all other inputs are
ignored and data (Q1 – Q0) and terminal count (TC) outputs go to
logic level zero, independent of clock transitions. The data on the
D1 – D0 inputs is loaded into the counter when the load enable input
(L) is High during the Low-to-High clock (C) transition, independent
of the state of clock enable (CE). The outputs (Q1 – Q0) decrement
when CE is High and UP is Low during the Low-to-High clock tran-
sition. The outputs (Q1 – Q0) increment when CE and UP are High.
The counter ignores clock transitions when CE is Low.

For counting up, the TC output is High when all Q outputs and UP
are High. For counting down, the TC output is High when all Q
outputs and UP are Low. To cascade counters, the clock enable out
(CEO) output of each counter is connected to the CE pin of the next
stage. The clock, UP, L, and CLR inputs are connected in parallel.
CEO is active (High) when TC and CE are High. The maximum
length of the counter is determined by the accumulated CE-to-TC
propagation delays versus the clock period. The clock period must be
greater than n(tCE-TC), where “n” is the number of stages and
“tCE-TC” is the CE-to-TC propagation delay of each stage. For EPLD
designs, refer to “CB2X1” for high-performance cascadable, bidirec-
tional counters.

The counter is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable. When cascading counters, use the CEO
output if the counter uses the CE input; use the TC output if it does
not.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Q0

X4355

CB2CLED

C

CLR

CE

TC

CEO

Q1

L

UP

D1

D0
Libraries Guide 3-99

Libraries Guide
TC = (Q1•Q0•UP) + (Q1•Q0•UP)

CEO = (TC•CE)

dn = state of referenced input one set-up time prior to active clock transition

Inputs Outputs

CLR L CE C UP D1 – D0 Q1 – Q0 TC CEO

1 X X X X X 0 0 0
0 1 X ↑ X D d1 – d0 TC CEO
0 0 0 X X X No Chg No Chg 0
0 0 1 ↑ 1 X Inc TC CEO
0 0 1 ↑ 0 X Dec TC CEO
3-100 Xilinx Development System

Design Elements
CB2RE

2-Bit Cascadable Binary Counter with Clock Enable
and Synchronous Reset

CB2RE is a 2-stage, 2-bit, synchronous, resettable, cascadable binary
counter. The synchronous reset (R) is the highest priority input.
When R is High, all other inputs are ignored and data (Q1 – Q0) and
terminal count (TC) outputs go to logic level zero, independent of
clock transitions. The outputs (Q1 – Q0) increment when the clock
enable input (CE) is High during the Low-to-High clock (C) transi-
tion. The counter ignores clock transitions when CE is Low. The TC
output is High when both Q outputs are High.

Larger counters are created by connecting the count enable out (CEO)
output of the first stage to the CE input of the next stage and
connecting the C and R inputs in parallel. CEO is active (High) when
TC and CE are High. The maximum length of the counter is deter-
mined by the accumulated CE-to-TC propagation delays versus the
clock period. The clock period must be greater than n(tCE-TC), where
“n” is the number of stages and “tCE-TC” is the CE-to-TC propaga-
tion delay of each stage.

The counter is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable. When cascading counters, use the CEO
output if the counter uses the CE input; use the TC output if it does
not.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro PrimitiveQ1

X4356R

C

CB2RE

CE CEO

TC

Q0
Libraries Guide 3-101

Libraries Guide
TC = (Q1•Q0)

CEO = (TC•CE)

Inputs Outputs

R CE C Q1 – Q0 TC CEO

1 X ↑ 0 0 0
0 0 X No Chg No Chg 0
0 1 ↑ Inc TC CEO
3-102 Xilinx Development System

Design Elements
CB2RLE

2-Bit Loadable Cascadable Binary Counter with
Clock Enable and Synchronous Reset

CB2RLE is a 2-stage, 2-bit, synchronous, loadable, resettable, cascad-
able binary counter. The synchronous reset (R) is the highest priority
input. The synchronous R, when High, overrides all other inputs and
resets the Q1 – Q0, terminal count (TC), and clock enable out (CEO)
outputs to Low on the Low-to-High clock (C) transition.

The data on the D1 – D0 inputs is loaded into the counter when the
load enable input (L) is High during the Low-to-High clock (C) tran-
sition, independent of the state of CE. The outputs (Q1 – Q0) incre-
ment when CE is High during the Low-to-High clock transition. The
counter ignores clock transitions when CE is Low. The TC output is
High when all Q outputs are High. The CEO output is High when all
Q outputs and CE are High to allow direct cascading of counters.
Larger counters are created by connecting the CEO output of the first
stage to the CE input of the next stage and by connecting the C, L,
and R inputs in parallel. The maximum length of the counter is deter-
mined by the accumulated CE-to-CEO propagation delays versus the
clock period.

The counter is asynchronously reset, output Low, when power is
applied or when global reset or master reset is active. When
cascading counters, use the CEO output if the counter uses the CE
input; use the TC output if it does not.

XC2000 XC3000 XC4000 XC7000

N/A N/A N/A Primitive

Q0

X4513

CB2RLE

C

R

CE

Q1

CEO

TC

L

D1

D0
Libraries Guide 3-103

Libraries Guide
TC = Q1•Q0

CEO = TC•CE

dn = state of referenced input one set-up time prior to active clock transition

Inputs Outputs

R L CE C D1 – D0 Q1 – Q0 TC CEO

1 X X ↑ X 0 0 0
0 1 X ↑ D d1 – d0 TC CEO
0 0 0 X X No Chg No Chg 0
0 0 1 ↑ X Inc TC CEO
3-104 Xilinx Development System

Design Elements
CB2X1

2-Bit Loadable Cascadable Bidirectional Binary
Counter with Clock Enable and Asynchronous Clear

CB2X1 is a 2-stage, 2-bit, synchronous, loadable, clearable, bidirec-
tional binary counter. CB2X1 has separate count-enable inputs and
synchronous terminal-count outputs for up and down directions to
support high-speed cascading in the EPLD architecture.

The asynchronous clear (CLR) is the highest priority input. When
CLR is High, all other inputs are ignored, data outputs (Q1 – Q0) go
to logic level zero, and terminal count outputs TCU and TCD go to
zero and one, respectively, independent of clock transitions. The data
on the D1 – D0 inputs loads into the counter on the Low-to-High
clock (C) transition when the load enable input (L) is High, indepen-
dent of the CE inputs.

The outputs (Q1 – Q0) increment when CEU is High, provided CLR
and L are Low, during the Low-to-High clock transition. The outputs
(Q1 – Q0) decrement when CED is High, provided CLR and L are
Low. The counter ignores clock transitions when CEU and CED are
Low. Both CEU and CED should not be High during the same clock
transition; the CEOU and CEOD outputs might not function properly
for cascading when CEU and CED are both High.

For counting up, the CEOU output is High when all Q outputs and
CEU are High. For counting down, the CEOD output is High when
all Q outputs are Low and CED is High. To cascade counters, the
CEOU and CEOD outputs of each counter are connected directly to
the CEU and CED inputs, respectively, of the next stage. The clock, L
and CLR inputs are connected in parallel.

In Xilinx EPLD devices, the maximum clocking frequency of these
counter components is unaffected by the number of cascaded stages
for all counting and loading functions. The TCU terminal count
output is High when all Q outputs are High, regardless of CEU. The
TCD output is High when all Q outputs are Low, regardless of CED.

XC2000 XC3000 XC4000 XC7000

N/A N/A N/A Primitive

X4194

CB2X1

C

D1

D0 QO

Q1

CEU

L

CED

CLR

TCU

TCD

CEOU

CEOD
Libraries Guide 3-105

Libraries Guide
When cascading counters, the final terminal count signals can be
produced by AND wiring all the TCU outputs (for the up direction)
and all the TCD outputs (for the down direction). The TCU, CEOU,
and CEOD outputs are produced by optimizable AND gates within
the component, resulting in zero propagation from the CEU and CED
inputs and from the Q outputs, provided all connections from each
such output remain on-chip. Otherwise, a macrocell buffer delay is
introduced. The counter is initialized to zero (TCU Low and TCD
High) when the device is powered-up or when the device Master
Reset pin is activated. The clock (C) input can be driven by either the
EPLD FastCLK global net (represented by a BUFG symbol), an ordi-
nary input, or other on-chip logic.

TCU = Q1•Q0

TCD = Q1•Q0

CEOU = TCU•CEU

CEOD = TCD•CED

dn = state of referenced input one set-up time prior to active clock transition

Inputs Outputs

CLR L CEU CED C D1 – D0 Q1 – Q0 TCU TCD CEOU CEOD

1 X X X X X 0 0 1 0 CEOD
0 1 X X ↑ D d1 – d0 TCU TCD CEOU CEOD
0 0 0 0 X X No Chg No Chg No Chg 0 0
0 0 1 0 ↑ X Inc TCU TCD CEOU 0
0 0 0 1 ↑ X Dec TCU TCD 0 CEOD
0 0 1 1 ↑ X Inc TCU TCD Invalid Invalid
3-106 Xilinx Development System

Design Elements
CB2X2

2-Bit Loadable Cascadable Bidirectional Binary
Counter with Clock Enable and Synchronous Reset

CB2X2 is a 2-stage, 2-bit, synchronous, loadable, resettable, bidirec-
tional binary counter. CB2X2 has separate count-enable inputs and
synchronous terminal-count outputs for up and down directions to
support high-speed cascading in the EPLD architecture.

The synchronous reset (R) is the highest priority input. When R is
High, all other inputs are ignored, data outputs (Q1 – Q0) go to logic
level zero, and terminal count outputs TCU and TCD go to zero and
one, respectively, on the Low-to-High clock (C) transition. The data
on the D1 – D0 inputs loads into the counter on the Low-to-High
clock (C) transition when the load enable input (L) is High, indepen-
dent of the CE inputs.

The outputs (Q1 – Q0) increment when CEU is High, provided R and
L are Low during the Low-to-High clock transition. The outputs
(Q1 – Q0) decrement when CED is High, provided R and L are Low.
The counter ignores clock transitions when CEU and CED are Low.
Both CEU and CED should not be High during the same clock transi-
tion; the CEOU and CEOD outputs might not function properly for
cascading when CEU and CED are both High.

For counting up, the CEOU output is High when all Q outputs and
CEU are High. For counting down, the CEOD output is High when
all Q outputs are Low and CED is High. To cascade counters, the
CEOU and CEOD outputs of each counter are connected directly to
the CEU and CED inputs, respectively, of the next stage. The C, L,
and R inputs are connected in parallel.

In Xilinx EPLD devices, the maximum clocking frequency of these
counter components is unaffected by the number of cascaded stages
for all counting and loading functions. The TCU terminal count
output is High when all Q outputs are High, regardless of CEU. The
TCD output is High when all Q outputs are Low, regardless of CED.

XC2000 XC3000 XC4000 XC7000

N/A N/A N/A Primitive

X4195

CB2X2

C

D1

D0 QO

Q1

CEU

L

CED

R

TCU

TCD

CEOU

CEOD
Libraries Guide 3-107

Libraries Guide
When cascading counters, the final terminal count signals can be
produced by AND wiring all the TCU outputs (for the up direction)
and all the TCD outputs (for the down direction). The TCU, CEOU,
and CEOD outputs are produced by optimizable AND gates within
the component, resulting in zero propagation from the CEU and CED
inputs and from the Q outputs, provided all connections from each
such output remain on-chip. Otherwise, a macrocell buffer delay is
introduced. The counter is initialized to zero (TCU Low and TCD
High) when power is applied or when the device Master Reset pin is
activated. The clock (C) input can be driven by either the EPLD
FastCLK global net (represented by a BUFG symbol), an ordinary
input, or other on-chip logic.

TCU = Q1•Q0

TCD = Q1•Q0

CEOU = TCU•CEU

CEOD = TCD•CED

dn = state of referenced input one set-up time prior to active clock transition

Inputs Outputs

R L CEU CED C D1 – D0 Q1 – Q0 TCU TCD CEOU CEOD

1 X X X ↑ X 0 0 1 0 CEOD
0 1 X X ↑ D d1 – d0 TCU TCD CEOU CEOD
0 0 0 0 X X No Chg No Chg No Chg 0 0
0 0 1 0 ↑ X Inc TCU TCD CEOU 0
0 0 0 1 ↑ X Dec TCU TCD 0 CEOD
0 0 1 1 ↑ X Inc TCU TCD Invalid Invalid
3-108 Xilinx Development System

Design Elements
CB4CE

4-Bit Cascadable Binary Counter with Clock Enable
and Asynchronous Clear

CB4CE is a 4-stage, 4-bit, synchronous, clearable, cascadable binary
counter. The asynchronous clear (CLR) is the highest priority input.
When CLR is High, all other inputs are ignored and data (Q3 – Q0)
and terminal count (TC) outputs go to logic level zero, independent
of clock transitions. The outputs (Q3 – Q0) increment when the clock
enable input (CE) is High during the Low-to-High clock (C) transi-
tion. The counter ignores clock transitions when CE is Low. The TC
output is High when all Q outputs are High.

Larger counters are created by connecting the count enable out (CEO)
output of the first stage to the CE input of the next stage and
connecting the C and CLR inputs in parallel. CEO is active (High)
when TC and CE are High. The maximum length of the counter is
determined by the accumulated CE-to-TC propagation delays versus
the clock period. The clock period must be greater than n(tCE-TC),
where “n” is the number of stages and “tCE-TC” is the CE-to-TC
propagation delay of each stage.

The counter is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable. When cascading counters, use the CEO
output if the counter uses the CE input; use the TC output if it does
not.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro PrimitiveQ2

X4357

CB4CE

C

CLR

CE CEO

TC

Q1

Q0

Q3
Libraries Guide 3-109

Libraries Guide
TC = (Q3•Q2•Q1•Q0)

CEO = (TC•CE)

Inputs Outputs

CLR CE C Q3 – Q0 TC CEO

1 X X 0 0 0
0 0 X No Chg No Chg 0
0 1 ↑ Inc TC CEO
3-110 Xilinx Development System

Design Elements
CB4CLE

4-Bit Loadable Cascadable Binary Counter with
Clock Enable and Asynchronous Clear

CB4CLE is a 4-stage, 4-bit, synchronous, loadable, clearable, cascad-
able binary counter. The asynchronous clear (CLR) is the highest
priority input. When CLR is High, all other inputs are ignored and
data (Q3 – Q0) and terminal count (TC) outputs go to logic level zero,
independent of clock transitions. The data on the D3 – D0 inputs is
loaded into the counter when the load enable input (L) is High
during the Low-to-High clock (C) transition, independent of the state
of clock enable (CE). The outputs (Q3 – Q0) increment when CE is
High during the Low-to-High clock transition. The counter ignores
clock transitions when CE is Low. The TC output is High when all Q
outputs are High.

Larger counters are created by connecting the count enable out (CEO)
output of the first stage to the CE input of the next stage and
connecting the C, L, and CLR inputs in parallel. CEO is active (High)
when TC and CE are High. The maximum length of the counter is
determined by the accumulated CE-to-TC propagation delays versus
the clock period. The clock period must be greater than n(tCE-TC),
where “n” is the number of stages and “tCE-TC” is the CE-to-TC
propagation delay of each stage.

The counter is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable. When cascading counters, use the CEO
output if the counter uses the CE input; use the TC output if it does
not.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

X4358

CB4CLE

L

CE

C

D3

D2

D1

D0

Q3

Q2

Q1

Q0

CLR

CEO

TC
Libraries Guide 3-111

Libraries Guide
TC = (Q3•Q2•Q1•Q0)

CEO = (TC•CE)

dn = state of referenced input one set-up time prior to active clock transition

Inputs Outputs

CLR L CE C D3 – D0 Q3 – Q0 TC CEO

1 X X X X 0 0 0
0 1 X ↑ D d3 – d0 TC CEO
0 0 0 X X No Chg No Chg 0
0 0 1 ↑ X Inc TC CEO
3-112 Xilinx Development System

Design Elements
CB4CLED

4-Bit Loadable Cascadable Bidirectional Binary
Counter with Clock Enable and Asynchronous Clear

CB4CLED is a 4-stage, 4-bit, synchronous, loadable, clearable, cascad-
able, bidirectional binary counter. The asynchronous clear (CLR) is
the highest priority input. When CLR is High, all other inputs are
ignored and data (Q3 – Q0) and terminal count (TC) outputs go to
logic level zero, independent of clock transitions. The data on the
D3 – D0 inputs is loaded into the counter when the load enable input
(L) is High during the Low-to-High clock (C) transition, independent
of the state of clock enable (CE). The outputs (Q3 – Q0) decrement
when CE is High and UP is Low during the Low-to-High clock tran-
sition. The outputs (Q3 – Q0) increment when CE and UP are High.
The counter ignores clock transitions when CE is Low.

For counting up, the TC output is High when all Q outputs and UP
are High. For counting down, the TC output is High when all Q
outputs and UP are Low. To cascade counters, the count enable out
(CEO) output of each counter is connected to the CE pin of the next
stage. The clock, UP, L, and CLR inputs are connected in parallel.
CEO is active (High) when TC and CE are High. The maximum
length of the counter is determined by the accumulated CE-to-TC
propagation delays versus the clock period. The clock period must be
greater than n(tCE-TC), where “n” is the number of stages and
“tCE-TC” is the CE-to-TC propagation delay of each stage. For EPLD
designs, refer to “CB4X1” for high-performance cascadable, bidirec-
tional counters.

The counter is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable. When cascading counters, use the CEO
output if the counter uses the CE input; use the TC output if it does
not.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

X4359

CB4CLED

L

CE

C

D3

D2

D1

D0

Q3

Q2

Q1

Q0

CLR

CEO

TC

UP
Libraries Guide 3-113

Libraries Guide
TC = (Q3•Q2•Q1•Q0•UP) + (Q3•Q2•Q1•Q0•UP)

CEO = (TC•CE)

dn = state of referenced clock one set-up time prior to active clock transition

Inputs Outputs

CLR L CE C UP D3 – D0 Q3 – Q0 TC CEO

1 X X X X X 0 0 0
0 1 X ↑ X D d3 – d0 TC CEO
0 0 0 X X X No Chg No Chg 0
0 0 1 ↑ 1 X Inc TC CEO
0 0 1 ↑ 0 X Dec TC CEO
3-114 Xilinx Development System

Design Elements
CB4RE

4-Bit Cascadable Binary Counter with Clock Enable
and Synchronous Reset

CB4CE is a 4-stage, 4-bit, synchronous, resettable, cascadable binary
counter. The synchronous reset (R) is the highest priority input.
When R is High, all other inputs are ignored and data (Q3 – Q0) and
terminal count (TC) outputs go to logic level zero on the Low-to-High
clock (C) transition. The outputs (Q3 – Q0) increment when the clock
enable input (CE) is High during the Low-to-High clock transition.
The counter ignores clock transitions when CE is Low. The TC output
is High when all Q outputs are High.

Larger counters are created by connecting the count enable out (CEO)
output of the first stage to the CE input of the next stage and
connecting the C and R inputs in parallel. CEO is active (High) when
TC and CE are High. The maximum length of the counter is deter-
mined by the accumulated CE-to-TC propagation delays versus the
clock period. The clock period must be greater than n(tCE-TC), where
“n” is the number of stages and “tCE-TC” is the CE-to-TC propaga-
tion delay of each stage.

The counter is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable. When cascading counters, use the CEO
output if the counter uses the CE input; use the TC output if it does
not.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro PrimitiveQ2

X4360

CB4RE

C

R

CE

Q3

TC

Q1

Q0

CEO
Libraries Guide 3-115

Libraries Guide
TC = (Q3•Q2•Q2•Q0)

CEO = (TC•CE)

Inputs Outputs

R CE C Q3 – Q0 TC CEO

1 X ↑ 0 0 0
0 0 X No Chg No Chg 0
0 1 ↑ Inc TC CEO
3-116 Xilinx Development System

Design Elements
CB4RLE

4-Bit Loadable Cascadable Binary Counter with
Clock Enable and Synchronous Reset

CB4RLE is a 4-stage, 4-bit, synchronous, loadable, resettable, cascad-
able binary counter. The synchronous reset (R) is the highest priority
input. The synchronous R, when High, overrides all other inputs and
resets the Q3 – Q0, TC, and CEO outputs to Low on the Low-to-High
clock (C) transition. The data on the D3 – D0 inputs is loaded into the
counter when the load enable input (L) is High during the Low-to-
High clock (C) transition, independent of the state of CE. The outputs
(Q3 – Q0) increment when CE is High during the Low-to-High clock
transition. The counter ignores clock transitions when CE is Low. The
TC output is High when all Q outputs are High. The CEO output is
High when all Q outputs and CE are High to allow direct cascading
of counters.

Larger counters are created by connecting the CEO output of the first
stage to the CE input of the next stage and by connecting the C, L,
and R inputs in parallel. The maximum length of the counter is deter-
mined by the accumulated CE-to-CEO propagation delays versus the
clock period.

The counter is asynchronously reset, output Low, when power is
applied or when global reset or master reset is active. When
cascading counters, use the CEO output if the counter uses the CE
input; use the TC output if it does not.

XC2000 XC3000 XC4000 XC7000

N/A N/A N/A Primitive

X4514

CB4RLE

C

R

CE CEO

TC

Q3

L

D3

D2

D1

D0

Q2

Q1

Q0
Libraries Guide 3-117

Libraries Guide
TC = Q3•Q2•Q1•Q0

CEO = TC•CE

dn = state of referenced input one set-up time prior to active clock transition

Inputs Outputs

R L CE C D3 – D0 Q3 – Q0 TC CEO

1 X X ↑ X 0 0 0
0 1 X ↑ D d3 – d0 TC CEO
0 0 0 X X No Chg No Chg 0
0 0 1 ↑ X Inc TC TC
3-118 Xilinx Development System

Design Elements
CB4X1

4-Bit Loadable Cascadable Bidirectional Binary
Counter with Clock Enable and Asynchronous Clear

CB4X1 is a 4-stage, 4-bit, synchronous, loadable, clearable, bidirec-
tional binary counter. CB4X1 has separate count-enable inputs and
synchronous terminal-count outputs for up and down directions, to
support high-speed cascading in the EPLD architecture.

The asynchronous clear (CLR) is the highest priority input. When
CLR is High, all other inputs are ignored, data outputs (Q3 – Q0) go
to logic level zero, and terminal count outputs TCU and TCD go to
zero and one, respectively, independent of clock transitions. The data
on the D3 – D0 inputs loads into the counter on the Low-to-High
clock (C) transition when the load enable input (L) is High, indepen-
dent of the CE inputs.

The outputs (Q3 – Q0) increment when CEU is High, provided CLR
and L are Low, during the Low-to-High clock transition. The outputs
(Q3 – Q0) decrement when CED is High, provided CLR and L are
Low. The counter ignores clock transitions when CEU and CED are
Low. Both CEU and CED should not be High during the same clock
transition; the CEOU and CEOD outputs might not function properly
for cascading when CEU and CED are both High.

For counting up, the CEOU output is High when all Q outputs and
CEU are High. For counting down, the CEOD output is High when
all Q outputs are Low and CED is High. To cascade counters, the
CEOU and CEOD outputs of each counter are connected directly to
the CEU and CED inputs, respectively, of the next stage. The clock, L,
and CLR inputs are connected in parallel.

In Xilinx EPLD devices, the maximum clocking frequency of these
counter components is unaffected by the number of cascaded stages
for all counting and loading functions. The TCU terminal count
output is High when all Q outputs are High, regardless of CEU. The
TCD output is High when all Q outputs are Low, regardless of CED.

XC2000 XC3000 XC4000 XC7000

N/A N/A N/A Primitive

X4196

CB4X1

C

Q2

Q3

CEU

L

CED

CLR

TCU

TCD

CEOU

CEOD

D3

D0

D2

D1

Q0

Q1
Libraries Guide 3-119

Libraries Guide
When cascading counters, the final terminal count signals can be
produced by AND wiring all the TCU outputs (for the up direction)
and all the TCD outputs (for the down direction). The TCU, CEOU,
and CEOD outputs are produced by optimizable AND gates within
the component, resulting in zero propagation from the CEU and CED
inputs and from the Q outputs, provided all connections from each
such output remain on-chip. Otherwise, a macrocell buffer delay is
introduced. The counter is initialized to zero (TCU Low and TCD
High) when the device is powered-up or when the device Master
Reset pin is activated. The clock (C) input can be driven by either the
EPLD FastCLK global net (represented by a BUFG symbol), an ordi-
nary input, or other on-chip logic.

TCU = Q3•Q2•Q1•Q0

TCD = Q3•Q2•Q1•Q0

CEOU = TCU•CEU

CEOD = TCD•CED

dn = state of referenced input one set-up time prior to active clock transition

Inputs Outputs

CLR L CEU CED C D3 – D0 Q3 – Q0 TCU TCD CEOU CEOD

1 X X X X X 0 0 1 0 CEOD
0 1 X X ↑ D d3 – d0 TCU TCD CEOU CEOD
0 0 0 0 X X No Chg No Chg No Chg 0 0
0 0 1 0 ↑ X Inc TCU TCD CEOU 0
0 0 0 1 ↑ X Dec TCU TCD 0 CEOD
0 0 1 1 ↑ X Inc TCU TCD Invalid Invalid
3-120 Xilinx Development System

Design Elements
CB4X2

4-Bit Loadable Cascadable Bidirectional Binary
Counter with Clock Enable and Synchronous Reset

CB4X2 is a 4-stage, 4-bit, synchronous, loadable, resettable, bidirec-
tional binary counter. CB4X2 has separate count-enable inputs and
synchronous terminal-count outputs for up and down directions to
support high-speed cascading in the EPLD architecture.

The synchronous reset (R) is the highest priority input. When R is
High, all other inputs are ignored, data outputs (Q3 – Q0) go to logic
level zero, and terminal count outputs TCU and TCD go to zero and
one, respectively, on the Low-to-High clock (C) transition. The data
on the D3 – D0 inputs loads into the counter on the Low-to-High
clock (C) transition when the load enable input (L) is High, indepen-
dent of the CE inputs.

The outputs (Q3 – Q0) increment when CEU is High, provided R and
L are Low, during the Low-to-High clock transition. The outputs
(Q3 – Q0) decrement when CED is High, provided R and L are Low.
The counter ignores clock transitions when CEU and CED are Low.
Both CEU and CED should not be High during the same clock transi-
tion; the CEOU and CEOD outputs might not function properly for
cascading when CEU and CED are both High.

For counting up, the CEOU output is High when all Q outputs and
CEU are High. For counting down, the CEOD output is High when
all Q outputs are Low and CED is High. To cascade counters, the
CEOU and CEOD outputs of each counter are connected directly to
the CEU and CED inputs, respectively, of the next stage. The C, L,
and R inputs are connected in parallel.

In Xilinx EPLD devices, the maximum clocking frequency of these
counter components is unaffected by the number of cascaded stages
for all counting and loading functions. The TCU terminal count
output is High when all Q outputs are High, regardless of CEU. The
TCD output is High when all Q outputs are Low, regardless of CED.

XC2000 XC3000 XC4000 XC7000

N/A N/A N/A Primitive

X4197

CB4X2

C

Q2

Q3

CEU

L

CED

R

TCU

TCD

CEOU

CEOD

D3

D0

D2

D1

Q0

Q1
Libraries Guide 3-121

Libraries Guide
When cascading counters, the final terminal count signals can be
produced by AND wiring all the TCU outputs (for the up direction)
and all the TCD outputs (for the down direction). The TCU, CEOU,
and CEOD outputs are produced by optimizable AND gates within
the component resulting in zero propagation from the CEU and CED
inputs and from the Q outputs, provided all connections from each
such output remain on-chip. Otherwise, a macrocell buffer delay is
introduced. The counter is initialized to zero (TCU Low and TCD
High) when the device is powered-up or when the device Master
Reset pin is activated. The clock (C) input can be driven by either the
EPLD FastCLK global net (represented by a BUFG symbol), an ordi-
nary input, or other on-chip logic.

TCU = Q3•Q2•Q1•Q0

TCD = Q3•Q2•Q1•Q0

CEOU = TCU•CEU

CEOD = TCD•CED

dn = state of referenced input one set-up time prior to active clock transition

Inputs Outputs

R L CEU CED C D3 – D0 Q3 – Q0 TCU TCD CEOU CEOD

1 X X X ↑ X 0 0 1 0 CED
0 1 X X ↑ D d3 – d0 TCU TCD CEOU CEOD
0 0 0 0 X X No Chg No Chg No Chg 0 0
0 0 1 0 ↑ X Inc TCU TCD TCU 0
0 0 0 1 ↑ X Dec TCU TCD 0 TCD
0 0 1 1 ↑ X Inc TCU TCD Invalid Invalid
3-122 Xilinx Development System

Design Elements
CB8CE

8-Bit Cascadable Binary Counter with Clock Enable
and Asynchronous Clear

CB8CE is an 8-stage, 8-bit, synchronous, clearable, cascadable binary
counter. The asynchronous clear (CLR) is the highest priority input.
When CLR is High, all other inputs are ignored and data (Q7 – Q0)
and terminal count (TC) outputs go to logic level zero, independent
of clock transitions. The outputs (Q7 – Q0) increment when the clock
enable input (CE) is High during the Low-to-High clock (C) transi-
tion. The counter ignores clock transitions when CE is Low. The TC
output is High when all Q outputs are High.

Larger counters are created by connecting the count enable out (CEO)
output of the first stage to the CE input of the next stage and
connecting the C and CLR inputs in parallel. CEO is active (High)
when TC and CE are High. The maximum length of the counter is
determined by the accumulated CE-to-TC propagation delays versus
the clock period. The clock period must be greater than n(tCE-TC),
where “n” is the number of stages and “tCE-TC” is the CE-to-TC
propagation delay of each stage.

The counter is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable. When cascading counters, use the CEO
output if the counter uses the CE input; use the TC output if it does
not.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Q[7:0]

X4361

CB8CE

C

CLR

CE CEO

TC
Libraries Guide 3-123

Libraries Guide
TC = (Q7•Q6•Q5•Q4•...•Q0)

CEO = (TC•CE)

Inputs Outputs

CLR CE C Q7 – Q0 TC CEO

1 X X 0 0 0
0 0 X No Chg No Chg 0
0 1 ↑ Inc TC CEO
3-124 Xilinx Development System

Design Elements
Figure 3-28 CB8CE XC2000 Implementation

CEO

AND2

AND2

TC

CE

AND3

AND2

AND4

T4

T3

AND3

AND2

AND4

T6

Q1

QT

CLR

CE
C

FTCE

Q0

QT

CLR

CE
C

FTCE

Q4

QT

CLR

CE
C

FTCE

Q3

QT

CLR

CE
C

FTCE

Q2

QT

CLR

CE
C

FTCE

VCC

Q5

QT

CLR

CE
C

FTCE

Q6

QT

CLR

CE
C

FTCE

Q7

QT

CLR

CE
C

FTCE

T2

C

CLR

T5

Q7

Q4

Q1

Q0
Q[7:0]

Q2

Q3

Q5

Q6

T7

CB8CE.2K
Libraries Guide 3-125

Libraries Guide
Figure 3-29 CB8CE XC3000/XC4000 Implementation

CEO

TC

AND2

CE

T6

T5

T4

AND4

AND3

Q1

QT

CLR
CE
C

FTCE

Q0

QT

CLR
CE
C

FTCE

Q4

QT

CLR
CE
C

FTCE

Q3

QT

CLR
CE
C

FTCE

Q2

QT

CLR
CE
C

FTCE

VCC

AND4

AND3
Q5

QT

CLR
CE
C

FTCE

Q6

QT

CLR
CE
C

FTCE

Q7

QT

CLR
CE
C

FTCE

AND2

AND5

T3

T2

T7

C

CLR

Q7

Q6

Q5

Q3

Q2

Q[7:0]
Q0

Q1

Q4

AND2

CB8CE.3K, 4K
3-126 Xilinx Development System

Design Elements
CB8CLE

8-Bit Loadable Cascadable Binary Counter with
Clock Enable and Asynchronous Clear

CB8CLE is an 8-stage, 8-bit, synchronous, loadable, clearable, cascad-
able binary counter. The asynchronous clear (CLR) is the highest
priority input. When CLR is High, all other inputs are ignored and
data (Q7 – Q0) and terminal count (TC) outputs go to logic level zero,
independent of clock transitions. The data on the D7 – D0 inputs is
loaded into the counter when the load enable input (L) is High
during the Low-to-High clock (C) transition, independent of the state
of clock enable (CE). The outputs (Q7 – Q0) increment when CE is
High during the Low-to-High clock transition. The counter ignores
clock transitions when CE is Low. The TC output is High when all Q
outputs are High.

Larger counters are created by connecting the count enable out (CEO)
output of the first stage to the CE input of the next stage and by
connecting the C, L, and CLR inputs in parallel. CEO is active (High)
when TC and CE are High. The maximum length of the counter is
determined by the accumulated CE-to-TC propagation delays versus
the clock period. The clock period must be greater than n(tCE-TC),
where “n” is the number of stages and “tCE-TC” is the CE-to-TC
propagation delay of each stage.

The counter is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable. When cascading counters, use the CEO
output if the counter uses the CE input; use the TC output if it does
not.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Q[7:0]

X4362

CB8CLE

C

CLR

CE

TC

D[7:0]

L
CEO
Libraries Guide 3-127

Libraries Guide
TC = (Q7•Q6•Q5•Q4•...•Q0)

CEO = (TC•CE)

dn = state of referenced input one set-up time prior to active clock transition

Inputs Outputs

CLR L CE C D7 – D0 Q7 – Q0 TC CEO

1 X X X X 0 0 0
0 1 X ↑ D d7 – d0 TC CEO
0 0 0 X X No Chg No Chg 0
0 0 1 ↑ X Inc TC CEO
3-128 Xilinx Development System

Design Elements
Figure 3-30 CB8CLE XC2000 Implementation

CE

L

AND2

TC

AND2

CEO

T7

AND4

T6

AND3

AND2

T4

AND4

T3

AND3

AND2

C

CLR

T5

T2

D0

D2

D3

D6

D[7:0] D7

D5

D4

D1

Q6

CE
T

CLR

Q
L
D

C

FTCLE

Q5

CE
T

CLR

Q
L
D

C

FTCLE

VCC

Q4

CE
T

CLR

Q
L
D

C

FTCLE

Q1

CE
T

CLR

Q
L
D

C

FTCLE

Q0

CE
T

CLR

Q
L
D

C

FTCLE

Q2

CE
T

CLR

Q
L
D

C

FTCLE

Q3

CE
T

CLR

Q
L
D

C

FTCLE

Q5

Q4

Q3

Q2

Q1

Q0

Q[7:0]

Q7

Q6

Q7

CE
T

CLR

Q
L
D

C

FTCLE

CB8CLE.2K
Libraries Guide 3-129

Libraries Guide
Figure 3-31 CB8CLE XC3000/4000 Implementation

CE

AND2

Q6

Q4

Q3

Q2

Q1

Q0

Q[7:0]

Q7

Q5

C

CLR

T2

T3

D0

D2

D3

D6

D[7:0] D7

D5

D4

D1

Q6

CE
T

CLR

Q
L
D

C

FTCLE

AND3
Q5

CE
T

CLR

Q
L
D

C

FTCLE

AND2

VCC

Q4

CE
T

CLR

Q
L
D

C

FTCLE

Q1

CE
T

CLR

Q
L
D

C

FTCLE

Q0

CE
T

CLR

Q
L
D

C

FTCLE

Q2

CE
T

CLR

Q
L
D

C

FTCLE

Q3

CE
T

CLR

Q
L
D

C

FTCLE

AND3

AND4

AND4

Q7

CE
T

CLR

Q
L
D

C

FTCLE

T4

T6

T5

T7

AND2

AND5

TC

CEO

L

CB8CLE.3K, 4K
3-130 Xilinx Development System

Design Elements
CB8CLED

8-Bit Loadable Cascadable Bidirectional Binary
Counter with Clock Enable and Asynchronous Clear

CB8CLED is an 8-stage, 8-bit, synchronous, loadable, clearable,
cascadable, bidirectional binary counter. The asynchronous clear
(CLR) is the highest priority input. When CLR is High, all other
inputs are ignored and data (Q7 – Q0) and terminal count (TC)
outputs go to logic level zero, independent of clock transitions. The
data on the D7 – D0 inputs is loaded into the counter when the load
enable input (L) is High during the Low-to-High clock (C) transition,
independent of the state of CE. The outputs (Q7 – Q0) decrement
when CE is High and UP is Low during the Low-to-High clock tran-
sition. The outputs (Q7 – Q0) increment when CE and UP are High.
The counter ignores clock transitions when CE is Low.

For counting up, the TC output is High when all Q outputs and UP
are High. For counting down, the TC output is High when all Q
outputs and UP are Low. To cascade counters, the count enable out
(CEO) output of each counter is connected to the CE pin of the next
stage. The clock, UP, L, and CLR inputs are connected in parallel.
CEO is active (High) when TC and CE are High. The maximum
length of the counter is determined by the accumulated CE-to-TC
propagation delays versus the clock period. The clock period must be
greater than n(tCE-TC), where “n” is the number of stages and
“tCE-TC” is the CE-to-TC propagation delay of each stage. For EPLD
designs, refer to “CB8X1” for high-performance cascadable, bidirec-
tional counters.

The counter is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable. When cascading counters, use the CEO
output if the counter uses the CE input; use the TC output if it does
not.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Q[7:0]

X4363

CB8CLED

C

CLR

CE

D[7:0]

L

UP

TC

CEO
Libraries Guide 3-131

Libraries Guide
TC = (Q7•Q6•Q5•...•Q0•UP) + (Q7•Q6•Q5•...•Q0•UP)

CEO = (TC•CE)

dn = state of referenced clock one set-up time prior to active clock transition

Inputs Outputs

CLR L CE C UP D7 – D0 Q7 – Q0 TC CEO

1 X X X X X 0 0 0
0 1 X ↑ X D d7 – d0 TC CEO
0 0 0 X X X No Chg No Chg 0
0 0 1 ↑ 1 X Inc TC CEO
0 0 1 ↑ 0 X Dec TC CEO
3-132 Xilinx Development System

Design Elements
Figure 3-32 CB8CLED XC2000 Implementation

CE

L

CEO

Q7

CE
T

CLR

Q
L
D

C

FTCLE

C

CLR

D4

D5

D7

D6

D2

D1

D0

D[7:0]

D3

T7

T5_UP

T5_DN

T4

T4_UP

T4_DN

T2_DN

T2_UP

T1

T3_DN

T3_UP

T4

D0
D1 O

S0

M2_1

T5

D0
D1 O

S0

M2_1
Q4

CE
T

CLR

Q
L
D

C

FTCLE

Q0

CE
T

CLR

Q
L
D

C

FTCLE

Q1

CE
T

CLR

Q
L
D

C

FTCLE

T2

D0
D1 O

S0

M2_1

VCC

T1

D0

S0

O
D1

M2_1B1

T3

D0
D1 O

S0

M2_1
Q2

CE
T

CLR

Q
L
D

C

FTCLE

Q5

CE
T

CLR

Q
L
D

C

FTCLE

Q3

CE
T

CLR

Q
L
D

C

FTCLE

Q6

CE
T

CLR

Q
L
D

C

FTCLE

T6

T5

T6

D0
D1 O

S0

M2_1
T6_DN

T6_UP

T7_DN

T7_UP T7

D0
D1 O

S0

M2_1

TC_DN

TC_UP TC

D0
D1 O

S0

M2_1

AND2B2 T2

AND2

AND3B3

AND3

AND2B1

AND2

AND3B2

AND3

Q6

Q4

Q3

Q2

Q1

Q0

Q7 Q[7:0]

Q5

AND2B1

AND2

AND3B2

AND3

AND2B1

AND2
UP

TC

T3

AND2
CB8CLED.2K
Libraries Guide 3-133

Libraries Guide
Figure 3-33 CB8CLED XC3000 Implementation

CE

AND2

UP

Q7

Q4

Q3

Q2

Q1

Q0

Q5

Q6

Q[7:0]

T6

T7_DN

T7_UP

T7

TC_DN

TC_UP

D3

D[7:0]

D0

D1

D2

D6

D7

D5

D4

T5_UP

T5_DN

T4

T4_UP

T4_DN

T2_DN

T2_UP

T2

T1

T3_DN

T3_UP

T6_DN

T6_UP

T3

T5

CLR
C

T4

D0
D1 O
S0

M2_1

Q6

CE
T

CLR

Q
L
D

C

FTCLE

AND3

Q7

CE
T

CLR

Q
L
D

C

FTCLE AND2

T7

D0
D1 O
S0

M2_1

T5

D0
D1 O
S0

M2_1

AND2

Q4

CE
T

CLR

Q
L
D

C

FTCLE

Q0

CE
T

CLR

Q
L
D

C

FTCLE

Q1

CE
T

CLR

Q
L
D

C

FTCLE

AND2B2

T2

D0
D1 O
S0

M2_1

VCC

T1

D0

S0
OD1

M2_1B1

T3

D0
D1 O
S0

M2_1
Q2

CE
T

CLR

Q
L
D

C

FTCLE

AND3B3

AND2

AND3

Q5

CE
T

CLR

Q
L
D

C

FTCLE

T6

D0
D1 O
S0

M2_1

Q3

CE
T

CLR

Q
L
D

C

FTCLE

AND4

AND3

AND2B1

AND3B2

AND4B3

AND2B1

AND3B2

TC

D0
D1 O
S0

M2_1

CEO

TC

L

CB8CLED.3K
3-134 Xilinx Development System

Design Elements
Figure 3-34 CB8CLED XC4000 Implementation

T2

AND2B1

T4

Q1

Q0

Q2

Q3

Q5

Q6

Q[7:0]

Q7

Q4

TC_UP

TC

C

L

CLR

CE

T2_DN

T2_UP

UP

T1

T4_UP

T4_DN

T3

T3_DN

T3_UP

T5_DN

T5_UP

T5

D7

D6

D5

D4

D3

D2

D1

D0

D[7:0]

T6_DN

T6

T7

T7_DN

T7_UP

TC_DN

AND5

Q0

CE
T

CLR

Q
L
D

C

FTCLE

AND4

Q1

CE
T

CLR

Q
L
D

C

FTCLE

AND2B2

T2

D0
D1 O

S0

M2_1

VCC
+5

T1

D0

S0

OD1

M2_1B1

AND3

T3

D0
D1

O

S0

M2_1
Q2

CE
T

CLR

Q
L
D

C

FTCLE

Q3

CE
T

CLR

Q

L
D

C

FTCLE

AND3B3

AND4B4

AND4

Q5

CE
T

CLR

Q
L
D

C

FTCLE

AND2

AND3

AND2

Q7

CE
T

CLR

Q
L
D

C

FTCLE

Q4

CE
T

CLR

Q
L
D

C

FTCLE

Q6

CE
T

CLR

Q
L
D

C

FTCLE

T6

D0
D1

O

S0

M2_1

T7

D0
D1

O

S0

M2_1

TC

D0
D1

O

S0

M2_1

T5

D0
D1

O

S0

M2_1

T4

D0
D1 O

S0

M2_1

AND3B2

AND4B3

AND5B4

T6_UP

X4046

AND2

CEO
Libraries Guide 3-135

Libraries Guide
CB8RE

8-Bit Cascadable Binary Counter with Clock Enable
and Synchronous Reset

CB8CE is an 8-stage, 8-bit, synchronous, resettable, cascadable binary
counter. The synchronous reset (R) is the highest priority input. When
R is High, all other inputs are ignored and data (Q7 – Q0) and
terminal count (TC) outputs go to logic level zero on the Low-to-High
clock (C) transition. The outputs (Q7 – Q0) increment when the clock
enable input (CE) is High during the Low-to-High clock transition.
The counter ignores clock transitions when CE is Low. The TC output
is High when all Q outputs are High.

Larger counters are created by connecting the count enable out (CEO)
output of the first stage to the CE input of the next stage and
connecting the C and R inputs in parallel. CEO is active (High) when
TC and CE are High. The maximum length of the counter is deter-
mined by the accumulated CE-to-TC propagation delays versus the
clock period. The clock period must be greater than n(tCE-TC), where
“n” is the number of stages and “tCE-TC” is the CE-to-TC propaga-
tion delay of each stage.

The counter is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable. When cascading counters, use the CEO
output if the counter uses the CE input; use the TC output if it does
not.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Q[7:0]

X4364

CB8RE

C

R

CE CEO

TC
3-136 Xilinx Development System

Design Elements
TC = (Q7•Q6•Q5•...•Q0)

CEO = (TC•CE)

Inputs Outputs

R CE C Q7 – Q0 TC CEO

1 X ↑ 0 0 0
0 0 X No Chg No Chg 0
0 1 ↑ Inc TC CEO
Libraries Guide 3-137

Libraries Guide
Figure 3-35 CB8RE XC2000 Implementation

GND CEO
AND2

AND3

AND2

T4

AND4

AND2

AND3

T6

T5

AND4

T3

Q0

C
CE

R

T S Q

FTRSE

Q1

C
CE

R

T S Q

FTRSE

Q2

C
CE

R

T S Q

FTRSE

Q3

C
CE

R

T S Q

FTRSE

Q4

C
CE

R

T S Q

FTRSE

Q5

C
CE

R

T S Q

FTRSE

Q6

C
CE

R

T S Q

FTRSE

VCC

Q7

C
CE

R

T S Q

FTRSE

T2

C

R

Q6

Q4

Q3

Q2

Q0

Q1

Q5

Q[7:0]
Q7

T7

AND2
TC

CE

CB8RE.2K
3-138 Xilinx Development System

Design Elements
Figure 3-36 CB8RE XC3000/4000 Implementation

CEO

TC

AND2

CE

AND5

AND4

AND3

AND2

AND4

AND3

Q0

C
CE

R

T S Q

FTRSE

Q1

C
CE

R

T S Q

FTRSE

Q2

C
CE

R

T S Q

FTRSE

Q3

C
CE

R

T S Q

FTRSE

Q4

C
CE

R

T S Q

FTRSE

Q5

C
CE

R

T S Q

FTRSE

Q6

C
CE

R

T S Q

FTRSE

VCC

GND

Q7

C
CE

R

T S Q

FTRSE
Q7

Q6

Q5

Q1

Q0

Q2

Q3

Q4

Q[7:0]

T4

T6

T5

T3

T2

C

R

T7

AND2

CB8RE.3K, 4K
Libraries Guide 3-139

Libraries Guide
CB8RLE

8-Bit Loadable Cascadable Binary Counter with
Clock Enable and Synchronous Reset

CB8RLE is an 8-stage, 8-bit, synchronous, loadable, resettable, cascad-
able binary counter. The synchronous reset (R) is the highest priority
input. The synchronous R, when High, overrides all other inputs and
resets the Q7 – Q0, TC, and CEO outputs to Low on the Low-to-High
clock (C) transition. The data on the D7 – D0 inputs is loaded into the
counter when the load enable input (L) is High during the Low-to-
High clock (C) transition, independent of the state of CE.

The outputs (Q7 – Q0) increment when CE is High during the Low-
to-High clock transition. The counter ignores clock transitions when
CE is Low. The TC output is High when all Q outputs are High. The
CEO output is High when all Q outputs and CE are High, to allow
direct cascading of counters.

Larger counters are created by connecting the CEO output of the first
stage to the CE input of the next stage and connecting the C, L, and R
inputs in parallel. The maximum length of the counter is determined
by the accumulated CE-to-CEO propagation delays versus the clock
period.

The counter is asynchronously reset, output Low, when power is
applied or when global reset or master reset is active. When
cascading counters, use the CEO output if the counter uses the CE
input; use the TC output if it does not.

XC2000 XC3000 XC4000 XC7000

N/A N/A N/A Primitive

Q[7:0]

X4515

CB8RLE

C

R

CE CEO

TC

D[7:0]

L

3-140 Xilinx Development System

Design Elements
TC = Q7•Q6•...•Q0

CEO = TC•CE

dn = state of referenced input one set-up time prior to active clock transition

Inputs Outputs

R L CE C D7 – D0 Q7 – Q0 TC CEO

1 X X ↑ X 0 0 0
0 1 X ↑ D d7 – d0 TC CEO
0 0 0 X X No Chg No Chg 0
0 0 1 ↑ X Inc TC CEO
Libraries Guide 3-141

Libraries Guide
CB8X1

8-Bit Loadable Cascadable Bidirectional Binary
Counter with Clock Enable and Asynchronous Clear

CB8X1 is an 8-stage, 8-bit, synchronous, loadable, clearable, bidirec-
tional binary counter. CB8X1 has separate count-enable inputs and
synchronous terminal-count outputs for up and down directions to
support high-speed cascading in the EPLD architecture.

The asynchronous clear (CLR) is the highest priority input. When
CLR is High, all other inputs are ignored, data outputs (Q7 – Q0) go
to logic level zero, and terminal count outputs TCU and TCD go to
zero and one, respectively, independent of clock transitions. The data
on the D7 – D0 inputs loads into the counter on the Low-to-High
clock (C) transition when the load enable input (L) is High, indepen-
dent of the CE inputs.

The outputs (Q7 – Q0) increment when CEU is High, provided CLR
and L are Low, during the Low-to-High clock transition. The outputs
(Q7 – Q0) decrement when CED is High, provided CLR and L are
Low. The counter ignores clock transitions when CEU and CED are
Low. Both CEU and CED should not be High during the same clock
transition; the CEOU and CEOD outputs might not function properly
for cascading when CEU and CED are both High.

For counting up, the CEOU output is High when all Q outputs and
CEU are High. For counting down, the CEOD output is High when
all Q outputs are Low and CED is High. To cascade counters, the
CEOU and CEOD outputs of each counter are connected directly to
the CEU and CED inputs, respectively, of the next stage. The C, L, and
CLR inputs are connected in parallel.

In Xilinx EPLD devices, the maximum clocking frequency of these
counter components is unaffected by the number of cascaded stages
for all counting and loading functions. The TCU terminal count
output is High when all Q outputs are High, regardless of CEU. The
TCD output is High when all Q outputs are Low, regardless of CED.
When cascading counters, the final terminal count signals can be

XC2000 XC3000 XC4000 XC7000

N/A N/A N/A Primitive

X4198

CB8X1

C

Q[7:0]

CEU

L

CED

CLR

TCU

TCD

CEOU

CEOD

D[7:0]
3-142 Xilinx Development System

Design Elements
produced by AND wiring all the TCU outputs (for the up direction)
and all the TCD outputs (for the down direction). The TCU, CEOU,
and CEOD outputs are produced by optimizable AND gates within
the component, resulting in zero propagation from the CEU and CED
inputs and from the Q outputs, provided all connections from each
output remain on-chip. Otherwise, a macrocell buffer delay is intro-
duced.

The counter is initialized to zero (TCU Low and TCD High) when the
device is powered-up or when the device Master Reset pin is acti-
vated. The clock (C) input can be driven by either the EPLD FastCLK
global net (represented by a BUFG symbol), an ordinary input, or
other on-chip logic.

TCU = Q7•Q6•Q5•...Q0

TCD = Q7•Q6•Q5•...Q0

CEOU = TCU•CEU

CEOD = TCD•CED

dn = state of referenced input one set-up time prior to active clock transition

Inputs Outputs

CLR L CEU CED C D7 – D0 Q7 – Q0 TCU TCD CEOU CEOD

1 X X X X X 0 0 1 0 CEOD
0 1 X X ↑ D d7 – d0 TCU TCD CEOU CEOD
0 0 0 0 X X No Chg No Chg No Chg 0 0
0 0 1 0 ↑ X Inc TCU TCD CEOU 0
0 0 0 1 ↑ X Dec TCU TCD 0 CEOD
0 0 1 1 ↑ X Inc TCU TCD Invalid Invalid
Libraries Guide 3-143

Libraries Guide
CB8X2

8-Bit Loadable Cascadable Bidirectional Binary
Counter with Clock Enable and Synchronous Reset

CB8X2 is an 8-stage, 8-bit, synchronous, loadable, resettable, bidirec-
tional binary counter. CB8X2 has separate count-enable inputs and
synchronous terminal-count outputs for up and down directions to
support high-speed cascading in the EPLD architecture.

The synchronous reset (R) is the highest priority input. When R is
High, all other inputs are ignored, data outputs (Q7 – Q0) go to logic
level zero, and terminal count outputs TCU and TCD go to zero and
one, respectively, on the Low-to-High clock (C) transition. The data
on the D7 – D0 inputs loads into the counter on the Low-to-High
clock (C) transition when the load enable input (L) is High, indepen-
dent of the CE inputs.

The outputs (Q7 – Q0) increment when CEU is High, provided R and
L are Low, during the Low-to-High clock transition. The outputs
(Q7 – Q0) decrement when CED is High, provided R and L are Low.
The counter ignores clock transitions when CEU and CED are Low.
Both CEU and CED should not be High during the same clock transi-
tion; the CEOU and CEOD outputs might not function properly for
cascading when CEU and CED are both High.

For counting up, the CEOU output is High when all Q outputs and
CEU are High. For counting down, the CEOD output is High when
all Q outputs are Low and CED is High. To cascade counters, the
CEOU and CEOD outputs of each counter are connected directly to
the CEU and CED inputs, respectively, of the next stage. The C, L, and
R inputs are connected in parallel.

In Xilinx EPLD devices, the maximum clocking frequency of these
counter components is unaffected by the number of cascaded stages
for all counting and loading functions. The TCU terminal count
output is High when all Q outputs are High, regardless of CEU. The
TCD output is High when all Q outputs are Low, regardless of CED.

XC2000 XC3000 XC4000 XC7000

N/A N/A N/A Primitive

X4199

CB8X2

C

Q[7:0]

CEU

L

CED

R

TCU

TCD

CEOU

CEOD

D[7:0]
3-144 Xilinx Development System

Design Elements
When cascading counters, the final terminal count signals can be
produced by AND wiring all the TCU outputs (for the up direction)
and all the TCD outputs (for the down direction). The TCU, CEOU,
and CEOD outputs are produced by optimizable AND-gates within
the component, resulting in zero propagation from the CEU and CED
inputs and from the Q outputs, provided all connections from each
output remain on-chip. Otherwise, a macrocell buffer delay is intro-
duced.

The counter is initialized to zero (TCU Low and TCD High) when the
device is powered-up or when the device Master Reset pin is acti-
vated. The clock (C) input can be driven by either the EPLD FastCLK
global net (represented by a BUFG symbol), an ordinary input, or
other on-chip logic.

TCU = Q7•Q6•Q5•...Q0

TCD = Q7•Q6•Q5•...Q0

CEOU = TCU•CEU

CEOD = TCD•CED

dn = state of referenced input one set-up time prior to active clock transition

Inputs Outputs

R L CEU CED C D7 – D0 Q7 – Q0 TCU TCD CEOU CEOD

1 X X X ↑ X 0 0 1 0 CEOD
0 1 X X ↑ D d7 – d0 TCU TCD CEOU CEOD
0 0 0 0 X X No Chg No Chg No Chg 0 0
0 0 1 0 ↑ X Inc TCU TCD CEOU 0
0 0 0 1 ↑ X Dec TCU TCD 0 CEOD
0 0 1 1 ↑ X Inc TCU TCD Invalid Invalid
Libraries Guide 3-145

Libraries Guide
CB16CE

16-Bit Cascadable Binary Counter with Clock Enable
and Asynchronous Clear

CB16CE is a 16-stage, 16-bit, synchronous, clearable, cascadable
binary counter. The asynchronous clear (CLR) is the highest priority
input. When CLR is High, all other inputs are ignored and data
(Q15 – Q0) and terminal count (TC) outputs go to logic level zero,
independent of clock transitions. The outputs (Q15 – Q0) increment
when the clock enable input (CE) is High during the Low-to-High
clock (C) transition. The counter ignores clock transitions when CE is
Low. The TC output is High when all Q outputs are High.

Larger counters are created by connecting the count enable out (CEO)
output of the first stage to the CE input of the next stage and
connecting the C and CLR inputs in parallel. CEO is active (High)
when TC is High and CE is High. The maximum length of the counter
is determined by the accumulated CE-to-TC propagation delays
versus the clock period. The clock period must be greater than n(tCE-
TC), where “n” is the number of stages and “tCE-TC” is the CE-to-TC
propagation delay of each stage.

The counter is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable. When cascading counters, use the CEO
output if the counter uses the CE input; use the TC output if it does
not.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Q[15:0]

X4365

CB16CE

C

CLR

CEOCE

TC
3-146 Xilinx Development System

Design Elements
TC = (Q15•Q14•Q13•Q12...•Q0)

CEO = (TC•CE)

Inputs Outputs

CLR CE C Q15 – Q0 TC CEO

1 X X 0 0 0
0 0 X No Chg No Chg 0
0 1 ↑ Inc TC CEO
Libraries Guide 3-147

Libraries Guide
CB16CLE

16-Bit Loadable Cascadable Binary Counter with
Clock Enable and Asynchronous Clear

CB16CLE is a 16-stage, 16-bit, synchronous, loadable, clearable,
cascadable binary counter. The asynchronous clear (CLR) is the
highest priority input. When CLR is High, all other inputs are
ignored and data (Q15 – Q0) and terminal count (TC) outputs go to
logic level zero, independent of clock transitions. The data on the
D15 – D0 inputs is loaded into the counter when the load enable
input (L) is High during the Low-to-High clock (C) transition, inde-
pendent of the state of clock enable (CE). The outputs (Q15 – Q0)
increment when CE is High during the Low-to-High clock transition.
The counter ignores clock transitions when CE is Low. The TC output
is High when all Q outputs are High.

Larger counters are created by connecting the count enable out (CEO)
output of the first stage to the CE input of the next stage and
connecting the C, L, and CLR inputs in parallel. CEO is active (High)
when TC and CE are High. The maximum length of the counter is
determined by the accumulated CE-to-TC propagation delays versus
the clock period. The clock period must be greater than n(tCE-TC),
where “n” is the number of stages and “tCE-TC” is the CE-to-TC
propagation delay of each stage.

The counter is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable. When cascading counters, use the CEO
output if the counter uses the CE input; use the TC output if it does
not.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Q[15:0]

X4366

CB16CLE

C

CLR

CE

TC

D[15:0]

L

CEO
3-148 Xilinx Development System

Design Elements
TC = (Q15•Q14•Q13•Q12...•Q0)

CEO = (TC•CE)

dn = state of referenced input one set-up time prior to active clock transition

Inputs Outputs

CLR L CE C D15 – D0 Q15 – Q0 TC CEO

1 X X X X 0 0 0
0 1 X ↑ D d15 – d0 TC CEO
0 0 0 X X No Chg No Chg 0
0 0 1 ↑ X Inc TC CEO
Libraries Guide 3-149

Libraries Guide
CB16CLED

16-Bit Loadable Cascadable Bidirectional Binary
Counter with Clock Enable and Asynchronous Clear

CB16CLED is a 16-stage, 16-bit, synchronous, loadable, clearable,
cascadable, bidirectional binary counter. The asynchronous clear
(CLR) is the highest priority input. When CLR is High, all other
inputs are ignored and data (Q15 – Q0) and terminal count (TC)
outputs go to logic level zero, independent of clock transitions. The
data on the D15 – D0 inputs is loaded into the counter when the load
enable input (L) is High during the Low-to-High clock (C) transition,
independent of the state of clock enable (CE). The outputs (Q15 – Q0)
decrement when CE is High and UP is Low during the Low-to-High
clock transition. The outputs (Q15 – Q0) increment when CE and UP
are High. The counter ignores clock transitions when CE is Low.

For counting up, the TC output is High when all Q outputs and UP
are High. For counting down, the TC output is High when all Q
outputs and UP are Low. To cascade counters, the count enable out
(CEO) output of each counter is connected to the CE pin of the next
stage. The clock, UP, L, and CLR inputs are connected in parallel.
CEO is active (High) when TC and CE are High. The maximum
length of the counter is determined by the accumulated CE-to-TC
propagation delays versus the clock period. The clock period must be
greater than n(tCE-TC), where “n” is the number of stages and
“tCE-TC” is the CE-to-TC propagation delay of each stage. For EPLD
designs, refer to “CB16X1” for high-performance cascadable, bidirec-
tional counters.

The counter is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable. When cascading counters, use the CEO
output if the counter uses the CE input; use the TC output if it does
not.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Q[15:0]

X4367

CB16CLED

C

CLR

CE

D[15:0]

L

UP

TC

CEO
3-150 Xilinx Development System

Design Elements
TC = (Q15•Q14•Q13...•Q0•UP) + (Q15•Q14•Q13...•Q0•UP)

CEO = (TC•CE)

dn = state of referenced clock one set-up time prior to active clock transition

Inputs Outputs

CLR L CE C UP D15 – D0 Q15 – Q0 TC CEO

1 X X X X X 0 0 0
0 1 X ↑ X D d15 – d0 TC CEO
0 0 0 X X X No Chg No Chg 0
0 0 1 ↑ 1 X Inc TC CEO
0 0 1 ↑ 0 X Dec TC CEO
Libraries Guide 3-151

Libraries Guide
CB16RE

16-Bit Cascadable Binary Counter with Clock Enable
and Synchronous Reset

CB16RE is a 16-stage, 16-bit, synchronous, resettable, cascadable
binary counter. The synchronous reset (R) is the highest priority
input. When R is High, all other inputs are ignored and data
(Q15 – Q0) and terminal count (TC) outputs go to logic level zero on
the Low-to-High clock (C) transition. The outputs (Q15 – Q0) incre-
ment when the clock enable input (CE) is High during the Low-to-
High clock transition. The counter ignores clock transitions when CE
is Low. The TC output is High when all Q outputs are High.

Larger counters are created by connecting the count enable out (CEO)
output of the first stage to the CE input of the next stage and
connecting the C and R inputs in parallel. CEO is active (High) when
TC and CE are High. The maximum length of the counter is deter-
mined by the accumulated CE-to-TC propagation delays versus the
clock period. The clock period must be greater than n(tCE-TC), where
“n” is the number of stages and “tCE-TC” is the CE-to-TC propaga-
tion delay of each stage.

The counter is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable. When cascading counters, use the CEO
output if the counter uses the CE input; use the TC output if it does
not.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Q[15:0]

X4368

CB16RE

C

R

CEOCE

TC
3-152 Xilinx Development System

Design Elements
TC = (Q15•Q14•Q13...•Q0)

CEO = (TC•CE)

Inputs Outputs

R CE C Q15 – Q0 TC CEO

1 X ↑ 0 0 0
0 0 X No Chg No Chg 0
0 1 ↑ Inc TC CEO
Libraries Guide 3-153

Libraries Guide
CB16RLE

16-Bit Loadable Cascadable Binary Counter with
Clock Enable and Synchronous Reset

CB16RLE is a 16-stage, 16-bit, synchronous, loadable, resettable,
cascadable binary counter. The synchronous reset (R) is the highest
priority input.

The synchronous R, when High, overrides all other inputs and resets
the Q15 – Q0, TC, and CEO outputs to Low on the Low-to-High clock
(C) transition. The data on the D15 – D0 inputs is loaded into the
counter when the load enable input (L) is High during the Low-to-
High clock (C) transition, independent of the state of CE. The outputs
(Q15 – Q0) increment when CE is High during the Low-to-High clock
transition. The counter ignores clock transitions when CE is Low.

The TC output is High when all Q outputs are High. The CEO output
is High when all Q outputs and CE are High, to allow direct
cascading of counters. Larger counters are created by connecting the
CEO output of the first stage to the CE input of the next stage and
connecting the C, L, and R inputs in parallel. The maximum length of
the counter is determined by the accumulated CE-to-CEO propaga-
tion delays versus the clock period.

The counter is asynchronously reset, output Low, when power is
applied or when global reset or master reset is active. When
cascading counters, use the CEO output if the counter uses the CE
input; use the TC output if it does not.

XC2000 XC3000 XC4000 XC7000

N/A N/A N/A Primitive

Q[15:0]

X4516

CB16RLE

C

R

CE CEO

TC

D[15:0]

L

3-154 Xilinx Development System

Design Elements
TC = Q15•Q14•...•Q0

CEO = TC•CE

dn = state of referenced input one set-up time prior to clock transition

Inputs Outputs

R L CE C D15 – D0 Q15 – Q0 TC CEO

1 X X ↑ X 0 0 0
0 1 X ↑ D d15 – d0 TC CEO
0 0 0 X X No Chg No Chg 0
0 0 1 ↑ X Inc TC CEO
Libraries Guide 3-155

Libraries Guide
CB16X1

16-Bit Loadable Cascadable Bidirectional Binary
Counter with Clock Enable and Asynchronous Clear

CB16X1 is a 16-stage, 16-bit, synchronous, loadable, clearable, bidirec-
tional binary counter. CB16X1 has separate count-enable inputs and
synchronous terminal-count outputs for up and down directions to
support high-speed cascading in the EPLD architecture.

The asynchronous clear (CLR) is the highest priority input. When
CLR is High, all other inputs are ignored, data outputs (Q15 – Q0) go
to logic level zero, and terminal count outputs TCU and TCD go to
zero and one, respectively, independent of clock transitions. The data
on the D15 – D0 inputs loads into the counter on the Low-to-High
clock (C) transition, when the load enable input (L) is High, indepen-
dent of the CE inputs.

The outputs (Q15 – Q0) increment when CEU is High, provided CLR
and L are Low, during the Low-to-High clock transition. The outputs
(Q15 – Q0) decrement when CED is High, provided CLR and L are
Low. The counter ignores clock transitions when CEU and CED are
Low. Both CEU and CED should not be High during the same clock
transition; the CEOU and CEOD outputs might not function properly
for cascading when CEU and CED are both High.

For counting up, the CEOU output is High when all Q outputs and
CEU are High. For counting down, the CEOD output is High when
all Q outputs are Low and CED is High. To cascade counters, the
CEOU and CEOD outputs of each counter are connected directly to
the CEU and CED inputs, respectively, of the next stage. The clock, L,
and CLR inputs are connected in parallel.

In Xilinx EPLD devices, the maximum clocking frequency of these
counter components is unaffected by the number of cascaded stages
for all counting and loading functions. The TCU terminal count
output is High when all Q outputs are High, regardless of CEU. The
TCD output is High when all Q outputs are Low, regardless of CED.

XC2000 XC3000 XC4000 XC7000

N/A N/A N/A Primitive

X4200

CB16X1

C

Q[15:0]

CEU

L

CED

CLR

TCU

TCD

CEOU

CEOD

D[15:0]
3-156 Xilinx Development System

Design Elements
When cascading counters, the final terminal count signals can be
produced by AND wiring all the TCU outputs (for the up direction)
and all the TCD outputs (for the down direction). The TCU, CEOU,
and CEOD outputs are produced by optimizable AND gates within
the component, resulting in zero propagation from the CEU and CED
inputs and from the Q outputs, provided all connections from each
output remain on-chip. Otherwise, a macrocell buffer delay is intro-
duced. The counter is initialized to zero (TCU Low and TCD High)
when the device is powered-up or when the device Master Reset pin
is activated. The clock (C) input can be driven by either the EPLD
FastCLK global net (represented by a BUFG symbol), an ordinary
input, or other on-chip logic.

TCU = Q15•Q14•Q13•...•Q0

TCD = Q15•Q14•Q13•...•Q0

CEOU = TCU•CEU

CEOD = TCD•CED

dn = state of referenced input one set-up time prior to active clock transition

Inputs Outputs

CLR L CEU CED C D15 – D0 Q15 – Q0 TCU TCD CEOU CEOD

1 X X X X X 0 0 1 0 CEOD
0 1 X X ↑ D d15 – d0 TCU TCD CEOU CEOD
0 0 0 0 X X No Chg No Chg No Chg 0 0
0 0 1 0 ↑ X Inc TCU TCD CEOU 0
0 0 0 1 ↑ X Dec TCU TCD 0 CEOD
0 0 1 1 ↑ X Inc TCU TCD Invalid Invalid
Libraries Guide 3-157

Libraries Guide
CB16X2

16-Bit Loadable Cascadable Bidirectional Binary
Counter with Clock Enable and Synchronous Reset

CB16X2 is a 16-stage, 16-bit, synchronous, loadable, resettable, bidi-
rectional binary counter. CB16X2 has separate count-enable inputs
and synchronous terminal-count outputs for up and down directions,
to support high-speed cascading in the EPLD architecture.

The synchronous reset (R) is the highest priority input. When R is
High, all other inputs are ignored, data outputs (Q15 – Q0) go to logic
level zero, and terminal count outputs TCU and TCD go to zero and
one, respectively, on the Low-to-High clock (C) transition. The data
on the D15 – D0 inputs loads into the counter on the Low-to-High
clock (C) transition when the load enable input (L) is High, indepen-
dent of the CE inputs. The outputs (Q15 – Q0) increment when CEU
is High, provided R and L are Low, during the Low-to-High clock
transition. The outputs (Q15 – Q0) decrement when CED is High,
provided R and L are Low.

The counter ignores clock transitions when CEU and CED are Low.
Both CEU and CED should not be High during the same clock transi-
tion; the CEOU and CEOD outputs might not function properly for
cascading when CEU and CED are both High. For counting up, the
CEOU output is High when all Q outputs and CEU are High. For
counting down, the CEOD output is High when all Q outputs are
Low and CED is High. To cascade counters, the CEOU and CEOD
outputs of each counter are connected directly to the CEU and CED
inputs, respectively, of the next stage. The C, L, and R inputs are
connected in parallel.

In Xilinx EPLD devices, the maximum clocking frequency of these
counter components is unaffected by the number of cascaded stages
for all counting and loading functions. The TCU terminal count
output is High when all Q outputs are High, regardless of CEU. The
TCD output is High when all Q outputs are Low, regardless of CED.

XC2000 XC3000 XC4000 XC7000

N/A N/A N/A Primitive

X4201

CB16X2

C

Q[15:0]

CEU

L

CED

R

TCU

TCD

CEOU

CEOD

D[15:0]
3-158 Xilinx Development System

Design Elements
When cascading counters, the final terminal count signals can be
produced by AND wiring all the TCU outputs (for the up direction)
and all the TCD outputs (for the down direction). The TCU, CEOU,
and CEOD outputs are produced by optimizable AND gates within
the component, resulting in zero propagation from the CEU and CED
inputs and from the Q outputs, provided all connections from each
such output remain on-chip. Otherwise, a macrocell buffer delay is
introduced. The counter is initialized to zero (TCU Low and TCD
High) when the device is powered-up or when the device Master
Reset pin is activated. The clock (C) input can be driven by either the
EPLD FastCLK global net (represented by a BUFG symbol), an ordi-
nary input, or other on-chip logic.

TCU = Q15•Q14•Q13•...•Q0

TCD = Q15•Q14•Q13•...•Q0

CEOU = TCU•CEU

CEOD = TCD•CED

dn = state of referenced input one set-up time prior to active clock transition

Inputs Outputs

R L CEU CED C D15 – D0 Q15 – Q0 TCU TCD CEOU CEOD

1 X X X ↑ X 0 0 1 0 CEOD
0 1 X X ↑ D d15 – d0 TCU TCD CEOU CEOD
0 0 0 0 X X No Chg No Chg No Chg 0 0
0 0 1 0 ↑ X Inc TCU TCD CEOU 0
0 0 0 1 ↑ X Dec TCU TCD 0 CEOD
0 0 1 1 ↑ X Inc TCU TCD Invalid Invalid
Libraries Guide 3-159

Libraries Guide
CC8CE

8-Bit Cascadable Binary Counter with Clock Enable
and Asynchronous Clear

CC8CE is an 8-stage, 8-bit, synchronous, clearable, cascadable binary
counter. The counter is implemented using carry logic with relative
location restraints, which assures most efficient logic placement. The
asynchronous clear (CLR) is the highest priority input. When CLR is
High, all other inputs are ignored and data (Q7 – Q0) and terminal
count (TC) outputs go to logic level zero, independent of clock transi-
tions. The outputs (Q7 – Q0) increment when the clock enable input
(CE) is High during the Low-to-High clock (C) transition. The
counter ignores clock transitions when CE is Low. The TC output is
High when all Q outputs are High.

Larger counters are created by connecting the count enable out (CEO)
output of the first stage to the CE input of the next stage and
connecting the C and CLR inputs in parallel. CEO is active (High)
when TC and CE are High. The maximum length of the counter is
determined by the accumulated CE-to-TC propagation delays versus
the clock period. The clock period must be greater than n(tCE-TC),
where “n” is the number of stages and “tCE-TC” is the CE-to-TC
propagation delay of each stage.

The counter is asynchronously reset, output Low, when power is
applied or when global set/reset (GSR) is active. The GSR active level
is programmable. When cascading counters, use the CEO output if
the counter uses the CE input; use the TC output if it does not.

XC2000 XC3000 XC4000 XC7000

N/A N/A Macro N/A

Q[7:0]

X4290

CC8CE

C

CLR

CE CEO

TC
3-160 Xilinx Development System

Design Elements
TC = (Q7•Q6•Q5•Q4•...•Q0)

CEO = (TC•CE)

XC4000 Topology

In the process of combining the logic that loads CEO and TC, the place and route
software might map the logic that generates CEO and TC to different function
generators. If this mapping occurs, the CEO and TC logic cannot be placed in the
uppermost CLB as indicated in the illustration.

Inputs Outputs

CLR CE C Q7 – Q0 TC CEO

1 X X 0 0 0
0 0 X No Chg No Chg 0
0 1 ↑ Inc TC CEO

X3671

TC*

CEO*

Q 7

Q 6

Q 5

Q 4

D 7

D 6

D 5

D 4

Q 3

Q 2

Q 1

Q 0

D 3

D 2

D 1

D 0
Libraries Guide 3-161

Libraries Guide
Figure 3-37 CC8CE XC4000 Implementation

Q0

C1

Q2

Q3

Q5

Q[7:0]

Q7

Q6

Q4

Q1

Q0

CY4_19

INC-FG-1

CEO

AND2

TQ5

TQ0

TQ5

TQ4

TQ3

TQ2

TQ1

TQ7

C4

C3

C0

Q7

Q1

Q2

Q3

Q4

Q5

C1

C2

C3

C4

C5

C6

TQ1

TQ3

C2

C0

C5

Q6

TQ2

TQ7

TQ6

TQ6

TQ0

TQ4

CY4_18
INC-FG-CI

CY4_18

INC-FG-CI

CY4_18

INC-FG-CI

XOR2

XOR2

XOR2

XOR2

XOR2

XOR2

XOR2

RLOC=R4C0.G

I1
I2
I3
I4

O

FMAP

RLOC=R3C0.F

I1
I2
I3
I4

O

FMAP

RLOC=R3C0.G

I1
I2
I3
I4

O

FMAP

RLOC=R2C0.F

I1
I2
I3
I4

O

FMAP

RLOC=R2C0.G

I1
I2
I3
I4

O

FMAP

RLOC=R1C0.F

I1
I2
I3
I4

O

FMAP

RLOC=R0C0

A0
ADD

B1
A1
B0

CY4

CIN

COUT

COUT0

(F3)
(F1)
(F2)
(G4)
(G1)

CARRY MODE

CY4_42
EXAMINE-CI

RLOC=R2C0

A0
ADD

B1
A1
B0

CY4

CIN

COUT

COUT0

(F3)
(F1)
(F2)
(G4)
(G1)

CARRY MODE

RLOC=R1C0

A0
ADD

B1
A1
B0

CY4

CIN

COUT

COUT0

(F3)
(F1)
(F2)
(G4)
(G1)

CARRY MODE

RLOC=R3C0

A0
ADD

B1
A1
B0

CY4

CIN

COUT

COUT0

(F3)
(F1)
(F2)
(G4)
(G1)

CARRY MODE

RLOC=R1C0.G

I1
I2
I3
I4

O

FMAP

RLOC=R4C0.F

I1
I2
I3
I4

O

FMAP

Q0
RLOC=R4C0.FFX

FDCE

QD

CLR

CE
C

Q1
RLOC=R4C0.FFY

FDCE

QD

CLR

CE
C

Q2

RLOC=R3C0.FFX

FDCE

QD

CLR

CE
C

Q3
RLOC=R3C0.FFY

FDCE

QD

CLR

CE
C

Q4

RLOC=R2C0.FFX

FDCE

QD

CLR

CE
C

Q5
RLOC=R2C0.FFY

FDCE

QD

CLR

CE
C

Q6

RLOC=R1C0.FFX

FDCE

QD

CLR

CE
C

Q7
RLOC=R1C0.FFY

FDCE

QD

CLR

CE
C

C6

TC

INV

RLOC=R4C0

A0
ADD

B1
A1
B0

CY4

CIN

COUT

COUT0

(F3)
(F1)
(F2)
(G4)
(G1)

CARRY MODE

CE
C

CLR

CC8CE.4K
3-162 Xilinx Development System

Design Elements
CC8CLE

8-Bit Loadable Cascadable Binary Counter with
Clock Enable and Asynchronous Clear

CC8CLE is an 8-stage, 8-bit, synchronous, loadable, clearable, cascad-
able binary counter. The counter is implemented using carry logic
with relative location constraints, which assures most efficient logic
placement.

The asynchronous clear (CLR) is the highest priority input. When
CLR is High, all other inputs are ignored and data (Q7 – Q0) and
terminal count (TC) outputs go to logic level zero, independent of
clock transitions. The data on the D7 – D0 inputs is loaded into the
counter when the load enable input (L) is High during the Low-to-
High clock (C) transition, independent of the state of clock enable
(CE). The outputs (Q7 – Q0) increment when CE is High during the
Low-to-High clock transition. The counter ignores clock transitions
when CE is Low. The TC output is High when all Q outputs are High.

Larger counters are created by connecting the count enable out (CEO)
output of the first stage to the CE input of the next stage and
connecting the C, L, and CLR inputs in parallel. CEO is active (High)
when TC and CE are High. The maximum length of the counter is
determined by the accumulated CE-to-TC propagation delays versus
the clock period. The clock period must be greater than n(tCE-TC),
where “n” is the number of stages and “tCE-TC” is the CE-to-TC
propagation delay of each stage.

The counter is asynchronously reset, output Low, when power is
applied or when global set/reset (GSR) is active. The GSR active level
is programmable. When cascading counters, use the CEO output if
the counter uses the CE input; use the TC output if it does not.

XC2000 XC3000 XC4000 XC7000

N/A N/A Macro N/A

Q[7:0]

X4289

CC8CLE

C

CLR

CE

D[7:0]

L

CEO

TC
Libraries Guide 3-163

Libraries Guide
TC = (Q7•Q6•Q5•Q4•...•Q0)

CEO = (TC•CE)

dn = state of referenced input one set-up time prior to active clock transition

XC4000 Topology

In the process of combining the logic that loads CEO and TC, the place and route
software might map the logic that generates CEO and TC to different function
generators. If this mapping occurs, the CEO and TC logic cannot be placed in the
uppermost CLB as indicated in the illustration.

Inputs Outputs

CLR L CE C D7 – D0 Q7 – Q0 TC CEO

1 X X X X 0 0 0
0 1 X X D d7 – d0 TC CEO
0 0 0 X X No Chg No Chg 0
0 0 1 ↑ X Inc TC CEO

X3673

TC*

CEO*

Q 7

Q 6

Q 5

Q 4

D 7

D 6

D 5

D 4

Q 3

Q 2

Q 1

Q 0

D 3

D 2

D 1

D 0
3-164 Xilinx Development System

Design Elements
Figure 3-38 CC8CLE XC4000 Implementation

L

D0
D[7:0]

D6

D1

D3

D7

D5

D2

D4

Q2

Q3

Q5

Q[7:0]

Q7

Q6

Q4

Q1

Q0

CE

MD0

CY4_19

INC-FG-1

AND2

RLOC=R0C0

A0
ADD

B1
A1
B0

CY4

CIN

COUT

COUT0

(F3)
(F1)
(F2)
(G4)
(G1)

CARRY MODE

Q1
RLOC=R4C0.FFY

FDCE

QD

CLR

CE
C

Q0
L

L

L

L

L

L

MD7

MD1

MD2

MD3

MD4

MD5

MD6

C4

C3

C0

D7

D1

D2

D3

D4

D5

C1

C2

C3

C4

C5

C6

D0

MD1

MD3

MD0

C1

C2

C0

C6

D6

TQ7

TQ6

TQ5

TQ4

TQ3

TQ2

TQ1

TQ0

MD5

MD2

MD7

MD6

L
Q7

L
Q6

Q1

Q2

Q3

Q4

Q5

MD4

XOR2

XOR2

XOR2

XOR2

XOR2

XOR2

XOR2

RLOC=R4C0.G

I1
I2
I3
I4

O

FMAP

RLOC=R3C0.F

I1
I2
I3
I4

O

FMAP

RLOC=R3C0.G

I1
I2
I3
I4

O

FMAP

RLOC=R2C0.F

I1
I2
I3
I4

O

FMAP

RLOC=R2C0.G

I1
I2
I3
I4

O

FMAP

RLOC=R1C0.F

I1
I2
I3
I4

O

FMAP

CY4_42
EXAMINE-CI

CY4_18
INC-FG-CI

CY4_18
INC-FG-CI

RLOC=R2C0

A0
ADD

B1
A1
B0

CY4

CIN

COUT

COUT0

(F3)
(F1)
(F2)
(G4)
(G1)

CARRY MODE

CY4_18
INC-FG-CI

RLOC=R1C0

A0
ADD

B1
A1
B0

CY4

CIN

COUT

COUT0

(F3)
(F1)
(F2)
(G4)
(G1)

CARRY MODE

RLOC=R4C0

A0
ADD

B1
A1
B0

CY4

CIN

COUT

COUT0

(F3)
(F1)
(F2)
(G4)
(G1)

CARRY MODE

RLOC=R3C0

A0
ADD

B1
A1
B0

CY4

CIN

COUT

COUT0

(F3)
(F1)
(F2)
(G4)
(G1)

CARRY MODE

RLOC=R1C0.G

I1
I2
I3
I4

O

FMAP

RLOC=R4C0.F

I1
I2
I3
I4

O

FMAP

Q2

RLOC=R3C0.FFX

FDCE

QD

CLR

CE
C

Q3
RLOC=R3C0.FFY

FDCE

QD

CLR

CE
C

Q4

RLOC=R2C0.FFX

FDCE

QD

CLR

CE
C

Q5
RLOC=R2C0.FFY

FDCE

QD

CLR

CE
C

Q6

RLOC=R1C0.FFX

FDCE

QD

CLR

CE
C

Q7
RLOC=R1C0.FFY

FDCE

QD

CLR

CE
C

MD7

D0
D1

O

S0

M2_1

MD6

D0
D1

O

S0

M2_1

MD5

D0
D1

O

S0

M2_1

MD4

D0
D1

O

S0

M2_1

MD3

D0
D1

O

S0

M2_1

MD2

D0
D1

O

S0

M2_1

MD1

D0
D1

O

S0

M2_1

MD0

D0
D1

O

S0

M2_1

C5

TC

CEO

INV

Q0
RLOC=R4C0.FFX

FDCE

QD

CLR

CE
COR2

L_CE

CLR
C

CC8CLE.4K
Libraries Guide 3-165

Libraries Guide
CC8CLED

8-Bit Loadable Cascadable Bidirectional Binary
Counter with Clock Enable and Asynchronous Clear

CC8CLED is an 8-stage, 8-bit, synchronous, loadable, clearable,
cascadable, bidirectional binary counter. The counter is implemented
using carry logic with relative location constraints, which assures
most efficient logic placement.

The asynchronous clear (CLR) is the highest priority input. When
CLR is High, all other inputs are ignored and data (Q7 – Q0) and
terminal count (TC) outputs go to logic level zero, independent of
clock transitions. The data on the D7 – D0 inputs is loaded into the
counter when the load enable input (L) is High during the Low-to-
High clock (C) transition, independent of the state of clock enable
(CE). The outputs (Q7 – Q0) decrement when CE is High and UP is
Low during the Low-to-High clock transition. The outputs (Q7 – Q0)
increment when CE and UP are High. The counter ignores clock tran-
sitions when CE is Low.

For counting up, the TC output is High when all Q outputs and UP
are High. For counting down, the TC output is High when all Q
outputs and UP are Low. To cascade counters, the count enable out
(CEO) output of each counter is connected to the CE pin of the next
stage. The clock, UP, L, and CLR inputs are connected in parallel.
CEO is active (High) when TC and CE are High. The maximum
length of the counter is determined by the accumulated CE-to-TC
propagation delays versus the clock period. The clock period must be
greater than n(tCE-TC), where “n” is the number of stages and
“tCE-TC” is the CE-to-TC propagation delay of each stage.

The counter is asynchronously reset, output Low, when power is
applied or when global set/reset (GSR) is active. The GSR active level
is programmable. When cascading counters, use the CEO output if
the counter uses the CE input; use the TC output if it does not.

XC2000 XC3000 XC4000 XC7000

N/A N/A Macro N/A

Q[7:0]

X4287

CC8CLED

C

CLR

CE

D[7:0]

L

UP

CEO

TC
3-166 Xilinx Development System

Design Elements
TC = (Q7•Q6•Q5•...•Q0•UP) + (Q7•Q6•Q5•...•Q0•UP)

CEO = (TC•CE)

dn = state of referenced clock one set-up time prior to active clock transition

XC4000 Topology

In the process of combining the logic that loads CEO and TC, the place and route
software might map the logic that generates CEO and TC to different function
generators. If this mapping occurs, the CEO and TC logic cannot be placed in the
uppermost CLB as indicated in the illustration.

Inputs Outputs

CLR L CE C UP D7 – D0 Q7 – Q0 TC CEO

1 X X X X X 0 0 0
0 1 X X X D d7 – d0 TC CEO
0 0 0 X X X No Chg No Chg 0
0 0 1 ↑ 1 X Inc TC CEO
0 0 1 ↑ 0 X Dec TC CEO

X4339

D 7

D 6

D 5

D 4

TC*

CEO*

Q 7

Q 6

Q 5

Q 4

Q 3

Q 2

Q 1

Q 0

D 3

D 2

D 1

D 0
Libraries Guide 3-167

Libraries Guide
L
CE

C

UP

D0
Q0

L

MD2_UP

MD2_UP

MD4_UP

MD5_UP

MD6_UP

D7
Q7

L

MD6_UP

D[7:0]

D0

D1

D2

D3

D4

D5

D6

D7

TQ6_UP

C4_UP

C3_UP

C2_UP

C1_UP

C0_UP

C6_UP

MD4_UP

MD0_UP

MD3_UP

MD1_UP

TQ5_UP

TQ4_UP

TQ3_UP

TQ2_UP

TQ1_UP

TQ0_UP

C0_UP
D1
Q1

L

L
Q2

C1_UP

C2_UP
D3
Q3

L

C3_UP
D4
Q4

L

L
Q5

C4_UP

L
Q6
D6

C5_UP

TQ7_UPC6_UP

C5_UP

MD7_UP

MD0_UP

MD1_UP

MD3_UP

CO_UP CO_DN

D5

D2

MD5_UP

RLOC=R1C0.G

I1
I2
I3
I4

O

FMAP

RLOC=R1C0.F

I1
I2
I3
I4

O

FMAP

XOR2

MD6_UP

D0
D1

O

S0

M2_1

CY4_19
INC-FG-1

RLOC=R3C0

A0
ADD

B1
A1
B0

CY4

CIN

COUT

COUT0

(F3)
(F1)
(F2)
(G4)
(G1)

CARRY MODE

RLOC=R4C0

A0
ADD

B1
A1
B0

CY4

CIN

COUT

COUT0

(F3)
(F1)
(F2)
(G4)
(G1)

RLOC=R1C0

A0
ADD

B1
A1
B0

CY4

CIN

COUT

COUT0

(F3)
(F1)
(F2)
(G4)
(G1)

CARRY MODE

CY4_18
INC-FG-CI

RLOC=R2C0

A0
ADD

B1
A1
B0

CY4

CIN

COUT

COUT0

(F3)
(F1)
(F2)
(G4)
(G1)

CARRY MODE

CY4_18
INC-FG-CI

CY4_18
INC-FG-CI

CY4_42
EXAMINE-CI

RLOC=R0C0

A0
ADD

B1
A1
B0

CY4

CIN

COUT

COUT0

(F3)
(F1)
(F2)
(G4)
(G1)

CARRY MODE

RLOC=R4C1

A0
ADD

B1
A1
B0

CY4

CIN

COUT

COUT0

(F3)
(F1)
(F2)
(G4)
(G1)

DEC-FG-CI
CY4_25

DEC-FG-CI
CY4_25

DEC-FG-CI
CY4_25

XOR2

XOR2

XOR2

XOR2

XOR2

RLOC=R3C1

A0
ADD

B1
A1
B0

CY4

CIN

COUT
COUT0

(F3)
(F1)
(F2)
(G4)
(G1)

RLOC=R2C1

A0
ADD

B1
A1
B0

CY4

CIN

COUT

COUT0

(F3)
(F1)
(F2)
(G4)
(G1)

CY4_42
EXAMINE-CI

RLOC=R0C1

A0
ADD

B1
A1
B0

CY4

CIN

COUT

COUT0

(F3)
(F1)
(F2)
(G4)
(G1)

CARRY

MD0_UP

D0
D1

O

S0

M2_1

MD1_UP

D0
D1

O

S0

M2_1

MD2_UP

D0
D1

O

S0

M2_1

MD3_UP

D0
D1

O

S0

M2_1

MD5_UP

D0
D1

O

S0

M2_1

CY4_26
DEC-FG-0

INV

RLOC=R1C1

A0
ADD

B1
A1
B0

CY4

CIN

COUT

COUT0

(F3)
(F1)
(F2)
(G4)
(G1)

RLOC=R4C0.F

I1
I2
I3
I4

O

FMAP

RLOC=R3C0.F

I1
I2
I3
I4

O

FMAP

RLOC=R2C0.G

I1
I2
I3
I4

O

FMAP

RLOC=R2C0.F

I1
I2
I3
I4

O

FMAP

RLOC=R3C0.G

I1
I2
I3
I4

O

FMAP

RLOC=R4C0.G

I1
I2
I3
I4

O

FMAP

XOR2

MD7_UP

D0
D1

O

S0

M2_1

MD4_UP

D0
D1

O

S0

M2_1

MD7_UP

CLR

MODE

CARRY
MODE

CARRY
MODE

CARRY
MODE

CARRY
MODE

C1_DN

C6_DN

C0_DN

C2_DN

C3_DN

C4_DN

C5_DN

L
CE

C

UP

CLR

MD0_UP

MD4_UP

MD7_UP

CO_UP

MD6_UP

MD1_UP

MD2_UP

MD3_UP

MD5_UP

CC8CLED.4K A
3-168 Xilinx Development System

Design Elements
Figure 3-39 CC8CLED XC4000 Implementation

L
CE

C

UP

CLR

L_CE

TC

AND2

TC_UP

TC_DN

MD0

TQ7_DN

TQ6_DN

MD7

MD6

TQ5_DN

TQ4_DN

MD5

TQ3_DN

TQ2_DN

MD3

MD2

MD1

TQ1_DN

TQ0_DN

MD4

MD7

C6_DN
MD7_UP

Q7
L_UP

MD6

C5_DN
MD6_UP

Q6
L_UP

MD5

C4_DN
MD5_UP

Q5
L_UP

L_UP
Q4

MD4_UP
C3_DN

MD4

L_UP
Q3

MD3_UP
C2_DN

MD3

MD2

C1_DN
MD2_UP

Q2
L_UP

L_UP
Q1

MD1_UP
C0_DN

MD1

L_UP
Q0

MD0_UP

MD0

MD0

D0
D1

O

S0

M2_1

OR2

OR2

Q7

RLOC=R1C1.FFY

FDCE

QD

CLR
CE
C

Q5
RLOC=R2C1.FFY

FDCE

QD

CLR
CE
C

Q4
RLOC=R2C1.FFX

FDCE

QD

CLR
CE
C

Q3
RLOC=R3C1.FFY

FDCE

QD

CLR
CE
C

Q2
RLOC=R3C1.FFX

FDCE

QD

CLR
CE
C

Q0

RLOC=R4C1.FFX

FDCE

QD

CLR
CE
C

Q1

RLOC=R4C1.FFY

FDCE

QD

CLR
CE
C

MD5

D0
D1 O

S0

M2_1

MD4

D0
D1 O

S0

M2_1

MD2

D0
D1

O

S0

M2_1

MD3

D0
D1 O

S0

M2_1

MD1

D0
D1 O

S0

M2_1

MD7

D0
D1 O

S0

M2_1

XNOR2

XNOR2

XNOR2

XNOR2

XNOR2

XNOR2

INV

Q6
RLOC=R1C1.FFX

FDCE

QD

CLR
CE
C

MD6

D0
D1 O

S0

M2_1

XNOR2

OR2

RLOC=R1C1.G

I1
I2
I3
I4

O

FMAP

RLOC=R1C1.F

I1
I2
I3
I4

O

FMAP

RLOC=R2C1.G

I1
I2
I3
I4

O

FMAP

RLOC=R2C1.F

I1
I2
I3
I4

O

FMAP

RLOC=R3C1.G

I1
I2
I3
I4

O

FMAP

RLOC=R3C1.F

I1
I2
I3
I4

O

FMAP

RLOC=R4C1.G

I1
I2
I3
I4

O

FMAP

RLOC=R4C1.F

I1
I2
I3
I4

O

FMAP

AND2

AND2B2

CEO

L_UP

Q7

Q[7:0]

Q1

Q0

Q2

Q3

Q4

Q5

Q6

CC8CLED.4K B

CO_DN

C1_DN

C6_DN

C0_DN

C2_DN

C3_DN

C4_DN

C5_DN

MD0_UP

MD4_UP

MD7_UP

CO_UP

MD6_UP

MD1_UP

MD2_UP

MD3_UP

MD5_UP
Libraries Guide 3-169

Libraries Guide
CC8RE

8-Bit Cascadable Binary Counter with Clock Enable
and Synchronous Reset

CC8RE is an 8-stage, 8-bit, synchronous, resettable, cascadable binary
counter. The counter is implemented using carry logic with relative
location constraints, which assures most efficient logic placement.
The synchronous reset (R) is the highest priority input. When R is
High, all other inputs are ignored and data (Q7 – Q0) and terminal
count (TC) outputs go to logic level zero on the Low-to-High clock
(C) transition. The outputs (Q7 – Q0) increment when the clock
enable input (CE) is High during the Low-to-High clock transition.
The counter ignores clock transitions when CE is Low. The TC output
is High when all Q outputs and CE are High.

Larger counters are created by connecting the count enable out (CEO)
output of the first stage to the CE input of the next stage and
connecting the C and R inputs in parallel. CEO is active (High) when
TC and CE are High. The maximum length of the counter is deter-
mined by the accumulated CE-to-TC propagation delays versus the
clock period. The clock period must be greater than n(tCE-TC), where
“n” is the number of stages and “tCE-TC” is the CE-to-TC propaga-
tion delay of each stage.

The counter is asynchronously reset, output Low, when power is
applied or when global set/reset (GSR) is active; the GSR active level
is programmable. When cascading counters, use the CEO output if
the counter uses the CE input; use the TC output if it does not.

XC2000 XC3000 XC4000 XC7000

N/A N/A Macro N/A

Q[7:0]

X4288

CC8RE

C

R

CE CEO

TC
3-170 Xilinx Development System

Design Elements
TC = (Q7•Q6•Q5•...•Q0•CE)

CEO = (TC•CE)

XC4000 Topology

In the process of combining the logic that loads CEO and TC, the place and route
software might map the logic that generates CEO and TC to different function
generators. If this mapping occurs, the CEO and TC logic cannot be placed in the
uppermost CLB as indicated in the illustration.

Inputs Outputs

R CE C Q7 – Q0 TC CEO

1 X ↑ 0 0 0
0 0 X No Chg No Chg 0
0 1 ↑ Inc TC CEO

X3675

Q 7

TC*

CEO*

Q 6

Q 5

Q 4

D 7

D 6

D 5

D 4

Q 3

Q 2

Q 1

Q 0

D 3

D 2

D 1

D 0
Libraries Guide 3-171

Libraries Guide
Figure 3-40 CC8RE XC4000 Implementation

CY4_19
INC-FG-1

CEO

TC

VCC

CO

C5

AND2

TQ2

GND

AND2B1XOR2

D0
D1

O

S0

M2_1

AND2B1

D0
D1

O

S0

M2_1

Q2

RLOC=R3C0.FFX

FDCE

QD

CLR

CE
CAND2B1

D0
D1

O

S0

M2_1

XOR2

Q3

RLOC=R3C0.FFY

FDCE

QD

CLR

CE
C

RLOC=R2C0.FFX

Q4

FDCE

QD

CLR

CE
C

RLOC=R2C0.FFY
Q5

FDCE

QD

CLR

CE
C

RLOC=R1C0.FFX
Q6

FDCE

QD

CLR

CE
C

RLOC=R4C0.F

I1
I2
I3
I4

O

FMAP

RLOC=R1C0.G

I1
I2
I3
I4

O

FMAP

RLOC=R3C0

A0
ADD

B1
A1
B0

CY4

CIN

COUT

COUT0

(F3)
(F1)
(F2)
(G4)
(G1)

CARRY MODE

RLOC=R4C0

A0
ADD

B1
A1
B0

CY4

CIN

COUT

COUT0

(F3)
(F1)
(F2)
(G4)
(G1)

CARRY MODE

RLOC=R1C0

A0
ADD

B1
A1
B0

CY4

CIN

COUT

COUT0

(F3)
(F1)
(F2)
(G4)
(G1)

CARRY MODE

CY4_18

INC-FG-CI

RLOC=R2C0

A0
ADD

B1
A1
B0

CY4

CIN

COUT

COUT0

(F3)
(F1)
(F2)
(G4)
(G1)

CARRY MODE

CY4_18

INC-FG-CI

CY4_18

INC-FG-CI

CY4_42
EXAMINE-CI

RLOC=R0C0

A0
ADD

B1
A1
B0

CY4

CIN

COUT

COUT0

(F3)
(F1)
(F2)
(G4)
(G1)

CARRY MODE

RLOC=R1C0.F

I1
I2
I3
I4

O

FMAP

RLOC=R2C0.G

I1
I2
I3
I4

O

FMAP

RLOC=R2C0.F

I1
I2
I3
I4

O

FMAP

RLOC=R3C0.G

I1
I2
I3
I4

O

FMAP

RLOC=R3C0.F

I1
I2
I3
I4

O

FMAP

RLOC=R4C0.G

I1
I2
I3
I4

O

FMAP

XOR2

D0
D1

O

S0

M2_1

XOR2

D0
D1

O

S0

M2_1

AND2B1

XOR2

D0
D1

O

S0

M2_1

AND2B1

Q1

RLOC=R4C0.FFY

FDCE

QD

CLR

CE
CXOR2

D0
D1

O

S0

M2_1

AND2B1

Q0

RLOC=R4C0.FFX

FDCE

QD

CLR

CE
C

AND2B1

D0
D1

O

S0

M2_1

XOR2 AND2B1

RLOC=R1C0.FFY

Q7

FDCE

QD

CLR

CE
C

CE

CE_M7

C0

C6

C1

R_TQ7

R_TQ6

R_TQ5

R_TQ4

R_TQ3

R_TQ2

R_TQ1

Q7

R_TQ0

Q6

Q0

C6

C5

C4

C3

C2

C1

Q5

Q4

Q3

Q2

Q1
C0

R

R

R

R

R

R

R

R

C4

CE_M6

C3

C2

TQ4
CE_M4

CE_M5 R_TQ5

TQ7

TQ6

TQ5

TQ3

TQ1

TQ0

CE_M3

CE_M2

CE_M1

CE_M0
R_TQ0

R_TQ1

R_TQ3

R_TQ2

R_TQ4

R_TQ6
CE

CE

CE

CE

CE

CE

CE

R_TQ7

AND2

Q7

Q3

Q0

Q1

Q2

Q4

Q5

Q6

Q[7:0]

INV

C
CE

R

CC8RE.4K
3-172 Xilinx Development System

Design Elements
CC16CE

16-Bit Cascadable Binary Counter with Clock Enable
and Asynchronous Clear

CC16CE is a 16-stage, 16-bit, synchronous, clearable, cascadable
binary counter. The counter is implemented using carry logic with
relative location restraints, which assures the most efficient logic
placement. The asynchronous clear (CLR) is the highest priority
input. When CLR is High, all other inputs are ignored and data
(Q15 – Q0) and terminal count (TC) outputs go to logic level zero,
independent of clock transitions. The outputs (Q15 – Q0) increment
when the clock enable input (CE) is High during the Low-to-High
clock (C) transition. The counter ignores clock transitions when CE is
Low. The TC output is High when all Q outputs are High.

Larger counters are created by connecting the count enable out (CEO)
output of the first stage to the CE input of the next stage and
connecting the C and CLR inputs in parallel. CEO is active (High)
when TC and CE are High. The maximum length of the counter is
determined by the accumulated CE-to-TC propagation delays versus
the clock period. The clock period must be greater than n(tCE-TC),
where “n” is the number of stages and “tCE-TC” is the CE-to-TC
propagation delay of each stage.

The counter is asynchronously reset, output Low, when power is
applied or when global set/reset (GSR) is active. The GSR active level
is programmable. When cascading counters, use the CEO output if
the counter uses the CE input; use the TC output if it does not.

XC2000 XC3000 XC4000 XC7000

N/A N/A Macro N/A

Q[15:0]

X4286

CC16CE

C

CLR

CE CEO

TC
Libraries Guide 3-173

Libraries Guide
TC = (Q15•Q14•Q13•Q12•...•Q0)

CEO = (TC•CE)

XC4000 Topology

In the process of combining the logic that loads CEO and TC, the place and route
software might map the logic that generates CEO and TC to different function
generators. If this mapping occurs, the CEO and TC logic cannot be placed in the
uppermost CLB as indicated in the illustration.

Inputs Outputs

CLR CE C Q15 – Q0 TC CEO

1 X X 0 0 0
0 0 X No Chg No Chg 0
0 1 ↑ Inc TC CEO

X3672

Q 15

TC*

CEO*

Q 14

Q 13

Q 12

Q 11

Q 10

Q 9

Q 8

D 9

D 8

Q 7

Q 6

Q 5

Q 4

D 7

D 6

D 5

D 4

Q 3

Q 2

Q 1

Q 0

D 3

D 2

D 1

D 0

D 15

D 14

D 13

D 12

D 11

D 10
3-174 Xilinx Development System

Design Elements
CC16CLE

16-Bit Loadable Cascadable Binary Counter with
Clock Enable and Asynchronous Clear

CC16CLE is a 16-stage, 16-bit, synchronous, loadable, clearable,
cascadable binary counter. The counter is implemented using carry
logic with relative location constraints, which assures the most effi-
cient logic placement.

The asynchronous clear (CLR) is the highest priority input. When
CLR is High, all other inputs are ignored and data (Q15 – Q0) and
terminal count (TC) outputs go to logic level zero, independent of
clock transitions. The data on the D15 – D0 inputs is loaded into the
counter when the load enable input (L) is High during the Low-to-
High clock (C) transition, independent of the state of clock enable
(CE). The outputs (Q15 – Q0) increment when CE is High during the
Low-to-High clock transition. The counter ignores clock transitions
when CE is Low. The TC output is High when all Q outputs are High.

Larger counters are created by connecting the count enable out (CEO)
output of the first stage to the CE input of the next stage and
connecting the C, L, and CLR inputs in parallel. CEO is active (High)
when TC and CE are High. The maximum length of the counter is
determined by the accumulated CE-to-TC propagation delays versus
the clock period. The clock period must be greater than n(tCE-TC),
where “n” is the number of stages and “tCE-TC” is the CE-to-TC
propagation delay of each stage.

The counter is asynchronously reset, output Low, when power is
applied or when global set/reset (GSR) is active. The GSR active level
is programmable. When cascading counters, use the CEO output if
the counter uses the CE input; use the TC output if it does not.

XC2000 XC3000 XC4000 XC7000

N/A N/A Macro N/A

Q[15:0]

X4284

CC16CLE

C

CLR

CE

D[15:0]

L

CEO

TC
Libraries Guide 3-175

Libraries Guide
TC = (Q15•Q14•Q13•Q12•...•Q0)

CEO = (TC•CE)

dn = state of referenced input one set-up time prior to active clock transition

XC4000 Topology

In the process of combining the logic that loads CEO and TC, the place and route
software might map the logic that generates CEO and TC to different function
generators. If this mapping occurs, the CEO and TC logic cannot be placed in the
uppermost CLB as indicated in the illustration.

Inputs Outputs

CLR L CE C D15 – D0 Q15 – Q0 TC CEO

1 X X X X 0 0 0
0 1 X X D d15 – d0 TC CEO
0 0 0 X X No Chg No Chg 0
0 0 1 ↑ X Inc TC CEO

X3674

TC*

CEO*

Q 15

Q 14

Q 13

Q 12

D 15

D 14

D 13

D 12

Q 11

Q 10

Q 9

Q 8

D 11

D 10

D 9

D 8

Q 7

Q 6

Q 5

Q 4

D 7

D 6

D 5

D 4

Q 3

Q 2

Q 1

Q 0

D 3

D 2

D 1

D 0
3-176 Xilinx Development System

Design Elements
CC16CLED

16-Bit Loadable Cascadable Bidirectional Binary
Counter with Clock Enable and Asynchronous Clear

CC16CLED is a 16-stage, 16-bit, synchronous, loadable, clearable,
cascadable, bidirectional binary counter. The counter is implemented
using carry logic with relative location constraints, which assures
most efficient logic placement.

The asynchronous clear (CLR) is the highest priority input. When
CLR is High, all other inputs are ignored and data (Q15 – Q0) and
terminal count (TC) outputs go to logic level zero, independent of
clock transitions. The data on the D15 – D0 inputs is loaded into the
counter when the load enable input (L) is High during the Low-to-
High clock (C) transition, independent of the state of clock enable
(CE). The outputs (Q15 – Q0) decrement when CE is High and UP is
Low during the Low-to-High clock transition. The outputs (Q15 –
Q0) increment when CE and UP are High. The counter ignores clock
transitions when CE is Low.

For counting up, the TC output is High when all Q outputs and UP
are High. For counting down, the TC output is High when all Q
outputs and UP are Low. To cascade counters, the count enable out
(CEO) output of each counter is connected to the CE pin of the next
stage. The clock, UP, L, and CLR inputs are connected in parallel.
CEO is active (High) when TC and CE are High. The maximum
length of the counter is determined by the accumulated CE-to-TC
propagation delays versus the clock period. The clock period must be
greater than n(tCE-TC), where “n” is the number of stages and
“tCE-TC” is the CE-to-TC propagation delay of each stage.

The counter is asynchronously reset, output Low, when power is
applied or when global set/reset (GSR) is active. The GSR active level
is programmable. When cascading counters, use the CEO output if
the counter uses the CE input; use the TC output if it does not.

XC2000 XC3000 XC4000 XC7000

N/A N/A Macro N/A

Q[15:0]

X4285

CC16CLED

C

CLR

CE

D[15:0]

L

UP

CEO

TC
Libraries Guide 3-177

Libraries Guide
TC = (Q15•Q14•Q13•...•Q0•UP) + (Q15•Q14•Q13•...•Q0•UP)

CEO = (TC•CE)

dn = state of referenced clock one set-up time prior to active clock transition

XC4000 Topology

In the process of combining the logic that loads CEO and TC, the place and route
software might map the logic that generates CEO and TC to different function
generators. If this mapping occurs, the CEO and TC logic cannot be placed in the
uppermost CLB as indicated in the illustration.

Inputs Outputs

CLR L CE C UP D15 – D0 Q15 – Q0 TC CEO

1 X X X X X 0 0 0
0 1 X X X D d15 – d0 TC CEO
0 0 0 X X X No Chg No Chg 0
0 0 1 ↑ 1 X Inc TC CEO
0 0 1 ↑ 0 X Dec TC CEO

X4340

D 15

D 14

D 13

D 12

TC*

CEO*

Q 15

Q 14

Q 13

Q 12

Q 11

Q 10

Q 9

Q 8

D 11

D 10

D 9

D 8

D 7

D 6

D 5

D 4

Q 7

Q 6

Q 5

Q 4

Q 3

Q 2

Q 1

Q 0

D 3

D 2

D 1

D 0
3-178 Xilinx Development System

Design Elements
CC16RE

16-Bit Cascadable Binary Counter with Clock Enable
and Synchronous Reset

CC16RE is a 16-stage, 16-bit, synchronous, resettable, cascadable
binary counter. The counter is implemented using carry logic with
relative location constraints, which assures most efficient logic place-
ment. The synchronous reset (R) is the highest priority input. When R
is High, all other inputs are ignored and data (Q15 – Q0) and terminal
count (TC) outputs go to logic level zero on the Low-to-High clock
(C) transition. The outputs (Q15 – Q0) increment when the clock
enable input (CE) is High during the Low-to-High clock transition.
The counter ignores clock transitions when CE is Low. The TC output
is High when all Q outputs and CE are High.

Larger counters are created by connecting the count enable out (CEO)
output of the first stage to the CE input of the next stage and
connecting the C and R inputs in parallel. CEO is active (High) when
TC and CE are High. The maximum length of the counter is deter-
mined by the accumulated CE-to-TC propagation delays versus the
clock period. The clock period must be greater than n(tCE-TC), where
“n” is the number of stages and “tCE-TC” is the CE-to-TC propaga-
tion delay of each stage.

The counter is asynchronously reset, output Low, when power is
applied or when global set/reset (GSR) is active. The GSR active level
is programmable. When cascading counters, use the CEO output if
the counter uses the CE input; use the TC output if it does not.

XC2000 XC3000 XC4000 XC7000

N/A N/A Macro N/A

Q[15:0]

X4283

CC16RE

C

R

CE CEO

TC
Libraries Guide 3-179

Libraries Guide
TC = (Q15•Q14•Q13•...•Q0)

CEO = (TC•CE)

XC4000 Topology

In the process of combining the logic that loads CEO and TC, the place and route
software might map the logic that generates CEO and TC to different function
generators. If this mapping occurs, the CEO and TC logic cannot be placed in the
uppermost CLB as indicated in the illustration.

Inputs Outputs

R CE C Q15 – Q0 TC CEO

1 X ↑ 0 0 0
0 0 X No Chg No Chg 0
0 1 ↑ Inc TC CEO

X3676

Q 15

TC*

CEO*

Q 14

Q 13

Q 12

D 15

D 14

D 13

D 12

Q 11

Q 10

Q 9

Q 8

D 11

D 10

D 9

D 8

Q 7

Q 6

Q 5

Q 4

D 7

D 6

D 5

D 4

Q 3

Q 2

Q 1

Q 0

D 3

D 2

D 1

D 0
3-180 Xilinx Development System

Design Elements
CD4CE

4-Bit Cascadable BCD Counter with Clock Enable
and Asynchronous Clear

CD4CE is a 4-stage, 4-bit, synchronous, clearable, cascadable binary-
coded-decimal (BCD) counter. The asynchronous clear input (CLR) is
the highest priority input. When CLR is High, all other inputs are
ignored and data (Q3 – Q0) and terminal count (TC) outputs go to
logic level zero, independent of clock transitions. The outputs
(Q3 – Q0) increment when clock enable (CE) is High during the Low-
to-High clock (C) transition. The counter ignores clock transitions
when CE is Low. The TC output is High when Q3 and Q0 are High
and Q2 and Q1 are Low.

The counter recovers from any of six possible illegal states and
returns to a normal count sequence within two clock cycles for
XC2000, XC3000, and XC4000 architectures, as shown in the
following state diagram. For XC7000, the counter resets to zero or
recovers within the first clock cycle.

Larger counters are created by connecting the count enable out (CEO)
output of the first stage to the CE input of the next stage and
connecting the CLR and clock inputs in parallel. CEO is active (High)
when TC and CE are High. The maximum length of the counter is
determined by the accumulated CE-to-TC propagation delays versus
the clock period. The clock period must be greater than n(tCE-TC),
where “n” is the number of stages and “tCE-TC” is the CE-to-TC
propagation delay of each stage.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro PrimitiveQ2

X4369

CD4CE

C

CLR

CE

Q3

TC

Q1

Q0

CEO

0 1 2 3 4

F 5

E 6

D 7

C B A 9 8

X2355
Libraries Guide 3-181

Libraries Guide
The counter is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable. When cascading counters, use the CEO
output if the counter uses the CE input; use the TC output if it does
not.

TC = (Q3•Q2•Q1•Q0)

CEO = (TC•CE)

Inputs Outputs

CLR CE C Q3 Q2 Q1 Q0 TC CEO

1 X X 0 0 0 0 0 0
0 1 ↑ --------Increment-------- TC CEO
0 0 X --------No Change-------- TC 0
0 1 X 1 0 0 1 1 1
3-182 Xilinx Development System

Design Elements
Figure 3-41 CD4CE XC2000/3000/4000 Implementation

AND2

Q3

Q0

FDCE

QD

CLR

CE
C

Q1

FDCE

QD

CLR

CE
C

Q2

FDCE

QD

CLR

CE
C

Q3

FDCE

QD

CLR

CE
C

C

AND2

XOR2

INV

AND2B1

XOR2
AND2

OR2
XOR2

AND3

CLR

D0

AO3A

AX1

AX2

OX3

A03B

Q1D1

D2

D3

Q2

CE

TC

Q0

CEOAND2

CD4CE.2K, 3K, 4K
Libraries Guide 3-183

Libraries Guide
CD4CLE

4-Bit Loadable Cascadable BCD Counter with Clock
Enable and Asynchronous Clear

CD4CLE is a 4-stage, 4-bit, synchronous, loadable, clearable, binary-
coded-decimal (BCD) counter. The asynchronous clear input (CLR) is
the highest priority input. When CLR is High, all other inputs are
ignored and the data (Q3 – Q0) and terminal count (TC) outputs go to
logic level zero, independent of clock transitions. The data on the
D3 – D0 inputs is loaded into the counter when the load enable input
(L) is High during the Low-to-High clock (C) transition. The outputs
(Q3 – Q0) increment when clock enable input (CE) is High during the
Low- to-High clock transition. The counter ignores clock transitions
when CE is Low. The TC output is High when Q3 and Q0 are High
and Q2 and Q1 are Low.

The counter recovers from any of six possible illegal states and
returns to a normal count sequence within two clock cycles for
XC2000, XC3000, and XC4000, as shown in the following state
diagram. For XC7000, the counter resets to zero or recovers within the
first clock cycle.

Larger counters are created by connecting the count enable out (CEO)
output of the first stage to the CE input of the next stage and
connecting the CLR, L, and C inputs in parallel. CEO is active (High)
when TC and CE are High. The maximum length of the counter is
determined by the accumulated CE-to-TC propagation delays versus
the clock period. The clock period must be greater than n(tCE-TC),

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

X4370

CD4CLE

L

CE

C

D3

D2

D1

D0

Q3

Q2

Q1

Q0

CLR

CEO

TC

0 1 2 3 4

F 5

E 6

D 7

C B A 9 8

X2355
3-184 Xilinx Development System

Design Elements
where “n” is the number of stages and “tCE-TC” is the CE-to-TC
propagation delay of each stage.

The counter is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable. When cascading counters, use the CEO
output if the counter uses the CE input; use the TC output if it does
not.

TC = (Q3•Q2•Q1•Q0)

CEO = (TC•CE)

dn = state of referenced input one set-up time prior to active clock transition

Inputs Outputs

CLR L CE D3 – D0 C Q3 Q2 Q1 Q0 TC CEO

1 X X X X 0 0 0 0 0 0
0 1 X D3 – D0 ↑ d3 d2 d1 d0 TC CEO
0 0 1 X ↑ ---------Increment---------- TC CEO
0 0 0 X X --------No Change--------- TC 0
0 0 1 X X 1 0 0 1 1 1
Libraries Guide 3-185

Libraries Guide
Figure 3-42 CD4CLE XC2000/3000/4000 Implementation

AND4B2

TQ03
Q3

CE
T

CLR

Q
L
D

C

FTCLE

D2

VCC
+5

T2

OR2

T3
TQ2

T1

AND2

C

CLR

D1

D0

Q1

CE
T

CLR

Q
L
D

C

FTCLE

Q2

CE
T

CLR

Q
L
D

C

FTCLE

Q0

CE
T

CLR

Q
L
D

C

FTCLE

AND3B1

AND3

L

D3

AND2

Q0

CE

Q2

Q1

AND2

TC

CEO

Q3

CD4CLE.4K
3-186 Xilinx Development System

Design Elements
CD4RE

4-Bit Cascadable BCD Counter with Clock Enable
and Synchronous Reset

CD4RE is a 4-stage, 4-bit, synchronous, resettable, cascadable binary-
coded-decimal (BCD) counter. The synchronous reset input (R) is the
highest priority input. When R is High, all other inputs are ignored
and (Q3 – Q0) and terminal count (TC) outputs go to logic level zero
on the Low-to-High clock (C) transition. The outputs (Q3 – Q0) incre-
ment when the clock enable input (CE) is High during the Low-to-
High clock transition. The counter ignores clock transitions when CE
is Low. The TC output is High when Q3 and Q0 are High and Q2 and
Q1 are Low.

The counter recovers from any of six possible illegal states and
returns to a normal count sequence within two clock cycles for
XC2000, XC3000, and XC4000, as shown in the following state
diagram. For XC7000, the counter resets to zero or recovers within
the first clock cycle.

Larger counters are created by connecting the count enable out (CEO)
output of the first stage to the CE input of the next stage and
connecting the R and clock inputs in parallel. CEO is active (High)
when TC and CE are High. The maximum length of the counter is
determined by the accumulated CE-to-TC propagation delays versus
the clock period. The clock period must be greater than n(tCE-TC)
where “n” is the number of stages and “tCE-TC” is the CE-to-TC
propagation delay of each stage.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro PrimitiveQ2

X4371

CD4RE

C

R

CE CEO

TC

Q1

Q0

Q3

0 1 2 3 4

F 5

E 6

D 7

C B A 9 8

X2355
Libraries Guide 3-187

Libraries Guide
The counter is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable. When cascading counters, use the CEO
output if the counter uses the CE input; use the TC output if it does
not.

TC = (Q3•Q2•Q1•Q0)

CEO = (TC•CE)

Inputs Outputs

R CE C Q3 Q2 Q1 Q0 TC CEO

1 X ↑ 0 0 0 0 0 0
0 1 ↑ ---------Increment-------- TC CEO
0 0 X --------No Change-------- TC 0
0 1 X 1 0 0 1 1 1
3-188 Xilinx Development System

Design Elements
Figure 3-43 CD4RE XC2000/3000/4000 Implementation

R

C

AND2

Q1

AND4B2

Q3

TC

CEO

Q2

A03B

OX3

AX2

AX1

AO3A

AND3

XOR2
OR2

AND2
XOR2

AND2B1

INV

XOR2

Q0

D1

D2

D3

D0

CE

AND2

Q3

FDRE

R

QD

CE

C

Q2

FDRE

R

QD

CE

C

Q1

FDRE

R

QD

CE

C

Q0

FDRE

R

QD

CE

C

CD4RE.4K
Libraries Guide 3-189

Libraries Guide
CD4RLE

4-Bit Loadable Cascadable BCD Counter with Clock
Enable and Synchronous Reset

CD4RLE is a 4-stage, 4-bit, synchronous, loadable, resettable, binary-
coded-decimal (BCD) counter. The synchronous reset input (R) is the
highest priority input. When R is High, all other inputs are ignored
and the data (Q3 – Q0) and terminal count (TC) outputs go to logic
level zero on the Low-to-High clock transitions. The data on the D3 –
D0 inputs is loaded into the counter when the load enable input (L) is
High during the Low-to-High clock (C) transition. The outputs
(Q3 – Q0) increment when the clock enable input (CE) is High during
the Low-to-High clock transition. The counter ignores clock transi-
tions when CE is Low. The TC output is High when Q3 and Q0 are
High and Q2 and Q1 are Low.

The counter recovers from any of six possible illegal states and
returns to a normal count sequence within two clock cycles
forXC2000, XC3000, and XC4000, as shown in the following state
diagram. For XC7000, the counter resets to zero or recovers within the
first clock cycle.

Larger counters are created by connecting the count enable out (CEO)
output of the first stage to the CE input of the next stage and
connecting the R, L, and C inputs in parallel. CEO is active (High)
when TC and CE are High. The maximum length of the counter is
determined by the accumulated CE-to-TC propagation delays versus
the clock period. The clock period must be greater than n(tCE-TC),

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

X4372

CD4RLE

L

CE

C

D3

D2

D1

D0

Q3

Q2

Q1

Q0

R

CEO

TC

0 1 2 3 4

F 5

E 6

D 7

C B A 9 8

X2355
3-190 Xilinx Development System

Design Elements
where “n” is the number of stages and “tCE-TC” is the CE-to-TC
propagation delay of each stage.

The counter is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable. When cascading counters, use the CEO
output if the counter uses the CE input; use the TC output if it does
not.

TC = (Q3•Q2•Q1•Q0)

CEO = (TC•CE)

dn = state of referenced input one set-up time prior to active clock transition

Inputs Outputs

R L CE D3 – D0 C Q3 Q2 Q1 Q0 TC CEO

1 X X X ↑ 0 0 0 0 0 0
0 1 X D3 – D0 ↑ d3 d2 d1 d0 TC CEO
0 0 1 X ↑ ----------Increment--------- TC CEO
0 0 0 X X --------No Change--------- TC 0
0 0 1 X X 1 0 0 1 1 1
Libraries Guide 3-191

Libraries Guide
Figure 3-44 CD4RLE XC2000/3000/4000 Implementation

Q3

Q2

CEO

AND2

TC

AND4B2

GND

TQ03

Q1

Q0

T1

VCC

Q3

FTRSLE

CE
T

S

R

Q
L
D

CAND3

C

AND2 OR2

D3
TQ2 T3

R

Q2

FTRSLE

CE
T

S

R

Q
L
D

C

D2

Q0

FTRSLE

CE
T

S

R

Q
L
D

C

Q1

FTRSLE

CE
T

S

R

Q
L
D

CAND3B1

D0

D1

L

T2

AND2

CE

CD4RLE.2K, 3K, 4K
3-192 Xilinx Development System

Design Elements
CJ4CE

4-Bit Johnson Counter with Clock Enable and
Asynchronous Clear

CJ4CE is a clearable Johnson/shift counter. The asynchronous clear
(CLR) input, when High, overrides all other inputs and causes the
data outputs (Q3 – Q0) to go to logic level zero, independent of clock
(C) transitions. The counter increments (shifts Q0 to Q1, Q1 to Q2,and
so forth) when the clock enable input (CE) is High during the Low-to-
High clock transition. Clock transitions are ignored when CE is Low.
The Q3 output is inverted and fed back to input Q0 to provide contin-
uous counting operation.

The counter is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable.

qn = state of referenced output one set-up time prior to active clock transition

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

CLR CE C Q0 Q1 Q2 Q3

1 X X 0 0 0 0
0 0 X --------No Change--------
0 1 ↑ q3 q0 q1 q2

Q1

X4112CLR

C

CJ4CE

CE Q2

Q3

Q0
Libraries Guide 3-193

Libraries Guide
Figure 3-45 CJ4CE XC2000/3000/4000 Implementation

Q3

FDCE
QD

CLR

CE
C

Q2

FDCE
QD

CLR

CE
C

Q1

FDCE
QD

CLR

CE
C

Q0

FDCE
QD

CLR

CE
C

INV

Q3

Q2

Q1

C
CE

CLR

Q0Q3B
3-194 Xilinx Development System

Design Elements
CJ4RE

4-Bit Johnson Counter with Clock Enable and
Synchronous Reset

CJ4RE is a resettable Johnson/shift counter. The synchronous reset
(R) input, when High, overrides all other inputs causes the data
outputs (Q3 – Q0) to go to logic level zero during the Low-to-High
clock (C) transition. The counter increments (shifts Q0 to Q1, Q1 to
Q2, and so forth) when the clock enable input (CE) is High during the
Low-to-High clock transition. Clock transitions are ignored when CE
is Low. The Q3 output is inverted and fed back to input Q0 to provide
continuous counting operation.

The counter is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable.

qn = state of referenced output one set-up time prior to active clock transition

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

R CE C Q0 Q1 Q2 Q3

1 X ↑ 0 0 0 0
0 0 X --------No Change--------
0 1 ↑ q3 q0 q1 q2

Q1

X4113
R

C

CJ4RE

CE Q2

Q3

Q0
Libraries Guide 3-195

Libraries Guide
Figure 3-46 CJ4RE XC2000/3000/4000 Implementation

Q0

Q0

FDRE

R

QD
CE
C

Q1

FDRE

R

QD
CE
C

Q3

FDRE

R

QD
CE
C

Q2

FDRE

R

QD
CE
C

R

C

Q2

Q1

Q3

INV

Q3B

CE
3-196 Xilinx Development System

Design Elements
CJ5CE

5-Bit Johnson Counter with Clock Enable and
Asynchronous Clear

CJ5CE is a clearable Johnson/shift counter. The asynchronous clear
(CLR) input, when High, overrides all other inputs and causes the
data outputs (Q4 – Q0) to go to logic level zero, independent of clock
(C) transitions. The counter increments (shifts Q0 to Q1, Q1 to Q2,
and so forth) when the clock enable input (CE) is High during the
Low-to-High clock transition. Clock transitions are ignored when CE
is Low. The Q4 output is inverted and fed back to input Q0 to provide
continuous counting operation.

The counter is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable.

qn = state of referenced output one set-up time prior to active clock transition

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

CLR CE C Q0 Q1 Q2 Q3 Q4

1 X X 0 0 0 0 0
0 0 X ------------No Change------------
0 1 ↑ q4 q0 q1 q2 q3

Q2

X4114CLR

C

CJ5CE

CE Q3

Q4

Q1

Q0
Libraries Guide 3-197

Libraries Guide
CJ5RE

5-Bit Johnson Counter with Clock Enable and
Synchronous Reset

CJ5RE is a resettable Johnson/shift counter. The synchronous reset
(R) input, when High, overrides all other inputs and causes the data
outputs (Q4 – Q0) to go to logic zero during the Low-to-High clock
transition. The counter increments (shifts Q0 to Q1, Q1 to Q2, and so
forth) when the clock enable input (CE) is High during the Low-to-
High clock transition. Clock transitions are ignored when CE is Low.
The Q4 output is inverted and fed back to input Q0 to provide contin-
uous counting operation.

The counter is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable.

qn = state of referenced output one set-up time prior to active clock transition

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

R CE C Q0 Q1 Q2 Q3 Q4

1 X ↑ 0 0 0 0 0
0 0 X ------------No Change------------
0 1 ↑ q4 q0 q1 q2 q3

Q2

X4115
R

C

CJ5RE

CE Q3

Q4

Q1

Q0
3-198 Xilinx Development System

Design Elements
CJ8CE

8-Bit Johnson Counter with Clock Enable and
Asynchronous Clear

CJ8CE is a clearable Johnson/shift counter. The asynchronous clear
(CLR) input, when High, overrides all other inputs and causes the
data outputs (Q7 – Q0) to go to logic level zero, independent of clock
(C) transitions. The counter increments (shifts Q0 to Q1, Q1 to Q2,
and so forth) when the clock enable input (CE) is High during the
Low-to-High clock transition. Clock transitions are ignored when CE
is Low. The Q7 output is inverted and fed back to input Q0 to provide
continuous counting operation.

The counter is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable.

qn = state of referenced output one set-up time prior to active clock transition

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

CLR CE C Q0 Q1 – Q7

1 X X 0 0
0 0 X --No Change--
0 1 ↑ q7 q0 – q6

X4118

CJ8CE

C

CLR

CE

 Q[7:0]
Libraries Guide 3-199

Libraries Guide
Figure 3-47 CJ8CE XC2000/3000/4000 Implementation

C
CLR

Q0

FDCE
QD

CLR
CE
C

Q1

FDCE
QD

CLR
CE
C

Q[7:0]
Q7

Q4

Q6

Q5

Q7Q3

Q2

Q1

Q0 Q3

Q2

FDCE
QD

CLR
CE
C

Q3

FDCE
QD

CLR
CE
C

Q4

FDCE
QD

CLR
CE
C

Q5

FDCE
QD

CLR
CE
C

Q6

FDCE
QD

CLR
CE
C

Q7

FDCE
QD

CLR
CE
C

INV

CE

Q7B
3-200 Xilinx Development System

Design Elements
CJ8RE

8-Bit Johnson Counter with Clock Enable and
Synchronous Reset

CJ8RE is a resettable Johnson/shift counter. The synchronous reset
(R) input, when High, overrides all other inputs and causes the data
outputs (Q7 – Q0) to go to logic level zero during the Low-to-High
clock transition. The counter increments (shifts Q0 to Q1, Q1 to Q2,
and so forth) when the clock enable input (CE) is High during the
Low-to-High clock transition. Clock transitions are ignored when CE
is Low. The Q7 output is inverted and fed back to input Q0 to provide
continuous counting operation.

The counter is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable.

qn = state of referenced output one set-up time prior to active clock transition

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

R CE C Q0 Q1 – Q7

1 X ↑ 0 0
0 0 X --No Change--
0 1 ↑ q7 q0 – q6

X4119

CJ8RE

C

R

CE

 Q[7:0]
Libraries Guide 3-201

Libraries Guide
Figure 3-48 CJ8RE XC2000/3000/4000 Implementation

CE
C
R

INV

Q3Q0

Q1

Q2

Q3 Q7

Q5

Q6

Q4

Q7

Q[7:0]

Q7

FDRE

R

QD
CE
C

Q6

FDRE

R

QD
CE
C

Q5

FDRE

R

QD
CE
C

Q4

FDRE

R

QD
CE
C

Q3

FDRE

R

QD
CE
C

Q2

FDRE

R

QD
CE
C

Q1

FDRE

R

QD
CE
C

Q0

FDRE

R

QD
CE
C

Q7B
3-202 Xilinx Development System

Design Elements
CLB

CLB Configuration Symbol

The CLB symbol enables you to manually specify a CLB configura-
tion. It allows you to enter portions of a logic design directly in terms
of the physical CLB, rather than schematically. Using the CLB symbol
provides precise partitioning control and requires knowledge of the
CLB architecture. Use it in place of the equivalent captured logic and
not in conjunction with it.

XC2000 XC3000 XC4000 XC7000

Primitive Primitive N/A N/A

X4650

RD

K

EC

O1

E

D

C

B

A

Y

X

CLB

X4647

K

D

C

B
CLBA

Y

XCLB

XC2000

XC3000
Libraries Guide 3-203

Libraries Guide
A blank XC2000 CLB primitive symbol and its corresponding config-
ured CLB primitive and circuit are shown in the following figure.

Figure 3-49 XC2000 CLB Primitive Example and Equivalent
Circuit

X5019

CLB
AA

FG
X:Q Y:G CLK:K:NOT Set A RES:D
F=B*~C

A

B

C

X

D

K

Y

QD

C

F X

U3

SD

RD

U5

AND2B1

U4

INV

G

U6

AND2B1

Y

DFF

A

D

B

C

K

CLB AA

G=~B*C
3-204 Xilinx Development System

Design Elements
A blank XC3000 CLB primitive symbol and its corresponding config-
ured CLB primitive and circuit are shown in the following figure.

Figure 3-50 XC3000 CLB Primitive Example and Equivalent
Circuit

CLB symbol pins correspond to actual CLB pins. Signals connected to
these pins in a schematic are connected to the corresponding CLB
pins in the design. You must specify the BASE, CONFIG, and
EQUATE commands for the CLB. These commands are entered on
the schematic and the translator puts them into the CFG records in
the LCA Xilinx netlist file. It is not necessary for the translator
program to parse the commands specifying the CLB configuration.
The mapping program from the LCA Xilinx netlist to the LCA design
checks these commands for errors.

X5021

CLB

FG
X:QX Y:QY DX:Y DY:G CLK:K ENCLK:EC
F=A*B*E*QY
G=QX*A*E*QY

A

B

C X

D

E

Y

QD

CE

F X

U4U3

AND4

FDCE

A

O1

EC

K

RD

AA

B
E

C

QD

CE

G Y

U5U6

AND4

FDCE

D

C

K

CE
Libraries Guide 3-205

Libraries Guide
The configuration commands must be consistent with the connec-
tions. For example, if you use the A input in an equation, connect a
signal to the A pin. Refer to the applicable CAE tool interface user
guide for more information on specifying the CLB configuration
commands in the schematic.

You can specify the location of a CLB on the device using the LOC
attribute. When specifying the LOC attribute, a valid CLB name (AA,
AB, and so forth) must be used. Refer to the “Attributes, Constraints,
and Carry Logic” chapter for more information on the LOC attribute.
3-206 Xilinx Development System

Design Elements
CLBMAP

Logic-Partitioning Control Symbol

The CLBMAP symbol is used to control logic partitioning into
XC2000 and XC3000 family CLBs. Unlike the CLB symbol, the
CLBMAP symbol is not a substitute for logic. It is used in addition to
combinatorial gates, latches, and flip-flops for mapping control.

At the schematic level, you can implement a portion of logic using
gates, latches, and flip-flops and specify that the logic be grouped
into a single CLB by using the CLBMAP symbol. You must name the
signals that are the inputs and outputs of the CLB, then draw the
signals to appropriate pins of the CLBMAP symbol or name the
CLBMAP signals and logic signals correspondingly. The symbol can
have unconnected pins, but all signals on the logic group to be
mapped must be specified on a symbol pin.

CLBMAP primitives and equivalent circuits are shown for XC2000
and XC3000 families in the following figures.

XC2000 XC3000 XC4000 XC7000

Primitive Primitive N/A N/A

X4648

K

C

A

D

B
X

Y

CLBMAP

XC2000

XC3000

X4651

RD

EC

E

K

DI

X

Y

D

B

C

A CLBMAP
Libraries Guide 3-207

Libraries Guide
Figure 3-51 XC2000 CLBMAP Primitive Example and Equivalent

X4454

U10

AND2

U2

IBUF

A0IN
U1

PAD

A0
U9

XOR2

U4

IBUF

B0IN
U3

PAD

B0

U6

IBUF

A1IN
U5

PAD

A1
U11

XOR2

U8

IBUF

B1IN
U7

PAD

B1

U12

XOR2

U13

AND2

U14

AND2

U15

AND2

U16

XOR3

U17

OBUF

SUM0 S0

U18

OBUF

SUM1 S1

U19

OBUF

SUM2 S2

A

B
SUM1

D

K

SUM2

X

Y

CLBMAP

A0

B0

A1

B1
C

3-208 Xilinx Development System

Design Elements
Figure 3-52 XC3000 CLBMAP Primitive Example and Equivalent

Use the MAP=type parameter with the CLBMAP symbol to further
define how much latitude you want to give the mapping program.
The following table shows MAP option characters and their mean-
ings.

Character Function

P Pins
C Closed – Adding logic to or removing logic

from the CLB is not allowed.
L Locked – Locking CLB pins
O Open – Adding logic to or removing logic from

the CLB is allowed.
U Unlocked – No locking on CLB pins.

X5022

U10

AND2

U2

IBUF

A0IN
U1

PAD

A0
U9

XOR2

U4

IBUF

B0IN
U3

PAD

B0

U6

IBUF

A1IN
U5

PAD

A1
U11

XOR2

U8

IBUF

B1IN
U7

PAD

B1

U12

XOR2

U13

AND2

U14

AND2

U15

AND2

U16

XOR3

U17

OBUF

SUM0 S0

U18

OBUF

SUM1 S1

U19

OBUF

SUM2 S2

A

B
SUM1

D

E

DI
SUM2

K

RD

X

Y

CLBMAP

A0

A1

B0

B1
C

EC
Libraries Guide 3-209

Libraries Guide
Possible types of MAP parameters for FMAP are: MAP=PUC,
MAP=PLC, MAP=PLO, and MAP=PUO. The default parameter is
PUC. If one of the “open” parameters is used (PLO or PUO), only the
output signals must be specified.

You can lock individual pins using the “P” (Pin lock) parameter on
the CLBMAP pin in conjunction with the PUC parameter. Refer to the
appropriate CAE tool interface user guide for information on
changing symbol parameters for your schematic editor.
3-210 Xilinx Development System

Design Elements
COMP2

2-Bit Identity Comparator

The equal output (EQ) of the COMP2 2-bit, identity comparator is
High when the two words A1 – A0 and B1 – B0 are equal. Equality is
determined by a bit comparison of the two words. When any two of
the corresponding bits from each word are not the same, the EQ
output is Low.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro PrimitiveEQ

X4122

COMP2
A0

A1

B0

B1
Libraries Guide 3-211

Libraries Guide
COMP4

4-Bit Identity Comparator

The equal output (EQ) of the COMP4 4-bit, identity comparator is
High when the two words A3 – A0 and B3 – B0 are equal. Equality is
determined by a bit comparison of the two words. When any two of
the corresponding bits from each word are not the same, the EQ
output is Low.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

X4126

COMP4

B1

B2

B3

B0

A3

A2

A1

A0

EQ
3-212 Xilinx Development System

Design Elements
COMP8

8-Bit Identity Comparator

The equal output (EQ) of the COMP8 8-bit, identity comparator is
High when the two words A7 – A0 and B7 – B0 are equal. Equality is
determined by a bit comparison of the two words. When any two of
the corresponding bits from each word are not the same, the EQ
output is Low.

Figure 3-53 COMP8 XC2000/3000/4000 Implementation

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive
EQ

 A[7:0] COMP8

 B[7:0]

X4131

AND2

AND4

AND4

EQ

A1

A0

A2

A3

A4

A5

A6

A7

A[7:0]

AB6

AB5
B5

B4

B3

B2

B1

B0

B6

B7

B[7:0]

AB47

AB03

AB0

AB1

AB2

AB3

AB7

AB4

XNOR2

XNOR2

XNOR2

XNOR2

XNOR2

XNOR2

XNOR2

XNOR2
Libraries Guide 3-213

Libraries Guide
COMP16

16-Bit Identity Comparator

The equal output (EQ) of the COMP16 16-bit, identity comparator is
High when the two words A15 – A0 and B15 – B0 are equal. Equality
is determined by a bit comparison of the two words. When any two
of the corresponding bits from each word are not the same, the EQ
output is Low.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

A[15:0] COMP16

B[15:0]

EQ

X4133
3-214 Xilinx Development System

Design Elements
COMPM2

2-Bit Magnitude Comparator

COMPM2 is a 2-bit, magnitude comparator that compares two posi-
tive binary-weighted words A1 – A0 and B1 – B0, where A1 and B1
are the most significant bits. The greater-than output (GT) is High
when A>B, and the less-than output (LT) is High when A<B. When
the two words are equal, both GT and LT are Low. Equality can be
measured with this macro by comparing both outputs with a NOR
gate.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

A1 B1 A0 B0 GT LT

0 0 0 0 0 0
0 0 1 0 1 0
0 0 0 1 0 1
0 0 1 1 0 0
1 1 0 0 0 0
1 1 1 0 1 0
1 1 0 1 0 1
1 1 1 1 0 0
1 0 X X 1 0
0 1 X X 0 1

X4123

COMPM2
A0

A1

B0

B1

GT

LT
Libraries Guide 3-215

Libraries Guide
COMPM4

4-Bit Magnitude Comparator

* not supported for XC7336 designs

COMPM4 is a 4-bit, magnitude comparator that compares two posi-
tive binary-weighted words A3 – A0 and B3 – B0, where A3 and B3
are the most significant bits. The greater-than output (GT) is High
when A>B, and the less-than output (LT) is High when A<B. When
the two words are equal, both GT and LT are Low. Equality can be
measured with this macro by comparing both outputs with a NOR
gate.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive*

Inputs Outputs

A3, B3 A2, B2 A1, B1 A0, B0 GT LT

A3>B3 X X X 1 0
A3<B3 X X X 0 1
A3=B3 A2>B2 X X 1 0
A3=B3 A2<B2 X X 0 1
A3=B3 A2=B2 A1>B1 X 1 0
A3=B3 A2=B2 A1<B1 X 0 1
A3=B3 A2=A2 A1=B1 A0>B0 1 0
A3=B3 A2=B2 A1=B1 A0<B0 0 1
A3=B3 A2=B2 A1=B1 A0=B0 0 0

X4127

COMPM4

B1

B2

B3

B0

A3

A2

A1

A0

LT

GT
3-216 Xilinx Development System

Design Elements
COMPM8

8-Bit Magnitude Comparator

* not supported for XC7336 designs

COMPM8 is an 8-bit, magnitude comparator that compares two posi-
tive binary-weighted words A7 – A0 and B7 – B0, where A7 and B7
are the most significant bits. The greater-than output (GT) is High
when A>B, and the less-than output (LT) is High when A<B. When
the two words are equal, both GT and LT are Low. Equality can be
measured with this macro by comparing both outputs with a NOR
gate. Refer to the “COMPM4” section earlier in this chapter for a
representative truth table.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive*

A[7:0] COMPM8

B[7:0]
LT

GT

X4132
Libraries Guide 3-217

Libraries Guide
Figure 3-54 COMPM8 XC2000/3000/4000 Implementation

LTC

GT_7

LT_5

GT_5

GE4_5

LE4_5

GE0_1

LTD

EQ6_7

EQ4_5

GTC

GTB

LTB

GT2_3

LT2_3

LT4_5

GT4_5

GTD

LT_7

GE6_7

LE6_7EQ_7

EQ_5

GT0_1

LT0_1

GT

LT

LTA

LT_1

LE0_1

GT_1

LE2_3

GT_3

LT_3

GE2_3

EQ_3

EQ_1

EQ2_3

GTA

A[7:0] A7

A6

A5

A4

A3

A2

A1

A0

B[7:0] B7

B6

B5

B4

B3

B2

B1

B0

AND2B1

OR4

NOR2

AND3
OR2

OR2

OR2

AND3B1

AND3B1

AND3B1

AND3B1

XNOR2

AND2B1

XNOR2

AND2B1

AND2B1

OR2

AND2B1

AND2

AND2

NOR2

OR2

AND2B1

AND2B1

XNOR2

AND2B1

XNOR2

AND3B1

AND3B1

AND3B1

AND3B1

OR2

OR2

OR2

AND4

AND4

AND3

NOR2

OR4
3-218 Xilinx Development System

Design Elements
COMPM16

16-Bit Magnitude Comparator

COMPM16 is a 16-bit, magnitude comparator that compares two
positive binary-weighted words A15 – A0 and B15 – B0, where A15
and B15 are the most significant bits. The greater-than output (GT) is
High when A>B, and the less-than output (LT) is High when A<B.
When the two words are equal, both GT and LT are Low. Equality can
be measured with this macro by comparing both outputs with a NOR
gate. Refer to the “COMPM4” section earlier in this chapter for a
representative truth table.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro N/A

A[15:0] COMPM16

B[15:0]
LT

GT

X4134
Libraries Guide 3-219

Libraries Guide
COMPMC8

8-Bit Magnitude Comparator

COMPMC8 is an 8-bit, magnitude comparator that compares two
positive binary-weighted words A7 – A0 and B7 – B0, where A7 and
B7 are the most significant bits. The comparator is implemented using
carry logic with relative location constraints, which assures most effi-
cient logic placement. The greater-than output (GT) is High when
A>B, and the less-than output (LT) is High when A<B. When the two
words are equal, both GT and LT are Low. Equality can be measured
with this macro by comparing both outputs with a NOR gate. Refer to
the “COMPM4” section earlier in this chapter for a representative
truth table.

XC4000 Topology

In the process of combining the logic that loads GT and LT, the place and route
software might map the logic that generates GT and LT to different function
generators. If this mapping occurs, the GT and LT logic cannot be placed in the
uppermost CLB, as indicated in the illustration.

XC2000 XC3000 XC4000 XC7000

N/A N/A Macro N/A

 A[7:0] COMPMC8

 B[7:0]
LT

GT

X4264

X4341

GT*

LT*

B 7

B 6

B 5

B 4

B 3

B 2

B 1

B 0

A 7

A 6

A 5

A 4

A 3

A 2

A 1

A 0
3-220 Xilinx Development System

Design Elements
Figure 3-55 COMPMC8 XC4000 Implementation

RLOC=R4C0

I1
I2
I3

O

HMAP

RLOC=R3C0

I1
I2
I3

O

HMAP

RLOC=R2C0

I1
I2
I3

O

HMAP

S01

S23

S45

S5

S4

EQ

S7

LT

AND4
NOR2

S3

AND2

S5

AND2

S4

A2

A4
B4

B2

B1
A1

B0
A0

B3
A3

A5

A6

A7
B7

B6

B5

A7

A[7:0]

A0

A1

A2

A3

A4

A5

A6

RLOC=R1C0.G

I1
I2
I3
I4

O

FMAP

XNOR2

XNOR2

XNOR2

XNOR2

CY4_38
FORCE-1

INV

RLOC=R3C0.G

I1
I2
I3
I4

O

FMAP

RLOC=R1C0.F

I1
I2
I3
I4

O

FMAP

RLOC=R2C0.G

I1
I2
I3
I4

O

FMAP

RLOC=R2C0.F

I1
I2
I3
I4

O

FMAP

RLOC=R3C0.F

I1
I2
I3
I4

O

FMAP

RLOC=R4C0.G

I1
I2
I3
I4

O

FMAP

SUB-FG-CI
CY4_07

SUB-FG-CI
CY4_07

SUB-FG-CI
CY4_07

CY4_42
EXAMINE-CI

RLOC=R5C0

A0
ADD

B1
A1
B0

CY4

CIN

COUT
COUT0

(F3)
(F1)
(F2)
(G4)
(G1)

CARRY MODE

RLOC=R4C0

A0
ADD

B1
A1
B0

CY4

CIN

COUT
COUT0

(F3)
(F1)
(F2)
(G4)
(G1)

CARRY MODE

RLOC=R0C0

A0
ADD

B1
A1
B0

CY4

CIN

COUT
COUT0

(F3)
(F1)
(F2)
(G4)
(G1)

CARRY MODE

RLOC=R2C0

A0
ADD

B1
A1
B0

CY4

CIN

COUT
COUT0

(F3)
(F1)
(F2)
(G4)
(G1)

RLOC=R3C0

A0
ADD

B1
A1
B0

CY4

CIN

COUT
COUT0

(F3)
(F1)
(F2)
(G4)
(G1)

RLOC=R4C0.F

I1
I2
I3
I4

O

FMAP

RLOC=R1C0

A0
ADD

B1
A1
B0

CY4

CIN

COUT
COUT0

(F3)
(F1)
(F2)
(G4)
(G1)

XNOR2

XNOR2

XNOR2

XNOR2

S6

AND2

S2

GT

S3

S2

S1

S0

SUB-FG-CI
CY4_07

B7

B[7:0]

B0

B1

B2

B3

B4

B5

B6

S45

S23

S67

S1

AND2

S0

S01

RLOC=R1C0

I1
I2
I3

O

HMAP

S6

S7

S67

C_IN

C2

C4

CO

C6

CARRY MODE

CARRY MODE

CARRY MODE

COMPMC8.4K
Libraries Guide 3-221

Libraries Guide
COMPMC16

16-Bit Magnitude Comparator

COMPMC16 is a 16-bit, magnitude comparator that compares two
positive binary-weighted words A15 – A0 and B15 – B0, where A15
and B15 are the most significant bits. The comparator is implemented
using carry logic with relative location constraints, which assures
most efficient logic placement. The greater-than output (GT) is High
when A>B, and the less-than output (LT) is High when A<B. When
the two words are equal, both GT and LT are Low. Equality can be
measured with this macro by comparing both outputs with a NOR
gate. Refer to the “COMPM4” section earlier in this chapter for a
representative truth table.

XC2000 XC3000 XC4000 XC7000

N/A N/A Macro N/A

A[15:0] COMPMC16

B[15:0]
LT

GT

X4265
3-222 Xilinx Development System

Design Elements
XC4000 Topology

In the process of combining the logic that loads GT and LT, the place and route
software might map the logic that generates GT and LT to different function
generators. If this mapping occurs, the GT and LT logic cannot be placed in the
uppermost CLB, as indicated in the illustration.

X4342

GT*

LT*

B 15

B 14

B 13

B 12

B 11

B 10

B 9

B 8

A 15

A 14

A 13

A 12

A 11

A 10

A 9

A 8

B 7

B 6

B 5

B 4

B 3

B 2

B 1

B 0

A 7

A 6

A 5

A 4

A 3

A 2

A 1

A 0
Libraries Guide 3-223

Libraries Guide
CR8CE

8-Bit Negative-Edge Binary Ripple Counter with
Clock Enable and Asynchronous Clear

CR8CE is an 8-bit, cascadable, clearable, binary, ripple counter. The
asynchronous clear (CLR), when High, overrides all other inputs and
causes the outputs (Q7 – Q0) to go to logic level zero. The counter
increments when the clock enable input (CE) is High during the
High-to-Low clock (C) transition. The counter ignores clock transi-
tions when CE is Low.

Larger counters can be created by connecting the Q7 output of the
first stage to the clock input of the next stage. CLR and CE inputs are
connected in parallel. The clock period is not affected by the overall
length of a ripple counter. The overall clock-to-output propagation is
n(TC - Q), where n is the number of stages and TC - Q is the C-to-Q7
propagation delay of each stage.

The counter is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable. For XC7000, the clock (C) cannot be driven by
a FastCLK (BUFG).

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

CLR CE C Q7 – Q0

1 X X 0
0 0 X No Chg
0 1 ↓ Inc

X4116

CR8CE

C

CLR

 CE

 Q[7:0]
3-224 Xilinx Development System

Design Elements
Figure 3-56 CR8CE XC2000/3000/4000 Implementation

CLR

Q5

Q6

Q7

Q4Q0

Q3

Q3

Q2

Q1

Q[7:0]

INV
TQ0

C

CE

TQ1

TQ2

TQ3

TQ4

TQ5

TQ6

TQ7

Q3

CE
CLR

Q

C

D

FDCE_1

Q2

CE
CLR

Q

C

D

FDCE_1

Q0

CE
CLR

Q

C

D

FDCE_1

Q1

CE
CLR

Q

C

D

FDCE_1

Q7

CE
CLR

Q

C

D

FDCE_1

Q6

CE
CLR

Q

C

D

FDCE_1

Q5

CE
CLR

Q

C

D

FDCE_1

Q4

CE
CLR

Q

C

D

FDCE_1

INV

INV

INV

INVINV

INV

INV
Libraries Guide 3-225

Libraries Guide
CR16CE

16-Bit Negative-Edge Binary Ripple Counter with
Clock Enable and Asynchronous Clear

CR16CE is a 16-bit, cascadable, clearable, binary, ripple counter. The
asynchronous clear (CLR), when High, overrides all other inputs and
causes the outputs (Q15 – Q0) to go to logic level zero. The counter
increments when the clock enable input (CE) is High during the
High-to-Low clock (C) transition. The counter ignores clock transi-
tions when CE is Low.

Larger counters can be created by connecting the Q15 output of the
first stage to the clock input of the next stage. CLR and CE inputs are
connected in parallel. The clock period is not affected by the overall
length of a ripple counter. The overall clock-to-output propagation is
n(TC - Q), where n is the number of stages and TC - Q is the C-to-Q15
propagation delay of each stage.

The counter is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable. For XC7000, the clock (C) cannot be driven by
a FastCLK (BUFG).

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

CLR CE C Q15 – Q0

1 X X 0
0 0 X No Chg
0 1 ↓ Inc

X4120

CR16CE

C

CLR

CE

Q[15:0]
3-226 Xilinx Development System

Design Elements
D2_4E

2- to 4-Line Decoder/Demultiplexer with Enable

When the enable (EN) input of the D2_4E decoder/demultiplexer is
High, one of four active-High outputs (D3 – D0) is selected with a
2-bit binary address (A1 – A0) input. The non-selected outputs are
Low. Also, when the EN input is Low, all outputs are Low. In demul-
tiplexer applications, the EN input is the data input.

Figure 3-57 D2_4E XC2000/3000/4000 Implementation

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

A1 A0 E D3 D2 D1 D0

X X 0 0 0 0 0
0 0 1 0 0 0 1
0 1 1 0 0 1 0
1 0 1 0 1 0 0
1 1 1 1 0 0 0

X3853

D2_4E

E

A1

D0

D3

D1

D2

A0

A0

A1

E

AND3B2

D0

D1

D2
AND3B1

AND3B1
D3

AND3
Libraries Guide 3-227

Libraries Guide
D3_8E

3- to 8-Line Decoder/Demultiplexer with Enable

When the enable (EN) input of the D3_8E decoder/demultiplexer is
High, one of eight active-High outputs (D7 – D0) is selected with a
3-bit binary address (A2 – A0) input. The non-selected outputs are
Low. Also, when the EN input is Low, all outputs are Low. In demul-
tiplexer applications, the EN input is the data input.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

A2 A1 A0 E D7 D6 D5 D4 D3 D2 D1 D0

X X X 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1
0 0 1 1 0 0 0 0 0 0 1 0
0 1 0 1 0 0 0 0 0 1 0 0
0 1 1 1 0 0 0 0 1 0 0 0
1 0 0 1 0 0 0 1 0 0 0 0
1 0 1 1 0 0 1 0 0 0 0 0
1 1 0 1 0 1 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0

X3854

D3_8E

E

D4

D7

D5

D6

A2

A1

A0 D0

D3

D1

D2
3-228 Xilinx Development System

Design Elements
Figure 3-58 D3_8E XC2000/3000/4000 Implementation

D7

D6

D5

D4

D3

D2

D1

D0

D[7:0]

AND4B3

AND4B2

AND4B2

AND4B1

AND4B2

AND4B1

AND4B1

AND4

E

A0

A1

A2
Libraries Guide 3-229

Libraries Guide
D4_16E

4- to 16-Line Decoder/Demultiplexer with Enable

When the enable (EN) input of the D4_16E decoder/demultiplexer is
High, one of 16 active-High outputs (D15 – D0) is selected with a 4-bit
binary address (A3 – A0) input. The non-selected outputs are Low.
Also, when the EN input is Low, all outputs are Low. In demulti-
plexer applications, the EN input is the data input. Refer to “D3_8E”
for truth table derivation.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

X3855

D4_16E

E

D12

D15

D13

D14

A2

A1

A0

D8

D11

D9

D10

D4

D7

D5

D6

D0

D3

D1

D2

A3
3-230 Xilinx Development System

Design Elements
Figure 3-59 D4_16E XC2000/3000/4000 Implementation

AND5B4

AND5B3

AND5B3

AND5B2

AND5B3

AND5B2

AND5B1

AND5B2

AND5

AND5B1

AND5B1

AND5B2

AND5B1

AND5B2

AND5B2

AND5B3

E

A2
A3

A1
A0

D15

D[15:0]

D0

D1

D2

D3

D4

D5

D6

D7

D8

D9

D10

D11

D12

D13

D14
Libraries Guide 3-231

Libraries Guide
DECODE4, DECODE8, and DECODE 16

4-, 8-, and 16-Bit Active-Low Edge Decoders

These decoders are open-drain wired-AND gates. When one or more
of the inputs (I) are Low, output (O) is Low. When all of the inputs are
High, the output is High or “Off.” A pull-up resistor must be
connected to the output node to achieve a true logic High. A double
pull-up resistor can be used to achieve faster performance but uses
more power.

The XACT software implements these macros using the open-drain
AND gates around the periphery of the XC4000 devices.

Note: Diamonds in library symbols indicate an open-drain output.

A pull-up resistor must be connected to the output to establish High−level drive
current.

XC2000 XC3000 XC4000 XC7000

N/A N/A Macro N/A

Inputs Outputs

I0 I1 ... In – 1 O

1 1 1 1 1
0 X X X 0
X 0 X X 0
X X X 0 0

X3907

DECODE4

A3

A2

A1

A0

O

X3908

A7

A6

A5

A4

O

DECODE8

A3

A2

A1

A0

X3909

A15

A14

A13

A12

O

DECODE16

A11

A10

A9

A8

A7

A6

A5

A4

A3

A2

A1

A0
3-232 Xilinx Development System

Design Elements
Figure 3-60 DECODE8 XC4000 Implementation

A7

A5

A4

A1

A0

A6

DECODE
WAND1

DECODE
WAND1

DECODE
WAND1

O

DECODE
WAND1

DECODE
WAND1

DECODE
WAND1

DECODE
WAND1

DECODE
WAND1

A2

A3
Libraries Guide 3-233

Libraries Guide
FD, FD4, FD8, and FD16

Single and Multiple D Flip-Flops

FD is a single D-type flip-flop with data input (D) and data output
(Q). FD4, FD8, and FD16 are 4-bit, 8-bit, and 16-bit registers, each
with a common clock (C). The data on the D inputs is loaded into the
flip-flop during the Low-to-High clock (C) transition.

The flip-flop is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable.

Figure 3-61 FD XC2000 Implementation

Element XC2000 XC3000 XC4000 XC7000

FD Macro Macro Macro Primitive
FD4,
FD8,
FD16

N/A N/A N/A Primitive

Inputs Outputs

D C Q

0 ↑ 0
1 ↑ 1

Q

X3715

D FD

C

Q0

X4608

D0 FD4

C

Q1D1

Q2D2

Q3D3

Q[7:0]D[7:0]

X4609

FD8

C

Q[15:0]D[15:0]

X4610

FD16

C

C

Q

GND

D

C
CLR

D
PRE

Q

FDCP
3-234 Xilinx Development System

Design Elements
Figure 3-62 FD XC3000/4000 Implementation

FDCE

QD

CLR

CE
C

D

VCC

C

Q

GND
Libraries Guide 3-235

Libraries Guide
FD_1

D Flip-Flop with Negative-Edge Clock

FD_1 is a single D-type flip-flop with data input (D) and data output
(Q). The data on the D input is loaded into the flip-flop during the
High-to-Low clock (C) transition.

The flip-flop is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable.

Figure 3-63 FD_1 XC2000 Implementation

Figure 3-64 FD_1 XC3000/4000 Implementation

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro N/A

Inputs Outputs

D C Q

0 ↓ 0
1 ↓ 1

Q

X3726

D FD_1

C

CBC

GND

QD

INV
C

CLR

D PRE Q

FDCP

CBC

GND

Q

VCC

D
FDCE

QD

CLR

CE
C

INV
3-236 Xilinx Development System

Design Elements
FD4CE

4-Bit Data Register with Clock Enable and
Asynchronous Clear

When clock enable (CE) is High, and asynchronous clear (CLR) is
Low, the data on the four data inputs (D3 – D0) of FD4CE is trans-
ferred to the corresponding data outputs (Q3 – Q0) during the Low-
to-High clock (C) transition. When CLR is High, it overrides all other
inputs and resets the data outputs (Q3 – Q0) Low. When CE is Low,
clock transitions are ignored.

The flip-flops are asynchronously reset, outputs Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable.

dn = state of corresponding input one set-up time prior to active clock transition

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

CLR CE D3 – D0 C Q3 – Q0

1 X X X 0
0 0 X X No Chg
0 1 Dn ↑ dn

X3733

FD4CE

C

CE

D3
D2

D1

D0

CLR

Q3
Q2

Q1

Q0
Libraries Guide 3-237

Libraries Guide
FD4RE

4-Bit Data Register with Clock Enable and
Synchronous Reset

When the clock enable (CE) input is High, and the synchronous reset
(R) input is Low, the data on the four data inputs (D3 – D0) of FD4RE
is transferred to the corresponding data outputs (Q3 – Q0) during the
Low-to-High clock (C) transition. When R is High, it overrides all
other inputs and resets the data outputs (Q3 – Q0) Low on the Low-
to-High clock transition. When CE is Low, clock transitions are
ignored.

The flip-flops are asynchronously reset, outputs Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable.

dn = state of corresponding input one set-up time prior to active clock transition

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

R CE D3 – D0 C Q3 – Q0

1 X X ↑ 0
0 0 X X No Chg
0 1 Dn ↑ dn

X3734

D3

FD4RE

C

R

D2
D1
D0

Q3
Q2
Q1
Q0

CE
3-238 Xilinx Development System

Design Elements
FD8CE

8-Bit Data Register with Clock Enable and
Asynchronous Clear

When clock enable (CE) is High, and asynchronous clear (CLR) is
Low, the data on the eight data inputs (D7 – D0) of FD8CE is trans-
ferred to the corresponding data outputs (Q7 – Q0) during the Low-
to-High clock (C) transition. When CLR is High, it overrides all other
inputs and resets the data outputs (Q7 – Q0) Low. When CE is Low,
clock transitions are ignored.

The flip-flops are asynchronously reset, outputs Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable.

dn = state of corresponding input one set-up time prior to active clock transition

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

CLR CE D7 – D0 C Q7 – Q0

1 X X X 0
0 0 X X No Chg
0 1 Dn ↑ dn

X3850

FD8CE

C

CLR

 CE

 D[7:0] Q[7:0]
Libraries Guide 3-239

Libraries Guide
Figure 3-65 FD8CE XC2000/3000/4000 Implementation

Q7

FDCE
QD

CLR

CE
C

Q6

FDCE
QD

CLR

CE
C

Q4

FDCE
QD

CLR

CE
C

Q5

FDCE
QD

CLR

CE
C

Q0

FDCE
QD

CLR

CE
C

Q[7:0]

Q3

Q2

Q1

Q0

Q7

Q6

Q5

Q4

CE
C
CLR

D[7:0]

D0

D1

D2

D3 D7

D6

D5

D4

Q1

FDCE
QD

CLR

CE
C

Q2

FDCE
QD

CLR

CE
C

Q3

FDCE

QD

CLR

CE
C

3-240 Xilinx Development System

Design Elements
FD8RE

8-Bit Data Register with Clock Enable and
Synchronous Reset

When the clock enable (CE) input is High, and the synchronous reset
(R) input is Low, the data on the eight data inputs (D7 – D0) of FD8RE
is transferred to the corresponding data outputs (Q7 – Q0) during the
Low-to-High clock (C) transition. When R is High, it overrides all
other inputs and resets the data outputs (Q7 – Q0) Low on the Low-
to-High clock transition. When CE is Low, clock transitions are
ignored.

The flip-flops are asynchronously reset, outputs Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable.

dn = state of corresponding input one set-up time prior to active clock transition

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

R CE D7 – D0 C Q7 – Q0

1 X X ↑ 0
0 0 X X No Chg
0 1 Dn ↑ dn

X3735

FD8RE

C

R

 CE

 D[7:0] Q[7:0]
Libraries Guide 3-241

Libraries Guide
Figure 3-66 FD8RE XC2000/3000/4000 Implementation

Q7

FDRE

R

QD
CE
C

R

Q2

FDRE

R

QD
CE
C

Q6

FDRE

R

QD
CE
C

Q4

FDRE

R

QD
CE
C

CE
C

Q4

Q[7:0]

Q3

Q2

Q1

Q0

Q7

Q6

Q5

Q0

FDRE

R

QD
CE
C

Q1

FDRE

R

QD
CE
C

Q3

FDRE

R

QD
CE
C

D[7:0]

D5

D6

D7D3

D2

D1

D0 D4

Q5

FDRE

R

QD
CE
C

3-242 Xilinx Development System

Design Elements
FD16CE

16-Bit Data Register with Clock Enable and
Asynchronous Clear

When clock enable (CE) is High, and asynchronous clear (CLR) is
Low, the data on the 16 data inputs (D15 – D0) of FD16CE is trans-
ferred to the corresponding data outputs (Q15 – Q0) during the Low-
to-High clock (C) transition. When CLR is High, it overrides all other
inputs and resets the data outputs (Q15 – Q0) Low. When CE is Low,
clock transitions are ignored.

The flip-flops are asynchronously reset, outputs Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable.

dn = state of corresponding input one set-up time prior to active clock transition

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

CLR CE D15 – D0 C Q15 – Q0

1 X X X 0
0 0 X X No Chg
0 1 Dn ↑ dn

X3736

FD16CE

C

CLR

 CE

D[15:0] Q[15:0]
Libraries Guide 3-243

Libraries Guide
FD16RE

16-Bit Data Register with Clock Enable and
Synchronous Reset

When the clock enable (CE) input is High, and the synchronous reset
(R) input is Low, the data on the 16 data inputs (D15 – D0) of FD16RE
is transferred to the corresponding data outputs (Q15 – Q0) during
the Low-to-High clock (C) transition. When R is High, it overrides all
other inputs and resets the data outputs (Q15 – Q0) Low on the Low-
to-High clock transition. When CE is Low, clock transitions are
ignored.

The flip-flops are asynchronously reset, outputs Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable.

dn = state of corresponding input one set-up time prior to active clock transition

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

R CE D15 – D0 C Q15 – Q0

1 X X ↑ 0
0 0 X X No Chg
0 1 Dn ↑ dn

X3737

C

R

 CE

D[15:0] Q[15:0]FD16RE
3-244 Xilinx Development System

Design Elements
FDC

D Flip-Flop with Asynchronous Clear

FDC is a single D-type flip-flop with data (D) and asynchronous clear
(CLR) inputs and data output (Q). The asynchronous CLR, when
High, overrides all other inputs and sets the Q output Low. The data
on the D input is loaded into the flip-flop when CLR is Low on the
Low-to-High clock transition.

The flip-flop is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable.

Figure 3-67 FDC XC2000 Implementation

Figure 3-68 FDC XC3000/4000 Implementation

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

CLR D C Q

1 X X 0
0 1 ↑ 1
0 0 ↑ 0

X3716
CLR

C

QD
FDC

GND

CLR

C

QD

C
CLR

D PRE Q

FDCP

CLR

C

VCC

QD

FDCE
QD

CLR

CE
C

Libraries Guide 3-245

Libraries Guide
FDC_1

D Flip-Flop with Negative-Edge Clock and
Asynchronous Clear

FDC_1 is a single D-type flip-flop with data input (D), asynchronous
clear input (CLR) and data output (Q). The asynchronous CLR, when
active, overrides all other inputs and sets the Q output Low. The data
on the D input is loaded into the flip-flop during the High-to-Low
clock (C) transition.

The flip-flop is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable.

Figure 3-69 FDC_1 XC2000 Implementation

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro N/A

Inputs Outputs

CLR D C Q

1 X X 0
0 1 ↓ 1
0 0 ↓ 0

Q

X3847

D FDC_1

C

CLR

CBC
INV

Q

CLR

D

GND

C
CLR

D PRE Q

FDCP
3-246 Xilinx Development System

Design Elements
Figure 3-70 FDC_1 XC3000/4000 Implementation

CBC

INV

FDCE

QD

CLR

CE
C

Q

VCC

CLR

D

Libraries Guide 3-247

Libraries Guide
FDCE

D Flip-Flop with Clock Enable and Asynchronous
Clear

When clock enable (CE) is High, and asynchronous clear (CLR) is
Low, the data on the data input (D) of FDCE is transferred to the
corresponding data output (Q) during the Low-to-High clock (C)
transition. When CLR is High, it overrides all other inputs and resets
the data output (Q) Low. When CE is Low, clock transitions are
ignored.

The flip-flop is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable.

Figure 3-71 FDCE XC2000 Implementation

XC2000 XC3000 XC4000 XC7000

Macro Primitive Primitive Primitive

Inputs Outputs

CLR CE D C Q

1 X X X 0
0 0 X X No Chg
0 1 1 ↑ 1
0 1 0 ↑ 0

X3717
CLR

C

CE

QD
FDCE

Q

CE
C

D
Q_D

CLR

GND

D0
D1

O

S0

M2_1

C
CLR

D PRE Q

FDCP
3-248 Xilinx Development System

Design Elements
FDCE_1

D Flip-Flop with Negative-Edge Clock, Clock Enable,
and Asynchronous Clear

FDCE_1 is a single D-type flip-flop with data (D), clock enable (CE),
and asynchronous clear (CLR) inputs and data output (Q). The asyn-
chronous CLR input, when High, overrides all other inputs and sets
the Q output Low. The data on the D input is loaded into the flip-flop
when CLR is Low and CE is High on the High-to-Low clock (C) tran-
sition. When CE is Low, the clock transitions are ignored.

The flip-flop is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro N/A

Inputs Outputs

CLR CE D C Q

1 X X X 0
0 0 X ↓ No Chg
0 1 1 ↓ 1
0 1 0 ↓ 0

Q

X3727

D FDCE_1

C

CLR

CE
Libraries Guide 3-249

Libraries Guide
Figure 3-72 FDCE_1 XC2000 Implementation

Figure 3-73 FDCE_1 XC3000/4000 Implementation

CB

D0
D1

O

S0

M2_1

GND

CLR

Q_D
D
CE

Q

INV

C C
CLR

D PRE Q

FDCP

CB

CLR

Q
FDCE

QD

CLR

CE
C

INV

C

D
CE
3-250 Xilinx Development System

Design Elements
FDCP

D Flip-Flop with Asynchronous Preset and Clear

* not supported for XC7336 designs

FDCP is a single D-type flip-flop with data (D), asynchronous preset
(PRE) and clear (CLR) inputs, and data output (Q). The asynchronous
PRE, when High, sets the Q output High; CLR, when High, resets the
output Low. When both PRE and CLR are active, the flip-flop is
cleared. Data on the D input is loaded into the flip-flop when PRE
and CLR are Low on the Low-to-High clock (C) transition.

The flip-flop is asynchronously reset, output Low, when power is
applied or when global reset (GR) is active (Low).

XC2000 XC3000 XC4000 XC7000

Primitive N/A N/A Primitive*

Inputs Outputs

CLR PRE D C Q

1 X X X 0
0 1 X X 1
0 0 0 ↑ 0
0 0 1 ↑ 1

Q

D

C

FDCP

PRE

CLR X4397
Libraries Guide 3-251

Libraries Guide
FDCPE

D Flip-Flop with Clock Enable and Asynchronous
Preset and Clear

* not supported for XC7336 designs

FDCPE is a single D-type flip-flop with data (D), clock enable (CE),
asynchronous preset (PRE), and asynchronous clear (CLR) inputs and
data output (Q). The asynchronous PRE, when High, sets the Q
output High; CLR, when High, resets the output Low. When both
PRE and CLR are active, the flip-flop is cleared. Data on the D input is
loaded into the flip-flop when PRE and CLR are Low and CE is High
on the Low-to-High clock (C) transition. When CE is Low, the clock
transitions are ignored.

The flip-flop is asynchronously reset, output Low, when power is
applied or when global reset (GR) is active (Low).

XC2000 XC3000 XC4000 XC7000

Macro N/A N/A Primitive*

Inputs Outputs

CLR PRE CE D C Q

1 X X X X 0
0 1 X X X 1
0 0 0 X X No Chg
0 0 1 0 ↑ 0
0 0 1 1 ↑ 1

Q

D

C

FDCPE

 CE

PRE

CLR X4389
3-252 Xilinx Development System

Design Elements
Figure 3-74 FDCPE XC2000 Implementation

PRE
CE

Q

D0
D1

O

S0

M2_1

C
CLR

D
PRE

Q

FDCP

CLR

Q_D
D

C

Libraries Guide 3-253

Libraries Guide
FDP

D Flip-Flop with Asynchronous Preset

FDP is a single D-type flip-flop with data (D) and asynchronous
preset (PRE) inputs, and data output (Q). The asynchronous PRE,
when High, overrides all other inputs and presets the Q output High.
The data on the D input is loaded into the flip-flop when PRE is Low
on the Low-to-High clock (C) transition. The flip-flop is asynchro-
nously set, output High, when global set/reset (GSR) is active; the
GSR active level is programmable.

Figure 3-75 FDP XC4000 Implementation

XC2000 XC3000 XC4000 XC7000

N/A N/A Macro Primitive

Inputs Outputs

PRE C D Q

1 X X 1
0 ↑ 1 1
0 ↑ 0 0

Q

X3720

D
FDP

C

PRE

VCC

C

CE

D
PRE

Q

FDPE

C

QD

PRE
3-254 Xilinx Development System

Design Elements
FDP_1

D Flip-Flop with Negative-Edge Clock and
Asynchronous Preset

FDP_1 is a single D-type flip-flop with data (D) and asynchronous
preset (PRE) inputs, and data output (Q). The asynchronous PRE,
when High, overrides all other inputs and presets the Q output High.
The data on the D input is loaded into the flip-flop when PRE is Low
on the High-to-Low clock (C) transition. The flip-flop is asynchro-
nously set, output High, when global set/reset (GSR) is active; the
GSR active level is programmable.

Figure 3-76 FDP_1 XC4000 Implementation

XC2000 XC3000 XC4000 XC7000

N/A N/A Macro N/A

Inputs Outputs

PRE C D Q

1 X X 1
0 ↓ 1 1
0 ↓ 0 0

Q

X3728

D FDP_1

C

PRE

CBC

INV

Q

C
CE
D PRE Q

FDPE

VCC

D

PRE
Libraries Guide 3-255

Libraries Guide
FDPE

D Flip-Flop with Clock Enable and Asynchronous
Preset

FDPE is a single D-type flip-flop with data (D), clock enable (CE), and
asynchronous preset (PRE) inputs and data output (Q). The asynchro-
nous PRE, when High, overrides all other inputs and sets the Q
output High. Data on the D input is loaded into the flip-flop when
PRE is Low and CE is High on the Low-to-High clock (C) transition.
When CE is Low, the clock transitions are ignored. The flip-flop is
asynchronously set, output High, when global set/reset (GSR) is
active; the GSR active level is programmable.

XC2000 XC3000 XC4000 XC7000

N/A N/A Primitive Primitive

Inputs Outputs

PRE CE D C Q

1 X X X 1
0 0 X X No Chg
0 1 0 ↑ 0
0 1 1 ↑ 1

X3721

FDPE

C

CE

QD

PRE
3-256 Xilinx Development System

Design Elements
FDPE_1

D Flip-Flop with Negative-Edge Clock, Clock Enable,
and Asynchronous Preset

FDPE_1 is a single D-type flip-flop with data (D), clock enable (CE),
and asynchronous preset (PRE) inputs and data output (Q). The
asynchronous PRE, when High, overrides all other inputs and sets
the Q output High. Data on the D input is loaded into the flip-flop
when PRE is Low and CE is High on the High-to-Low clock (C) tran-
sition. When CE is Low, the clock transitions are ignored. The flip-
flop is asynchronously set, output High, when global set/reset (GSR)
is active; the GSR active level is programmable.

Figure 3-77 FDPE_1 XC4000 Implementation

XC2000 XC3000 XC4000 XC7000

N/A N/A Macro N/A

Inputs Outputs

PRE CE D C Q

1 X X X 1
0 0 X X No Chg
0 1 1 ↓ 1
0 1 0 ↓ 0

Q

X3852

D FDPE_1

C

PRE

 CE

PRE

C
CE
D PRE Q

FDPE

Q

INV

C CB

D
CE
Libraries Guide 3-257

Libraries Guide
FDR

D Flip-Flop with Synchronous Reset

FDR is a single D-type flip-flop with data (D) and synchronous reset
(R) inputs and data output (Q). The synchronous reset (R) input,
when High, overrides all other inputs and resets the Q output Low on
the Low-to-High clock (C) transition. The data on the D input is
loaded into the flip-flop when R is Low during the Low-to-High clock
transition.

The flip-flop is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable.

Figure 3-78 FDR XC2000/3000/4000 Implementation

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

R D C Q

1 X ↑ 0
0 1 ↑ 1
0 0 ↑ 0

Q

X3718

D

R

C

FDR

D_R

C

D
Q

C

D Q

FD

AND2B1

R

3-258 Xilinx Development System

Design Elements
FDRE

D Flip-Flop with Clock Enable and Synchronous
Reset

FDRE is a single D-type flip-flop with data (D), clock enable (CE), and
synchronous reset (R) inputs and data output (Q). The synchronous
reset (R) input, when High, overrides all other inputs and resets the Q
output Low on the Low-to-High clock (C) transition. The data on the
D input is loaded into the flip-flop when R is Low and CE is High
during the Low-to-High clock transition.

The flip-flop is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable.

Figure 3-79 FDRE XC2000/3000/4000 Implementation

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

R CE D C Q

1 X X ↑ 0
0 0 X X No Chg
0 1 1 ↑ 1
0 1 0 ↑ 0

X3719

FDRE

C

CE

QD

R

QD

C

D Q

FDD

CE

C

A0
A1

Q
AND3B1

AND3B2 OR2

R

Libraries Guide 3-259

Libraries Guide
FDRS

D Flip-Flop with Synchronous Reset and
Synchronous Set

FDRS is a single D-type flip-flop with data (D), synchronous set (S),
and synchronous reset (R) inputs and data output (Q). The synchro-
nous reset (R) input, when High, overrides all other inputs and resets
the Q output Low during the Low-to-High clock (C) transition. (Reset
has precedence over Set.) When S is High and R is Low, the flip-flop is
set, output High, during the Low-to-High clock transition. When R
and S are Low, data on the (D) input is loaded into the flip-flop
during the Low-to-High clock transition.

The flip-flop is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable.

Figure 3-80 FDRS XC2000/3000/4000 Implementation

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

R S D C Q

1 X X ↑ 0
0 1 X ↑ 1
0 0 1 ↑ 1
0 0 0 ↑ 0

Q

X3731

D
FDRS

C

S

R

R

S
D

OR2

Q

C

D_S
FDR

R

QD

C

3-260 Xilinx Development System

Design Elements
FDRSE

D Flip-Flop with Synchronous Reset and Set and
Clock Enable

FDRSE is a single D-type flip-flop with synchronous reset (R),
synchronous set (S), and clock enable (CE) inputs and data output
(Q). The reset (R) input, when High, overrides all other inputs and
resets the Q output Low during the Low-to-High clock transition.
(Reset has precedence over Set.) When the set (S) input is High and R
is Low, the flip-flop is set, output High, during the Low-to-High clock
(C) transition. Data on the D input is loaded into the flip-flop when R
and S are Low and CE is High during the Low-to-High clock transi-
tion.

The flip-flop is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable.

Figure 3-81 FDRSE XC2000/3000/4000 Implementation

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

R S CE D C Q

1 X X X ↑ 0
0 1 X X ↑ 1
0 0 0 X X No Chg
0 0 1 1 ↑ 1
0 0 1 0 ↑ 0

X3732

FDRSE

C

CE

QD

R

S

S
D

CE

FDRE

R

QD
CE
C

Q

OR2

OR2

C

R

CE_S

D_S
Libraries Guide 3-261

Libraries Guide
FDS

D Flip-Flop with Synchronous Set

FDS is a single D-type flip-flop with data (D) and synchronous set (S)
inputs and data output (Q). The synchronous set input, when High,
sets the Q output High on the Low-to-high clock (C) transition. The
data on the D input is loaded into the flip-flop when S is Low during
the Low-to-High clock (C) transition.

The flip-flop is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable.

Figure 3-82 FDS XC2000/3000/4000 Implementation

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

S D C Q

1 X ↑ 1
0 1 ↑ 1
0 0 ↑ 0

Q

X3722

D FDS

C

S

C

D Q

FD
Q

D
S

OR2C

D_S
3-262 Xilinx Development System

Design Elements
FDSE

D Flip-Flop with Clock Enable and Synchronous Set

FDSE is a single D-type flip-flop with data (D), clock enable (CE), and
synchronous set (S) inputs and data output (Q). The synchronous set
(S) input, when High, overrides the clock enable (CE) input and sets
the Q output High during the Low-to-High clock (C) transition. The
data on the D input is loaded into the flip-flop when S is Low and CE
is High during the Low-to-High clock (C) transition.

The flip-flop is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable.

Figure 3-83 FDSE XC2000/3000/4000 Implementation

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

S CE D C Q

1 X X ↑ 1
0 0 X X No Chg
0 1 1 ↑ 1
0 1 0 ↑ 0

X3723

FDSE

C

CE

QD

S

CE

Q

A1

C

A0
S

D
AND2

AND2B1

C

D Q

FD
OR3

A_S
Libraries Guide 3-263

Libraries Guide
FDSR

D Flip-Flop with Synchronous Set and Reset

FDSR is a single D-type flip-flop with data (D), synchronous reset (R)
and synchronous set (S) inputs and data output (Q). When the set (S)
input is High, it overrides all other inputs and sets the Q output High
during the Low-to-High clock transition. (Set has precedence over
Reset.) When reset (R) is High and S is Low, the flip-flop is reset,
output Low, on the Low-to-High clock transition. Data on the D input
is loaded into the flip-flop when S and R are Low on the Low-to-High
clock transition.

The flip-flop is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable.

Figure 3-84 FDSR XC2000/3000/4000 Implementation

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

S R D C Q

1 X X ↑ 1
0 1 X ↑ 0
0 0 1 ↑ 1
0 0 0 ↑ 0

X3729

FDSR

C

QD

R

S

AND2B1
C

D QS

FDS

C

Q
R
D
S

D_R
3-264 Xilinx Development System

Design Elements
FDSRE

D Flip-Flop with Synchronous Set and Reset and
Clock Enable

FDSRE is a single D-type flip-flop with synchronous set (S), synchro-
nous reset (R), and clock enable (CE) inputs and data output (Q).
When synchronous set (S) is High, it overrides all other inputs and
sets the Q output High during the Low-to-High clock transition. (Set
has precedence over Reset.) When synchronous reset (R) is High and
S is Low, output Q is reset Low during the Low-to-High clock transi-
tion. Data is loaded into the flip-flop when S and R are Low and CE is
High during the Low-to-high clock transition. When CE is Low, clock
transitions are ignored.

The flip-flop is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable.

Figure 3-85 FDSRE XC2000/3000/4000 Implementation

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

S R CE D C Q

1 X X X ↑ 1
0 1 X X ↑ 0
0 0 0 X X No Chg
0 0 1 1 ↑ 1
0 0 1 0 ↑ 0

X3730

FDSRE

C

CE

QD

R

S

QD_R

AND2B1

FDSE
S

QD
CE
C

CE_R

D
R

C

S

OR2
CE
Libraries Guide 3-265

Libraries Guide
FJKC

J-K Flip-Flop with Asynchronous Clear

FJKC is a single J-K-type flip-flop with J, K, and asynchronous clear
(CLR) inputs and data output (Q). The asynchronous clear (CLR)
input, when High, overrides all other inputs and resets the Q output
Low. When CLR is Low, the output responds to the state of the J and
K inputs, as shown in the following truth table, during the Low-to-
High clock (C) transition.

The flip-flop is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable.

Figure 3-86 FJKC XC2000/3000/4000 Implementation

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

CLR J K C Q

1 X X X 0
0 0 0 ↑ No Chg
0 0 1 ↑ 0
0 1 0 ↑ 1
0 1 1 ↑ Toggle

Q

X3753

J

CLR

C

FJKC

 K

Q

AND2B1

OR3AND3B1

AND3B2

A1
A0

K
J

A2

C

CLR

AD

QD

CLR
C

FDC
3-266 Xilinx Development System

Design Elements
FJKCE

J-K Flip-Flop with Clock Enable and Asynchronous
Clear

FJKCE is a single J-K-type flip-flop with J, K, clock enable (CE), and
asynchronous clear (CLR) inputs and data output (Q). The asynchro-
nous clear (CLR), when High, overrides all other inputs and resets
the Q output Low during the Low-to-High clock (C) transition. When
CLR is Low and CE is High, Q responds to the state of the J and K
inputs, as shown in the following truth table, during the Low-to-
High clock transition. When CE is Low, the clock transitions are
ignored.

The flip-flop is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

CLR CE J K C Q

1 X X X X 0
0 0 X X X No Chg
0 1 0 0 X No Chg
0 1 0 1 ↑ 0
0 1 1 0 ↑ 1
0 1 1 1 ↑ Toggle

Q

X3756

J

CLR

C

FJKCE

 K

 CE
Libraries Guide 3-267

Libraries Guide
Figure 3-87 FJKCE XC2000/3000/4000 Implementation

AD
A2

CLR

J

CE

K

C

A0
A1

Q

FDCE

QD

CLR

CE
C

AND3B2

AND3B1 OR3

AND2B1
3-268 Xilinx Development System

Design Elements
FJKCP

J-K Flip-Flop with Asynchronous Clear and Preset

* not supported for XC7336 designs

FJKCP is a single J-K-type flip-flop with J, K, asynchronous clear
(CLR), and asynchronous preset (PRE) inputs and data output (Q).
The asynchronous clear input (CLR), when High, overrides all other
inputs and resets the Q output Low on the High-to-Low clock (C)
transition. The asynchronous preset (PRE) input, when High
(provided CLR is Low), overrides all other inputs and sets the Q
output High on the Low-to-High clock (C) transition. When CLR and
PRE are Low, Q responds to the state of the J and K inputs during the
Low-to-High clock transition, as shown in the following truth table.

The flip-flop is asynchronously reset, output Low, when power is
applied or when global reset (GR) is active (Low).

XC2000 XC3000 XC4000 XC7000

Macro N/A N/A Primitive*

Inputs Outputs

CLR PRE J K C Q

1 X X X X 0
0 1 X X X 1
0 0 0 0 X No Chg
0 0 0 1 ↑ 0
0 0 1 0 ↑ 1
0 0 1 1 ↑ Toggle

Q

J

C

FJKCP

 K

PRE

CLR X4390
Libraries Guide 3-269

Libraries Guide
Figure 3-88 FJKCP XC2000 Implementation

CLR

PRE
AND2B1

OR3
AND3B1

AND3B2

A1
A0

C

A2

AD

Q

K
J

C
CLR

D PRE Q

FDCP
3-270 Xilinx Development System

Design Elements
FJKCPE

J-K Flip-Flop with Asynchronous Clear and Preset
and Clock Enable

* not supported for XC7336 designs

FJKCPE is a single J-K-type flip-flop with J, K, asynchronous clear
(CLR), asynchronous preset (PRE), and clock enable (CE) inputs and
data output (Q). The asynchronous clear input (CLR), when High,
overrides all other inputs and resets the Q output Low on the High-
to-Low clock (C) transition. The asynchronous preset (PRE) input,
when High (provided CLR is Low), overrides all other inputs and
sets the Q output High on the Low-to-High clock (C) transition.
When CLR and PRE are Low and CE is High, Q responds to the state
of the J and K inputs, as shown in the following truth table, during
the Low-to-High clock transition. Clock transitions are ignored when
CE is Low.

The flip-flop is asynchronously reset, output Low, when power is
applied or when global reset (GR) is active (Low).

XC2000 XC3000 XC4000 XC7000

Macro N/A N/A Primitive*

Inputs Outputs

CLR PRE CE J K C Q

1 X X X X X 0
0 1 X X X X 1
0 0 0 0 X X No Chg
0 0 1 0 0 X No Chg
0 0 1 0 1 ↑ 0
0 0 1 1 0 ↑ 1
0 0 1 1 1 ↑ Toggle

Q

J

C

FJKCPE

 K

PRE

 CE

CLR X4391
Libraries Guide 3-271

Libraries Guide
Figure 3-89 FJKCPE XC2000 Implementation

CE

CLR

J
K

Q

AD
A2

C

A0
A1

AND3B2

AND3B1 OR3

AND2B1
PRE

C

CE
D Q

CLR

PRE

FDCPE
3-272 Xilinx Development System

Design Elements
FJKP

J-K Flip-Flop with Asynchronous Preset

FJKP is a single J-K-type flip-flop with J, K, and asynchronous preset
(PRE) inputs and data output (Q). The asynchronous preset (PRE)
input, when High, overrides all other inputs and sets the Q output
High on the Low-to-High clock (C) transition. When PRE is Low, the
Q output responds to the state of the J and K inputs, as shown in the
following truth table, during the Low-to-High clock transition. The
flip-flop is asynchronously set, output High, when global set/reset
GSR) is active. The GSR active level is programmable.

Figure 3-90 FJKP XC4000 Implementation

XC2000 XC3000 XC4000 XC7000

N/A N/A Macro Primitive

Inputs Outputs

PRE J K C Q

1 X X X 1
0 0 0 X No Chg
0 0 1 ↑ 0
0 1 0 ↑ 1
0 1 1 ↑ Toggle

Q

X3754

J

C

FJKP

 K

PRE

QPRED

C

FDP

J

PRE

K

Q

AD
A2

C

A0
A1

AND3B2

AND3B1 OR3

AND2B1
Libraries Guide 3-273

Libraries Guide
FJKPE

J-K Flip-Flop with Clock Enable and Asynchronous
Preset

FJKPE is a single J-K-type flip-flop with J, K, clock enable (CE), and
asynchronous preset (PRE) inputs and data output (Q). The asynchro-
nous preset (PRE), when high, overrides all other inputs and sets the
Q output High. When PRE is Low and CE is High, the Q output
responds to the state of the J and K inputs, according to the following
truth table, during the Low-to-High clock (C) transition. When CE is
Low, clock transitions are ignored. The flip-flop is asynchronously
set, output High, when global set/reset (GSR) is active. The GSR
active level is programmable.

XC2000 XC3000 XC4000 XC7000

N/A N/A Macro Primitive

Inputs Outputs

PRE CE J K C Q

1 X X X X 1
0 0 X X X No Chg
0 1 0 0 X No Chg
0 1 0 1 ↑ 0
0 1 1 0 ↑ 1
0 1 1 1 ↑ Toggle

Q

X3757

J

C

FJKPE

 K

PRE

X3757

CE
3-274 Xilinx Development System

Design Elements
Figure 3-91 FJKPE XC4000 Implementation

C
CE
D PRE Q

FDPE
AND2B1

OR3AND3B1

AND3B2

A1
A0

C

A2
AD

Q

K

CE

PRE

J

Libraries Guide 3-275

Libraries Guide
FJKRSE

J-K Flip-Flop with Clock Enable and Synchronous
Reset and Set

FJKRSE is a single J-K-type flip-flop with J, K, synchronous reset (R),
synchronous set (S), and clock enable (CE) inputs and data output
(Q). When synchronous reset (R) is High, all other inputs are ignored
and output Q is reset Low. (Reset has precedence over Set.) When
synchronous set (S) is High and R is Low, output Q is set High. When
R and S are Low and CE is High, output Q responds to the state of the
J and K inputs, according to the following truth table, during the
Low-to-High clock (C) transition. When CE is Low, clock transitions
are ignored.

The flip-flop is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

R S CE J K C Q

1 X X X X ↑ 0
0 1 X X X ↑ 1
0 0 0 X X X No Chg
0 0 1 0 0 X No Chg
0 0 1 0 1 ↑ 0
0 0 1 1 0 ↑ 1
0 0 1 1 1 ↑ Toggle

Q

J

C

FJKRSE

 K

S

 CE

R
X3760
3-276 Xilinx Development System

Design Elements
Figure 3-92 FJKRSE XC2000/3000/4000 Implementation

R

C
CE
S

AD_S

J
K

AND3B2

AND3B1

AND2B1
Q

A0
A1
A2

OR4

FDRE

R

QD
CE
C

Libraries Guide 3-277

Libraries Guide
FJKSRE

J-K Flip-Flop with Clock Enable and Synchronous
Set and Reset

FJKSRE is a single J-K-type flip-flop with J, K, synchronous set (S),
synchronous reset (R), and clock enable (CE) inputs and data output
(Q). When synchronous set (S) is High, all other inputs are ignored
and output Q is set High. (Set has precedence over Reset.) When
synchronous reset (R) is High and S is Low, output Q is reset Low.
When S and R are Low and CE is High, output Q responds to the state
of the J and K inputs, as shown in the following truth table, during
the Low-to-High clock (C) transition. When CE is Low, clock transi-
tions are ignored.

The flip-flop is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

S R CE J K C Q

1 X X X X ↑ 1
0 1 X X X ↑ 0
0 0 0 X X X No Chg
0 0 1 0 0 X No Chg
0 0 1 0 1 ↑ 0
0 0 1 1 0 ↑ 1
0 0 1 1 1 ↑ Toggle

Q

J

C

FJKSRE

 K

S

 CE

R
X3759
3-278 Xilinx Development System

Design Elements
Figure 3-93 FJKSRE XC2000/3000/4000 Implementation

A2

A0
A1

AND3B2

AND3B1 OR3

AD

AND2B1

AD_R

Q
CE
C

S
R

K

FDSE

S
QD

CE
C

J

AND2B1
Libraries Guide 3-279

Libraries Guide
FMAP

F Function Generator Partitioning Control Symbol

The FMAP symbol is used to control logic partitioning into XC4000
family 4-input function generators. The place and route software
chooses an F or a G function generator as a default, unless you specify
an F or G. Refer to the appropriate CAE tool interface user guide for
information about specifying this attribute in your schematic design
editor.

The FMAP symbol is usually used with the HMAP symbol, which
partitions logic into the 3-input generator of the Configurable Logic
Block (CLB). You can implement a portion of logic using gates,
latches, and flip-flops, and specify the logic to be grouped into F, G,
and H function generators by naming logic signals and
FMAP/HMAP signals correspondingly. These symbols are used for
mapping control in addition to the actual gates, latches, and flip-
flops, not as a substitute for them.

XC2000 XC3000 XC4000 XC7000

N/A N/A Primitive N/A

X4646

FMAP

I1

I2

I3

I4

O

3-280 Xilinx Development System

Design Elements
The following figure gives an example of how logic can be placed
using FMAP and HMAP symbols.

Figure 3-94 Partitioning Logic Using FMAP and HMAP Symbols

The MAP=type parameter can be used with the FMAP symbol to
further define how much latitude you want to give the mapping
program. The following table shows MAP option characters and their
meanings.

Possible types of MAP parameters for FMAP are: MAP=PUC,
MAP=PLC, MAP=PLO, and MAP=PUO. The default parameter is

Character Function

P Pins
C Closed – Adding logic to or removing

logic from the CLB is not allowed.
L Locked – Locking CLB pins
O Open – Adding logic to or removing logic

from the CLB is allowed.
U Unlocked – No locking on CLB pins.

D0
D1

SE

O

U3

M2-1

F_FUNC

U1

AND4

IN_F1

IN_F2

IN_F3

IN_F4

IN_G1
D0

D1

SE

EN

O

U2

M2-1E

G_FUNC
H_FUNC

IN_F1

IN_F2

IN_F3

IN_F4

I1

I2

I3

I4

O

U4

FMAP
CLB_R*C*.F

F_FUNC

G_FUNC

I1

I2

I3

I4

O

U5

FMAP
CLB_R*C*.G

IN_G1

IN_G2

IN_G3

IN_G2

IN_G3

IN_G4

IN_H1

IN_G4

F_FUNC

G_FUNC
I1

I2

I3

O

U6

HMAP

H_FUNC

IN_H1

IN_H1

IN_F1

IN_F2

IN_F3

IN_F4
F

H
H_FUNC

G

IN_G1

IN_G2
IN_G3

IN_G4

X1882
Libraries Guide 3-281

Libraries Guide
PUC. If one of the “open” parameters is used (PLO or PUO), only the
output signals must be specified.

The FMAP symbol can be assigned to specific CLB locations using
LOC attributes. Refer to the appropriate CAE tool interface user
guide for more information on assigning LOC attributes.
3-282 Xilinx Development System

Design Elements
FTC

Toggle Flip-Flop with Toggle Enable and
Asynchronous Clear

FTC is a synchronous, resettable toggle flip-flop. The asynchronous
clear (CLR) input, when High, overrides all other inputs and resets
the data output (Q) Low. The Q output toggles, or changes state,
when the toggle enable (T) input is High and CLR is Low during the
Low-to-High clock transition.

The flip-flop is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable.

Figure 3-95 FTC XC2000/3000/4000 Implementation

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

CLR T C Q

1 X X 0
0 0 X No Chg
0 1 ↑ Toggle

Q

X3761

T

CLR

C

FTC

XOR2

QTQ

CLR

C

T QD

CLR
C

FDC
Libraries Guide 3-283

Libraries Guide
FTCE

Toggle Flip-Flop with Toggle and Clock Enable and
Asynchronous Clear

When the asynchronous clear (CLR) input is High, all other inputs
are ignored and the data output (Q) is reset Low. When CLR is Low
and toggle enable (T) and clock enable (CE) are High, Q output
toggles, or changes state, during the Low-to-High clock (C) transi-
tion. When CE is Low, clock transitions are ignored.

The flip-flop is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable.

Figure 3-96 FTCE XC2000/3000/4000 Implementation

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

CLR CE T C Q

1 X X X 0
0 0 X X No Chg
0 1 0 X No Chg
0 1 1 ↑ Toggle

QT FTCE

C

CLR
X3764

CE

T

CE
Q

XOR2

TQ FDCE
QD

CLR

CE
CC

CLR
3-284 Xilinx Development System

Design Elements
FTCLE

Toggle/Loadable Flip-Flop with Toggle and Clock
Enable and Asynchronous Clear

When the asynchronous clear input (CLR) is High, all other inputs
are ignored and output Q is reset Low. When load enable input (L) is
High and CLR is Low, clock enable (CE) is overridden and the data
on data input (D) is loaded into the flip-flop during the Low-to-High
clock (C) transition. When toggle enable (T) and CE are High and L
and CLR are Low, output Q toggles, or changes state, during the
Low- to-High clock transition. When CE is Low, clock transitions are
ignored.

The flip-flop is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

CLR L CE T D C Q

1 X X X X X 0
0 1 X X 1 ↑ 1
0 1 X X 0 ↑ 0
0 0 0 X X X No Chg
0 0 1 0 X X No Chg
0 0 1 1 X ↑ Toggle

X3769

FTCLE

C

CE

T

L

D

CLR

Q

Libraries Guide 3-285

Libraries Guide
Figure 3-97 FTCLE XC2000/3000/4000 Implementation

FDCE

QD

CLR

CE
C

D0
D1

O

S0

M2_1
XOR2

T

CLR

MD

Q

TQ

D

C

L_CE

L

CE

OR2
3-286 Xilinx Development System

Design Elements
FTCP

Toggle Flip-Flop with Toggle Enable and
Asynchronous Clear and Preset

* not supported for XC7336 designs

When the asynchronous clear (CLR) input is High, all other inputs
are ignored and the output (Q) is reset Low. When the asynchronous
preset (PRE) input is High (provided CLR is Low), all other inputs
are ignored and Q is set High. When the toggle enable input (T) is
High and CLR and PRE are Low, output Q toggles, or changes state,
during the Low-to-High clock (C) transition.

The flip-flop is asynchronously reset, output Low, when power is
applied or when global reset (GR) is active (Low).

Figure 3-98 FTCP XC2000 Implementation

XC2000 XC3000 XC4000 XC7000

Macro N/A N/A Primitive*

Inputs Outputs

CLR PRE T C Q

1 X X X 0
0 1 X X 1
0 0 0 X No Chg
0 0 1 ↑ Toggle

Q

T

C

FTCP

PRE

CLR X4392

XOR2

QTQ

C

T

CLR

PRE

C CLR

D PRE Q

FDCP
Libraries Guide 3-287

Libraries Guide
FTCPE

Toggle Flip-Flop with Toggle and Clock Enable and
Asynchronous Clear and Preset

* not supported for XC7336 designs

When the asynchronous clear (CLR) input is High, all other inputs
are ignored and the output (Q) is reset Low. When the asynchronous
preset (PRE) input is High (provided CLR is Low), all other inputs are
ignored and Q is set High. When the toggle enable input (T) and the
clock enable input (CE) are High and CLR and PRE are Low, output
Q toggles, or changes state, during the Low-to-High clock (C) transi-
tion. Clock transitions are ignored when CE is Low.

The flip-flop is asynchronously reset, output Low, when power is
applied or when global reset (GR) is active (Low).

Figure 3-99 FTCPE XC2000 Implementation

XC2000 XC3000 XC4000 XC7000

Macro N/A N/A Primitive*

Inputs Outputs

CLR PRE CE T C Q

1 X X X X 0
0 1 X X X 1
0 0 0 X X No Chg
0 0 1 0 X No Chg
0 0 1 1 ↑ Toggle

Q

T

C

FTCPE

 CE

PRE

CLR X4393

CE

CLR

C

XOR2

QTQ
T

PRE

C

CE
D Q

CLR

PRE

PFE
3-288 Xilinx Development System

Design Elements
FTCPLE

Loadable Toggle Flip-Flop with Toggle and Clock
Enable and Asynchronous Clear and Preset

* not supported for XC7336 designs

When the asynchronous clear (CLR) input is High, all other inputs
are ignored and the output (Q) is reset Low. When the asynchronous
preset (PRE) input is High (provided CLR is Low), all other inputs
are ignored and Q is set High. The load input (L) loads the data on
input D into the flip-flop on the Low-to-High clock transition, regard-
less of the state of the clock enable (CE). When the toggle enable
input (T) and the clock enable input (CE) are High and CLR, PRE,
and L are Low, output Q toggles, or changes state, during the Low-to-
High clock (C) transition. Clock transitions are ignored when CE is
Low.

The flip-flop is asynchronously reset, output Low, when power is
applied or when global reset (GR) is active (Low).

XC2000 XC3000 XC4000 XC7000

Macro N/A N/A Primitive*

Inputs Outputs

CLR PRE L CE T C D Q

1 X X X X X X 0
0 1 X X X X X 1
0 0 1 X X ↑ 0 0
0 0 1 X X ↑ 1 1
0 0 0 0 X X X No Chg
0 0 0 1 0 X X No Chg
0 0 0 1 1 ↑ X Toggle

Q

D

C

FTCPLE

 CE

PRE

CLR X4394

T

 L
Libraries Guide 3-289

Libraries Guide
Figure 3-100 FTCPLE XC2000 Implementation

PRE

C
CE
D Q

CLR

PRE

FDCPE

C

CLR

CE
L_CE

D0
D1

O

S0

M2_1
XOR2

T

MD

TQ

D
L

Q

OR2
3-290 Xilinx Development System

Design Elements
FTP

Toggle Flip-Flop with Toggle Enable and
Asynchronous Preset

When the asynchronous preset (PRE) input is High, all other inputs
are ignored and output Q is set High. When toggle enable input (T) is
High and PRE is Low, output Q toggles, or changes state, during the
Low-to-High clock (C) transition. The flip-flop is asynchronously set,
output High, when global set/reset (GSR) is active. The GSR active
level is programmable.

Figure 3-101 FTP XC4000 Implementation

XC2000 XC3000 XC4000 XC7000

N/A N/A Macro Primitive

Inputs Outputs

PRE T C Q

1 X X 1
0 0 X No Chg
0 1 ↑ Toggle

Q

X3762

T
FTP

C

PRE

QTQ

PRE

XOR2C

T QPRED

C

FDP
Libraries Guide 3-291

Libraries Guide
FTPE

Toggle Flip-Flop with Toggle and Clock Enable and
Asynchronous Preset

When the asynchronous preset (PRE) input is High, all other inputs
are ignored and output Q is set High during the Low-to-High clock
(C) transition. When the toggle enable input (T) is High, clock enable
(CE) is High, and PRE is Low, output Q toggles, or changes state,
during the Low-to-High clock transition. When CE is Low, clock tran-
sitions are ignored. The flip-flop is asynchronously set, output High,
when global set/reset (GSR) is active. The GSR active level is
programmable.

Figure 3-102 FTPE XC4000 Implementation

XC2000 XC3000 XC4000 XC7000

N/A N/A Macro Primitive

Inputs Outputs

PRE CE T C Q

1 X X X 1
0 0 X X No Chg
0 1 0 X No Chg
0 1 1 ↑ Toggle

X3765

FTPE

C

CE

QT

PRE

C
CE
D

PRE
Q

FDPE

QT

XOR2

TQ

CE
C

PRE
3-292 Xilinx Development System

Design Elements
FTPLE

Toggle/Loadable Flip-Flop with Toggle and Clock
Enable and Asynchronous Preset

When the asynchronous preset input (PRE) is High, all other inputs
are ignored and output Q is set High during the Low-to-High clock
(C) transition. When the load enable input (L) is High and PRE is
Low, the clock enable (CE) is overridden and the data on input (D) is
loaded into the flip-flop during the Low-to-High clock transition.
When L and PRE are Low and toggle enable input (T) and CE are
High, output Q toggles, or changes state, during the Low-to-High
clock transition. When CE is Low, clock transitions are ignored. The
flip-flop is asynchronously set, output High, when global set/reset
(GSR) is active. The GSR active level is programmable.

XC2000 XC3000 XC4000 XC7000

N/A N/A Macro Primitive

Inputs Outputs

PRE L CE T D C Q

1 X X X X X 1
0 1 X X 1 ↑ 1
0 1 X X 0 ↑ 0
0 0 0 X X X No Chg
0 0 1 0 X X No Chg
0 0 1 1 X ↑ Toggle

X3770

C

CE

T

L

D

Q

PRE

FTPLE
Libraries Guide 3-293

Libraries Guide
Figure 3-103 FTPLE XC4000 Implementation

C

PRE

CE

OR2
C
CE
D PRE Q

FDPE

D

TQ

Q

T

XOR2 D0
D1

O

S0

M2_1

L

MD
3-294 Xilinx Development System

Design Elements
FTRSE

Toggle Flip-Flop with Toggle and Clock Enable and
Synchronous Reset and Set

When the synchronous reset input (R) is High, it overrides all other
inputs and the data output (Q) is reset Low. When the synchronous
set input (S) is High and R is Low, clock enable input (CE) is over-
ridden and output Q is set High. (Reset has precedence over Set.)
When toggle enable input (T) and CE are High and R and S are Low,
output Q toggles, or changes state, during the Low-to-High clock
transition.

The flip-flop is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable.

Figure 3-104 FTRSE XC2000/3000/4000 Implementation

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

R S CE T C Q

1 X X X ↑ 0
0 1 X X ↑ 1
0 0 0 X X No Chg
0 0 1 0 X No Chg
0 0 1 1 ↑ Toggle

X3768

FTRSE

C

CE

QT

R

S

S

T

R
C
CE

OR2

Q
CE_S

XOR2 D_S

TQ

FDRE

R

QD
CE
C

OR2
Libraries Guide 3-295

Libraries Guide
FTRSLE

Toggle/Loadable Flip-Flop with Toggle and Clock
Enable and Synchronous Reset and Set

The synchronous reset input (R), when High, overrides all other
inputs and resets the data output (Q) Low. (Reset has precedence over
Set.) When R is Low and synchronous set input (S) is High, the clock
enable input (CE) is overridden and output Q is set High. When R
and S are Low and load enable input (L) is High, CE is overridden
and data on data input (D) is loaded into the flip-flop during the
Low-to-High clock transition. When R, S, and L are Low and CE is
High, output Q toggles, or changes state, during the Low-to-High
clock transition. When CE is Low, clock transitions are ignored.

The flip-flop is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

R S L CE T D C Q

1 0 X X X X ↑ 0
0 1 X X X X ↑ 1
0 0 1 X X 1 ↑ 1
0 0 1 X X 0 ↑ 0
0 0 0 0 X X X No Chg
0 0 0 1 0 X X No Chg
0 0 0 1 1 X ↑ Toggle

X3773

FTRSLE

C

CE

T

L

D

R

Q

S

3-296 Xilinx Development System

Design Elements
Figure 3-105 FTRSLE XC2000/3000/4000 Implementation

S
L

R

C

CE_S_L

MD_S

Q

TQ
T

D

XOR2
D0
D1

O

S0

M2_1
MD

FDRE

R

QD
CE
C

CE
OR3

OR2
Libraries Guide 3-297

Libraries Guide
FTSRE

Toggle Flip-Flop with Toggle and Clock Enable and
Synchronous Set and Reset

The synchronous set input, when High, overrides all other inputs and
sets data output (Q) High. (Set has precedence over Reset.) When
synchronous reset input (R) is High and S is Low, clock enable input
(CE) is overridden and output Q is reset Low. When toggle enable
input (T) and CE are High and S and R are Low, output Q toggles, or
changes state, during the Low-to-High clock transition.

The flip-flop is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable.

Figure 3-106 FTSRE XC2000/3000/4000 Implementation

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

S R CE T C Q

1 X X X ↑ 1
0 1 X X ↑ 0
0 0 0 X X No Chg
0 0 1 0 X No Chg
0 0 1 1 ↑ Toggle

X3767

FTSRE

C

CE

QT

R

S

C
OR2

Q

FDSE

S
QD

CE

C

CE_R

XOR2

T

AND2B1

R

CE

S

D_R

TQ
3-298 Xilinx Development System

Design Elements
FTSRLE

Toggle/Loadable Flip-Flop with Toggle and Clock
Enable and Synchronous Set and Reset

The synchronous set input (S), when High, overrides all other inputs
and sets data output (Q) High. (Set has precedence over Reset.) When
synchronous reset (R) is High and S is Low, clock enable input (CE) is
overridden and output Q is reset Low. When load enable input (L) is
High and S and R are Low, CE is overridden and data on data input
(D) is loaded into the flip-flop during the Low-to-High clock transi-
tion. When the toggle enable input (T) and CE are High and S, R, and
L are Low, output Q toggles, or changes state, during the Low-to-
High clock transition. When CE is Low, clock transitions are ignored.

The flip-flop is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

S R L CE T D C Q

1 0 X X X X ↑ 1
0 1 X X X X ↑ 0
0 0 1 X X 1 ↑ 1
0 0 1 X X 0 ↑ 0
0 0 0 0 X X X No Chg
0 0 0 1 0 X X No Chg
0 0 0 1 1 X ↑ Toggle

X3772

FTSRLE

C

CE

T

L

D

R

Q

S

Libraries Guide 3-299

Libraries Guide
Figure 3-107 FTSRLE XC2000/3000/4000 Implementation

AND2B1

MD
D0
D1

O

S0

M2_1XOR2

D

T
TQ

CE

Q

S

L
R

OR3

FDSE
S

QD
CE
C

C

CE_R_L

MD_S
3-300 Xilinx Development System

Design Elements
GCLK

Global Clock Buffer

GCLK, the global clock buffer, distributes high fan-out clock signals.
One GCLK buffer on each device provides direct access to every
Configurable Logic Block (CLB) and Input Output Block (IOB) clock
pin. If it is not used in a design, its routing resources are not used for
any signals. Therefore, the GCLK should always be used for the
highest fan–out clock net in the design. The GCLK input (I) can come
from one of the following sources.

● From a CMOS-level signal on the dedicated TCLKIN pin (XC3000
only). TCLKIN is a direct CMOS-only input to the GCLK buffer.
To use the TCLKIN pin, connect the input of the GCLK element
directly to the PAD element (without using an IBUF in between).

● From a CMOS or TTL-level external signal. To connect an external
input to the GCLK buffer, connect the input of the GCLK element
to the output of the IBUF for that signal. Unless the corresponding
PAD element is constrained otherwise, APR or PPR typically
places that IOB directly adjacent to the GCLK buffer.

● From an internal signal. To drive the GCLK buffer with an internal
signal, connect that signal directly to the input of the GCLK ele-
ment.

The output of the GCLK buffer can drive all the clock inputs on the
chip, but it cannot drive non-clock inputs. For a negative-edge clock,
insert an INV (inverter) element between the GCLK output and the
clock input. This inversion is performed inside the CLB, or in the case
of IOB clock pins, on the IOB clock line (which controls the clock
sense for the IOBs on an entire edge of the chip).

XC2000 XC3000 XC4000 XC7000

Primitive Primitive N/A N/AX3884
Libraries Guide 3-301

Libraries Guide
GND

Ground-Connection Signal Tag

The GND signal tag, or parameter, forces a net or input function to a
Low logic level. A net tied to GND cannot have any other source.

When the logic-trimming software (XNFPrep) or fitter (XEPLD)
encounters a net or input function tied to GND, it removes any logic
that is disabled by the GND signal. The GND signal is only imple-
mented when the disabled logic cannot be removed.

XC2000 XC3000 XC4000 XC7000

Primitive Primitive Primitive PrimitiveX3858
3-302 Xilinx Development System

Design Elements
GXTL

Crystal Oscillator with ACLK Buffer

The GXTL element drives an internal ACLK buffer with a frequency
derived from an external crystal-controlled oscillator. The GXTL (or
ACLK) output is connected to an internal clock net.

There are two dedicated input pins (XTAL 1 and XTAL 2) on each
FPGA device that are internally connected to pads and input/output
blocks that are in turn connected to the GXTL amplifier. The external
components are connected as shown in the following example. Refer
to The Programmable Gate Array Data Book for details on component
selection and tolerances.

Figure 3-108 GXTL XC2000/3000 Implementation

XC2000 XC3000 XC4000 XC7000

Macro Macro N/A N/A

X3886

ACLK

@PULSELO=@PULSEL

@PULSEHI=@PULSEH

OSC

OSC_OUT O
Libraries Guide 3-303

Libraries Guide
HMAP

H Function Generator Partitioning Control Symbol

The HMAP symbol is used to control logic partitioning into XC4000
family 3-input H function generators. It is usually used with FMAP,
which partitions logic into F and G function generators. You can
implement a portion of logic using gates, latches, and flip-flops and
specify the logic to be grouped into F, G, and H function generators
by naming logic signals and HMAP/FMAP signals correspondingly.
These symbols are used for mapping control in addition to the actual
gates, latches, and flip-flops and not as a substitute for them. The
following figure gives an example of how logic can be placed using
HMAP and FMAP symbols.

Figure 3-109 Partitioning Logic Using FMAP and HMAP
Symbols

XC2000 XC3000 XC4000 XC7000

N/A N/A Primitive N/A

X4659

HMAP

I1

I2

I3

O

D0
D1

SE

O

U3

M2-1

F_FUNC

U1

AND4

IN_F1

IN_F2

IN_F3

IN_F4

IN_G1
D0

D1

SE

EN

O

U2

M2-1E

G_FUNC
H_FUNC

IN_F1

IN_F2

IN_F3

IN_F4

I1

I2

I3

I4

O

U4

FMAP
CLB_R*C*.F

F_FUNC

G_FUNC

I1

I2

I3

I4

O

U5

FMAP
CLB_R*C*.G

IN_G1

IN_G2

IN_G3

IN_G2

IN_G3

IN_G4

IN_H1

IN_G4

F_FUNC

G_FUNC
I1

I2

I3

O

U6

HMAP

H_FUNC

IN_H1

IN_H1

IN_F1

IN_F2

IN_F3

IN_F4

F

H
H_FUNC

G

IN_G1

IN_G2
IN_G3

IN_G4

X1882
3-304 Xilinx Development System

Design Elements
The MAP=type parameter can only be set to the default value, PUC,
for the HMAP symbol. PUC means pins are not locked to the signals
but the CLB is closed to addition or removal of logic.

The HMAP symbol can be assigned to specific CLB locations using
LOC attributes. Refer to the “Attributes, Constraints, and Carry
Logic” chapter for more information on assigning LOC attributes.
Libraries Guide 3-305

Libraries Guide
IBUF, IBUF4, IBUF8, and IBUF16

Single- and Multiple-Input Buffers

IBUF, IBUF4, IBUF8, and IBUF16 are single and multiple input
buffers. An IBUF isolates the internal circuit from the signals coming
into a chip. IBUFs are contained in input/output blocks (IOB). IBUF
inputs (I) are connected to an IPAD or an IOPAD. IBUF outputs (O)
are connected to the internal circuit.

Figure 3-110 IBUF8 XC2000/3000/4000/7000 Implementation

Name XC2000 XC3000 XC4000 XC7000

IBUF Primitive Primitive Primitive Primitive
IBUF4,
IBUF8,
IBUF16

Macro Macro Macro Macro

X3784

X3791

IBUF4

IBUF8

X3803

IBUF16

X3815

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

O7

O6

O[7:0]

O0

O1

O2

O3

O4

O5

I[7:0]

I0

I1

I2

I3

I4

I5

I6

I7
3-306 Xilinx Development System

Design Elements
IFD, IFD4, IFD8, and IFD16

Single- and Multiple-Input D Flip-Flops

* not supported for XC7336 designs

The IFD D-type flip-flop is contained in an input/output block (IOB).
The input (D) of the flip-flop is connected to an IPAD or an IOPAD
(without using an IBUF). The D input provides data input for the flip-
flop, which synchronizes data entering the chip. The data on input D
is loaded into the flip-flop during the Low-to-High clock (C) transi-
tion and appears at the output (Q). The clock input is controlled by
the internal circuit. For XC7000 EPLDs, the clock (C) can only be
driven by a FastCLK represented by the BUFG symbol.

The flip-flops are asynchronously reset, outputs Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable. For XC7000 EPLDs (except XC7272), the flip-
flops are set High when power is applied.

Name XC2000 XC3000 XC4000 XC7000

IFD Primitive Primitive Primitive Primitive*
IFD4,
IFD8,
IFD16

Macro Macro Macro Macro*

Q

X3776

D
IFD

C

Q[7:0]

X3811

D[7:0] IFD8

C

Q[15:0]

X3833

D[15:0] IFD16

C

X3799

IFD4

C

D3

D2

D1

D0

Q3

Q2

Q1

Q0
Libraries Guide 3-307

Libraries Guide
Refer to the following figures for legal IFD/ILD combinations for
XC3000 and XC4000 respectively.

Figure 3-111 Legal Combinations of IFD and ILD for a Single
Device Edge of XC3000 IOB

Figure 3-112 Legal Combinations of IFD and ILD for a Single
XC4000 IOB

dn = state of referenced input one set-up time prior to active clock transition

Inputs Outputs

Dn C Qn

Dn ↑ dn

X4690

D Q

D Q

G

C C

ILD

IFD_1

IPAD

IPAD
D Q

D Q

G

ILD_1

IFD

IPAD

IPAD

X4688

D Q

D Q

G

C C

ILD

IFD_1

IPAD

D Q

D Q

G

ILD_1

IFD

IPAD

CLOCKCLOCK
3-308 Xilinx Development System

Design Elements
Figure 3-113 IFD8 XC2000/3000/4000/7000 Implementation

D[7:0]

D7

D6

D5

D0

D1

D2

D3

D4

C

Q[7:0]

Q0

Q2

Q3

Q4

Q5

Q7

Q6

Q1

Q7

IFD

QD

C

Q6

IFD

QD

C

Q5

IFD

QD

C

Q4

IFD
QD

C

Q3

IFD

QD

C

Q2

IFD
QD

C

Q1

IFD
QD

C

Q0

IFD

QD

C

Libraries Guide 3-309

Libraries Guide
IFD_1

Input D Flip-Flop with Inverted Clock

The IFD_1 D-type flip-flop is contained in an input/output block
(IOB). The input (D) of the flip-flop is connected to an IPAD or an
IOPAD. The D input also provides data input for the flip-flop, which
synchronizes data entering the chip. The data on input D is loaded
into the flip-flop during the High-to-Low clock (C) transition and
appears at the output (Q). The clock input is controlled by the internal
circuit.

The flip-flop is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable.

Refer to the following figures for legal IFD/ILD combinations for
XC3000 and XC4000 respectively.

Figure 3-114 Legal Combinations of IFD and ILD for a Single
Device Edge of XC3000 IOB

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro N/A

Q

X3777

D
IFD_1

C

X4690

D Q

D Q

G

C C

ILD

IFD_1

IPAD

IPAD
D Q

D Q

G

ILD_1

IFD

IPAD

IPAD
3-310 Xilinx Development System

Design Elements
Figure 3-115 Legal Combinations of IFD and ILD for a Single
XC4000 IOB

d = state of referenced input one set-up time prior to active clock transition

Figure 3-116 IFD_1 XC2000/3000/4000 Implementation

Inputs Outputs

D C Q

D ↓ d

X4688

D Q

D Q

G

C C

ILD

IFD_1

IPAD

D Q

D Q

G

ILD_1

IFD

IPAD

CLOCKCLOCK

CB

Q

C

D

INV

IFD
QD

C

Libraries Guide 3-311

Libraries Guide
IFDX1, IFD4X1, IFD8X1, and IFD16X1

Input D Flip-Flops for EPLD

* not supported for XC7236, XC7272, or XC7336 designs

The IFDX1 symbols are D-type flip-flops with synchronous clock
enable implemented in the input blocks of an EPLD device. They are
commonly used to synchronize and store data entering a chip. The
data input (D) of the flip-flop is connected directly to an IPAD or an
IOPAD (without using an IBUF). When the clock enable (CE) input is
Low, the data on input D is loaded into the flip-flop during the Low-
to-High clock (C) transition and appears at the output (Q). The flip-
flop ignores clock transitions when CE is High.

The clock input (C) must be driven by a global FastCLK net of the
EPLD device, represented by the BUFG symbol. The clock enable
input (CE) must be driven by a global clock enable net of the EPLD
device, represented by the BUFCE symbol.

The flip-flops are asynchronously set, outputs High, when power is
applied or when the device Master Reset pin is activated.

Name XC2000 XC3000 XC4000 XC7000

IFDX1 N/A N/A N/A Primitive*
IFD4X1,
IFD8X1,
IFD16X1

N/A N/A N/A Macro*

Inputs Outputs

D CE C Q

X 1 X No Chg
0 0 ↑ 0
1 0 ↑ 1

X4213

IFDX1

C
CE

D Q

X4216

IFD4X1

C

D3

D2

D1

D0 Q0

Q1

Q2

Q3
CE

X4219

IFD8X1

C
CE

D[7:0] Q[7:0]

X4222

IFD16X1

C
CE

D[15:0] Q[15:0]
3-312 Xilinx Development System

Design Elements
Figure 3-117 IFD8X1 XC7000 Implementation

Q6

C

IFDX1

QD
CE

Q1

Q6

Q7

Q5

Q4

Q3

Q2

Q0

Q[7:0]

C

D4

D3

D2

D1

D0

D5

D6

D7

D[7:0]

CE

Q0

C

IFDX1

QD
CE

Q1

C

IFDX1

QD
CE

Q2

C

IFDX1

QD
CE

Q3

C

IFDX1

QD
CE

Q4

C

IFDX1

QD
CE

Q5

C

IFDX1

QD
CE

Q7

C

IFDX1

QD
CE
Libraries Guide 3-313

Libraries Guide
IFDI

Input D Flip-Flop (Asynchronous Set)

The IFDI D-type flip-flop is contained in an input/output block
(IOB). The input (D) of the flip-flop is connected to an IPAD or an
IOPAD. The D input provides data input for the flip-flop, which
synchronizes data entering the chip. The data on input D is loaded
into the flip-flop during the Low-to-High clock (C) transition and
appears at the output (Q). The clock input is controlled by the internal
circuit. The flip-flop is asynchronously set, output High, when power
is applied or when global set/reset (GSR) is active. The GSR active
level is programmable.

Refer to the following figures for legal IFDI/ILDI combinations for
XC3000 and XC4000 respectively.

Figure 3-118 Legal Combinations of IFDI and ILDI for a Single
Device Edge of XC3000 IOB

XC2000 XC3000 XC4000 XC7000

N/A N/A Primitive N/A

Q

X4617

D IFDI

C

X3677

D Q

D Q

G

C C

ILDI

IFDI_1

IPAD

IPAD
D Q

D Q

G

ILDI_1

IFDI

IPAD

IPAD
3-314 Xilinx Development System

Design Elements
Figure 3-119 Legal Combinations of IFDI and ILDI for a Single
XC4000 IOB

d = state of referenced input one set-up time prior to active clock transition

Inputs Outputs

D C Q

D ↑ d

X4511

D Q

D Q

G

C C

ILDI

IFDI_1

IPAD

D Q

D Q

G

ILDI_1

IFDI

IPAD

CLOCKCLOCK
Libraries Guide 3-315

Libraries Guide
IFDI_1

D Flip-Flop with Inverted Clock (Asynchronous Set)

The IFDI_1 D-type flip-flop is contained in an input/output block
(IOB). The input (D) of the flip-flop is connected to an IPAD or an
IOPAD. The D input provides data input for the flip-flop, which
synchronizes data entering the chip. The data on input D is loaded
into the flip-flop during the High-to-Low clock (C) transition and
appears at the output (Q). The clock input is controlled by the internal
circuit. The flip-flop is asynchronously set, output High, when power
is applied or when global set/reset (GSR) is active. The GSR active
level is programmable.

Refer to the following figures for legal IFDI/ILDI combinations for
XC3000 and XC4000 respectively.

Figure 3-120 Legal Combinations of IFDI and ILDI for a Single
XC4000 IOB

d = state of referenced input one set-up time prior to active clock transition

XC2000 XC3000 XC4000 XC7000

N/A N/A Macro N/A

Inputs Outputs

D C Q

D ↓ d

Q

X4386

D IFDI_1

C

X4511

D Q

D Q

G

C C

ILDI

IFDI_1

IPAD

D Q

D Q

G

ILDI_1

IFDI

IPAD

CLOCKCLOCK
3-316 Xilinx Development System

Design Elements
Figure 3-121 IFDI_1 XC4000 Implementation

CB

Q

C

D

INV

C

D Q

IFDI

IFDI_1.4K
Libraries Guide 3-317

Libraries Guide
ILD, ILD4, ILD8, and ILD16

Input Transparent Data Latches

* not supported for XC7336 designs

ILD, ILD4, ILD8, and ILD16 are single or multiple transparent data
latches, which can be used to hold transient data entering a chip. The
latch input (D) is connected to an IPAD or an IOPAD (without using
an IBUF). When the gate input (G) is High, data on the inputs (D)
appears on the outputs (Q). Data on the D inputs during the High-to-
Low G transition is stored in the latch. For XC7000 EPLDs, the gate
input (G) must be driven by a FastCLK, represented by the BUFG
symbol.

The latch is reset, output Low, when power is applied or when global
reset (GR for XC3000) or global set/reset (GSR for XC4000) is active.
GR is active-Low; the GSR active level is programmable. For XC7000
EPLDs (except XC7272) the latches are set High when power is
applied.

XC4000 ILD
The XC4000 ILD is actually the input flip-flop master latch. It is
possible to access two different outputs from the input flip-flop: one
that responds to the level of the clock signal and another that
responds to an edge of the clock signal. When using both outputs
from the same input flip-flop, a transparent High latch (ILD) corre-
sponds to a falling edge-triggered flip-flop (IFD_1). Similarly, a trans-
parent Low latch (ILD_1) corresponds to a rising edge-triggered flip-
flop (IFD). Refer to the following figure for XC4000 legal IFD/ILD
combinations.

Name XC2000 XC3000 XC4000 XC7000

ILD N/A Primitive Macro Primitive*
ILD4,
ILD8,
ILD16

N/A Macro Macro Macro*

Q

X3774

D ILD

G

X3798

ILD4

G

D3

D2

D1

D0

Q3

Q2

Q1

Q0

Q[7:0]

X3810

D[7:0] ILD8

G

Q[15:0]

X3832

D[15:0] ILD16

G

3-318 Xilinx Development System

Design Elements
Figure 3-122 Legal Combinations of IFD and ILD for a Single
XC4000 IOB

XC3000 ILD
The XC3000 ILD is actually the input flip-flop master latch. If both
ILD and IFD elements are controlled by the same clock signal, the
relationship between the transparent sense of the latch and the active
edge of the flip-flop is fixed as follows: a transparent High latch (ILD)
corresponds to a falling edge-triggered flip-flop (IFD_1), and a trans-
parent Low latch (ILD_1) corresponds to a rising edge-triggered flip-
flop (IFD). Because the place and route software does not support
using both phases of a clock for IOBs on a single edge of the device,
certain combinations of ILD and IFD elements are not allowed. Refer
to the following figure for XC3000 legal IFD/ILD combinations.

X4688

D Q

D Q

G

C C

ILD

IFD_1

IPAD

D Q

D Q

G

ILD_1

IFD

IPAD

CLOCKCLOCK
Libraries Guide 3-319

Libraries Guide
Figure 3-123 Legal Combinations of IFD and ILD for a Single
Device Edge of XC3000 IOB

d = state of referenced input one set-up time prior to High-to-Low gate transition

Figure 3-124 ILD XC4000 Implementation

Inputs Outputs

G D Q

1 1 1
1 0 0
↓ D d

X4690

D Q

D Q

G

C C

ILD

IFD_1

IPAD

IPAD
D Q

D Q

G

ILD_1

IFD

IPAD

IPAD

GB

Q

G

D

INV

ILD_1

D Q

G

ILD.4K
3-320 Xilinx Development System

Design Elements
Figure 3-125 ILD8 XC3000/4000/7000 Implementation

Q7
G

D Q

ILD

Q5
G

D Q

ILD

Q6
G

D Q

ILD

Q4
G

D Q

ILD
Q3

G

D Q

ILD
Q2

G

D Q

ILD
Q1

G

D Q

ILD
Q0

G

D Q

ILD

G

Q[7:0]

Q1

Q6

Q7

Q5

Q4

Q3

Q2

Q0

D7

D6

D5

D0

D1

D2

D3

D4

D[7:0]
Libraries Guide 3-321

Libraries Guide
ILD_1

Transparent Input Data Latch with Inverted Gate

ILD_1 is a transparent data latch, which can be used to hold transient
data entering a chip. When the gate input (G) is Low, data on the data
input (D) appears on the data output (Q). Data on D during the Low-
to-High G transition is stored in the latch. For implementation details,
refer to the “ILD, ILD4, ILD8, and ILD16” section earlier in this
chapter.

The latch is reset, output Low, when power is applied or when global
reset (GR for XC3000) or global set/reset (GSR for XC4000) is active.
GR is active-Low; the GSR active level is programmable.

Refer to the following figures for legal IFD/ILD combinations, for
XC3000 and XC4000 respectively.

Figure 3-126 Legal Combinations of IFD and ILD for a Single
Device Edge of XC3000 IOB

XC2000 XC3000 XC4000 XC7000

N/A Macro Primitive N/A

Q

X4387

D ILD_1

G

X4690

D Q

D Q

G

C C

ILD

IFD_1

IPAD

IPAD
D Q

D Q

G

ILD_1

IFD

IPAD

IPAD
3-322 Xilinx Development System

Design Elements
Figure 3-127 Legal Combinations of IFD and ILD for a Single
XC4000 IOB

d = state of referenced input one set-up time prior to Low-to-High gate transition

Figure 3-128 ILD_1 XC3000 Implementation

Inputs Outputs

G D Q

0 1 1
0 0 0
↑ D d

X4688

D Q

D Q

G

C C

ILD

IFD_1

IPAD

D Q

D Q

G

ILD_1

IFD

IPAD

CLOCKCLOCK

D

G

Q

ILD

INV

D

G

Q

GB
Libraries Guide 3-323

Libraries Guide
ILDI

Input Transparent Data Latch (Asynchronous Set)

ILDI is a transparent data latch, which can hold transient data
entering a chip. When the gate input (G) is High, data on the input
(D) appears on the output (Q). Data on the D input during the High-
to-Low G transition is stored in the latch.

The ILDI is actually the input flip-flop master latch. It is possible to
access two different outputs from the input flip-flop: one that
responds to the level of the clock signal and another that responds to
an edge of the clock signal. When using both outputs from the same
input flip-flop, a transparent High latch (ILDI) corresponds to a
falling edge-triggered flip-flop (IFDI_1). Similarly, a transparent Low
latch (ILDI_1) corresponds to a rising edge-triggered flip-flop (IFDI).
Refer to the following figures for legal IFDI/ILDI combinations for
XC3000 and XC4000 respectively.

Figure 3-129 Legal Combinations of IFDI and ILDI for a Single
XC4000 IOB

The latch is set, output High, when power is applied or when global
set/reset (GSR) is active. The GSR active level is programmable.

XC2000 XC3000 XC4000 XC7000

N/A N/A Macro N/A

Q

X4388

D ILDI

G

X4511

D Q

D Q

G

C C

ILDI

IFDI_1

IPAD

D Q

D Q

G

ILDI_1

IFDI

IPAD

CLOCKCLOCK
3-324 Xilinx Development System

Design Elements
d = state of referenced input one set-up time prior to High-to-Low gate transition

Figure 3-130 ILDI XC4000 Implementation

Inputs Outputs

G D Q

1 1 1
1 0 0
↓ D d

GB

Q

G

D

INV

QD

G

ILDI_1

ILDI_1.4K
Libraries Guide 3-325

Libraries Guide
ILDI_1

Transparent Input Data Latch with Inverted Gate
(Asynchronous Set)

ILDI_1 is a transparent data latch, which can hold transient data
entering a chip. When the gate input (G) is Low, data on the data
input (D) appears on the data output (Q). Data on D during the Low-
to-High G transition is stored in the latch. For implementation details,
refer to the “ILD, ILD4, ILD8, and ILD16” section earlier in this
chapter.

The latch is set, output High, when power is applied or when global
set/reset (GSR) is active. The GSR active level is programmable.

Refer to the following figures for legal IFDI/ILDI combinations for
XC3000 and XC4000 respectively.

Figure 3-131 Legal Combinations of IFDI and ILDI for a Single
XC4000 IOB

XC2000 XC3000 XC4000 XC7000

N/A N/A Primitive N/A

Q

X4618

D ILDI_1

G

X4511

D Q

D Q

G

C C

ILDI

IFDI_1

IPAD

D Q

D Q

G

ILDI_1

IFDI

IPAD

CLOCKCLOCK
3-326 Xilinx Development System

Design Elements
d = state of referenced input one set-up time prior to Low-to-High gate transition

Inputs Outputs

G D Q

0 1 1
0 0 0
↑ D d
Libraries Guide 3-327

Libraries Guide
INV, INV4, INV8, and INV16

Single and Multiple Inverters

These single and multiple inverters identify signal inversions in a
schematic.

Figure 3-132 INV8 XC2000/3000/4000 Implementation

Name XC2000 XC3000 XC4000 XC7000

INV Primitive Primitive Primitive Primitive
INV4,
INV8,
INV16

Macro Macro Macro Primitive

X3795

X3788

X3807

X3819

O7

O6

O[7:0]

O0

O1

O2

O3

O4

O5

I[7:0]

I0

I1

I2

I3

I4

I5

I6

I7

INV

INV

INV

INV

INV

INV

INV

INV
3-328 Xilinx Development System

Design Elements
IOB

IOB Configuration Symbol

The IOB symbol is used to manually specify an IOB configuration.
Use it in place of, not in conjunction with, other I/O primitives. The
configuration of the IOB is specified using the BASE and CONFIG
commands. Enter these commands on the schematic; the translator
puts them into the CFG records in the LCA Xilinx netlist file. It is not
necessary for the translator program to parse the commands speci-
fying the IOB configuration. The mapping program from the LCA
Xilinx netlist to the FPGA design checks these commands for errors.

Refer to the appropriate CAE tool interface user guide for more infor-
mation on specifying the IOB configuration commands in a sche-
matic.

XC2000 XC3000 XC4000 XC7000

Primitive Primitive N/A N/A

XC2000

XC3000

X4649

K

O

T

I

IOB

X4652

OK

IK

O I

T

Q

IOB
Libraries Guide 3-329

Libraries Guide
The XC2000 blank IOB primitive symbol and its corresponding
configured IOB primitive and circuit are shown in the following
figure.

Figure 3-133 XC2000 IOB Primitive Example and Equivalent
Circuit

X4674

T
IOB

O

K

I

P12

I:Q BUF:TRI

Q

IOB P12

D

C

IFD

K

U3

PAD
P12

T

O

I

U2

0

U1

OBUFT
3-330 Xilinx Development System

Design Elements
The XC3000 blank IOB primitive symbol and its corresponding
configured IOB primitive and circuit are shown in the following
figure.

Figure 3-134 XC3000 IOB Primitive Example and Equivalent
Circuit

The configuration commands must be consistent with the connec-
tions to the pins on the symbol. For example, if the configuration
commands specify the IOB as a 3-state buffer, the T and O pins must
be connected to signals.

You can specify the location of the IOB on the device. When speci-
fying the LOC attribute, a valid IOB location name must be used.
Refer to the “Attributes, Constraints, and Carry Logic’’ chapter for
more information the LOC attribute.

X4673

T
IOB

O

IK

OK

I

Q

J13

IO
IN:IQ:LATCH OUT:OQ TRI:T

D

C

Q

OUTFFT

U4

D

L

INLAT

IK

U5

PAD
J13

T

O

OK

I

Q

n

U2

0

Libraries Guide 3-331

Libraries Guide
IOPAD, IOPAD4, IOPAD8, and IOPAD16

Input/Output Pads

IOPAD, IOPAD4, IOPAD8, and IOPAD16 are single and multiple
input/output pads. The IOPAD is a connection point from a device
pin, used as a bidirectional signal, to a PLD device. The IOPAD is
connected internally to an input/output block (IOB), which is config-
ured by the XACT software as a bidirectional block. Bidirectional
blocks can consist of any combinations of a 3-state output buffer
(such as OBUFT or OFDE) and any available input buffer (such as
IBUF or IFD). Refer to the appropriate CAE tool interface user guide
for details on assigning pin location and identification.

Figure 3-135 IOPAD8 XC2000/3000/4000/7000 Implementation

Name XC2000 XC3000 XC4000 XC7000

IOPAD Primitive Primitive Primitive Primitive
IOPD4,
IOPAD8,
IOPAD16

Macro Macro Macro Macro

X3828

X3841

IO[7:0]

X3845

IO[15:0]

X3838

IO0

IO1

IO2

IO3

IOPAD4

IOPAD

IOPAD

IOPAD

IOPAD

IOPAD

IOPAD

IOPAD

IOPAD

IO0

IO7

IO[7:0]

IO1

IO2

IO3

IO4

IO5

IO6
3-332 Xilinx Development System

Design Elements
IPAD

Single- and Multiple-Input Pads

IPAD, IPAD4, IPAD8, and IPAD16 are single and multiple input pads
(IPADs). The IPAD is a connection point from a device pin used for
an input signal to the PLD device. It is connected internally to an
input/output block (IOB), which is configured by the XACT software
as an IBUF, IFD or ILD. Refer to the appropriate CAE tool interface
user guide for details on assigning pin location and identification.

Figure 3-136 IPAD8 XC2000/3000/4000/7000 Implementation

Name XC2000 XC3000 XC4000 XC7000

IPAD Primitive Primitive Primitive Primitive
IPAD4,
IPAD8,
IPAD16

Macro Macro Macro Macro

X3827

I0

X3837

I1

I2

I3

X3840

I[7:0]

X3844

I[15:0]

I3

I5

I0

I7

I1

I2

I4

I6

I[7:0]

IPAD

IPAD

IPAD

IPAD

IPAD

IPAD

IPAD

IPAD
Libraries Guide 3-333

Libraries Guide
LD, LD4, LD8, and LD16

Single and Multiple Transparent Data Latches

* not supported for XC7336 designs

The data output (Q) of the latch reflects the data (D) input while the
gate enable (G) input is High. The data on the D input during the
High-to-Low gate transition is stored in the latch. The data on the Q
output remains unchanged as long as G remains Low. LD4, LD8, and
LD16 have 4, 8, and 16 transparent latches, respectively, with a
common Gate enable (G).

The latch is reset, output Low, when power is applied or when global
reset (GR) is active. For EPLD designs, the G input may not be driven
by a FastCLK signal (BUFG).

d = state of input one set-up time prior to High-to-Low gate transition

Figure 3-137 LD XC2000 Implementation

Element XC2000 XC3000 XC4000 XC7000

LD Macro N/A N/A Primitive*
LD4,
LD8,
LD16

N/A N/A N/A Primitive*

Inputs Outputs

G D Q

1 0 0
1 1 1
0 X No Chg
↓ D d

Q

X3740

D LD

G

Q0

X4611

D0 LD4

G

Q1D1

Q2D2

Q3D3

Q[7:0]D[7:0]

X4612

LD8

G

Q[15:0]D[15:0]

X4613

LD16

G

LDCP

CLR

D

G

PRE Q

G

Q

GND

D

3-334 Xilinx Development System

Design Elements
LD_1

Transparent Data Latch with Inverted Gate

The data output (Q) of the latch reflects the data (D) input while the
gate enable (G) input is Low. The data on the D input during the
Low-to-High gate transition is stored in the latch. The data on the Q
output remains unchanged as long as G remains High.

The latch is reset, output Low, when power is applied or when global
reset (GR) is active.

d = state of input one set-up time prior to Low-to-High gate transition

Figure 3-138 LD_1 XC2000 Implementation

XC2000 XC3000 XC4000 XC7000

Macro N/A N/A N/A

Inputs Outputs

G D Q

0 0 0
0 1 1
1 X No Chg
↑ D d

Q

X3741

D LD_1

G

INV

D Q

GND

G GB

LDCP

CLR

D

G

PRE
Q

Libraries Guide 3-335

Libraries Guide
LDC

Transparent Data Latch with Asynchronous Clear

When the asynchronous clear input (CLR) is High, it overrides the
other inputs and resets the data (Q) output Low. Q reflects the data
(D) input while the gate enable (G) input is High and CLR is Low. The
data on the D input during the High-to-Low gate transition is stored
in the latch. The data on the Q output remains unchanged as long as
G remains Low.

The latch is reset, output Low, when power is applied or when global
reset (GR) is active.

d = state of input one set-up time prior to High-to-Low gate transition

Figure 3-139 LDC XC2000 Implementation

XC2000 XC3000 XC4000 XC7000

Macro N/A N/A N/A

Inputs Outputs

CLR G D Q

1 X X 0
0 1 1 1
0 1 0 0
0 0 X No Chg
0 ↓ D d

Q

X4070

D LDC

G

CLR

D Q

CLR

GND

LDCP

CLR

D

G

PRE
Q

G

3-336 Xilinx Development System

Design Elements
LD4CE, LD8CE, and LD16CE

Transparent Data Latches with Asynchronous Clear
and Clock Enable

LD4CE, LD8CE, and LD16CE have 4, 8, and 16 transparent data
latches, respectively. When the asynchronous clear input (CLR) is
High, it overrides the other inputs and resets the data (Q) outputs
Low. Q reflects the data (D) inputs while the gate enable (G) input is
High, clock enable (CE) is High, and CLR is Low. If CE is Low, data
on D cannot be latched. The data on the D input during the High-to-
Low gate transition is stored in the latch. The data on the Q output
remains unchanged as long as G or CE remains Low.

The latch is reset, output Low, when power is applied or when global
reset (GR) is active.

Dn = referenced input, for example, D0, D1, D2

Qn = referenced output, for example, Q0, Q1, Q2

dn = referenced input state, one set-up time prior to High-to-Low gate transition

XC2000 XC3000 XC4000 XC7000

Macro N/A N/A N/A

Inputs Outputs

CLR CE G Dn Qn

1 X X X 0
0 0 X X No Chg
0 1 1 1 1
0 1 1 0 0
0 1 0 X No Chg
0 1 ↓ Dn dn

X3747

LD4CE

CLR

G

CE

D3

D2

D1

D0

Q3

Q2

Q1

Q0

X3748

LD8CE

G

CE

D[7:0]

CLR

Q[7:0]

X3749

LD16CE

G

CE

D[15:0] Q[15:0]

CLR
Libraries Guide 3-337

Libraries Guide
Figure 3-140 LD4CE XC2000 Implementation

GND

Q0

G
CE
D Q

CLR

PRE

LDCPE

Q1

G
CE
D Q

CLR

PRE

LDCPE

Q2

G
CE
D Q

CLR

PRE

LDCPE

Q3

G
CE
D Q

CLR

PRE

LDCPE

CE

D2

D1

D0

Q1

Q2

Q3

Q0

G

CLR

D3
3-338 Xilinx Development System

Design Elements
Figure 3-141 LD8CE XC2000 Implementation

GND

Q1

G
CE
D Q

CLR

PRE

LDCPE

Q2

G
CE
D Q

CLR

PRE

LDCPE

Q3

G
CE
D Q

CLR

PRE

LDCPE

Q4

G
CE
D Q

CLR

PRE

LDCPE

Q5

G
CE
D Q

CLR

PRE

LDCPE

Q6

G
CE
D Q

CLR

PRE

LDCPE

Q7

G
CE
D Q

CLR

PRE

LDCPE

D[7:0]

D4

D5

D6

D7D3

D2

D1

D0

CE

Q4

Q5

Q6

Q7

Q0

Q1

Q2

Q3

Q[7:0]

CLR

Q0

G
CE
D Q

CLR

PRE

LDCPE

G

Libraries Guide 3-339

Libraries Guide
LDCP

Transparent Data Latch with Asynchronous Clear
and Preset

When the asynchronous clear input (CLR) is High, it overrides the
other inputs and resets the data (Q) output Low. When the asynchro-
nous preset (PRE) input is High (and CLR is Low), it sets Q High. Q
reflects the data (D) input while the gate enable (G) input is High and
CLR and PRE are Low. The data on the D input during the High-to-
Low gate transition is stored in the latch. The data on the Q output
remains unchanged as long as G remains Low.

The latch is reset, output Low, when power is applied or when global
reset (GR) is active.

d = state of input one set-up time prior to High-to-Low gate transition

XC2000 XC3000 XC4000 XC7000

Primitive N/A N/A N/A

Inputs Outputs

CLR PRE G D Q

1 X X X 0
0 1 X X 1
0 0 1 0 0
0 0 1 1 1
0 0 0 X No Chg
0 0 ↓ D d

Q

D

G

LDCP

PRE

CLR X4395
3-340 Xilinx Development System

Design Elements
LDCPE

Transparent Data Latch with Asynchronous Clear
and Preset and Clock Enable

When the asynchronous clear input (CLR) is High, it overrides the
other inputs and resets the data (Q) output Low. When the asynchro-
nous preset (PRE) input is High (and CLR is Low), it sets Q High. Q
reflects the data (D) input while the gate enable (G) input and clock
enable (CE) are High and CLR and PRE are Low. If CE is Low, data on
D cannot be latched. The data on the D input during the High-to-Low
gate transition is stored in the latch. The data on the Q output
remains unchanged as long as G or CE remains Low.

The latch is reset, output Low, when power is applied or when global
reset (GR) is active.

d = state of input one set-up time prior to High-to-Low gate transition

XC2000 XC3000 XC4000 XC7000

Macro N/A N/A N/A

Inputs Outputs

CLR PRE CE G D Q

1 X X X X 0
0 1 X X X 1
0 0 0 X X No Chg
0 0 1 1 1 1
0 0 1 1 0 0
0 0 1 0 X No Chg
0 0 1 ↓ D d

Q

D

G

LDCPE

PRE

CLR X4396

CE
Libraries Guide 3-341

Libraries Guide
Figure 3-142 LDCPE XC2000 Implementation

G

D
Q_D

CLR

D0
D1

O

S0

M2_1

Q

CE
PRE LDCP

CLR

D

G

PRE Q
3-342 Xilinx Development System

Design Elements
LDC_1

Transparent Data Latch with Asynchronous Clear
and Inverted Gate Input

When the asynchronous clear input (CLR) is High, it overrides the
other inputs (D and G) and resets the data (Q) output Low. Q reflects
the data (D) input while the gate enable (G) input and CLR are Low.
The data on the D input during the Low-to-High gate transition is
stored in the latch. The data on the Q output remains unchanged as
long as G remains High.

The latch is reset, output Low, when power is applied or when Global
Reset (GR) is active.

d = state of input one set-up time prior to Low-to-High gate transition

Figure 3-143 LDC_1 XC2000 Implementation

XC2000 XC3000 XC4000 XC7000

Macro N/A N/A N/A

Inputs Outputs

CLR G D Q

1 X X 0
0 0 1 1
0 0 0 0
0 1 X No Chg
0 ↑ D d

Q

X3752

D LDC_1

G

CLR

GND

D

CLR

Q

INV

G

LDC_1.2K

LDCP

CLR

D

G

PRE
Q

Libraries Guide 3-343

Libraries Guide
MD0

Mode 0/Input Pad Used for Readback Trigger Input

The MD0 input pad is connected to the Mode 0 (M0) input pin, which
is used to determine the configuration mode on an XC4000 device.
Following configuration, MD0 can be used as an input pad, but it
must be connected through an IBUF to the user circuit. However, the
user input signal must not interfere with the device configuration.
The MD0 pad cannot be used as an output pad and the IOB associ-
ated with it has no flip-flop or latch. For compatibility with XC2000
and XC3000 devices, this pad is usually connected to the RTRIG input
of the READBACK function.

XC2000 XC3000 XC4000 XC7000

N/A N/A Primitive N/AX3896

MD0
3-344 Xilinx Development System

Design Elements
MD1

Mode 1/Output Pad Used for Readback Data Output

The MD1 input pad is connected to the Mode 1 (M1) input pin, which
is used to determine the configuration mode on an XC4000 device.
Following configuration, MD1 can be used as a 3-state or simple
output pad, but it must be connected through an OBUF or an OBUFT
to the user circuit. However, the user output signal must not interfere
with the device configuration. An MD1 pad cannot be used as an
input pad and the IOB associated with it has no flip-flop or latch. This
pad is usually connected to the DATA output of the READBACK
function, and the output-enable input of the 3-state OBUFT is
connected to the RIP output of the READBACK function.

XC2000 XC3000 XC4000 XC7000

N/A N/A Primitive N/AX3898

MD1
Libraries Guide 3-345

Libraries Guide
MD2

Mode 2/Input Pad

The MD2 input pad is connected to the Mode 2 (M2) input pin, which
is used to determine the configuration mode on an XC4000 device.
Following configuration, MD2 can be used as an input pad, but it
must be connected through an IBUF to the user circuit. However, the
user input signal must not interfere with the device configuration. An
MD2 pad cannot be used as an output pad and the IOB associated
with it has no flip-flop or latch.

XC2000 XC3000 XC4000 XC7000

N/A N/A Primitive N/A
X3900

MD2
3-346 Xilinx Development System

Design Elements
M2_1

2-to-1 Multiplexer

The M2_1 multiplexer chooses one data bit from two sources (D1 or
D0) under the control of the select input (S0). The output (O) reflects
the state of the selected data input. When Low, S0 selects D0 and
when High, S0 selects D1.

Figure 3-144 M2_1 XC2000/3000/4000 Implementation

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

S0 D1 D0 O

1 1 X 1
1 0 X 0
0 X 1 1
0 X 0 0

D0

D1

S0

O

X4026

AND2

OR2

AND2B1
O

M0

M1

D0

D1

S0
Libraries Guide 3-347

Libraries Guide
M2_1B1

2-to-1 Multiplexer with D0 Inverted

The M2_1B1 multiplexer chooses one data bit from two sources (D1
or D0) under the control of select input (S0). When S0 is Low, the
output (O) reflects the state of D0. When S0 is High, O reflects the
state of D1.

Figure 3-145 M2_1B1 XC2000/3000/4000 Implementation

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

S0 D1 D0 O

1 1 X 1
1 0 X 0
0 X 1 0
0 X 0 1

D0

D1

S0

O

X4027

S0

D1

D0

M1

M0

O

OR2

AND2

AND2B2
3-348 Xilinx Development System

Design Elements
M2_1B2

2-to-1 Multiplexer with D0 and D1 Inverted

The M2_1B2 multiplexer chooses one data bit from two sources (D1
or D0) under the control of select input (S0). When S0 is Low, the
output (O) reflects the state of D0. When S0 is High, O reflects the
state of D1.

Figure 3-146 M2_1B2 XC2000/3000/4000 Implementation

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

S0 D1 D0 O

1 1 X 0
1 0 X 1
0 X 1 0
0 X 0 1

D0

D1

S0

O

X4028

OR2

O

M0

M1

D0

D1

S0

AND2B1

AND2B2
Libraries Guide 3-349

Libraries Guide
M2_1E

2-to-1 Multiplexer with Enable

When the enable input (E) is High, the M2_1E chooses one data bit
from two sources (D1 or D0) under the control of select input (S0).
When E is High, the output (O) reflects the state of the selected input.
When Low, S0 selects D0 and when High, S0 selects D1. When E is
Low, the output is Low.

Figure 3-147 M2_1E XC2000/3000/4000 Implementation

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

E S0 D1 D0 O

0 X X X 0
1 0 X 1 1
1 0 X 0 0
1 1 1 X 1
1 1 0 X 0

D0

D1

S0

O

X4029E

D1

S0

D0
M0

M1

O

AND3

AND3B1

OR2

E

M2_1E.2K
3-350 Xilinx Development System

Design Elements
M4_1E

4-to-1 Multiplexer with Enable

When the enable input (E) is High, the M4_1E multiplexer chooses
one data bit from four sources (D3, D2, D1, or D0) under the control
of the select inputs (S1 – S0). The output (O) reflects the state of the
selected input as shown in the truth table. When E is Low, the output
is Low.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

E S1 S0 D0 D1 D2 D3 O

0 X X X X X X 0
1 0 0 D0 X X X D0
1 0 1 X D1 X X D1
1 1 0 X X D2 X D2
1 1 1 X X X D3 D3

D0

O

X4030

D1
D2
D3
S0
S1
E

Libraries Guide 3-351

Libraries Guide
M8_1E

8-to-1 Multiplexer with Enable

When the enable input (E) is High, the M8_1E multiplexer chooses
one data bit from eight sources (D7 – D0) under the control of the
select inputs (S2 – S0). The output (O) reflects the state of the selected
input as shown in the truth table. When E is Low, the output is Low.

Dn represents signal on the Dn input; all other data inputs are don’t-cares (X).

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

E S2 S1 S0 D7 – D0 O

0 X X X X 0
1 0 0 0 D0 D0
1 0 0 1 D1 D1
1 0 1 0 D2 D2
1 0 1 1 D3 D3
1 1 0 0 D4 D4
1 1 0 1 D5 D5
1 1 1 0 D6 D6
1 1 1 1 D7 D7

D0

O

X4031

D1
D2

D7
S0
S1
S2

D3

D4

D5

D6

E

3-352 Xilinx Development System

Design Elements
Figure 3-148 M8_1E XC2000/3000/4000 Implementation

S0

M23
M01

D0

D2

D1

D4
D5

D3

D6
D7

M45
M67

M47
M03

O

S1

E

M01

D0
D1

O

S0

M2_1

M23

D0
D1

O

S0

M2_1

M45

D0
D1

O

S0

M2_1

M67

D0
D1

O

S0

M2_1

M03

D0
D1

O

S0

M2_1

M47

D0
D1

O

S0

M2_1

O
D1
D0

O

E
S0

M2_1E

S2
Libraries Guide 3-353

Libraries Guide
M16_1E

16-to-1 Multiplexer with Enable

When the enable input (E) is High, the M16_1E multiplexer chooses
one data bit from 16 sources (D15 – D0) under the control of the select
inputs (S3 – S0). The output (O) reflects the state of the selected input
as shown in the truth table. When E is Low, the output is Low.

Dn represents signal on the Dn input; all other data inputs are don’t-cares (X).

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

E S3 S2 S1 S0 D15 – D0 O

0 X X X X X 0
1 0 0 0 0 D0 D0
1 0 0 0 1 D1 D1
1 0 0 1 0 D2 D2
1 0 0 1 1 D3 D3
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
1 1 1 0 0 D12 D12
1 1 1 0 1 D13 D13
1 1 1 1 0 D14 D14
1 1 1 1 1 D15 D15

D0

O

X4032

D1
D2

D15

S0
S1

S2

D3

D4

D5

D6

S3

D7
D8
D9
D10
D11
D12
D13
D14

E

3-354 Xilinx Development System

Design Elements
NAND

2- to 9-Input NAND Gates with Inverted and
Non-Inverted Inputs

The NAND function is performed in the Configurable Logic Block
(CLB) function generators for XC2000, XC3000, and XC4000. NAND
functions of up to five inputs are available in any combination of
inverting and non-inverting inputs. NAND functions of six to nine
inputs are available with only non-inverting inputs. To invert some
or all inputs, use external inverters. Since each input uses a CLB
resource, replace functions with unused inputs with functions having
the necessary number of inputs.

Figure 3-149 NAND Gate Representations

Name XC2000 XC3000 XC4000 XC7000

NAND2 – NAND4B4 Primitive Primitive Primitive Primitive
NAND5 – NAND5B5 Macro Primitive Primitive Primitive
NAND6 – NAND9 Macro Macro Macro Primitive

NAND9

NAND4

NAND4B3

NAND4B2

NAND4B1

NAND3B1

NAND3B2

NAND3B3

NAND2

NAND2B1

NAND2B2

NAND5

NAND5B1

NAND5B4

NAND5B3

NAND5B2

NAND4B4

NAND3

NAND6

NAND7

NAND8

NAND5B5
Libraries Guide 3-355

Libraries Guide
Figure 3-150 NAND8 XC2000 Implementation

Figure 3-151 NAND8 XC3000 Implementation

Figure 3-152 NAND8 XC4000 Implementation

I4

I2
O

AND3
I5
I6
I7

I47

AND3I1
I0

I3 I24

NAND4

I7
I6

AND4

I47

I4
I5

I3
I2
I1
I0

O

NAND5

I7

I0

I6

I3

I1
I2

O

I47

I13

I4
I5

AND4

AND3

NAND3
3-356 Xilinx Development System

Design Elements
NOR

2- to 9-Input NOR Gates with Inverted and
Non-Inverted Inputs

The NOR function is performed in the Configurable Logic Block
(CLB) function generators for XC2000, XC3000, and XC4000. NOR
functions of up to five inputs are available in any combination of
inverting and non-inverting inputs. NOR functions of six to nine
inputs are available with only non-inverting inputs. To invert some
or all inputs, use external inverters. Since each input uses a CLB
resource, replace functions with unused inputs with functions having
the necessary number of inputs.

Figure 3-153 NOR Gate Representations

Name XC2000 XC3000 XC4000 XC7000

NOR2 – NOR4B4 Primitive Primitive Primitive Primitive
NOR5 – NOR5B5 Macro Primitive Primitive Primitive
NOR6 – NOR9 Macro Macro Macro Primitive

NOR5

NOR4B3

NOR4B2

NOR4B1

NOR4

NOR3B1

NOR3B2

NOR3B3

NOR2

NOR2B1

NOR2B2
NOR5B1

NOR5B2

NOR5B5

NOR5B4

NOR5B3

NOR4B4

NOR3

NOR6

NOR7

NOR8

NOR9
Libraries Guide 3-357

Libraries Guide
Figure 3-154 NOR8 XC2000 Implementation

Figure 3-155 NOR8 XC3000 Implementation

Figure 3-156 NOR8 XC4000 Implementation

OR3

OR3

I24I3

I0
I1

I47
I7
I6
I5

O
I2

I4

NOR4

OR4

O

I0
I1
I2
I3

I5
I4

I47
I6
I7

NOR5

I7

I0

I6

I3

I1
I2

O

I47

I13

I4
I5

NOR3

OR3

OR4
3-358 Xilinx Development System

Design Elements
OBUF, OBUF4, OBUF8, and OBUF16

Single- and Multiple-Output Buffers

OBUF, OBUF4, OBUF8, and OBUF16 are single and multiple output
buffers. An OBUF isolates the internal circuit and provides drive
current for signals leaving a chip. OBUFs exist in input/output
blocks (IOB). The output (O) of an OBUF is connected to an OPAD or
an IOPAD. For XC7000, if a high impedance (Z) signal from an
on-chip 3-state buffer (like BUFE) is applied to the input of an OBUF,
it is propagated to the EPLD device output pin.

Figure 3-157 OBUF8 XC2000/3000/4000/7000 Implementation

Name XC2000 XC3000 XC4000 XC7000

OBUF Primitive Primitive Primitive Primitive
OBUF4,
OBUF8,
OBUF16

Macro Macro Macro Macro
X3785

X3792

OBUF4

OBUF8

X3804

OBUF16

X3816 O6

O[7:0]

O0

O1

O2

O3

O4

O5

O7

I0

I1

I2

I3

I4

I5

I6

I7

I[7:0]

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF
Libraries Guide 3-359

Libraries Guide
OBUFE, OBUFE4, OBUFE8, and OBUFE16

3-State Output Buffers with Active-High Output
Enable

OBUFE, OBUFE4, OBUFE8, and OBUFE16 are single or multiple
3-state buffers with inputs I, I3 – I0, I7 – I0, and so forth, outputs O,
O3 – O0, O7 – O0, and so forth, and active-High output enable (E).
When E is High, data on the inputs of the buffers is transferred to the
corresponding outputs. When E is Low, the output is High imped-
ance (off or Z state). An OBUFE isolates the internal circuit and
provides drive current for signals leaving a chip. An OBUFE output is
connected to an OPAD or an IOPAD. An OBUFE input is connected
to the internal circuit.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Macro

Inputs Outputs

E I O

0 X Z
1 1 1
1 0 0

X3787

E

X3794

OBUFE4

E

X3806

E

OBUFE8

OBUFE16

X3818

E

3-360 Xilinx Development System

Design Elements
Figure 3-158 OBUFE8 XC2000/3000/4000/7000 Implementation

Figure 3-159 OBUFE XC7000 Implementation

E

I[7:0]

I7

I6

I5

I4

I3

I2

I1

I0

O7

O5

O4

O3

O2

O1

O0

O[7:0]

O6
E

OBUFE

E

OBUFE

E

OBUFE

E

OBUFE

E

OBUFE

E

OBUFE

E

OBUFE

E

OBUFE

I O

OBUF

E
E

BUFE
Libraries Guide 3-361

Libraries Guide
OBUFEX1, OBUFE4X1, OBUFE8X1, and OBUFEX2

EPLD 3-State Output Buffers with Active-High Output
Enable

* not supported for XC7272 designs

OBUFEX1, OBUFE4X1, OBUFE8X1, and OBUFEX2 provide one, four,
eight, and sixteen 3-state output buffers, respectively, with active-
High output enable (E) and EPLD-style 3-state properties. OBUFEX1
symbols identify signals that are driven onto EPLD device pins.
When E is High, data on the inputs of the buffers is transferred to the
corresponding device outputs. When E is Low, the output is high
impedance (off or Z state). The E input can only be driven by an
EPLD global Fast Output Enable (FOE) net represented by the
BUFFOE symbol.

If the input (I) of an OBUFEX1 is driven by an on-chip 3-state buffer
(such as BUFT), the 3-state signal is propagated through the
OBUFEX1 onto the EPLD device pin, which means the output driver
of the device pin is controlled by both the on-chip 3-state buffer and
the E input of the OBUFEX1. An output of an OBUFEX1 is connected
to an OPAD or an IOPAD.

Name XC2000 XC3000 XC4000 XC7000

OBUFEX1 N/A N/A N/A Primitive*
OBUFE4X1,
OBUFE8X1,
OBUFEX2

N/A N/A N/A Macro*

Inputs Outputs

E I O

0 X Z
1 1 1
1 0 0
1 Z Z

X4212

E

OBUFEX1

X4215

E

OBUFE4X1

X4218

E

I[7:0] O[7:0]

OBUFE8X1

X4221

E

OBUFEX2

I[15:0] O[15:0]
3-362 Xilinx Development System

Design Elements
Figure 3-160 OBUFE8X1 XC7000 Implementation

E

I[7:0]

I7

I6

I5

I4

I3

I2

I1

I0

O7

O5

O4

O3

O2

O1

O0

O[7:0]

O6

0

OBUFEX1

E

1

OBUFEX1

E

2

OBUFEX1

E

3

OBUFEX1

E

4

OBUFEX1

E

5

OBUFEX1

E

6

OBUFEX1

E

7

OBUFEX1

E

Libraries Guide 3-363

Libraries Guide
OBUFT, OBUFT4, OBUFT8, and OBUFT16

Single and Multiple 3-State Output Buffers with
Active-Low Output Enable

* not supported for XC7336 designs

OBUFT, OBUFT4, OBUFT8, and OBUFT16 are single and multiple
3-state output buffers with inputs I, I3 – I0, I7 – I0, I15 – I0, outputs O,
O3 – O0, O7 – O0, O15 – O0, and active-Low output enables (T).
When T is Low, data on the inputs of the buffers is transferred to the
corresponding outputs. When T is High, the output is high imped-
ance (off or Z state). OBUFTs isolate the internal circuit and provide
extra drive current for signals leaving a chip. An OBUFT output is
connected to an OPAD or an IOPAD.

Name XC2000 XC3000 XC4000 XC7000

OBUFT Primitive Primitive Primitive Macro*
OBUFT4,
OBUFT8,
OBUFT16

Macro Macro Macro Macro*

Inputs Outputs

T I O

1 X Z
0 1 1
0 0 0

OBUFT

X3786

T

X3793

OBUFT4

T

OBUFT8

X3805

T

I O[8:0]

OBUFT16

X3817

T

I O[16:0]
3-364 Xilinx Development System

Design Elements
Figure 3-161 OBUFT8 XC2000/3000/4000/7000 Implementation

Figure 3-162 OBUFT XC7000 Implementation

T

I[7:0]

I7

I6

I5

I4

I3

I2

I1

I0

O7

O5

O4

O3

O2

O1

O0

O[7:0]

O6

OBUFT

T

OBUFT

T OBUFT

T

OBUFT

T OBUFT

T OBUFT

T

OBUFT

T

OBUFT

T

I O

BUFT

T

OBUF

T

Libraries Guide 3-365

Libraries Guide
OFD, OFD4, OFD8, and OFD16

Single- and Multiple-Output D Flip-Flops

OFD, OFD4, OFD8, and OFD16 are single and multiple output D flip-
flops. The flip-flops exist in an input/output block (IOB) for XC3000
and XC4000. The outputs (for example, Q3 – Q0) are connected to
OPADs or IOPADs. The data on the D inputs is loaded into the flip-
flops during the Low-to-High clock (C) transition and appears on the
Q outputs.

The flip-flops are asynchronously reset, outputs Low, when power is
applied or when global reset (GR for XC3000) or global set/reset
(GSR for XC4000) is active. GR is active-Low; the GSR active level is
programmable.

dn = state of referenced input one set-up time prior to active clock transition

Name XC2000 XC3000 XC4000 XC7000

OFD N/A Primitive Primitive Macro
OFD4,
OFD8,
OFD16

N/A Macro Macro Macro

Inputs Outputs

D C Q

D ↑ dn

Q

X3778

D OFD

C

X3800

OFD4

C

D3

D2

D1

D0

Q3

Q2

Q1

Q0

Q[7:0]

X3812

D[7:0] OFD8

C

Q[15:0]

X3834

D[15:0] OFD16

C

3-366 Xilinx Development System

Design Elements
Figure 3-163 OFD8 XC3000/4000 Implementation

Q7
C

D Q

OFD
Q6

C

D Q

OFD
Q5

C

D Q

OFD
Q4

C

D Q

OFD
Q3

C

D Q

OFD
Q2

C

D Q

OFD
Q1

C

D Q

OFD
Q0

C

D Q

OFD

Q[7:0]

Q1

Q6

Q7

Q5

Q4

Q3

Q2

Q0

C

D7

D6

D5

D0

D1

D2

D3

D4

D[7:0]
Libraries Guide 3-367

Libraries Guide
Figure 3-164 OFD8 XC7000 Implementation

Figure 3-165 OFD XC7000 Implementation

0

OBUF

Q1

FD
QD

C

Q0

FD
QD

C

D[7:0]

D7

D6

D5

D0

D1

D2

D3

D4

C

Q7

FD
QD

C

Q6

FD
QD

C

Q5

FD
QD

C

Q4

FD
QD

C

Q3

FD
QD

C

Q2

FD
QD

C

Q1

Q[7:0]

Q0

Q2

Q3

Q4

Q5

Q7

Q6

1

OBUF

2

OBUF

3

OBUF

4

OBUF

5

OBUF

6

OBUF

7

OBUF

C

O

OBUF

D Q

Q

FD
QD

C

3-368 Xilinx Development System

Design Elements
OFD_1

Output D Flip-Flop with Inverted Clock

OFD_1 exists in an input/output block (IOB). The output (Q) of the D
flip-flop is connected to an OPAD or an IOPAD. The data on the D
input is loaded into the flip-flop during the High-to-Low clock (C)
transition and appears on the Q output.

The flip-flop is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC2000, XC3000) or global
set/reset (GSR for XC4000) is active. GR is active-Low; the GSR active
level is programmable.

d = state of referenced input one set-up time prior to active clock transition

Figure 3-166 OFD_1 XC3000/4000 Implementation

XC2000 XC3000 XC4000 XC7000

N/A Macro Macro N/A

Inputs Outputs

D C Q

D ↓ d

Q

X3779

D OFD_1

C

Q

C CB

D

INV
C

D Q

OFD
Libraries Guide 3-369

Libraries Guide
OFDE, OFDE4, OFDE8, and OFDE16

D Flip-Flops with Active-High Enable Output Buffers

OFDE, OFDE4, OFDE8, and OFDE16 are single or multiple D flip-
flops whose outputs are enabled by 3-state buffers. The flip-flop data
outputs (Q) are connected to the inputs of output buffers (OBUFE).
The OBUFE outputs (O) are connected to OPADs or IOPADs. These
flip-flops and buffers are contained in input/output blocks (IOB) for
XC3000 and XC4000. The data on the data inputs (D) is loaded into
the flip-flops during the Low-to-High clock (C) transition. When the
active-High enable inputs (E) are High, the data on the flip-flop
outputs (Q) appears on the O outputs. When E is Low, outputs are
high impedance (Z state or off).

The flip-flops are asynchronously reset, outputs Low, when power is
applied or when global reset (GR for XC3000) or global set/reset
(GSR for XC4000) is active. GR is active-Low; the GSR active level is
programmable.

Name XC2000 XC3000 XC4000 XC7000

OFDE N/A Macro Macro Macro
OFDE4,
OFDE8,
OFDE16

N/A Macro Macro Macro

Inputs Outputs

E D C O

0 X X Z, not off
1 1 ↑ 1
1 0 ↑ 0

Q

X3782

D OFDE

E

C

X3802

OFDE4

C

D3

D2

D1

D0 Q0

Q1

Q2

Q3

E

Q[7:0]

X3814

D[7:0] OFDE8

C

E

Q[15:0]

X3836

D[15:0] OFDE16

C

E

3-370 Xilinx Development System

Design Elements
Figure 3-167 OFDE XC7000 Implementation

Figure 3-168 OFDE8 XC3000/4000 Implementation

E

Q

FD
QD

C

OD

C

O

OBUFE

E

O6

D

C

Q

OFDE
E

O5

D

C

Q

OFDE
E

O4

D

C

Q

OFDE
E

O3

D

C

Q

OFDE
E

O2

D

C

Q

OFDE
E

O1

D

C

Q

OFDE
E

O0

D

C

Q

OFDE
E

C
E

D[7:0] D7

D5

D0

D1

D2

D3

D4

D6

O[7:0]

O7

O6

O5

O4

O3

O2

O1

O0

O7

D

C

Q

OFDE
E

Libraries Guide 3-371

Libraries Guide
Figure 3-169 OFDE8 XC7000 Implementation

O0

O7

O6

O5

O4

O3

O2

O[7:0]

O1

E

Q2

FD
QD

C

Q3

FD
QD

C

Q4

FD
QD

C

Q5

FD
QD

C

Q6

FD
QD

C

Q7

FD
QD

C

C

D4

D3

D2

D1

D0

D5

D6

D7

D[7:0]

Q0

FD
QD

C

Q1

FD
QD

C

7

OBUFE

E

6

OBUFE

E

5

OBUFE

E

4

OBUFE

E

3

OBUFE

E

2

OBUFE

E

1

OBUFE

E

0

OBUFE

E

3-372 Xilinx Development System

Design Elements
OFDE_1

D Flip-Flop with Active-High Enable Output Buffer
and Inverted Clock

OFDE_1 and its output buffer exist in an input/output block (IOB).
The data output of the flip-flop (Q) is connected to the input of an
output buffer or OBUF. The output of the OBUF is connected to an
OPAD or an IOPAD. The data on the data input (D) is loaded into the
flip-flop on the High-to-Low clock (C) transition. When the active-
High enable input (E) is High, the data on the flip-flop output (Q)
appears on the O output. When E is Low, the output is high imped-
ance (Z state or off).

The flip-flop is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC3000) or global set/reset
(GSR for XC4000) is active. GR is active-Low; the GSR active level is
programmable.

Figure 3-170 OFDE_1 XC3000/4000 Implementation

XC2000 XC3000 XC4000 XC7000

N/A Macro Macro N/A

Inputs Outputs

E D C O

0 X X Z
1 1 ↓ 1
1 0 ↓ 0

Q

X3783

D OFDE_1

E

C

INV

Q

C

D

OFDT

OD

T

INV

E

CBC
Libraries Guide 3-373

Libraries Guide
OFDEI

D Flip-Flop with Active-High Enable Output Buffer
(Asynchronous Set)

OFDEI is a D flip-flop whose output is enabled by a 3-state buffer.
The data output (Q) of the flip-flop is connected to the input of an
output buffer or OBUF. The output of the OBUF (O) is connected to
an OPAD or an IOPAD. These flip-flops and buffers are contained in
input/output blocks (IOB). The data on the data input (D) is loaded
into the flip-flop during the Low-to-High clock (C) transition. When
the active-High enable input (E) is High, the data on the flip-flop
output (Q) appears on the O output. When E is Low, the output is
high impedance (Z state or off). The flip-flop is asynchronously set,
output High, when power is applied or when global set/reset (GSR)
is active. The GSR active level is programmable.

Figure 3-171 OFDEI XC4000 Implementation

XC2000 XC3000 XC4000 XC7000

N/A N/A Macro N/A

Inputs Outputs

E D C O

0 X X Z
1 1 ↑ 1
1 0 ↑ 0

Q

X4382

D OFDEI

E

C

E

D

C

T

INV O

C

D Q

OFDTI

OFDEI.4K
3-374 Xilinx Development System

Design Elements
OFDEI_1

D Flip-Flop with Active-High Enable Output Buffer
and Inverted Clock (Asynchronous Set)

OFDEI_1 and its output buffer exist in an input/output block (IOB).
The data output of the flip-flop (Q) is connected to the input of an
output buffer or OBUF. The output of the OBUF is connected to an
OPAD or an IOPAD. The data on the data input (D) is loaded into the
flip-flop on the High-to-Low clock (C) transition. When the active-
High enable input (E) is High, the data on the flip-flop output (Q)
appears on the O output. When E is Low, the output is high imped-
ance (Z state or off). The flip-flop is asynchronously set, output High,
when power is applied or when global set/reset (GSR) is active. The
GSR active level is programmable.

Figure 3-172 OFDEI_1 XC4000 Implementation

XC2000 XC3000 XC4000 XC7000

N/A N/A Macro N/A

Inputs Outputs

E D C O

0 X X Z
1 1 ↓ 1
1 0 ↓ 0

Q

X4383

D OFDEI_1

E

C

C

D Q

OFDTI

INV

OD

T
INV

E

CB
C

OFDEI_1.4K
Libraries Guide 3-375

Libraries Guide
OFDI

Output D Flip-Flop (Asynchronous Set)

OFDI is contained in an input/output block (IOB). The output (Q) of
the D flip-flop is connected to an OPAD or an IOPAD. The data on the
D input is loaded into the flip-flop during the Low-to-High clock (C)
transition and appears at the output (Q).

The flip-flop is asynchronously set, output High, when power is
applied or when global set/reset (GSR) is active. The GSR active level
is programmable.

d = state of referenced input one set-up time prior to active clock transition

XC2000 XC3000 XC4000 XC7000

N/A N/A Primitive N/A

Inputs Outputs

D C Q

D ↑ d

Q

X4582

D OFDI

C

3-376 Xilinx Development System

Design Elements
OFDI_1

Output D Flip-Flop with Inverted Clock
(Asynchronous Set)

OFDI_1 exists in an input/output block (IOB). The D flip-flop output
(Q) is connected to an OPAD or an IOPAD. The data on the D input is
loaded into the flip-flop during the High-to-Low clock (C) transition
and appears on the Q output. The flip-flop is asynchronously set,
output High, when power is applied or when global set/reset (GSR)
is active. The GSR active level is programmable.

d = state of referenced input one set-up time prior to the active clock transition

Figure 3-173 OFDI_1 XC4000 Implementation

XC2000 XC3000 XC4000 XC7000

N/A N/A Macro N/A

Inputs Outputs

D C Q

D ↓ d

Q

X4384

D OFDI_1

C

C

D Q

OFDI

Q

C
CB

D

INV OFDI_1.4K
Libraries Guide 3-377

Libraries Guide
OFDT, OFDT4, OFDT8, and OFDT16

Single and Multiple D Flip-Flops with Active-High
3-State Active-Low Output Enable Buffers

* not supported for XC7336 designs

OFDT, OFDT4, OFDT8, and OFDT16 are single or multiple D flip-
flops whose outputs are enabled by a 3-state buffers. The data
outputs (Q) of the flip-flops are connected to the inputs of output
buffers (OBUFT). The outputs of the OBUFTs (O) are connected to
OPADs or IOPADs. These flip-flops and buffers exist in input/output
blocks (IOB) for XC3000 and XC4000. The data on the data inputs (D)
is loaded into the flip-flops during the Low-to-High clock (C) transi-
tion. When the active-Low enable inputs (T) are Low, the data on the
flip-flop outputs (Q) appears on the O outputs. When T is High,
outputs are high impedance (off).

The flip-flops are asynchronously reset, outputs Low, when power is
applied or when global reset (GR for XC3000) or global set/reset
(GSR for XC4000) is active. GR is active-Low; the GSR active level is
programmable.

d = state of referenced input one set-up time prior to active clock transition

Name XC2000 XC3000 XC4000 XC7000

OFDT N/A Primitive Primitive Macro*
OFDT4,
OFDT8,
OFDT16

N/A Macro Macro Macro*

Inputs Outputs

T D C O

1 X X Z
0 D ↑ d

Q

X3780

D OFDT

C

T

X3801

OFDT4

C

D3

D2

D1

D0 Q0

Q1

Q2

Q3

T

Q[7:0]

X3813

D[7:0] OFDT8

C

T

Q[15:0]

X3835

D[15:0] OFDT16

C

T

3-378 Xilinx Development System

Design Elements
Figure 3-174 OFDT8 XC3000/4000 Implementation

T
C

D[7:0] D7

D5

D0

D1

D2

D3

D4

D6

O[7:0]

O7

O6

O5

O4

O3

O2

O1

O0

O7

Q

C

D

OFDTT
O6

Q

C

D

OFDTT
O5

Q

C

D

OFDTT
O4

Q

C

D

OFDTT
O3

Q

C

D

OFDTT
O2

Q

C

D

OFDTT
O1

Q

C

D

OFDTT

O0

Q

C

D

OFDTT
Libraries Guide 3-379

Libraries Guide
Figure 3-175 OFDT8 XC7000 Implementation

Figure 3-176 OFDT XC7000 Implementation

0

OBUFT

T

1

OBUFT

T

2

OBUFT

T

3

OBUFT

T

4

OBUFT

T

5

OBUFT

T

6

OBUFT

T

7

OBUFT

T

Q1

FD

QD

C

Q0

FD

QD

C

D[7:0]

D7

D6

D5

D0

D1

D2

D3

D4

C

Q7

FD

QD

C

Q6

FD

QD

C

Q5

FD

QD

C

Q4

FD

QD

C

Q3

FD

QD

C

Q2

FD

QD

C

T

O1

O[7:0]

O2

O3

O4

O5

O6

O7

O0

O

OBUFT

T

C

D O

Q

FD

QD

C

T

3-380 Xilinx Development System

Design Elements
OFDT_1

D Flip-Flop with Active-High 3-State and Active-Low
Output Buffer and Inverted Clock

OFDT_1 and its output buffer exist in an input/output block (IOB).
The flip-flop data output (Q) is connected to the input of an output
buffer (OBUF). The OBUF output is connected to an OPAD or an
IOPAD. The data on the data input (D) is loaded into the flip-flop on
the High-to-Low clock (C) transition. When the active-Low enable
input (T) is Low, the data on the flip-flop output (Q) appears on the O
output. When T is High, the output is high impedance (off).

The flip-flop is asynchronously reset, output Low, when power is
applied or when global reset (GR for XC3000) or global set/reset
(GSR for XC4000) is active. GR is active-Low; the GSR active level is
programmable.

Figure 3-177 OFDT_1 XC3000/4000 Implementation

XC2000 XC3000 XC4000 XC7000

N/A Macro Macro N/A

Inputs Outputs

T D C O

1 X X Z
0 1 ↓ 1
0 0 ↓ 0

Q

X3781

D OFDT_1

T

C

INV

OD

CBC

Q

C

D

OFDT
TT
Libraries Guide 3-381

Libraries Guide
OFDTI

D Flip-Flop with Active-High 3-State and Active-Low
Output Buffer (Asynchronous Set)

OFDTI and its output buffer are contained in an input/output block
(IOB). The data output of the flip-flop (Q) is connected to the input of
an output buffer (OBUF). The output of the OBUF is connected to an
OPAD or an IOPAD. The data on the data input (D) is loaded into the
flip-flop on the Low-to-High clock (C) transition. When the active-
Low enable input (T) is Low, the data on the flip-flop output (Q)
appears on the output (O). When T is High, the output is high imped-
ance (off).

The flip-flop is asynchronously set, output High, when power is
applied or when global set/reset (GSR) is active. The GSR active level
is programmable.

XC2000 XC3000 XC4000 XC7000

N/A N/A Primitive N/A

Inputs Outputs

T D C O

1 X X Z
0 1 ↑ 1
0 0 ↑ 0

Q

X4581

D OFDTI

C

T

3-382 Xilinx Development System

Design Elements
OFDTI_1

D Flip-Flop with Active-High 3-State, Active-Low
Output Buffer and Inverted Clock

OFDTI_1 and its output buffer are contained in an input/output
block (IOB). The data output of the flip-flop (Q) is connected to the
input of an output buffer (OBUF). The OBUF output is connected to
an OPAD or an IOPAD. The data on the data input (D) is loaded into
the flip-flop on the High-to-Low clock (C) transition. When the
active-Low enable input (T) is Low, the data on the flip-flop output
(Q) appears on the O output. When T is High, the output is high
impedance (off).

The flip-flop is asynchronously set, output High, when power is
applied or when global set/reset (GSR) is active. The GSR active level
is programmable.

Figure 3-178 OFDTI_1 XC4000 Implementation

XC2000 XC3000 XC4000 XC7000

N/A N/A Macro N/A

Inputs Outputs

T D C O

1 X X Z
0 1 ↓ 1
0 0 ↓ 0

Q

X4385

D OFDTI_1

T

C

INV

O
D

CBC

T

C

D

T

Q

OFDTI

OFDTI_1.4K
Libraries Guide 3-383

Libraries Guide
OPAD, OPAD4, OPAD8, and OPAD16

Single- and Multiple-Output Pads

OPAD, OPAD4, OPAD8, and OPAD16 are single and multiple output
pads. An OPAD connects a device pin to an output signal of a PLD. It
is internally connected to an input/output block (IOB), which is
configured by the XACT software as an OBUF, an OBUFT, an OBUFE,
an OFD, or an OFDT.

Refer to the appropriate CAE tool interface user guide for details on
assigning pin location and identification.

Figure 3-179 OPAD8 XC2000/3000/4000 Implementation

Name XC2000 XC3000 XC4000 XC7000

OPAD Primitive Primitive Primitive Primitive
OPAD4,
OPAD8,
OPAD16

Macro Macro Macro Macro

O0

X3839

OPAD4

O1

O2

O3

X3842

OPAD8

O[7:0]

X3846

OPAD16

O[15:0]

X3829

OPAD

O[7:0]

O1

O0

O3

O5

O7

O6

O4

O2

OPAD

OPAD

OPAD

OPAD

OPAD

OPAD

OPAD

OPAD
3-384 Xilinx Development System

Design Elements
OR

2- to 9-Input OR Gates with Inverted and
Non-Inverted Inputs

The OR function is performed in the Configurable Logic Block (CLB)
function generators for XC2000, XC3000, and XC4000. OR functions
of up to five inputs are available in any combination of inverting and
non-inverting inputs. OR functions of six to nine inputs are available
with only non-inverting inputs. To invert some or all inputs, use
external inverters. Since each input uses a CLB resource, replace func-
tions with unused inputs with functions having the necessary
number of inputs.

Figure 3-180 OR Gate Representations

Name XC2000 XC3000 XC4000 XC7000

OR2 – OR4B4 Primitive Primitive Primitive Primitive
OR5 – OR5B5 Macro Primitive Primitive Primitive
OR6 – OR9 Macro Macro Macro Primitive

OR4

OR4B3

OR4B2

OR4B1

OR3B1

OR3B2

OR3B3

OR2

OR2B1

OR2B2

OR5

OR5B1

OR5B2

OR5B3

OR5B5

OR5B4

OR4B4

OR3

OR6

OR7

OR9

OR8
Libraries Guide 3-385

Libraries Guide
Figure 3-181 OR8 XC2000 Implementation

Figure 3-182 OR8 XC3000 Implementation

Figure 3-183 OR8 XC4000 Implementation

I4

I2
O

I5
I6
I7

I47

I1
I0

I3 I24

OR3

OR3

OR4

I7
I6 I47

I4
I5

I3
I2
I1
I0

O

OR4

OR5

I7
I6

I4
I5

I1
I2
I3

I0

I13

I47

O

OR3

OR3

OR4
3-386 Xilinx Development System

Design Elements
OSC

Crystal Oscillator Amplifier

The OSC element’s clock signal frequency is derived from an external
crystal-controlled oscillator. The OSC output can be connected to an
ACLK buffer, which is connected to an internal clock net.

Two dedicated input pins (XTAL 1 and XTAL 2) on each FPGA device
are internally connected to pads and input/output blocks that are
connected to the OSC amplifier. The external components are
connected as shown in the following example. Refer to The Program-
mable Gate Array Data Book for details on component selection and
tolerances.

XC2000 XC3000 XC4000 XC7000

Primitive Primitive N/A N/A

X3885

OSC

OSC

X2762

IPAD OPAD

ACLK
Libraries Guide 3-387

Libraries Guide
OSC4

Internal 5-Frequency Clock-Signal Generator

OSC4 provides internal clock signals in applications where timing is
not critical. The available frequencies are determined by FPGA device
components, which are process dependent. Therefore, the available
frequencies vary from device to device. Nominal frequencies are 8
MHz, 500 KHz, 16 KHz, 490 Hz, and 15 Hz. Although there are five
outputs, only three can be used at a time, with 8 MHz on one output
and one frequency each on any two of the remaining four outputs. An
error occurs if more than three outputs are used simultaneously. The
internal circuit must be connected through buffers to OSC4 outputs.

XC2000 XC3000 XC4000 XC7000

N/A N/A Primitive N/A

X3912

F15

OSC4

F490

F16K

F500K

F8M
3-388 Xilinx Development System

Design Elements
PL20PIN, PL24PIN, and PL48PIN

Generic PLD Symbols for EPLD

PL20PIN, PL24PIN, and PL48PIN symbols represent various discrete
PLD devices that can be integrated into an EPLD design. Function-
ality is defined using PALASM-compatible Boolean equation files,
similar to files used to pattern actual PLD devices. Pins on the generic
PLD symbol correspond to the ordered list of signal names appearing
in the equation file. The equation file defines the functionality; it is
specified by applying the attribute PLD=filename. EPLD implementa-
tion software reads the specified equation file when it encounters the
generic PLD symbol.

By default, the PIN1 input of the generic PLD symbol is the clock for
all registered outputs, unless otherwise specified by CLKF equations.

If a PLD symbol output is connected to an output buffer (OBUF or
OBUFEX1), any 3-state (TRST) control function specified for the
output controls the corresponding I/O pin of the chip. By default,
3-state control equations only control the 3-state drivers of connected
EPLD device pins; the signals received by any other on-chip logic and
feedback always remain enabled, unless you specify NODETRST or
you use an XC7272 device.

EPLD Device Limitations
In XC7272 designs, both SETF and TRST equations cannot be used for
the same output. Also, you can only specify one input variable (true
or complement) as a 3-state function; AND functions are not
supported in TRST equations. For XC7272, the only behavior avail-
able is NODETRST. Therefore, any 3-state output signals are
completely disabled by the 3-state (TRST) control equation, including
feedback within the PLD equation file.

XC2000 XC3000 XC4000 XC7000

N/A N/A N/A Primitive

X4204

PL20PIN

PLD =

PIN8

PIN10

PIN9

PIN7

PIN4

PIN6

PIN5

PIN1

PIN3

PIN2

PIN13

PIN16

PIN14

PIN15

PIN17

PIN20

PIN18

PIN19

PIN11

PIN12

PIN15

X4208

PL48PIN

PLD =

PIN8

PIN10

PIN9

PIN7

PIN4

PIN6

PIN5

PIN1

PIN3

PIN2

PIN42

PIN40

PIN41

PIN43

PIN46

PIN11

PIN12 PIN37

PIN38

PIN34

PIN35

PIN36

PIN47

PIN13

PIN14

PIN16

PIN44

PIN45

PIN48

PIN18

PIN17

PIN21

PIN20

PIN19

PIN24

PIN23

PIN22 PIN27

PIN25

PIN26

PIN28

PIN31

PIN32

PIN29

PIN30

PIN33

PIN39

X4205

PL24PIN

PLD =

PIN8

PIN10

PIN9

PIN7

PIN4

PIN6

PIN5

PIN1

PIN3

PIN2

PIN13

PIN16

PIN14

PIN15

PIN17

PIN20

PIN18

PIN19

PIN21

PIN22

PIN11

PIN12

PIN23

PIN24
Libraries Guide 3-389

Libraries Guide
PL20V8

20V8-Compatible PLD Symbol for EPLD

The PL20V8 symbol represents a GAL20V8 PLD covering all 24-pin
medium PAL devices. Functionality is defined using the same
PALASM-compatible Boolean equation file or GAL20V8 JEDEC
programming file used to pattern an actual GAL or PAL device. Pins
on the PL20V8 symbol correspond to the ordered list of signal names
appearing in the equation file (or JEDEC file). You can specify the
equation file used to define the functionality by applying the attribute
PLD=filename. EPLD implementation software reads the specified
equation file when it encounters the PL20V8 symbol.

GAL20V8-Compatible Functionality
Generally, the PL20V8 produces up to eight output functions. You can
synchronize each output with a D-type flip-flop. Flip-flops are trig-
gered on the rising edge of the clock signal. By default, the PIN1
input is the clock for all registers. You can invert each output.

Each output has 3-state drive capability. If the output is connected to
an output buffer (OBUF or OBUFEX1), the corresponding 3-state I/O
pin is controlled by the PL20V8 output-enable control input, PIN 13,
or a 3-state (TRST) control equation. By default, each output specified
by a non-registered equation is always enabled, and each registered
output is enabled when the PIN13 input is Low, which makes it
compatible with 24-pin medium PAL devices. Unused output pins
are always disabled to allow these pins to be reused as inputs. A
single product term can be used to control the output enable of each
output (pins 15 – 22) through the 3-state (TRST) control equation.

The defaults mentioned in the previous paragraphs override the
normal defaults for the Xilinx PLUSASM equation language when
PL20V8 is the specified PLD component type.

XC2000 XC3000 XC4000 XC7000

N/A N/A N/A Primitive

X4202

PL20V8

PLD =

PIN8

PIN10

PIN9

PIN7

PIN4

PIN6

PIN5

PIN1

PIN3

PIN2

PIN13

PIN16

PIN14

PIN15

PIN17

PIN20

PIN18

PIN19

PIN23

PIN21

PIN22

PIN11
3-390 Xilinx Development System

Design Elements
GAL20V8 Exceptions
By default, the output enable controls of a PL20V8 control only the
3-state drivers of the EPLD device pins, not the signals received by
any other on-chip logic. For example, if a 3-state control equation is
specified and the corresponding output only connects to other
on-chip logic symbols, the 3-state equation has no effect. You can
override this default by using the PLUSASM NODETRST declaration
in your equation file. When NODETRST is specified, the output
signal is disabled by the 3-state control equation everywhere it occurs
in the design, including feedback within the PL20V8 equation file.

Extended Functionality
As an alternative to using the default clock, PIN1, you can take a
single product term from each registered output function and use it
as the clock source (logic-controlled clocking) by specifying a CLKF
control equation in your equation file.

You can synchronously set and/or reset each output register using
single product-term functions. You can take a single product term
from each output to control the register set or reset by specifying the
SETF or the RSTF control equation. The register is forced High or
Low while the set or reset product term is satisfied.

When the EPLD device is powered up or its Master Reset pin is acti-
vated, all registers in the device are initialized. You can select the
initial state of each PL20V8 output flip-flop using the PLUSASM
PRLD control equation. Polarity inversion is performed before the
D-input to the flip-flop, making the results of reset, set, and pre-
loading (power on or Master Reset) on the outputs independent of
selected polarity.

You can override the default 3-state control of registered outputs
through PIN 13 by specifying the control equation
output•TRST=VCC in the equation file for each output. Overriding
the default forces the output to always be enabled, allows PIN13 to be
used as an ordinary logic input, and allows the associated product
term to be used as part of the output logic-defining function.
Libraries Guide 3-391

Libraries Guide
Pin Description
PIN1 is the default clock input. It triggers all registers on the Low-to-
High transition and can be driven by a FastCLK global net (BUFG
symbol). Only the PIN1 input can be driven by a FastCLK global net.
If it is driven by a FastCLK net, the signal cannot be used in any equa-
tions in the PLD. PIN1 can be used as a general-purpose logic input if
it is not driven by a FastCLK.

PIN2 – PIN11, PIN14, and PIN23 are general-purpose logic inputs.

PIN13 is the default active-Low output-enable control input for regis-
tered outputs. Outputs are enabled while pin 13 is Low. Pin 13 can
also be used as an ordinary logic input.

PIN15 – PIN22 are logic function outputs with optional 3-state
control. These pins can be used as ordinary logic inputs when no
corresponding output function is specified.

PIN12 and PIN24 are not shown on the PL20V8 symbol, because they
are the ground and VCC pins.

EPLD Device Limitations
In XC7272 designs, both SETF and TRST equations cannot be used for
the same output. Also, only one input variable (true or complement)
can be specified as a 3-state function; AND functions are not
supported in TRST equations. For XC7272, only the NODETRST
behavior is available. Therefore, any 3-state output signals are
completely disabled by the 3-state control equation (or pin 13 for
registered outputs), including feedback within the PL20V8 equation
file.
3-392 Xilinx Development System

Design Elements
PL22V10

22V10-Compatible PLD Symbol for EPLD

The PL22V10 symbol represents a PAL22V10 PLD. Functionality is
defined using the same PALASM-compatible Boolean equation file or
PAL22V10 JEDEC programming file used to pattern an actual
PAL22V10 device. The pins on the PL22V10 symbol correspond to the
ordered list of signal names appearing in the equation file (or JEDEC
file). Specify the equation file by applying the attribute PLD=filename.
EPLD implementation software reads the specified equation file
when it encounters the PL22V10 symbol.

PAL22V10-Compatible Functionality
Generally, the PL22V10 produces up to 10 output functions. You can
synchronize each output with a D-type flip-flop. Flip-flops are trig-
gered on the rising edge of the clock signal. By default, the PIN1
input is the clock for all registers.

Each output has 3-state drive capability. If the output is connected to
an output buffer (OBUF or OBUFEX1), the corresponding 3-state I/O
pin is controlled by the PL22V10 output-enable (TRST) control equa-
tion. By default, each output equation is always enabled. Unused
PL22V10 output pins are always disabled, allowing the symbol pin to
be re-used as an input. You can use a single product term to control
the output enable of each output through the 3-state control equation.

You can implement global asynchronous reset by specifying a signal
name in the 25th pin position in the equation file and by applying a
RSTF control equation that is compatible with PALASM syntax for
the PAL22V10 architecture. Implementing global asynchronous reset
causes the EPLD implementation software to automatically replicate
the reset function on each of the outputs' reset product terms. All
registers are forced Low while the global asynchronous reset function
is satisfied.

Similarly, you can implement global synchronous preset by speci-
fying a signal name in the 25th pin position in the equation file and
by applying a SETF control equation. Implementing global synchro-

XC2000 XC3000 XC4000 XC7000

N/A N/A N/A Primitive

X4203

PL22V10

PLD =

PIN8

PIN10

PIN9

PIN7

PIN4

PIN6

PIN5

PIN1

PIN3

PIN2

PIN13

PIN16

PIN14

PIN15

PIN17

PIN20

PIN18

PIN19

PIN23

PIN21

PIN22

PIN11
Libraries Guide 3-393

Libraries Guide
nous preset causes the EPLD implementation software to automati-
cally replicate it into each of the registered output logic functions. All
registers are forced High synchronously with the clock, if the global
synchronous preset function is satisfied.

Individual output SETF and RSTF control equations are not
supported for PL22V10 equation files.

Each output can be inverted. EPLD software automatically emulates
PAL22V10 architecture by applying logic inversions to the Q-output
of the flip-flop. The results of asynchronous reset, synchronous
preset, and pre-loading (power-on) at the outputs are reversed as a
result of selecting active-Low output polarity.

The defaults mentioned in the previous paragraphs override the
normal defaults for the Xilinx PLUSASM equation language when
PL22V10 is the specified PLD component type.

PAL22V10 Exceptions
Output-enable controls, by default, only control EPLD device pin
3-state drivers, not signals received by any other on-chip logic. For
example, if you specify a 3-state control equation and the corre-
sponding output only connects to other on-chip logic symbols, the
3-state equation has no effect. You can override this default using the
PLUSASM NODETRST declaration in your equation file. When
NODETRST is specified, the output signal is disabled by the 3-state
control equation everywhere it occurs, including feedback within the
PL22V10 equation file.

Extended Functionality
As an alternative to using the default clock, PIN1, you can take a
single product term from each registered output function and use it
as the clock source (logic-controlled clocking) by specifying a CLKF
control equation in your equation file.
3-394 Xilinx Development System

Design Elements
When the EPLD device is powered up or its Master Reset pin is acti-
vated, all registers in the device are initialized. You can select the
initial state of each PL22V10 output flip-flop using the PLUSASM
PRLD control equation.

Pin Description
PIN1, the default clock input, triggers all registers on the Low-to-
High transition. It can be driven by a FastCLK global net (BUFG
symbol). Only the PIN1 input can be driven by a FastCLK global net.
If it is driven by a FastCLK net, the signal on PIN1 cannot be used in
any equations in the PLD. PIN1 can be used as a general-purpose
logic input if it is not driven by a FastCLK.

PIN2 – PIN11 and PIN13 are general-purpose logic inputs.

PIN14 – PIN23 are logic function outputs with optional 3-state
control. These pins can be used as ordinary logic inputs when no
corresponding output function is specified.

PIN12 and PIN24 are not shown on the PL22V10 symbol, because
they are the ground and VCC pins.

EPLD Device Limitations
In XC7272 designs, 3-state control equations cannot be used if an
asynchronous reset function is also specified. You can only specify
one input variable (true or complement) as a 3-state function; AND
functions are not supported in TRST equations. Only the NODETRST
behavior is available for XC7272. Therefore, any 3-state output
signals are completely disabled by the 3-state control equation,
including feedback within the PL22V10 equation file.
Libraries Guide 3-395

Libraries Guide
PLFB9

EPLD High-Density Function Block PLD Symbol

* not supported for XC7336 designs

PLFB9 is a Xilinx-proprietary PLD configuration with all the logic
and macrocell resources available in a Xilinx EPLD High-Density
Function Block. Its features are a superset of various discrete PLD
products, including medium PAL devices and registered-asynchro-
nous devices, such as PAL20RA10.

Specify custom logic functions using the Xilinx PLUSASM Boolean
equation language in a syntax upwardly compatible with the popular
PALASM Boolean equation language. PLFB9 pins correspond to the
ordered list of signal names appearing in the equation file. The equa-
tion file used to define the functionality is specified by applying the
attribute PLD=filename. EPLD implementation software reads this
equation file when it encounters the PLFB9 symbol in the schematic.
(For equivalent logic of XC7272 macrocells, consult the device data
sheet.)

XC2000 XC3000 XC4000 XC7000

N/A N/A N/A Primitive*

PIN15

X4206

PLFB9

PLD =

PIN8

PIN10

PIN9

PIN7

PIN4

PIN6

PIN5

PIN1

PIN3

PIN2

PIN23

PIN24

PIN27

PIN25

PIN26

PIN28

PIN29

PIN11

PIN12

PIN20

PIN21

PIN22

PIN17

PIN18

PIN19

PIN16

PIN30

CO

PIN13

PIN14

PIN32

PIN31

CI
3-396 Xilinx Development System

Design Elements
Figure 3-184 PLFB9 Macrocell Equivalent Logic

You can generate up to nine output functions. Each output can be
synchronized (registered) by a D-type flip-flop. Flip-flops are trig-
gered on the Low-to-High transition of a clock signal. The PLFB9 has
two dedicated clock inputs, PIN31 and PIN32; each can only be
driven by a global FastCLK signal, represented by the BUFG symbol.
By default, PIN31 is the clock for all registers, unless otherwise speci-
fied by a CLKF control equation. You must specify signal names in
pin positions 31 and 32 in the equation file if the corresponding clock
input is used.

When the EPLD device is powered up or its Master Reset pin is acti-
vated, all registers in the device are initialized. You can select the
initial state of each output flip-flop using the PLUSASM PRLD
control equation.

Clock
Select
(CLKF)

Register
Trasparent

Control

Local Feedback

Arithmetic
Carry-Out to Next

Macrocell

Shift-In
from Previous MC

Shift-Out
to Next MC

To 8 More
Macrocells

* TRST is forced high when P-term is not used

RSTF
SETF

CLKF

5

ALU

D1

D2

C

in

C

out

F

R

S
Q

D

M
U

X

CLK1
Arithmetic Carry-In from

Previous Macrocell

1 of 9 Macrocells

Macrocell Output

8
4

21 Array Inputs
from any of

30 I/O Pins and
9 Macrocell
Feedbacks

AND Array

12 Sharable
P-Terms per

Function Block

5 Private
P-Terms per

Macrocell

X3598

CLK2

FBK Shift

30
I/O Pins

TRST*
Feedback Enable

Override Off-Chip
Enable

Off-Chip
Data

Feedback
Polarity
Libraries Guide 3-397

Libraries Guide
PLFB9 Inputs and Outputs
Each PLFB9 output has an available feedback path that feeds back
into the logic array. Therefore, output variables defined by PLUSASM
equations can be reused as inputs to the same or other equations for
state sequencing or cascaded logic. A total of 21 input channels feed
into the logic array in a high-density function block. The product
terms can use both true and complement of each input. These
21 input channels include any output feedback paths used by any of
the equations, as well as inputs applied to PLFB9. The software
automatically allocates one of the available logic array input channels
whenever an output is reused by any of the equations. The total
number of input variables used by all logic equations must therefore
not exceed 21, even though the PLFB9 symbol provides more external
connections.

PLFB9 has 30 generic I/O pins (PIN1 – PIN30) so that all logic array
input channels and output functions are accessible when no output
feedbacks are used. You can attach the incoming or outgoing signals
to any of the symbol pins. Pin direction is determined according to
usage. Unused symbol pins must be left unconnected and their corre-
sponding positions in the equation file pin list must indicate NC (not
connected).

If a PLFB9 symbol output is connected to an output buffer (OBUF or
OBUFEX1), any 3-state (TRST) control function specified for the
output controls the corresponding I/O pin of the chip. By default,
3-state control equations in the PLD only control 3-state drivers of
connected EPLD device pins; the signals received by any other on-
chip logic and feedback always remain enabled unless you specify
NODETRST or you use an XC7272 device.

EPLD Device Limitations
In XC7272 designs, you cannot use both SETF and TRST equations for
the same output. You can specify only one input variable (true or
complement) as a 3-state function; AND functions are not supported
in TRST equations. Only the NODETRST behavior is available in
XC7272. Therefore, any 3-state output signals are completely disabled
by the 3-state control equation, including feedback within the PLD
equation file.
3-398 Xilinx Development System

Design Elements
Arithmetic Carry
You can specify arithmetic functions across a set of adjacent outputs.
The ADD (or ADDMODE) extension in PLUSASM enables the arith-
metic carry path between macrocells to build efficient, high-speed,
ripple-carry adders, subtracters, magnitude comparators, and accu-
mulators. The output order is defined by the equation file pin list;
output variables are listed from least- to most-significant bits.

CI and CO pins represent arithmetic carry paths into and out of the
function block. CI represents the carry-in of the first macrocell. CO
represents the carry-out from the ninth macrocell, and therefore is
only valid if an arithmetic output function is specified in the equation
file for the ninth macrocell. The CI input is from the EPLD carry chain
and must only be connected to the CO output of another PLFB9 or
EPLD-specific arithmetic component. The CO output passes into the
EPLD carry chain and can only be connected to the CI input of
another PLFB9 or EPLD-specific arithmetic component.

Pin Descriptions
PIN1 – PIN30 are generic I/O pins. Each pin can be used as one of the
21 high-density function block (HDFB) logic array inputs or nine
function outputs.

PIN31 and PIN32 are clock inputs that trigger registers on Low-to-
High transitions. They must be driven by a FastCLK buffer (BUFG)
and cannot be used in any logic equations.

CI is the arithmetic carry-in to the first macrocell of the function
block; it can only be driven by the CO from another arithmetic
component or PLFB9.

CO is the arithmetic carry-out from the ninth macrocell of the func-
tion block; it can only drive a CI input of another arithmetic compo-
nent or PLFB9.
Libraries Guide 3-399

Libraries Guide
PLFFB9

EPLD Fast Function Block PLD Symbol

* not supported for XC7236 or XC7272 designs

PLFFB9 is a Xilinx-proprietary PLD configuration with the all logic
and macrocell resources available in a Xilinx EPLD Fast Function
Block. Specify custom logic functions using the Xilinx PLUSASM
Boolean equation language in a syntax upwardly compatible with the
PALASM Boolean equation language. Pins on a PLFFB9 symbol
correspond to the ordered list of signal names appearing in the equa-
tion file. Specify the equation file used to define the functionality by
applying the attribute PLD=filename to the PLFFB9 instance in the
schematic. EPLD implementation software reads this equation file
when it encounters a PLFFB9 symbol. (For extended logic capabilities
of XC7336 macrocells, consult the device data sheet.)

Figure 3-185 PLFFB9 Macrocell Equivalent Logic

XC2000 XC3000 XC4000 XC7000

N/A N/A N/A Primitive*

PIN15

X4207

PLFFB9

PLD =

PIN8

PIN10

PIN9

PIN7

PIN4

PIN6

PIN5

PIN1

PIN3

PIN2

PIN23

PIN24

PIN27

PIN25

PIN26

PIN28

PIN31

PIN11

PIN12

PIN20

PIN21

PIN22

PIN17

PIN18

PIN19

PIN32

PIN13

PIN14

PIN34

PIN16

PIN35

PIN29

PIN30

PIN33

Sum-of-Products
to

Next Macrocell

5

QD

CLK1
1 of 9 Macrocells

Macrocell Output

5 Private
P-Terms per

Macrocell

X3595

Sum-of-Products
from

Previous
Macrocell

P-Term
Assignment

Control

24 Array Inputs
from any of
33 I/O Pins

(Including up to
12 FastInputs)

and 9 Macrocell
Feedbacks

S

0

1

Register
Transparent

Control

CLK2

SETF

AND Array
3-400 Xilinx Development System

Design Elements
You can generate up to nine output functions. Each output can be
synchronized (registered) by a D-type flip-flop. Flip-flops are trig-
gered on the Low-to-High transition of a clock signal. PLFFB9 has
two dedicated clock inputs, PIN34 and PIN35; each can only be
driven by a global FastCLK signal (represented by the BUFG
symbol). By default, PIN34 is the clock for all registers, unless other-
wise specified by a CLKF control equation. Signal names must be
specified in pin positions 34 and 35 in the equation file if the corre-
sponding clock input is used.

PLFFB9 Inputs and Outputs
Each output has an available feedback path that feeds back into the
logic array. Output variables defined by PLUSASM equations can be
reused as inputs to the same or other equations for state sequencing
or cascaded logic. A total of 24 input channels are available to feed
into the logic array in a Fast Function Block. Both true and comple-
ment of each input can be used by the product terms. These 24 input
channels include any output feedback paths used by any of the equa-
tions, as well as inputs applied to a PLFFB9 symbol. The software
automatically allocates one of the available logic array input channels
whenever an output re-uses any of the equations. The total number
of input variables used by all logic equations must not exceed 24,
even though more external connections are provided.

There are 33 generic I/O pins (PIN1 – PIN33) so that all logic array
input channels and output functions are accessible when no output
feedbacks are used. Any of the symbol pins can be used to attach the
incoming or outgoing signals. Pin direction is determined according
to usage. Unused symbol pins must be left unconnected and their
corresponding positions in the equation file pin list must indicate NC
(not connected).

Pin Descriptions
PIN1 – PIN33 are generic I/O pins. Each pin can be used as one of the
24 Fast Function Block logic array inputs or nine function outputs.

PIN34 and PIN35 are clock inputs that trigger registers on Low-to-
High transitions. They must be driven by a FastCLK buffer (BUFG)
and cannot be used in any logic equations.
Libraries Guide 3-401

Libraries Guide
PULLDOWN

Resistor to GND for Input Pads

PULLDOWN resistor elements are available in each XC4000
Input/Output Block (IOB). They are connected to input, output, or
bidirectional pads to guarantee a logic Low level for nodes that might
float.

XC2000 XC3000 XC4000 XC7000

N/A N/A Primitive N/A

X3860
3-402 Xilinx Development System

Design Elements
PULLUP

Resistor to V CC for Input PADs, Open-Drain, and
3-State Outputs

PULLUP resistor elements are available in each XC3000 and XC4000
Input/Output Block (IOB). XC3000 IOBs only use PULLUP resistors
on input pads. XC4000 IOBs connect PULLUP resistors to input,
output, or bidirectional pads to guarantee a logic High level for
nodes that might float.

The pull-up elements also establish a High logic level for open-drain
elements and macros (DECODE, WAND, WORAND) or 3-state
nodes (TBUF) when all the drivers are off.

The buffer outputs are connected together as a wired-AND to form
the output (O). When all the inputs are High, the output is off. To
establish an output High level, a PULLUP resistor(s) is tied to output
(O). One PULLUP resistor uses the least power, two pull-up resistors
achieve the fastest Low-to-High speed.

To indicate two PULLUP resistors, append a DOUBLE parameter to
the pull-up symbol attached to the output (O) node. Refer to the
appropriate CAE tool interface user guide for details.

The PULLUP element is ignored in XC7000 designs. PULLUP is only
supported for compatibility with FPGA designs. Internal 3-state
nodes (from BUFE or BUFT) in EPLD designs are always pulled up
when not driven.

XC2000 XC3000 XC4000 XC7000

N/A Primitive Primitive Primitive

X3861
Libraries Guide 3-403

Libraries Guide
RAM16X1

16-Deep by 1-Wide Static RAM

* Not supported for XC4010D designs

RAM16X1 is a 16-word by 1-bit static read-write random-access
memory. When the write enable (WE) is High, the data on the data
input (D) is loaded into the word selected by the 4-bit address
(A3 – A0). The data output (O) reflects the selected (addressed) word,
whether WE is High or Low. When WE is Low, the RAM content is
unaffected by address or input data transitions. Address inputs must
be stable before the High-to-Low WE transition for predictable
performance.

RAM16X1 cannot be initialized during configuration, only after
configuration. Mode selection is shown in the following truth table.

data = word addressed by bits A3 – A0

XC2000 XC3000 XC4000 XC7000

N/A N/A Primitive* N/A

Inputs Outputs

WE(mode) D O

0(read) X data
1(write) D data

X4124

RAM16X1

A3

A2

A1
A0

WE

D O
3-404 Xilinx Development System

Design Elements
RAM16X2

16-Deep by 2-Wide Static RAM

* Not supported for XC4010D designs

RAM16X2 is a 16-word by 2-bit static read-write random-access
memory. When the write enable (WE) is High, the data on data inputs
(D1 – D0) is loaded into the word selected by the 4-bit address
(A3 – A0). The data outputs (O1 – O0) reflect the selected (addressed)
word, whether WE is High or Low. When WE is Low, the RAM
content is unaffected by address or data input transitions. Address
inputs must be stable before the High-to-Low WE transition for
predictable performance.

RAM16X2 cannot be initialized during configuration, only after
configuration. Mode selection is shown in the following truth table.

data = word addressed by bits A3 – A0

XC2000 XC3000 XC4000 XC7000

N/A N/A Macro* N/A

Inputs Outputs

WE(mode) D1 – D0 O1 – O0

0(read) X data
1(write) D1 – D0 data

X4128

RAM16X2 O0

A1

A2

A3

A0

WE

D1

D0

O1
Libraries Guide 3-405

Libraries Guide
RAM16X4

16-Deep by 4-Wide Static Ram

* Not supported for XC4010D designs

RAM16X4 is a 16-word by 4-bit static read-write random-access
memory. When the write enable (WE) is High, the data on data inputs
(D3 – D0) is loaded into the word selected by the 4-bit address
(A3 – A0). The data outputs (O3 – O0) reflect the selected (addressed)
word, whether WE is High or Low. When WE is Low, the RAM
content is unaffected by address or data input transitions. Address
inputs must be stable before the High-to-Low WE transition for
predictable performance.

RAM16X4 cannot be initialized during configuration, only after
configuration. Mode selection is shown in the following truth table.

data = word addressed by bits A3 – A0

XC2000 XC3000 XC4000 XC7000

N/A N/A Macro* N/A

Inputs Outputs

WE(mode) D3 – D0 O3 – O0

0(read) X data
1(write) D3 – D0 data

X4135

RAM16X4 O0

A1

A2

A3

A0

WE

D3

D2

O1

O2

O3

D1

D0
3-406 Xilinx Development System

Design Elements
RAM16X8

16-Deep by 8-Wide Static RAM

* Not supported for XC4010D designs

RAM16X8 is a 16-word by 8-bit static read-write random-access
memory. When the write enable (WE) is High, the data on data inputs
(D7 – D0) is loaded into the word selected by the 4-bit address
(A3 – A0). The data outputs (O7 – O0) reflect the selected (addressed)
word, whether WE is High or Low. When WE is Low, the RAM
content is unaffected by address or data input transitions. Address
inputs must be stable before the High-to-Low WE transition for
predictable performance.

RAM16X8 cannot be initialized during configuration, only after
configuration. Mode selection is shown in the following truth table.

data = word addressed by bits A3 – A0

XC2000 XC3000 XC4000 XC7000

N/A N/A Macro* N/A

Inputs Outputs

WE(mode) D7 – D0 O7 – O0

0(read) X data
1(write) D7 – D0 data

X4142

RAM16X8

A0
 WE

 D[7:0] Q[7:0]

A1
A2
A3
Libraries Guide 3-407

Libraries Guide
Figure 3-186 RAM16X8 XC4000 Implementation

O0

A0
A1
A2
A3

D O
WE

RAM16X1

O7

O6

O0

O5

O4

O1

O2

O3

O[7:0]

A2

D[7:0]

D4

D5

D6

D7

D0

D1

D2

D3

A3

A1
A0
WE

O1

A0
A1
A2
A3

D O
WE

RAM16X1

O2

A0
A1
A2
A3

D O
WE

RAM16X1

O3

A0
A1
A2
A3

D O
WE

RAM16X1

O4

A0
A1
A2
A3

D O
WE

RAM16X1

O5

A0
A1
A2
A3

D O
WE

RAM16X1

O6

A0
A1
A2
A3

D O
WE

RAM16X1

O7

A0
A1
A2
A3

D O
WE

RAM16X1
3-408 Xilinx Development System

Design Elements
RAM32X1

32-Deep by 1-Wide Static RAM

* Not supported for XC4010D designs

RAM32X1 is a 32-word by 1-bit static read-write random-access
memory. When the write enable (WE) is High, the data on the data
input (D) is loaded into the word selected by the 5-bit address
(A4 – A0). The data output (O) reflects the selected (addressed) word,
whether WE is High or Low. When WE is Low, the RAM content is
unaffected by address or input data transitions. Address inputs must
be stable before the High-to-Low WE transition for predictable
performance.

RAM32X1 cannot be initialized during configuration, only after
configuration. Mode selection is shown in the following truth table.

data = word addressed by bits A4 –- A0

XC2000 XC3000 XC4000 XC7000

N/A N/A Primitive* N/A

Inputs Outputs

WE(mode) D O

0(read) X data
1(write) D data

X4125

RAM32X1 O

A2

A3

A4

A1

A0

WE

D

Libraries Guide 3-409

Libraries Guide
RAM32X2

32-Deep by 2-Wide Static RAM

* Not supported for XC4010D designs

RAM32X2 is a 32-word by 2-bit static read-write random-access
memory. When the write enable (WE) is High, the data on the data
inputs (D1 – D0) is loaded into the word selected by the address bits
(A4 – A0). The data outputs (O1 – O0) reflect the selected (addressed)
word, whether WE is High or Low. When WE is Low, the RAM
content is unaffected by address or input data transitions. Address
inputs must be stable before the High-to- Low WE transition for
predictable performance.

RAM32X2 cannot be initialized during configuration, only after
configuration. Mode selection is shown in the following truth table.

data = word addressed by bits A4 –- A0

XC2000 XC3000 XC4000 XC7000

N/A N/A Macro* N/A

Inputs Outputs

WE(mode) D1 – D0 O1 – O0

0(read) X data
1(write) D1 – D0 data

X4129

RAM32X2

O0

A2

A3

A4

A1

A0

WE

D1

D0 O1
3-410 Xilinx Development System

Design Elements
RAM32X4

32-Deep by 4-Wide Static RAM

* Not supported for XC4010D designs

RAM32X4 is a 32-word by 4-bit static read-write random-access
memory. When the write enable (WE) is High, the data on the data
inputs (D3 – D0) is loaded into the word selected by the address bits
(A4 – A0). The data outputs (O3 – O0) reflect the selected (addressed)
word, whether WE is High or Low. When WE is Low, the RAM
content is unaffected by address or input data transitions. Address
inputs must be stable before the High-to- Low WE transition for
predictable performance.

RAM32X4 cannot be initialized during configuration, only after
configuration. Mode selection is shown in the following truth table.

data = word addressed by bits A4 –- A0

XC2000 XC3000 XC4000 XC7000

N/A N/A Macro* N/A

Inputs Outputs

WE(mode) D3 – D0 O3 – O0

0(read) X data
1(write) D3 – D0 data

X4136

RAM32X4 O0

A1

A2

A3

A0

WE

D3

D2

O1

O2

O3

D1

D0

A4
Libraries Guide 3-411

Libraries Guide
RAM32X8

32-Deep by 8-Wide Static RAM

* Not supported for XC4010D designs

RAM32X8 is a 32-word by 8-bit static read-write random-access
memory. When the write enable (WE) is High, the data on the data
inputs (D7 – D0) is loaded into the word selected by the address bits
(A4 – A0). The data outputs (O7 – O0) reflect the selected (addressed)
word, whether WE is High or Low. When WE is Low, the RAM
content is unaffected by address or input data transitions. The
address inputs must be stable before the High-to- Low WE transition
for predictable performance.

RAM32X8 cannot be initialized during configuration, only after
configuration. Mode selection is shown in the following truth table.

data = word addressed by bits A4 –- A0

XC2000 XC3000 XC4000 XC7000

N/A N/A Macro* N/A

Inputs Outputs

WE(mode) D7 – D0 O7 – O0

0(read) X data
1(write) D7 – D0 data

X4143

RAM32X8

A0
 WE

 D[7-0] Q[7-0]

A1
A2
A3

A4
3-412 Xilinx Development System

Design Elements
Figure 3-187 RAM32X8 XC4000 Implementation

O7A4

O

A2
A1

RAM32X1
D
WE
A0

A3

WE
A0

O7

O6

O0

O5

O4

O1

O2

O3

O[7:0]

D7

D[7:0]

D4

D5

D6

D0

D1

D2

D3

A3
A2
A1

A4

O0A4

O

A2
A1

RAM32X1
D
WE
A0

A3

O1A4

O

A2
A1

RAM32X1
D
WE
A0

A3

O2A4

O

A2
A1

RAM32X1
D
WE
A0

A3

O3A4

O

A2
A1

RAM32X1
D
WE
A0

A3

O4A4

O

A2
A1

RAM32X1
D
WE
A0

A3

O5A4

O

A2
A1

RAM32X1
D
WE
A0

A3

O6A4

O

A2
A1

RAM32X1
D
WE
A0

A3
Libraries Guide 3-413

Libraries Guide
READBACK

FPGA Bitstream Readback Controller

The READBACK macro accesses the bitstream readback function. A
Low-to-High transition on the TRIG input initiates the readback
process. The readback data appears on the DATA output. The RIP
(readback-in-progress) output remains High during the readback
process. If you use the ReadAbort:Enable option in MakeBits, a High-
to-Low transition on the TRIG input aborts the process. The signal on
the CLK input clocks out the readback data; if no signal is connected
to the CLK input, the internal CCLK is used. Set the ReadClk option
in MakeBits to indicate the readback clock source.

Typically, READBACK inputs are sourced by device-external input
pins and outputs drive device-external output pins. If you want
external input and output pins, connect READBACK pins through
IBUFs or OBUFs to pads, as with any I/O device. However, you can
connect READBACK pins to device-internal logic instead. For details
on the readback process, refer to the application note “Using the
XC4000 Readback Capability” in The Programmable Logic Data Book.

Figure 3-188 READBACK XC4000 Implementation

XC2000 XC3000 XC4000 XC7000

N/A N/A Macro N/A
X3918

RIP

READBACKCLK

TRIG

DATA

DATA
RIP

TRIG

RDBK

I

RDCLK
CLK

TRIG DATA
RIP
3-414 Xilinx Development System

Design Elements
ROM16X1

16-Deep by 1-Wide ROM

* Not supported for XC4010D designs

ROM16X1 is a 16-word by 1-bit read-only memory. The data output
(O) reflects the word selected by the 4-bit address (A3 – A0). The
ROM is initialized to a known value during configuration with the
INIT=value parameter. The value consists of four hexadecimal digits
that are written into the ROM from the most-significant digit A=FH
to the least-significant digit A=0H. For example, the INIT=10A7
parameter produces the data stream

0001 0000 1010 0111

An error occurs if the INIT=value is not specified. Refer to the appro-
priate CAE tool interface user guide for details.

XC2000 XC3000 XC4000 XC7000

N/A N/A Primitive* N/A

X4137

ROM16X1
A0

A1

A2

A3

O

Libraries Guide 3-415

Libraries Guide
ROM32X1

32-Deep by 1-Wide ROM

* Not supported for XC4010D designs

ROM32X1 is a 32-word by 1-bit read-only memory. The data output
(O) reflects the word selected by the 5-bit address (A4 – A0). The
ROM is initialized to a known value during configuration with the
INIT=value parameter. The value consists of eight hexadecimal digits
that are written into the ROM from the most-significant digit A=1FH
to the least-significant digit A=00H. For example, the INIT=10A78F39
parameter produces the data stream

0001 0000 1010 0111 1000 1111 0011 1001

An error occurs if the INIT=value is not specified. Refer to the appro-
priate CAE tool interface user guide for details.

XC2000 XC3000 XC4000 XC7000

N/A N/A Primitive* N/A

X4130

ROM32X1
O

A2

A3

A4

A1

A0
3-416 Xilinx Development System

Design Elements
SOP

Sum Of Products

Sum Of Products macros and primitives provide common logic func-
tions by OR gating the outputs of two AND functions or the output
of one AND function with one direct input. Variations of inverting
and non-inverting inputs are available.

Figure 3-189 SOP Gate Representations

Name XC2000 XC3000 XC4000 XC7000

SOP3 – SOP3B3 Macro Macro Macro Primitive
SOP4 – SOP4B4 Macro Macro Macro Primitive

SOP3B3

SOP3B2B

SOP3B2A

SOP3B1B

SOP3B1A

SOP3
SOP4

SOP4B1

SOP4B2A

SOP4B2B

SOP4B3

SOP4B4
Libraries Guide 3-417

Libraries Guide
SR4CE

4-Bit Serial-In Parallel-Out Shift Register with Clock
Enable and Asynchronous Clear

SR4CE is a 4-bit shift register with a shift-left serial input (SLI),
parallel outputs (Q3 – Q0), and clock enable (CE) and asynchronous
clear (CLR) inputs. The CLR input, when High, overrides all other
inputs and resets the data outputs (Q3 – Q0) Low. When CE is High
and CLR is Low, the data on the SLI input is loaded into the first bit of
the shift register during the Low-to-High clock (C) transition and
appears on the Q0 output. During subsequent Low-to-High clock
transitions, when CE is High and CLR is Low, data is shifted to the
next highest bit position as new data is loaded into Q0 (SLI➝Q0,
Q0➝Q1, Q1➝Q2, and so forth). The register ignores clock transitions
when CE is Low.

Registers can be cascaded by connecting the Q3 output of one stage to
the SLI input of the next stage and connecting clock, CE, and CLR in
parallel.

The register is asynchronously reset, outputs Low, when power is
applied or when Global Reset (XC2000, XC3000) or Global Set/Reset
(XC4000) is active. GR is active-Low; the GSR active level is program-
mable.

qn-1 = state of referenced output one set-up time prior to active clock transition

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

CLR CE SLI C Q0 Q3 – Q1

1 X X X 0 0
0 0 X X ---No Change---
0 1 1 ↑ 1 qn-1
0 1 0 ↑ 0 qn-1

X4145

SR4CE

C

CE

SLI

Q3

Q2

Q1

Q0

CLR
3-418 Xilinx Development System

Design Elements
SR4CLE

4-Bit Loadable Serial/Parallel-In Parallel-Out Shift
Register with Clock Enable and Asynchronous Clear

SR4CLE is a 4-bit shift register with a shift-left serial input (SLI),
parallel inputs (D3 – D0), parallel outputs (Q3 – Q0), and three
control inputs – clock enable (CE), load enable (L), and asynchronous
clear (CLR).The register ignores clock transitions when L and CE are
Low. The asynchronous CLR, when High, overrides all other inputs
and resets the data outputs (Q3 – Q0) Low. When L is High and CLR
is Low, data on the D3 – D0 inputs is loaded into the corresponding
Q3 – Q0 bits of the register. When CE is High and L and CLR are Low,
data on the SLI input is loaded into the first bit of the shift register
during the Low-to-High clock (C) transition and appears on the Q0
output. During subsequent clock transitions, when CE is High and L
and CLR are Low, the data is shifted to the next highest bit position as
new data is loaded into Q0 (SLI➝Q0, Q0➝Q1, Q1➝Q2, and so forth).

Registers can be cascaded by connecting the Q3 output of one stage
to the SLI input of the next stage and connecting clock, CE, L, and
CLR inputs in parallel.

The register is asynchronously reset, outputs Low, when power is
applied or when Global Reset (XC2000, XC3000) or Global Set/Reset
(XC4000) is active. GR is active-Low; the GSR active level is program-
mable.

dn or qn-1 = state of referenced input or output one set-up time prior to active
clock transition

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

CLR L CE SLI D3 – D0 C Q0 Q3 – Q1

1 X X X X X 0 0
0 1 X X D3 – D0 ↑ d0 dn
0 0 1 SLI X ↑ SLI qn-1
0 0 0 X X X --No Change--

X4147

C

CE

L

SR4CLE

D3

D2

D1

D0

SLI

Q3

Q2

Q1

Q0

CLR
Libraries Guide 3-419

Libraries Guide
SR4CLED

4-Bit Shift Register with Clock Enable and
Asynchronous Clear

SR4CLED is a 4-bit shift register with shift-left (SLI) and shift-right
(SRI) serial inputs, four parallel inputs (D3 – D0), and four control
inputs – clock enable (CE), load enable (L), shift left/right (LEFT),
and asynchronous clear (CLR). The register ignores clock transitions
when CE and L are Low. The asynchronous clear, when High, over-
rides all other inputs and resets the data outputs (Q3 – Q0) Low.
When L is High and CLR is Low, the data on the D3 – D0 inputs is
loaded into the corresponding Q3 – Q0 bits of the register. When CE
is High and L and CLR are Low, data is shifted right or left,
depending on the state of the LEFT input. If LEFT is High, data on the
SLI is loaded into Q0 during the Low-to-High clock transition and
shifted left (to Q1, Q2, and so forth) during subsequent clock transi-
tions. If LEFT is Low, data on the SRI is loaded into Q3 during the
Low-to-High clock transition and shifted right (to Q2, Q1, and so
forth) during subsequent clock transitions. The truth table indicates
the state of the Q3 – Q0 outputs under all input conditions.

The register is asynchronously reset, outputs Low, when power is
applied, or when Global Reset (XC2000, XC3000) or Global Set/Reset
(XC4000) is active. GR is active-Low; the GSR active level is program-
mable.

dn, qn-1 or qn+1 = state of referenced input one set-up time prior to active clock
transition

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

CLR L CE LEFT SLI SRI D3 – D0 C Q0 Q3 Q2 – Q1

1 X X X X X X X 0 0 0
0 1 X X X X D3 – D0 ↑ d0 d3 dn
0 0 0 X X X X X ----No Change-----
0 0 1 1 SLI X X ↑ SLI q2 qn-1
0 0 1 0 X SRI X ↑ q1 SRI qn+1

X4149

C

CE

L

SR4CLED

D3

D2

D1

D0

SLI

Q3

Q2

Q1

Q0

CLR

SRI

LEFT
3-420 Xilinx Development System

Design Elements
SR4RE

4-Bit Serial-In Parallel-Out Shift Register with Clock
Enable and Synchronous Reset

SR4RE is a 4-bit shift register with shift-left serial input (SLI), parallel
outputs (Q3 – Q0), clock enable (CE), and synchronous reset (R)
inputs. The R input, when High, overrides all other inputs and resets
the data outputs (Q3 – Q0) Low. When CE is High and R is Low, the
data on the SLI is loaded into the first bit of the shift register during
the Low-to-High clock (C) transition and appears on the Q0 output.
During subsequent Low-to-High clock transitions, when CE is High
and R is Low, data is shifted to the next highest bit position as new
data is loaded into Q0 (SLI➝Q0, Q0➝Q1, Q1➝Q2, and so forth). The
register ignores clock transitions when CE is Low.

Registers can be cascaded by connecting the Q3 output of one stage
to the SLI input of the next stage and connecting clock, CE, and R in
parallel.

The register is asynchronously reset, outputs Low, when power is
applied or when Global Reset (XC2000, XC3000) or Global Set/Reset
(XC4000) is active. GR is active-Low; the GSR active level is program-
mable.

qn-1 = state of referenced output one set-up time prior to active clock transition

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

R CE SLI C Q0 Q3 – Q1

1 X X ↑ 0 0
0 0 X X ---No Change---
0 1 1 ↑ 1 qn-1
0 1 0 ↑ 0 qn-1

X4144

SR4RE

C

CE

SLI

Q3

Q2

Q1

Q0

R

Libraries Guide 3-421

Libraries Guide
SR4RLE

4-Bit Loadable Serial/Parallel-In Parallel-Out Shift
Register with Clock Enable and Synchronous Reset

SR4RLE is a 4-bit shift register with shift-left serial input (SLI),
four parallel inputs (D3 – D0), four parallel outputs (Q3 – Q0), and
three control inputs – clock enable (CE), load enable (L), and synchro-
nous reset (R). The register ignores clock transitions when L and CE
are Low. The synchronous R, when High, overrides all other inputs
and resets the data outputs (Q3 – Q0) Low. When L is High and R is
Low, data on the D3 – D0 inputs is loaded into the corresponding
Q3 – Q0 bits of the register. When CE is High and L and R are Low,
data on the SLI input is loaded into the first bit of the shift register
during the Low-to-High clock (C) transition and appears on the Q0
output. During subsequent clock transitions, when CE is High and L
and R are Low, the data is shifted to the next highest bit position as
new data is loaded into Q0 (SLI➝Q0, Q0➝Q1, Q1➝Q2, and so forth).

Registers can be cascaded by connecting the Q3 output of one stage to
the SLI input of the next stage and connecting clock, CE, L, and R
inputs in parallel.

The register is asynchronously reset, outputs Low, when power is
applied or when Global Reset (XC2000, XC3000) or Global Set/Reset
(XC4000) is active. GR is active-Low; the GSR active level is program-
mable.

dn or qn-1 = state of referenced input one set-up time prior to active clock
transition

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

R L CE SLI D3 – D0 C Q0 Q3 – Q1

1 X X X X ↑ 0 0
0 1 X X D3 – D0 ↑ d0 dn
0 0 1 SLI X ↑ SLI qn-1
0 0 0 X X X --No Change--

X4146

C

CE

L

SR4RLE

D3

D2

D1

D0

SLI

Q3

Q2

Q1

Q0

R

3-422 Xilinx Development System

Design Elements
SR4RLED

4-Bit Shift Register with Clock Enable and
Synchronous Reset

SR4RLED is a 4-bit shift register with shift-left (SLI) and shift-right
(SRI) serial inputs, four parallel inputs (D3 – D0), and four control
inputs – clock enable (CE), load enable (L), shift left/right (LEFT),
and synchronous reset (R). The register ignores clock transitions
when CE and L are Low. The synchronous R, when High, overrides
all other inputs and resets the data outputs (Q3 – Q0) Low. When L is
High and R is Low, the data on the D3 – D0 inputs is loaded into the
corresponding Q3 – Q0 bits of the register. When CE is High and L
and R are Low, data is shifted right or left, depending on the state of
the LEFT input. If LEFT is High, data on SLI is loaded into Q0 during
the Low-to-High clock transition and shifted left (to Q1, Q2, and so
forth) during subsequent clock transitions. If LEFT is Low, data on
the SRI is loaded into Q3 during the Low-to-High clock transition
and shifted right (to Q2, Q1, and so forth) during subsequent clock
transitions. The truth table indicates the state of the Q3 – Q0 outputs
under all input conditions.

The register is asynchronously reset, outputs Low, when power is
applied or when Global Reset (XC2000, XC3000) or Global Set/Reset
(XC4000) is active. GR is active-Low; the GSR active level is program-
mable.

dn, qn-1 or qn+1 = state of referenced input one set-up time prior to active clock
transition

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

R L CE LEFT SLI SRI D3 – D0 C Q0 Q3 Q2 – Q1

1 X X X X X X ↑ 0 0 0
0 1 X X X X D3 – D0 ↑ d0 d3 dn
0 0 0 X X X X X ----No Change-----
0 0 1 1 SLI X X ↑ SLI q2 qn-1
0 0 1 0 X SRI X ↑ q1 SRI qn+1

X4148

C

CE

L

SR4RLED

D3

D2

D1

D0

SLI

Q3

Q2

Q1

Q0

R

SRI

LEFT
Libraries Guide 3-423

Libraries Guide
SR8CE

8-Bit Serial-In Parallel-Out Shift Register with Clock
Enable and Asynchronous Clear

SR8CE is an 8-bit shift-left serial input (SLI), parallel output (Q7 – Q0)
shift register with clock enable (CE) and asynchronous clear (CLR)
inputs. The CLR input, when High, overrides all other inputs and
resets the data outputs (Q7 – Q0) Low. When CE is High and CLR is
Low, the data on the SLI is loaded into the first bit of the shift register
during the Low-to-High clock (C) transition and appears on the Q0
output. During subsequent Low-to-High clock transitions, when CE
is High and CLR is Low, data is shifted to the next highest bit position
as new data is loaded into Q0 (SLI➝Q0, Q0➝Q1, Q1➝Q2, and so
forth). The register ignores clock transitions when CE is Low.

Registers can be cascaded by connecting the Q7 output of one stage to
the SLI input of the next stage and connecting clock, CE, and CLR in
parallel.

The register is asynchronously reset, outputs Low, when power is
applied or when Global Reset (XC2000, XC3000) or Global Set/Reset
(XC4000) is active. GR is active-Low; the GSR active level is program-
mable.

qn-1 = state of referenced output one set-up time prior to active clock transition

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

CLR CE SLI C Q0 Q7 – Q1

1 X X X 0 0
0 0 X X --No Change---
0 1 1 ↑ 1 qn-1
0 1 0 ↑ 0 qn-1

X4151

SR8CE

C

CE

SLI
Q[7:0]

CLR
3-424 Xilinx Development System

Design Elements
Figure 3-190 SR8CE XC2000/3000/4000 Implementation

Q6

FDCE
QD

CLR

CE
C

Q2

FDCE
QD

CLR

CE
C

Q0

FDCE
QD

CLR

CE
C

Q1

FDCE
QD

CLR

CE
C

Q4

FDCE
QD

CLR

CE
C

Q5

FDCE
QD

CLR

CE
C

Q3

FDCE
QD

CLR

CE
C

Q7

FDCE
QD

CLR

CE
C

SLI
CE

C
CLR

Q6

Q1

Q2

Q3

Q0 Q3

Q[7:0]

Q4

Q5

Q7

C

Libraries Guide 3-425

Libraries Guide
SR8CLE

8-Bit Loadable Serial/Parallel-In Parallel-Out Shift
Register with Clock Enable and Asynchronous Clear

SR8CLE is an 8-bit shift register with a shift-left serial input (SLI),
parallel inputs (D7 – D0), parallel outputs (Q7 – Q0), and three
control inputs – clock enable (CE), load enable (L) and asynchronous
clear (CLR). The register ignores clock transitions when L and CE are
Low. The asynchronous CLR, when High, overrides all other inputs
and resets the data outputs (Q7 – Q0) Low. When L is High and CLR
is Low, data on the D7 – D0 inputs is loaded into the corresponding
Q7 – Q0 bits of the register. When CE is High and L and CLR are Low,
data on the SLI input is loaded into the first bit of the shift register
during the Low-to-High clock (C) transition and appears on the Q0
output. During subsequent clock transitions, when CE is High and L
and CLR are Low, the data is shifted to the next highest bit position as
new data is loaded into Q0 (SLI➝Q0, Q0➝Q1, Q1➝Q2, and so forth).

Registers can be cascaded by connecting the Q7 output of one stage to
the SLI input of the next stage and connecting clock, CE, L, and CLR
inputs in parallel.

The register is asynchronously reset, outputs Low, when power is
applied or when Global Reset (XC2000, XC3000) or Global Set/Reset
(XC4000) is active. GR is active-Low; the GSR active level is program-
mable.

dn or qn-1 = state of referenced input one set-up time prior to active clock
transition

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

CLR L CE SLI D7 – D0 C Q0 Q7 – Q1

1 X X X X X 0 0
0 1 X X D7 – D0 ↑ d0 dn
0 0 1 SLI X ↑ SLI qn-1
0 0 0 X X X --No Change--

X4153

C

CE

L

SR8CLE
D[7:0]

SLI

Q[7:0]

CLR
3-426 Xilinx Development System

Design Elements
Figure 3-191 SR8CLE XC2000/3000/4000 Implementation

Q[7:0]

Q3

Q0

Q1

Q2

Q4

Q5

Q6

Q7

Q3

D[7:0]

D3

D2

D0

D1

D4

D5

D6

D7

MQ4

D0
D1

O

S0

M2_1

MD5

CLR

L_OR_CE

MD7

C

MQ3

D0
D1

O

S0

M2_1

L

SLI

MD2 MD6

MD4

MD3

MD1

MD0

Q1

FDCE
QD

CLR
CE
C

Q2

FDCE
QD

CLR
CE
C

Q3

FDCE
QD

CLR
CE
C

Q4

FDCE
QD

CLR
CE
C

Q6

FDCE
QD

CLR
CE
C

Q7

FDCE
QD

CLR
CE
C

MQ0

D0
D1

O

S0

M2_1

MQ1

D0
D1

O

S0

M2_1

MQ2

D0
D1

O

S0

M2_1

MQ5

D0
D1

O

S0

M2_1

MQ7

D0
D1

O

S0

M2_1

MQ6

D0
D1

O

S0

M2_1

OR2

CE

Q0

FDCE
QD

CLR
CE
C

Q5

FDCE
QD

CLR
CE
C

Libraries Guide 3-427

Libraries Guide
SR8CLED

8-Bit Shift Register with Clock Enable and
Asynchronous Clear

SR8CLED is an 8-bit shift register with shift-left (SLI) and shift-right
(SRI) serial inputs, parallel inputs (D7 – D0), and four control inputs –
clock enable (CE), load enable (L), shift left/right (LEFT), and asyn-
chronous clear (CLR). The register ignores clock transitions when CE
and L are Low. The asynchronous CLR, when High, overrides all
other inputs and resets the data outputs (Q7 – Q0) Low. When L is
High and CLR is Low, data on the D7 – D0 inputs is loaded into the
corresponding Q7 – Q0 bits of the register. When CE is High and L
and CLR are Low, data is shifted right or left depending on the state
of the LEFT input. If LEFT is High, data on the SLI is loaded into Q0
during the Low-to-High clock transition and shifted left (to Q1, Q2,
and so forth) during subsequent clock transitions. If LEFT is Low,
data on the SRI is loaded into Q7 during the Low-to-High clock tran-
sition and shifted right (to Q6, Q5, and so forth) during subsequent
clock transitions. The truth table indicates the state of the Q7 – Q0
outputs under all input conditions.

The register is asynchronously reset, outputs Low, when power is
applied or when Global Reset (XC2000, XC3000) or Global Set/Reset
(XC4000) is active. GR is active-Low; the GSR active level is program-
mable.

dn, qn-1 or qn+1 = state of referenced input one set-up time prior to active clock
transition

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

CLR L CE LEFT SLI SRI D7 – D0 C Q0 Q7 Q6 – Q1

1 X X X X X X X 0 0 0
0 1 X X X X D7 – D0 ↑ d0 d7 dn
0 0 0 X X X X X -----No Change-----
0 0 1 1 SLI X X ↑ SLI q6 qn-1
0 0 1 0 X SRI X ↑ q1 SRI qn+1

X4155

C

CE

L

SR8CLED
D[7:0]

SLI

Q[7:0]

CLR

SRI

LEFT
3-428 Xilinx Development System

Design Elements
Figure 3-192 SR8CLED XC2000/3000/4000 Implementation

LEFT

OR2

L

MDR7

MDR6

MDR5

MDR4

MDR3

MDR2

MDR1

MDR0

MDL7

MDL5

MDL4

MDL3

MDL2

MDL1

MDL0

D4

D2

D1

D0

D3

D5

D6

D7D[7:0]

SLI

CE

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q[7:0]

MDL6

L_OR_CE

Q0

FDCE
QD

CLR

CE
C

Q1

FDCE
QD

CLR

CE
C

Q2

FDCE
QD

CLR

CE
C

Q3

FDCE
QD

CLR

CE
C

Q4

FDCE
QD

CLR
CE
C

Q5

FDCE
QD

CLR

CE
C

Q6

FDCE
QD

CLR

CE
C

Q7

FDCE
QD

CLR
CE
C

MDR4

D0
D1

O

S0

M2_1

MDL6

D0
D1

O

S0

M2_1

MDL5

D0
D1

O

S0

M2_1

MDL4

D0
D1

O

S0

M2_1

MDR5

D0
D1

O

S0

M2_1

MDR6

D0
D1

O

S0

M2_1

MDL7

D0
D1

O

S0

M2_1

MDR7

D0
D1

O

S0

M2_1

MDR3

D0
D1

O

S0

M2_1

MDL3

D0
D1

O

S0

M2_1

MDR2

D0
D1

O

S0

M2_1

MDR1

D0
D1 O

S0

M2_1

MDR0

D0
D1

O

S0

M2_1
OR2

MDL0

D0
D1

O

S0

M2_1

MDL1

D0
D1 O

S0

M2_1

MDL2

D0
D1

O

S0

M2_1

SRI
L_LEFT

CLR
C

Libraries Guide 3-429

Libraries Guide
SR8RE

8-Bit Serial-In Parallel-Out Shift Register with Clock
Enable and Synchronous Reset

SR8RE is an 8-bit shift-left serial input (SLI), parallel output (Q7 – Q0)
shift register with clock enable (CE) and synchronous reset (R) inputs.
The R input, when High, overrides all other inputs and resets the data
outputs (Q7 – Q0) Low. When CE is High and R is Low, the data on
the SLI is loaded into the first bit of the shift register during the Low-
to-High clock (C) transition and appears on the Q0 output. During
subsequent Low-to-High clock transitions, when CE is High and R is
Low, data is shifted to the next highest bit position as new data is
loaded into Q0 (SLI➝Q0, Q0➝Q1, Q1➝Q2, and so forth). The register
ignores clock transitions when CE is Low.

Registers can be cascaded by connecting the Q7 output of one stage to
the SLI input of the next stage and by connecting clock, CE, and R in
parallel.

The register is asynchronously reset, outputs Low, when power is
applied or when Global Reset (XC2000, XC3000) or Global Set/Reset
(XC4000) is active. GR is active-Low; the GSR active level is program-
mable.

qn-1 = state of referenced output one set-up time prior to active clock transition

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

R CE SLI C Q0 Q7 – Q1

1 X X ↑ 0 0
0 0 X X --No Change---
0 1 1 ↑ 1 qn-1
0 1 0 ↑ 0 qn-1

X4150

SR8RE

C

CE

SLI
Q[7:0]

R

3-430 Xilinx Development System

Design Elements
Figure 3-193 SR8RE XC2000/3000/4000 Implementation

Q7

FDRE

R

QD
CE
C

Q6

FDRE

R

QD
CE
C

Q5

FDRE

R

QD
CE
C

Q4

FDRE

R

QD
CE
C

Q3

FDRE

R

QD
CE
C

Q2

FDRE

R

QD
CE
C

Q1

FDRE

R

QD
CE
C

Q0

FDRE

R

QD
CE
C

SLI
CE

R

Q6

Q1

Q2

Q3

Q0 Q3

Q[7:0]

Q4

Q5

Q7

C

Libraries Guide 3-431

Libraries Guide
SR8RLE

8-Bit Loadable Serial/Parallel-In Parallel-Out Shift
Register with Clock Enable and Synchronous Reset

SR8RLE is an 8-bit shift register with shift-left serial input (SLI),
parallel inputs (D7 – D0), parallel outputs (Q7 – Q0), and three
control inputs – clock enable (CE), load enable (L), and synchronous
reset (R). The register ignores clock transitions when L and CE are
Low. The synchronous R, when High, overrides all other inputs and
resets the data outputs (Q7 – Q0) Low. When L is High and R is Low,
data on the D7 – D0 inputs is loaded into the corresponding Q7 – Q0
bits of the register. When CE is High and L and R are Low, data on the
SLI is loaded into the first bit of the shift register during the Low-to-
High clock (C) transition and appears on the Q0 output. During
subsequent clock transitions, when CE is High and L and R are Low,
the data is shifted to the next highest bit position as new data is
loaded into Q0 (SLI➝Q0, Q0➝Q1, Q1➝Q2, and so forth). Registers
can be cascaded by connecting the Q7 output of one stage to the SLI
input of the next stage and connecting clock, CE, L, and R inputs in
parallel.

The register is asynchronously reset, outputs Low, when power is
applied or when Global Reset (XC2000, XC3000) or Global Set/Reset
(XC4000) is active. GR is active-Low; the GSR active level is program-
mable.

dn or qn-1 = state of referenced input one set-up time prior to active clock
transition

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

R L CE SLI D7 – D0 C Q0 Q7 – Q1

1 X X X X ↑ 0 0
0 1 X X D7 – D0 ↑ d0 dn
0 0 1 SLI X ↑ SLI qn-1
0 0 0 X X X --No Change--

X4152

C

CE

L

SR8RLE
D[7:0]

SLI

Q[7:0]

R

3-432 Xilinx Development System

Design Elements
Figure 3-194 SR8RLE XC2000/3000/4000 Implementation

Q[7:0]

Q3

Q0

Q1

Q2

Q4

Q5

Q6

Q7

Q3

D[7:0]

D0

D1

D4

D5

D6

D7D3

D2

R

L

MD2

MD7

MD6

MD5

MD4

MD3

MD1

MD0

C

SLI

MQ0

D0
D1 O
S0

M2_1

MQ1

D0
D1 O
S0

M2_1

MQ2

D0
D1 O
S0

M2_1

MQ3

D0
D1 O
S0

M2_1

MQ4

D0
D1 O
S0

M2_1

MQ5

D0
D1 O
S0

M2_1

MQ7

D0
D1 O
S0

M2_1

MQ6

D0
D1 O
S0

M2_1

OR2

CE L_OR_CE

Q7

FDRE

R

QD
CE
C

Q6

FDRE

R

QD
CE
C

Q5

FDRE

R

QD
CE
C

Q4

FDRE

R

QD
CE
C

Q3

FDRE

R

QD
CE
C

Q2

FDRE

R

QD
CE
C

Q1

FDRE

R

QD
CE
C

Q0

FDRE

R

QD
CE
C

Libraries Guide 3-433

Libraries Guide
SR8RLED

8-Bit Shift Register with Clock Enable and
Synchronous Reset

SR8RLED is an 8-bit shift register with shift-left (SLI) and shift-right
(SRI) serial inputs, parallel inputs (D7 – D0), and four control inputs –
clock enable (CE), load enable (L), shift left/right (LEFT), and
synchronous reset (R). The register ignores clock transitions when CE
and L are Low. The synchronous R, when High, overrides all other
inputs and resets the data outputs (Q7 – Q0) Low. When L is High
and R is Low, the data on the D7 – D0 inputs is loaded into the corre-
sponding Q7 – Q0 bits of the register. When CE is High and L and R
are Low, data is shifted right or left depending on the state of the
LEFT input. If LEFT is High, data on SLI is loaded into Q0 during the
Low-to-High clock transition and shifted left (to Q1, Q2, and so forth)
during subsequent clock transitions. If LEFT is Low, data on SRI is
loaded into Q7 bit during the Low-to-High clock transition and
shifted right (to Q6, Q5, and so forth) during subsequent clock transi-
tions. The truth table indicates the state of the Q7 – Q0 outputs under
all input conditions.

The register is asynchronously reset, outputs Low, when power is
applied or when Global Reset (XC2000, XC3000) or Global Set/Reset
(XC4000) is active. GR is active-Low; the GSR active level is program-
mable.

dn, qn-1 or qn+1 = state of referenced input one set-up time prior to active clock
transition

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

R L CE LEFT SLI SRI D7– D0 C Q0 Q7 Q6 – Q1

1 X X X X X X ↑ 0 0 0
0 1 X X X X D7 – D0 ↑ d0 d7 dn
0 0 0 X X X X X ----No Change-----
0 0 1 1 SLI X X ↑ SLI q6 qn-1
0 0 1 0 X SRI X ↑ q1 SRI qn+1

X4154

C

CE

L

SR8RLED
D[7:0]

SLI

Q[7:0]

R

SRI

LEFT
3-434 Xilinx Development System

Design Elements
Figure 3-195 SR8RLED XC2000/3000/4000 Implementation

LEFT
OR2

L MDR7

D0
D1

O

S0

M2_1

MDL5

D0
D1

O

S0

M2_1

MDL1

D0
D1

O

S0

M2_1

MDL0

D0
D1

O

S0

M2_1

MDR7

MDR6

MDR5

MDR4

MDR3

MDR2

MDR1

MDR0

MDL7

MDL5

MDL4

MDL3

MDL2

MDL1

MDL0

D4

D2

D1

D0

D3

D5

D6

D7D[7:0]

SRI

SLI

CE

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q[7:0]

MDL6

L_OR_CE

Q1

FDRE

R

QD
CE
C

Q0

FDRE

R

QD
CE
C

Q2

FDRE

R

QD
CE
C

Q3

FDRE

R

QD
CE
C

Q4

FDRE

R

QD
CE
C

Q5

FDRE

R

QD
CE
C

Q6

FDRE

R

QD
CE
C

Q7

FDRE

R

QD
CE
C

MDR4

D0
D1

O

S0

M2_1

MDL6

D0
D1 O

S0

M2_1

MDL4

D0
D1

O

S0

M2_1

MDR5

D0
D1

O

S0

M2_1

MDR6

D0
D1

O

S0

M2_1

MDL7

D0
D1

O

S0

M2_1

MDR3

D0
D1

O

S0

M2_1

MDL3

D0
D1

O

S0

M2_1

MDR2

D0
D1

O

S0

M2_1

MDR1

D0
D1

O

S0

M2_1

MDR0

D0
D1

O

S0

M2_1
OR2

MDL2

D0
D1

O

S0

M2_1

L_LEFT

R
C

Libraries Guide 3-435

Libraries Guide
SR16CE

16-Bit Serial-In Parallel-Out Shift Register with Clock
Enable and Asynchronous Clear

SR16CE is a 16-bit a shift-left serial input (SLI), parallel outputs
(Q15 – Q0) shift register with clock enable (CE) and asynchronous
clear (CLR) inputs. The CLR input, when High, overrides all other
inputs and resets the data outputs (Q15 – Q0) Low. When CE is High
and CLR is Low, the data on the SLI input is loaded into the first bit of
the shift register during the Low-to-High clock (C) transition and
appears on the Q0 output. During subsequent Low-to-High clock
transitions, when CE is High and CLR is Low, data is shifted to the
next highest bit position as new data is loaded into Q0 (SLI➝Q0,
Q0➝Q1, Q1➝Q2, and so forth). The register ignores clock transitions
when CE is Low. Registers can be cascaded by connecting the Q15
output of one stage to the Shift Left Input (SLI) of the next stage and
connecting clock, CE, and CLR in parallel.

The register is asynchronously reset, outputs Low, when power is
applied or when Global Reset (XC2000, XC3000) or Global Set/Reset
(XC4000) is active. GR is active-Low; the GSR active level is program-
mable.

qn-1 = state of referenced output one set-up time prior to active clock transition

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

CLR CE SLI C Q0 Q15 – Q1

1 X X X 0 0
0 0 X X ---No Change---
0 1 1 ↑ 1 qn-1
0 1 0 ↑ 0 qn-1

X4157

SR16CE

C

CE

SLI
Q[15:0]

CLR
3-436 Xilinx Development System

Design Elements
SR16CLE

16-Bit Loadable Serial/Parallel-In Parallel-Out Shift
Register with Clock Enable and Asynchronous Clear

SR16CLE is a 16-bit shift register with shift-left serial input (SLI),
parallel inputs (D15 – D0), parallel outputs (Q15 – Q0), and three
control inputs – clock enable (CE), load enable (L), and asynchronous
clear (CLR). The register ignores clock transitions when L and CE are
Low. The asynchronous CLR, when High, overrides all other inputs
and resets the data outputs (Q15 – Q0) Low. When L is High and CLR
is Low, data on the D15 – D0 inputs is loaded into the corresponding
Q15 – Q0 bits of the register. When CE is High and L and CLR are
Low, data on the SLI is loaded into the first bit of the shift register
during the Low-to-High clock (C) transition and appears on the Q0
output. During subsequent clock transitions, when CE is High and L
and CLR are Low, the data is shifted to the next highest bit position as
new data is loaded into Q0 (SLI➝Q0, Q0➝Q1, Q1➝Q2, and so forth).
Registers can be cascaded by connecting the Q15 output of one stage
to the Shift Left Input (SLI) of the next stage and connecting clock,
CE, L, and CLR inputs in parallel.

The register is asynchronously reset, outputs Low, when power is
applied or when Global Reset (XC2000, XC3000) or Global Set/Reset
(XC4000) is active. GR is active-Low; the GSR active level is program-
mable.

dn or qn-1 = state of referenced input one set-up time prior to active clock
transition

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

CLR L CE SLI D15 – D0 C Q0 Q15 – Q1

1 X X X X X 0 0
0 1 X X D15 – D0 ↑ d0 dn
0 0 1 SLI X ↑ SLI qn-1
0 0 0 X X X --No Change--

X4159

C

CE

L

SR16CLE
D[15:0]

SLI

Q[15:0]

CLR
Libraries Guide 3-437

Libraries Guide
SR16CLED

16-Bit Shift Register with Clock Enable and
Asynchronous Clear

SR16CLED is a 16-bit shift register with shift-left (SLI) and shift-right
(SRI) serial inputs, parallel inputs (D15 – D0), and four control
inputs – clock enable (CE), load enable (L), shift left/right (LEFT),
and asynchronous clear (CLR). The register ignores clock transitions
when CE and L are Low. The asynchronous CLR, when High, over-
rides all other inputs and resets the data outputs (Q15 – Q0) Low.
When L is High and CLR is Low the data on the D15 – D0 inputs is
loaded into the corresponding Q15 – Q0 bits of the register. When CE
is High and L and CLR are Low, data is shifted right or left depending
on the state of the LEFT input. If LEFT is High, data on SLI is loaded
into Q0 during the Low-to-High clock transition and shifted left (to
Q1, Q2, and so forth) during subsequent clock transitions. If LEFT is
Low, data on SRI is loaded into Q15 during the Low-to-High clock
transition and shifted right (to Q14, Q13, and so forth) during subse-
quent clock transitions. The truth table indicates the state of the Q15 –
Q0 outputs under all input conditions.

The register is asynchronously reset, outputs Low, when power is
applied or when Global Reset (XC2000, XC3000) or Global Set/Reset
(XC4000) is active. GR is active-Low; the GSR active level is program-
mable.

dn, qn-1 or qn+1 = state of referenced input one set-up time prior to active clock
transition

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

CLR L CE LEFT SLI SRI D15 – D0 C Q0 Q15 Q14 – Q1

1 X X X X X X X 0 0 0
0 1 X X X X D15 – D0 ↑ d0 d15 dn
0 0 0 X X X X X ----No Change-----
0 0 1 1 SLI X X ↑ SLI q14 qn-1
0 0 1 0 X SRI X ↑ q1 SRI qn+1

X4161

C

CE

L

SR16CLED
D[15:0]

SLI

Q[15:0]

CLR

SRI

LEFT
3-438 Xilinx Development System

Design Elements
SR16RE

16-Bit Serial-In Parallel-Out Shift Register with Clock
Enable and Synchronous Reset

SR16RE is a 16-bit shift-left serial input (SLI), parallel output
(Q15 – Q0) shift register with clock enable (CE) and synchronous
reset (R) inputs. The R input, when High, overrides all other inputs
and resets the data outputs (Q15 – Q0) Low. When CE is High and R
is Low, the data on the SLI is loaded into the first bit of the shift
register during the Low-to-High clock (C) transition and appears on
the Q0 output. During subsequent Low-to-High clock transitions,
when CE is High and R is Low, data is shifted to the next highest bit
position as new data is loaded into Q0 (SLI➝Q0, Q0➝Q1, Q1➝Q2,
and so forth). The register ignores clock transitions when CE is Low.
Registers can be cascaded by connecting the Q15 output of one stage
to the SLI input of the next stage and connecting clock, C, and R in
parallel.

The register is asynchronously reset, outputs Low, when power is
applied or when Global Reset (XC2000, XC3000) or Global Set/Reset
(XC4000) is active. GR is active-Low; the GSR active level is program-
mable.

qn-1 = state of referenced output one set-up time prior to active clock transition

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

R CE SLI C Q0 Q15 – Q1

1 X X ↑ 0 0
0 0 X X ---No Change---
0 1 1 ↑ 1 qn-1
0 1 0 ↑ 0 qn-1

X4156

SR16RE

C

CE

SLI
Q[15:0]

R

Libraries Guide 3-439

Libraries Guide
SR16RLE

16-Bit Loadable Serial/Parallel-In Parallel-Out Shift
Register with Clock Enable and Synchronous Reset

SR16RLE is a 16-bit shift register with shift-left serial input (SLI),
parallel inputs (D15 – D0), parallel outputs (Q15 – Q0), and control
inputs – clock enable (CE), load enable (L), and synchronous reset (R).
The register ignores clock transitions when L and CE are Low. The
synchronous R, when High, overrides all other inputs and resets the
data outputs (Q15 – Q0) Low. When L is High and R is Low, data on
the data D15 – D0 inputs is loaded into the corresponding Q15 – Q0
bits of the register. When CE is High and L and R are Low, data on the
SLI is loaded into the first bit of the shift register during the Low-to-
High clock (C) transition and appears on the Q0 output. During
subsequent clock transitions, when CE is High and L and R are Low,
the data is shifted to the next highest bit position as new data is
loaded into Q0 (SLI➝Q0, Q0➝Q1, Q1➝Q2, and so forth). Registers
can be cascaded by connecting the Q15 output of one stage to the
Shift Left Input (SLI) of the next stage and connecting clock, CE, L,
and R inputs in parallel.

The register is asynchronously reset, outputs Low, when power is
applied or when Global Reset (XC2000, XC3000) or Global Set/Reset
(XC4000) is active. GR is active-Low; the GSR active level is program-
mable.

dn or qn-1 = state of referenced input one set-up time prior to active clock
transition

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

R L CE SLI D15 – D0 C Q0 Q15 – Q1

1 X X X X ↑ 0 0
0 1 X X D15 – D0 ↑ d0 dn
0 0 1 SLI X ↑ SLI qn-1
0 0 0 X X X --No Change--

X4158

C

CE

L

SR16RLE
D[15:0]

SLI

Q[15:0]

R

3-440 Xilinx Development System

Design Elements
SR16RLED

16-Bit Shift Register with Clock Enable and
Synchronous Reset

SR16RLED is a 16-bit shift register with shift-left (SLI) and shift-right
(SRI) serial inputs, parallel inputs (D15 – D0), and four control
inputs – clock enable (CE), load enable (L), shift left/right (LEFT),
and synchronous reset (R). The register ignores clock transitions
when CE and L are Low. The synchronous R, when High, overrides
all other inputs and resets the data Q15 – Q0 outputs Low. When L is
High and R is Low, the data on the D15 – D0 inputs is loaded into the
corresponding Q15 – Q0 bits of the register. When CE is High and L
and R are Low, data is shifted right or left depending on the state of
the LEFT input. If LEFT is High, data on SLI is loaded into Q0 during
the Low-to-High clock transition and shifted left (to Q1, Q2, and so
forth) during subsequent clock transitions. If LEFT is Low, data on
SRI is loaded into Q15 during the Low-to-High clock transition and
shifted right (to Q14, Q13, and so forth) during subsequent clock
transitions. The truth table indicates the state of the Q15 – Q0 outputs
under all input conditions.

The register is asynchronously reset, outputs Low, when power is
applied or when Global Reset (XC2000, XC3000) or Global Set/Reset
(XC4000) is active. GR is active-Low; the GSR active level is program-
mable.

dn, qn-1 or qn+1 = state of referenced input one set-up time prior to active clock
transition

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

R L CE LEFT SLI SRI D15 – D0 C Q0 Q15 Q14 – Q1

1 X X X X X X ↑ 0 0 0
0 1 X X X X D15 – D0 ↑ d0 d15 dn
0 0 0 X X X X X ----No Change-----
0 0 1 1 SLI X X ↑ SLI q14 qn-1
0 0 1 0 X SRI X ↑ q1 SRI qn+1

X4160

C

CE

L

SR16RLED
D[15:0]

SLI

Q[15:0]

R

SRI

LEFT
Libraries Guide 3-441

Libraries Guide
STARTUP

User Interface to Global Clock, Reset, and 3-State
Controls

The STARTUP macro is used for Global Set/Reset, global 3-state
control, and the user configuration clock. The Global Set/Reset (GSR)
input, when High, sets or resets every flip-flop in the device,
depending on the initialization state (S or R) of the flip-flop.
Following configuration, the global 3-state control (GTS), when High,
forces all the IOB outputs into High impedance mode, which isolates
the device outputs from the circuit but leaves the inputs active.

The configuration clock input (CLK) must be connected to a user
clock if the start-up of the device is synchronized with the user clock.
Also, “user clock” must be selected in the MakeBits program.

The STARTUP outputs (Q2, Q3, Q1Q4, and DONEIN) display the
progress/status of the start-up process following the configuration.

XC2000 XC3000 XC4000 XC7000

N/A N/A Primitive N/A

X3911

CLK

GTS

GSR

DONEIN

STARTUP

Q1Q4

Q3

Q2
3-442 Xilinx Development System

Design Elements
TCK

Boundary-Scan Test Clock Input Pad

The TCK input pad is connected to the boundary-scan test clock,
which shifts the serial data and instructions into and out of the
boundary-scan data registers. The function of the TCK pad is device
configuration dependent and can be used as follows.

● During configuration TCK is connected to the boundary-scan
logic.

● After configuration, if boundary-scan is not used, the TCK pad is
unrestricted and can be used by the XACT routing tools as an
input/output pad.

● After configuration, if boundary-scan is used, the TCK pad can be
used for user-logic input by connecting it directly to the user logic.

XC2000 XC3000 XC4000 XC7000

N/A N/A Primitive N/AX3895

TCK
Libraries Guide 3-443

Libraries Guide
TDI

Boundary-Scan Test Data Input Pad

The TDI input pad is connected to the boundary-scan TDI input. It
loads instructions and data on the Low-to-High TCK transition. The
function of the TDI pad is device configuration dependent and can be
used as follows.

● During configuration, TDI is connected to the boundary-scan
logic.

● After configuration, if boundary-scan is not used, the TDI pad is
unrestricted and can be used by the XACT routing tools as an
input/output pad.

● After configuration, if boundary-scan is used, the TDI pad can be
used for user-logic input by connecting the TDI pad directly to the
user logic.

XC2000 XC3000 XC4000 XC7000

N/A N/A Primitive N/AX3897

TDI
3-444 Xilinx Development System

Design Elements
TDO

Boundary-Scan Data Output Pad

The TDO data output pad is connected to the boundary-scan TDO
output. It is connected to the external circuit to provide the
boundary-scan data for each Low-to-High TCK transition. The func-
tion of the TDO pad is device configuration dependent and can be
used as follows.

● During configuration, TDO is connected to the boundary-scan
logic.

● After configuration, if boundary-scan is not used, the TDO pad
can be used as a bidirectional 3-state I/O pad by the XACT rout-
ing tools.

● After configuration, if boundary-scan is used, the TDO pad is still
used as an output from the boundary-scan logic.

XC2000 XC3000 XC4000 XC7000

N/A N/A Primitive N/A
X3899

TDO
Libraries Guide 3-445

Libraries Guide
TIMEGRP

Schematic-Level Table of Basic Timing Specification
Groups

The TIMEGRP primitive table defines timing groups used in “from-
to” TIMESPEC statements in terms of other groups. The TIMEGRP
table is shown in the following figure.

These groups can include predefined groups, such as “ffs,” groups
created by using TNM attributes, such as TNM-reg on schematics,
and other groups defined by a statement in the TIMEGRP symbol.

The following example statement defines groups in a TIMEGRP
symbol.

=all_but_regs=ffs:except:regs

The table can contain up to 8 statements of any character length, but
only 30 characters are displayed in the symbol.

XC2000 XC3000 XC4000 XC7000

N/A Primitive Primitive N/A

X4699

TIMEGRP
3-446 Xilinx Development System

Design Elements
TIMESPEC

Schematic-Level Timing Requirement Table

* ignored in XC7000 designs

The TIMESPEC primitive is a table that specifies up to eight timing
attributes (TS). TS attributes can be any length, but only 30 characters
are displayed in the TIMESPEC window. The TIMESPEC table is
displayed in the follow figure.

XC4000 OrCAD Only Schematic-Level Timing
Requirement Signal Tag
The TS Signal Tag or parameter attaches timing attributes to nets in
the schematic.

Refer to the appropriate CAE tool interface user guide for details
about using the TIMESPEC primitive and TS Signal Tag.

XC2000 XC3000 XC4000 XC7000

N/A Primitive Primitive Primitive*

X3866

TIMESPEC
Libraries Guide 3-447

Libraries Guide
TMS

Boundary-Scan Test Mode Select Input Pad

The TMS input pad is connected to the boundary-scan TMS input. It
determines which boundary-scan operation is performed. The func-
tion of the TMS pad is device configuration dependent and can be
used as follows.

● During configuration, TMS is connected to the boundary-scan
logic.

● After configuration, if boundary-scan is not used, the TMS pad is
unrestricted and can be used by the XACT routing tools as an
input/output pad.

● After configuration, if boundary-scan is used, the TMS pad can be
used for user-logic input by connecting the TMS pad directly to
the user logic.

XC2000 XC3000 XC4000 XC7000

N/A N/A Primitive N/A
X3901

TMS
3-448 Xilinx Development System

Design Elements
UPAD

Connects the I/O Node of an IOB to the Internal PLD
Circuit

A UPAD allows the use of any unbonded IOBs in a device. It is used
the same way as a IOPAD, except that the signal output is not visible
on any external device pins.

XC2000 XC3000 XC4000 XC7000

Primitive Primitive Primitive Primitive
X3843

UPAD
Libraries Guide 3-449

Libraries Guide
VCC

VCC-Connection Signal Tag

The VCC signal tag or parameter forces a net or input function to a
logic High level. A net tied to VCC cannot have any other source.

When the placement and routing software (APR for XC2000, XC3000;
PPR for XC4000; or FITNET for XC7000) encounters a net or input
function tied to VCC, it removes any logic that is disabled by the VCC
signal. The VCC signal is only implemented when the disabled logic
cannot be removed.

XC2000 XC3000 XC4000 XC7000

Primitive Primitive Primitive Primitive
X3859

Vcc
3-450 Xilinx Development System

Design Elements
WAND1, WAND4, WAND8, and WAND16

Open-Drain Buffers

WAND1, WAND4, WAND8, and WAND16 are single and multiple
open-drain buffers. Each buffer has an input (I) and an open-drain
output (O). When any of the inputs is Low, the output is Low. When
all the inputs are High, the output is off. To obtain a High output, add
pull-up resistors to the output (O). One pull-up resistor uses the least
power, and two pull-up resistors achieve the fastest Low-to-High
transition.

To indicate two pull-up resistors, add a DOUBLE parameter to the
pull-up symbol attached to the output (O) node. Refer to the appro-
priate CAE tool interface user guide for details.

Figure 3-196 WAND8 XC4000 Implementation

Name XC2000 XC3000 XC4000 XC7000
WAND1 N/A N/A Primitive N/A
WAND4,
WAND8,
WAND16

N/A N/A Macro N/A

X3915

I4

I2

I1

O

WAND4

I3

X3916

O

WAND8I[7:0]

X3917

O

WAND16I[15:0]

X3905

I7

I0

I1

I2

I3

I4

I5

I6

I[7:0]

O

WAND1

WAND1

WAND1

WAND1

WAND1

WAND1

WAND1

WAND1
Libraries Guide 3-451

Libraries Guide
WOR2AND

2-Input OR Gate with Wired-AND Open-Drain Buffer
Output

WOR2AND is a 2-input (I1 and I2) OR gate/buffer with an open-
drain output (O). It is used in bus applications by tying multiple
open-drain outputs together. When both inputs (I1 and I2) are Low,
the output (O) is Low. When either input is High, the output is off;
wor2and cannot source or sink current. To establish an output High
level, tie a pull-up resistor(s) to the output (O). One pull-up resistor
uses the least power, two pull-up resistors achieve the fastest Low-to-
High speed.

To indicate two pull-up resistors, append a DOUBLE parameter to
the pull-up symbol attached to the output (O) node. Refer to the
appropriate CAE tool interface user guide for details.

XC2000 XC3000 XC4000 XC7000

N/A N/A Primitive N/A
X3906
3-452 Xilinx Development System

Design Elements
XNOR

2- to 9-Input XNOR Gates with Non-Inverted Inputs

* XNOR7 – XNOR9 not supported for XC7336 designs

The XNOR function is performed in the Configurable Logic Block
(CLB) function generators in XC2000, XC3000, and XC4000. XNOR
functions of up to nine inputs are available. All inputs are non-
inverting. Because each input uses a CLB resource, replace functions
with unused inputs with functions having the necessary number of
inputs.

Figure 3-197 XNOR8 XC2000 Implementation

Figure 3-198 XNOR8 XC3000 Implementation

Name XC2000 XC3000 XC4000 XC7000

XNOR3 – XNOR4 Primitive Primitive Primitive Primitive
XNOR5 Macro Primitive Primitive Primitive
XNOR6 – XNOR9 Macro Macro Macro Primitive*

XNOR2

XOR3

XNOR4

XNOR5

XNOR6

XNOR8

XNOR7

XNOR9

XOR3

XOR3

I24I3

I0
I1

I47
I7
I6
I5

O
I2

I4

XNOR4

XNOR5

O

I0
I1
I2
I3

I5
I4

I47
I6
I7

XOR4
Libraries Guide 3-453

Libraries Guide
Figure 3-199 XNOR8 XC4000 Implementation

I5
I4

I13

I47

O

I2
I1

I3

I6

I0

I7

XOR4

XOR3

XNOR3
3-454 Xilinx Development System

Design Elements
XOR

2- to 9-Input XOR Gates with Non-Inverted Inputs

* XOR7 – XOR9 not supported for XC7336 designs

The XOR function is performed in the Configurable Logic Block
(CLB) function generators for XC2000, XC3000, and XC4000. XOR
functions of up to nine inputs are available. All inputs are non-
inverting. Because each input uses a CLB resource, replace functions
with unused inputs with functions having the necessary number of
inputs.

Figure 3-200 XOR8 XC2000 Implementation

Figure 3-201 XOR8 XC3000 Implementation

Name XC2000 XC3000 XC4000 XC7000

XOR2 – XOR4 Primitive Primitive Primitive Primitive
XOR5 Macro Primitive Primitive Primitive
XOR6 – XOR9 Macro Macro Macro Primitive*

XOR2

XOR3

XOR4

XOR5

XOR6

XOR7

XOR8

XOR9

I4

I2
O

I5
I6
I7

I47

I1
I0

I3 I24

XOR4

XOR3

XOR3

O

I0
I1
I2
I3

I5
I4

I47
I6
I7

XOR4

XOR5
Libraries Guide 3-455

Libraries Guide
Figure 3-202 XOR8 XC4000 Implementation

I5
I4

I13

I47

O

I2
I1

I3

I6

I0

I7

XOR4

XOR3

XOR3
3-456 Xilinx Development System

Design Elements
X74_42

4- to 10-Line BCD-to-Decimal Decoder with
Active-Low Outputs

X74_42 decodes the 4-bit BCD number on the data inputs (A – D).
Only one of the ten outputs (Y9 – Y0) is active (Low) at a time, which
reflects the decimal equivalent of the BCD number on inputs A – D.
All outputs are inactive (High) during any one of six illegal states, as
shown in the truth table.

* Selected output is Low (0) and all others are High.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

D C B A
Selected (Low)

Output*

0 0 0 0 Y0
0 0 0 1 Y1
0 0 1 0 Y2
0 0 1 1 Y3
0 1 0 0 Y4
0 1 0 1 Y5
0 1 1 0 Y6
0 1 1 1 Y7
1 0 0 0 Y8
1 0 0 1 Y9
1 0 1 0 All Outputs High
1 0 1 1 All Outputs High
1 1 0 0 All Outputs High
1 1 0 1 All Outputs High
1 1 1 0 All Outputs High
1 1 1 1 All Outputs High

X4162

X74_42

D

C

B

A

Y9

Y8

Y7

Y6

Y5

Y4

Y3

Y2

Y1

Y0
Libraries Guide 3-457

Libraries Guide
Figure 3-203 X74_42 XC2000/3000/4000 Implementation

Y9

Y8

Y7

Y6

Y5

Y4

Y3

Y2

Y1

Y0

C
D

B
A

NAND4B1

NAND4B3

NAND4B2

OR4

NAND4B3

NAND4B3

NAND4B3

NAND4B2

NAND4B2

NAND4B2
3-458 Xilinx Development System

Design Elements
X74_L85

4-Bit Expandable Magnitude Comparator

* not supported for XC7336 designs

X74_L85 is a 4-bit magnitude comparator that compares two 4-bit
binary-weighted words A3 – A0 and B3 – B0, where A3 and B3 are
the most significant bits. The greater-than output, AGBO, is High
when A>B. The less-than output, ALBO, is High when A<B, and the
equal output, AEBO, is High when A=B. The expansion inputs,
AGBI, ALBI, and AEBI, are the least significant bits. Words of greater
length can be compared by cascading the comparators. The AGBO,
ALBO, and AEBO outputs of the stage handling less-significant bits
are connected to the corresponding AGBI, ALBI, and AEBI inputs of
the next stage handling more- significant bits. For proper operation,
the stage handling the least significant bits must have AGBI and
ALBI tied Low and AEBI tied High.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive*

X4163

X74_L85

A0

ALBI

AEBI

AGBI

ALBO

AEBO

AGBO

B0

A3

A2

A1

B3

B2

B1
Libraries Guide 3-459

Libraries Guide
For XC7000, outputs differ when A=B and when more than one expansion input
(AGBI, ALBI, or AEBI) is high.

Inputs Outputs

A3, B3 A2, B2 A1, B1 A0, B0 AGBI ALBI AEBI AGBO ALBO AEBO

A3>B3 X X X X X X 1 0 0
A3<B3 X X X X X X 0 1 0
A3=B3 A2>B2 X X X X X 1 0 0
A3=B3 A2<B2 X X X X X 0 1 0
A3=B3 A2=B2 A1>B1 X X X X 1 0 0
A3=B3 A2=B2 A1<B1 X X X X 0 1 0
A3=B3 A2=B2 A1=B1 A0>B0 X X X 1 0 0
A3=B3 A2=B2 A1=B1 A0<B0 X X X 0 1 0
A3=B3 A2=B2 A1=B1 A0=B0 1 0 0 1 0 0
A3=B3 A2=B2 A1=B1 A0=B0 0 1 0 0 1 0
A3=B3 A2=B2 A1=B1 A0=B0 0 0 1 0 0 1
A3=B3 A2=B2 A1=B1 A0=B0 0 1 1 0 1 1
A3=B3 A2=B2 A1=B1 A0=B0 1 0 1 1 0 1
A3=B3 A2=B2 A1=B1 A0=B0 1 1 1 1 1 1
A3=B3 A2=B2 A1=B1 A0=B0 1 1 0 1 1 0
A3=B3 A2=B2 A1=B1 A0=B0 0 0 0 0 0 0
3-460 Xilinx Development System

Design Elements
Figure 3-204 X74_L85 XC2000/3000/4000 Implementation

NA_B7

NOR2
A_B5

A_B4

NOR2

NA_B1

B3

AGBI

ALBI

AEBI

AGBO

ALBO

A0

A1

B1

B2

A2

A3

AEBO

AND2B1

AND2B1

AND3B1

AND2B1

AND2B1

AND4B1

AND4B1

AND2B1

AND5B1

AND5B1

AND5

AND5

AND5

AND2B1

AND2B1

AND2B1

AND3B1

AND2B1

AND2B1

OR5

OR5

B0

A_B0

A_B1
NOR2

NOR2

NA_B3

A_B2

A_B3

A_B7

A_B6

NA_B5

AB7

AB6

AB5

AB4

AB3

AB2

AB1

AB0

AG_7

AL_7
Libraries Guide 3-461

Libraries Guide
X74_138

3- to 8-Line Decoder/Demultiplexer with Active-Low
Outputs and Three Enables

X74_138 is an expandable decoder/demultiplexer with one
active-High enable input (G1), two active-Low enable inputs
(G2A and G2B), and eight active-Low outputs (Y7 – Y0). When G1 is
High and G2A and G2B are Low, one of the eight active-Low outputs
is selected with a 3-bit binary address on address inputs A, B, and C.
The non-selected outputs are High. When G1 is Low or when G2A or
G2B is High, all outputs are High.

X74_138 can be used as an 8-output active-Low demultiplexer by
tying the data input to one of the enable inputs.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

C B A G1 G2A G2B Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

0 0 0 1 0 0 1 1 1 1 1 1 1 0
0 0 1 1 0 0 1 1 1 1 1 1 0 1
0 1 0 1 0 0 1 1 1 1 1 0 1 1
0 1 1 1 0 0 1 1 1 1 0 1 1 1
1 0 0 1 0 0 1 1 1 0 1 1 1 1
1 0 1 1 0 0 1 1 0 1 1 1 1 1
1 1 0 1 0 0 1 0 1 1 1 1 1 1
1 1 1 1 0 0 0 1 1 1 1 1 1 1
X X X 0 X X 1 1 1 1 1 1 1 1
X X X X 1 X 1 1 1 1 1 1 1 1
X X X X X 1 1 1 1 1 1 1 1 1

X4164

X74_138

G1

G2B

G2A

C

B

A

Y7

Y6

Y5

Y4

Y3

Y2

Y1

Y0
3-462 Xilinx Development System

Design Elements
Figure 3-205 X74_138 XC2000/3000/4000 Implementation

Y7

Y6

Y5

Y4

Y3

Y2

Y1

Y0

Y[7:0]

C

EG2A
G2B

G1

AND3B2

NAND4B3

NAND4B2

NAND4B2

NAND4B1

NAND4B2

NAND4B1

NAND4B1

NAND4

B
A

Libraries Guide 3-463

Libraries Guide
X74_139

2- to 4-Line Decoder/Demultiplexer with Active-Low
Outputs and Active-Low Enable

X74_139 implements one half of a standard 74139 dual 2- to 4-line
decoder/demultiplexer. When the active-Low enable input (G) is
Low, one of the four active-Low outputs (Y3 – Y0) is selected with the
2-bit binary address on the A and B address input lines. B is the High-
order address bit. The non-selected outputs are High. Also, when G is
High all outputs are High.

X74_139 can be used as a 4-output active-Low demultiplexer by tying
the data input to G.

Figure 3-206 X74_139 XC2000/3000/4000 Implementation

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

G B A Y3 Y2 Y1 Y0

0 0 0 1 1 1 0
0 0 1 1 1 0 1
0 1 0 1 0 1 1
0 1 1 0 1 1 1
1 X X 1 1 1 1

X4165

X74_139

B

Y2

Y1

Y0A

Y3G

Y0
NAND3B3

Y1
NAND3B2

Y2
NAND3B2

Y3
NAND3B1

Y0

Y1

Y2

Y3

A

B

G

3-464 Xilinx Development System

Design Elements
X74_147

10- to 4-Line Priority Encoder with Active-Low Inputs
and Outputs

X74_147 is a 10-line-to-BCD-priority encoder that accepts data from
nine active-Low inputs (I9 – I1) and produces a binary-coded decimal
(BCD) representation on the four active-Low outputs A, B, C, and D.
The data inputs are weighted, so when more than one input is active,
only the one with the highest priority is encoded, with I9 having the
highest priority. Only nine inputs are provided, because the implied
“zero” condition requires no data input. “Zero” is encoded when all
data inputs are High.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

I9 I8 I7 I6 I5 I4 I3 I2 I1 D C B A

1 1 1 1 1 1 1 1 0 1 1 1 0
1 1 1 1 1 1 1 0 X 1 1 0 1
1 1 1 1 1 1 0 X X 1 1 0 0
1 1 1 1 1 0 X X X 1 0 1 1
1 1 1 1 0 X X X X 1 0 1 0
1 1 1 0 X X X X X 1 0 0 1
1 1 0 X X X X X X 1 0 0 0
1 0 X X X X X X X 0 1 1 1
0 X X X X X X X X 0 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1

X4166

X74_147

I9

I8

I7

I6

I5

I4

I3

I2
I1

D

C

B

A

Libraries Guide 3-465

Libraries Guide
Figure 3-207 X74_147 XC2000/3000/4000 Implementation

AND2B1

AND2B1

AND2B1

NOR4

AND2B1

AND2B1

AND2B1

AND2B1

NOR4

AND4B1

AND5B1

AND4B1

AND3B1

AND4B1

NOR5B1

AND2

C
I5

I4

I6

I7

I3

I2

I1

A

B

I8
D

I9

D0

D1

D2

D3

D4

D5

D6

D7

D8

D9

D10

D11
3-466 Xilinx Development System

Design Elements
X74_148

8- to 3-Line Cascadable Priority Encoder with
Active-Low Inputs and Outputs

X74_148 8-input priority encoder accepts data from eight active-Low
inputs (I7 – I0) and produces a binary representation on the three
active-Low outputs (A2 – A0). The data inputs are weighted, so when
more than one of the inputs is active, only the input with the highest
priority is encoded, I7 having the highest priority. The active-Low
group signal (GS) is Low whenever one of the data inputs is Low and
the active-Low enable input (EI) is Low.

The active-Low enable input (EI) and active-Low enable output (EO)
are used to cascade devices and retain priority control. The EO of the
highest priority stage is connected to the EI of the next-highest
priority stage. When EI is High, the data outputs and EO are High.
When EI is Low, the encoder output represents the highest-priority
Low data input, and the EO is High. When EI is Low and all the data
inputs are High, the EO output is Low to enable the next-lower
priority stage.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

EI I7 I6 I5 I4 I3 I2 I1 I0 A2 A1 A0 GS EO

1 X X X X X X X X 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 0 1 1 1 0 1
0 1 1 1 1 1 1 0 X 1 1 0 0 1
0 1 1 1 1 1 0 X X 1 0 1 0 1
0 1 1 1 1 0 X X X 1 0 0 0 1
0 1 1 1 0 X X X X 0 1 1 0 1
0 1 1 0 X X X X X 0 1 0 0 1
0 1 0 X X X X X X 0 0 1 0 1
0 0 X X X X X X X 0 0 0 0 1

X4167

X74_148

EI

I7

I6

I5

I4

I3

I2
I1

A2

A1

A0I0

EO

GS
Libraries Guide 3-467

Libraries Guide
Figure 3-208 X74_148 XC2000/3000/4000 Implementation

EI
I7

NOR2

NAND2B1

AND5B2

AND4B2

AND3B2

NOR2

AND4B2

AND4B2

NOR2

NOR2

NOR2

NOR2

NOR2

NOR4

NOR4

NOR4

I6

A1

GS

D3

D1

D0

D2

A2

D8

D9

D10

D11

D4

D5

D6

D7

A0

EO

I2

I3

I1

I0

I4

I5

AND5B1

AND5B1

NAND2
3-468 Xilinx Development System

Design Elements
X74_150

16-to-1 Multiplexer with Active-Low Enable and
Output

When the active-Low enable input (G) is Low, the X74_150 multi-
plexer chooses one data bit from 16 sources (E15 – E0) under the
control of select inputs A, B, C, and D. The active-Low output (W)
reflects the inverse of the selected input, as shown in the truth table.
When the enable input (G) is High, the output (W) is High.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

G D C B A
Selected Input Appears

(Inverted) on W

1 X X X X 1
0 0 0 0 0 E0
0 0 0 0 1 E1
0 0 0 1 0 E2
0 0 0 1 1 E3
0 0 1 0 0 E4
0 0 1 0 1 E5
0 0 1 1 0 E6
0 0 1 1 1 E7
0 1 0 0 0 E8
0 1 0 0 1 E9
0 1 0 1 0 E10
0 1 0 1 1 E11
0 1 1 0 0 E12
0 1 1 0 1 E13
0 1 1 1 0 E14
0 1 1 1 1 E15

X4168

X74_150

E9

E8

E7

E6

E5

E4

E3

E2

E1

E0

D

C

B

A

E15

E14

E13

E12

E11

E10

G

W

Libraries Guide 3-469

Libraries Guide
Figure 3-209 X74_150 XC2000/3000/4000 Implementation

M8F

D0
D1 O

S0

M2_1
M8B

D0
D1 O

S0

M2_1

MCF

D0
D1 O

S0

M2_1

MEF

D0
D1 O

S0

M2_1
MCD

D0
D1 O

S0

M2_1

MAB

D0
D1 O

S0

M2_1
M89

D0
D1 O

S0

M2_1

AND3B1

AND3B2

M07

D0
D1 O

S0

M2_1

M67

D0
D1 O

S0

M2_1
M45

D0
D1 O

S0

M2_1

M47

D0
D1 O

S0

M2_1

M03

D0
D1 O

S0

M2_1

M23

D0
D1 O

S0

M2_1
M01

D0
D1 O

S0

M2_1

W

XNOR2
M8F

M07

E15
E14

E13
E12

E11
E10

E9
E8

E7
E6

E5
E4

E3
E2

E1
E0

M23
M01

M45
M67

M89
MAB

MCD
MEF

M47
M03

M8B
MCF

A
B
C
D
G

3-470 Xilinx Development System

Design Elements
X74_151

8-to-1 Multiplexer with Active-Low Enable and
Complementary Outputs

When the active-Low enable (G) is Low, the X74_151 multiplexer
chooses one data bit from eight sources (D7 – D0) under control of the
select inputs A, B, and C. The output (Y) reflects the state of the
selected input, and the active-Low output (W) reflects the inverse of
the selected input as shown in the truth table. When G is High, the Y
output is Low, and the W output is High.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

G C B A Y W

1 X X X 1 0
0 0 0 0 D0 D0
0 0 0 1 D1 D1
0 0 1 0 D2 D2
0 0 1 1 D3 D3
0 1 0 0 D4 D4
0 1 0 1 D5 D5
0 1 1 0 D6 D6
0 1 1 1 D7 D7

X4169

X74_151

D3

D2

D1

D7

D6

D5

D4

C

B

A

W

D0

G

Y

Libraries Guide 3-471

Libraries Guide
Figure 3-210 X74_151 XC2000/3000/4000 Implementation

A

Y
D1
D0

O

E
S0

M2_1E

M47

D0
D1

O

S0

M2_1

M03

D0
D1

O

S0

M2_1

M67

D0
D1

O

S0

M2_1
M45

D0
D1

O

S0

M2_1

M23

D0
D1

O

S0

M2_1
M01

D0
D1

O

S0

M2_1

M23

D2

D4
D5

D3

D6
D7

M45
M67

M47
M03

B
C
G

W
Y

E

INV

INV

M01
D1
D0
3-472 Xilinx Development System

Design Elements
X74_152

8-to-1 Multiplexer with Active-Low Output

 X74_152 multiplexer chooses one data bit from eight sources
(D7 – D0) under control of the select inputs A, B, and C. The active-
Low output (W) reflects the inverse of the selected data input, as
shown in the truth table.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

C B A W

0 0 0 D0
0 0 1 D1
0 1 0 D2
0 1 1 D3
1 0 0 D4
1 0 1 D5
1 1 0 D6
1 1 1 D7

X4170

X74_152

D3

D2

D1

D0

D7

D6

D5

D4

C

B

A

W

Libraries Guide 3-473

Libraries Guide
Figure 3-211 X74_152 XC2000/3000/4000 Implementation

B

D7

M03

M47 O

C

INV

A

D0

D2

D1

D4

D5

D3

D6

M23

M01

M45

M67

W

M01

D0

D1
O

S0

M2_1

M23

D0

D1
O

S0

M2_1

M45

D0

D1
O

S0

M2_1

M67

D0

D1
O

S0

M2_1

M03

D0

D1
O

S0

M2_1

M47

D0

D1
O

S0

M2_1

O

D0

D1
O

S0

M2_1
3-474 Xilinx Development System

Design Elements
X74_153

Dual 4-to-1 Multiplexer with Active-Low Enables and
Common Select Input

When the active-Low enable inputs G1 and G2 are Low, the data
output Y1, reflects the data input chosen by select inputs A and B
from data inputs I1C3 – I1C0. The data output Y2 reflects the data
input chosen by select inputs A and B from data inputs I2C3 – I2C0.
When G1 or G2 is High, the corresponding output, Y1 or Y2 respec-
tively, is Low.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

G B A Y

1 X X 0
0 0 0 IC0
0 0 1 IC1
0 1 0 IC2
0 1 1 IC3

X4171

X74_153

I1C3

I1C2

I1C1

I2C3

I2C2

I2C1

I2C0

G1

B

A

Y2

I1C0

G2

Y1
Libraries Guide 3-475

Libraries Guide
Figure 3-212 X74_153 XC2000/3000/4000 Implementation

Y2

D1

D0
O

E

S0

M2_1E

Y1

D1

D0
O

E

S0

M2_1E

M2_23

D0

D1
O

S0

M2_1

M2_01M2_01

D0

D1
O

S0

M2_1

M1_23

D0

D1
O

S0

M2_1

M1_01

D0

D1
O

S0

M2_1

INV

INV

E1

Y1

G1

G2

B

E2

I2C3

I2C1

A

M1_01

M1_23

M2_23

I2C2

I1C1

I1C3

Y2

I1C0

I1C2

I2C0
3-476 Xilinx Development System

Design Elements
X74_154

4- to 16-Line Decoder/Demultiplexer with Two
Enables and Active-Low Outputs

When the active-Low enable inputs G1 and G2 of the X74_154
decoder/demultiplexer are Low, one of 16 active-Low outputs,
Y15 – Y0, is selected under the control of four binary address inputs
A, B, C, and D. The non-selected inputs are High. Also, when either
input G1 or G2 is High, all outputs are High.

The X74_154 can be used as a 16-to-1 demultiplexer by tying the data
input to one of the G inputs and tying the other G input Low.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

G1 G2 D C B A Y15 Y14 Y13 Y12 Y11 Y10 Y9 ... Y0

1 X X X X X 1 1 1 1 1 1 1 ... 1
X 1 X X X X 1 1 1 1 1 1 1 ... 1
0 0 1 1 1 1 0 1 1 1 1 1 1 ... 1
0 0 1 1 1 0 1 0 1 1 1 1 1 ... 1
0 0 1 1 0 1 1 1 0 1 1 1 1 ... 1
- - - - - - - - - - - - - ... -
- - - - - - - - - - - - - ... -
- - - - - - - - - - - - - ... -
0 0 0 0 0 0 1 1 1 1 1 1 1 ... 0

X4172

X74_154

Y9

Y8

Y7

Y6

Y5

Y4

Y3

Y2

Y1

Y0

Y15

Y14

Y13

Y12

Y11

Y10

A

C

B

D

G1

G2
Libraries Guide 3-477

Libraries Guide
Figure 3-213 X74_154 XC2000/3000/4000 Implementation

NOR2

NAND5

NAND5B1

NAND5B1

NAND5B1

NAND5B1

NAND5B2

NAND5B2

NAND5B2

NAND5B2

NAND5B2

NAND5B2

NAND5B3

NAND5B3

NAND5B3

NAND5B3

NAND5B4

G2
G1

Y14

Y13

Y12

Y11

Y10

Y9

Y8

Y7

Y6

Y5

Y4

Y3

Y2

Y1

Y0

Y[15:0]

Y15A
B

D
C

3-478 Xilinx Development System

Design Elements
X74_157

Quadruple 2-to-1 Multiplexer with Common Select
and Active-Low Enable

When the active-Low enable input (G) is Low, a 4-bit word is selected
from one of two sources (A3 – A0 or B3 – B0) under the control of the
select input (S) and is reflected on the four outputs (Y4 – Y1). When S
is Low, the outputs reflect A3 – A0; when S is High, the outputs
reflect B3 – B0. When G is High, the outputs are Low.

Figure 3-214 X74_157 XC2000/3000/4000 Implementation

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

G S B A Y

1 X X X 0
0 1 1 X 1
0 1 0 X 0
0 0 X 1 1
0 0 X 0 0

X4173

X74_157

G

S

B4

A4

B3

A3

B2

A2

B1

A1

Y4

Y3

Y2

Y1

INV

A1
Y1

Y2

Y4

Y3

EG

S

B4

A4

B3

A3

B2

A2

B1

Y1

D1

D0
O

E

S0

M2_1E

Y2

D1

D0
O

E

S0

M2_1E

Y3

D1

D0
O

E

S0

M2_1E

Y4

D1

D0
O

E

S0

M2_1E
Libraries Guide 3-479

Libraries Guide
X74_158

Quadruple 2-to-1 Multiplexer with Common Select,
Active-Low Enable, and Active-Low Outputs

When the active-Low enable (G) is Low, a 4-bit word is selected from
one of two sources (A3 – A0 or B3 – B0) under the control of the
common select input (S). The inverse of the selected word is reflected
on the active-Low outputs (Y4 – Y1). When S is Low, A3 – A0 appear
on the outputs; when S is High, B3 – B0 appear on the outputs. When
G is High, the outputs are High.

Figure 3-215 X74_158 XC2000/3000/4000 Implementation

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

G S B A Y

1 X X X 1
0 1 1 X 0
0 1 0 X 1
0 0 X 1 0
0 0 X 0 1

X4174

X74_158

G

S

B4

A4

B3

A3

B2

A2

B1

A1

Y4

Y3

Y2

Y1

Y4

Y3

Y2

Y1

O4

O3

O2

O1

INV

INV

G

B1

A2
B2

A3
B3

A4
B4
S

E

A1

INV

INV

INV

O1
D1
D0

O

E
S0

M2_1E

O2
D1
D0

O

E
S0

M2_1E

O3
D1
D0

O

E
S0

M2_1E

O4
D1
D0

O

E
S0

M2_1E
3-480 Xilinx Development System

Design Elements
X74_160

4-Bit BCD Counter with Parallel and Trickle Enables,
Active-Low Load Enable, and Asynchronous Clear

 X74_160 is a 4-stage, 4-bit, synchronous, loadable, resettable, cascad-
able, binary-coded decimal (BCD) counter. The active-Low asynchro-
nous clear (CLR), when Low, overrides all other inputs and resets the
data (QD, QC, QB, QA) and ripple carry-out (RCO) outputs Low
during the Low-to-High clock (C) transition. When the active-Low
load enable input (LOAD) is Low, parallel clock enable (ENP), and
trickle clock enable (ENT) are overridden and data on inputs A, B, C,
and D are loaded into the counter during the Low-to-High clock tran-
sition. The data outputs (QD, QC, QB, QA) increment when ENP,
ENT LOAD, and CLR are High during the Low-to-High clock transi-
tion. The counter ignores clock transitions when ENP or ENT are
Low and LOAD is High. RCO is High when QD, QA, and ENT are
High and QC and QB are Low.

RCO = (QD•QC•QB•QA•ENT)

d – a = state of referenced input one set-up time prior to active clock transition

The carry-lookahead design allows cascading of large counters
without extra gating. Both ENT and ENP must be High to count. ENT
is fed forward to enable RCO, which produces a High output pulse
with the approximate duration of the QA output. The following
figure illustrates a carry-lookahead design.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

CLR LOAD ENP ENT D – A CK QD – QA RCO

0 X X X X X 0 0
1 0 X X D – A ↑ d – a RCO
1 1 0 X X X No Chg RCO
1 1 X 0 X X No Chg 0
1 1 1 1 X ↑ Inc RCO

X4175

X74_160

QD

QC

QB

QA

CK

ENT

ENP

LOAD

D

C

B

A

RCO

CLR
Libraries Guide 3-481

Libraries Guide
Figure 3-216 Carry-Lookahead Design

The RCO output of the first stage of the ripple carry is connected to
the ENP input of the second stage and all subsequent stages. The
RCO output of the second stage and all subsequent stages is
connected to the ENT input of the next stage. The ENT of the second
stage is always enabled/tied to VCC. CE is always connected to the
ENT input of the first stage. This cascading method allows the first
stage of the ripple carry to be built as a prescaler. In other words, the
first stage is built to count very fast.

The counter recovers from any of six possible illegal states and
returns to a normal count sequence within two clock cycles.

X4719

ENT

ENP

RCO

ENT

ENP

RCO

ENT

ENP

RCOVcc

Vcc

ENTCE

ENP

RCO
3-482 Xilinx Development System

Design Elements
Figure 3-217 X74_160 XC2000/3000/4000 Implementation

RCO

TQAD

AND3

AND5B2

QB

QC

D

C

B

CLR

CK

LOAD
A

CLRB

LB

CEENP

T1

T2
TQB

T3

AND2

INV

AND3

AND3B1

QA

CE
T

CLR

Q
L
D

C

FTCLE

QD

CE
T

CLR

Q
L
D

C

FTCLE

QC

CE
T

CLR

Q
L
D

C

FTCLE

QB

CE
T

CLR

Q
L
D

C

FTCLE

VCC

AND2 OR2

INV

QD

QA

ENT

X74_160.4K
Libraries Guide 3-483

Libraries Guide
X74_161

4-Bit Counter with Parallel and Trickle Enables
Active-Low Load Enable and Asynchronous Clear

X74_161 is a 4-stage, 4-bit, synchronous, loadable, resettable, cascad-
able binary counter. The active-Low asynchronous clear (CLR), when
Low, overrides all other inputs and resets the data outputs (QD, QC,
QB, QA) and the ripple carry-out output (RCO) Low. When the
active-Low load enable (LOAD) is Low and CLR is High, parallel
clock enable (ENP) and trickle clock enable (ENT) are overridden and
the data on inputs A, B, C, and D is loaded into the counter during
the Low-to-High clock (C) transition. The data outputs (QD, QC, QB,
QA) increment when LOAD, ENP, ENT, and CLR are High during the
Low-to-High clock transition. The counter ignores clock transitions
when LOAD is High and ENP or ENT are Low. RCO is High when
QD – QA and ENT are High.

RCO = (QD•QC•QB•QA•ENT)

d – a = state of referenced input one set-up time prior to active clock transition

The carry-lookahead design accommodates large counters without
extra gating. Both the ENT and ENP inputs must be High to count.
ENT is fed forward to enable RCO, which produces a High output
with the approximate duration of the QA output. The following
figure illustrates a carry-lookahead design.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

CLR LOAD ENP ENT D – A CK QD – QA RCO

0 X X X X X 0 0
1 0 X X D – A ↑ d – a RCO
1 1 0 X X X No Chg RCO
1 1 X 0 X X No Chg 0
1 1 1 1 X ↑ Inc RCO

X4176

X74_161

QD

QC

QB

QA

CK

ENT

ENP

LOAD

D

C

B

A

RCO

CLR
3-484 Xilinx Development System

Design Elements
Figure 3-218 Carry-Lookahead Design

The RCO output of the first stage of the ripple carry is connected to
the ENP input of the second stage and all subsequent stages. The
RCO output of the second stage and all subsequent stages is
connected to the ENT input of the next stage. The ENT of the second
stage is always enabled/tied to VCC. CE is always connected to the
ENT input of the first stage. This cascading method allows the first
stage of the ripple carry to be built as a prescaler. In other words, the
first stage is built to count very fast.

X4719

ENT

ENP

RCO

ENT

ENP

RCO

ENT

ENP

RCOVcc

Vcc

ENTCE

ENP

RCO
Libraries Guide 3-485

Libraries Guide
Figure 3-219 X74_161 XC2000/3000/4000 Implementation

LOADB

CLRB

LOAD

INV

CK

CLR

AND5

QA

QB

QC

QD

ENP

AND2

ENT

D

C

B

A
VCC

T2

AND2

AND3

T3

RCO
Q3

CE

T

CLR

Q

L

D

C

FTCLE

Q2

CE

T

CLR

Q

L

D

C

FTCLE

Q1

CE

T

CLR

Q

L

D

C

FTCLE

Q0

CE

T

CLR

Q

L

D

C

FTCLE

CE

INV
3-486 Xilinx Development System

Design Elements
X74_162

4-Bit Counter with Parallel and Trickle Enables and
Active-Low Load Enable and Synchronous Reset

X74_162 is a 4-stage, 4-bit, synchronous, loadable, resettable, cascad-
able binary-coded decimal (BCD) counter. The active-Low synchro-
nous reset (R), when Low, overrides all other inputs and resets the
data (QD, QC, QB, QA) and ripple carry-out (RCO) outputs Low
during the Low-to-High clock (C) transition. When the active-Low
load enable input (LOAD) is Low, parallel clock enable (ENP) and
trickle clock enable (ENT) are overridden and data on inputs A, B, C,
and D is loaded into the counter during the Low-to-High clock transi-
tion. The data outputs (QD, QC, QB, QA) increment when ENP, ENT,
LOAD, and R are High during the Low-to-High clock transition. The
counter ignores clock transitions when ENP or ENT are Low and
LOAD is High. RCO is High when QD, QA, and ENT are High and
QC and QB are Low.

RCO = (QD•QC•QB•QA•ENT)

d – a = state of referenced input one set-up time prior to active clock transition

The carry-lookahead design accommodates cascading large counters
without extra gating. Both ENT and ENP must be High to count. The
ENT is fed forward to enable RCO, which produces a High output
pulse with the approximate duration of the QA output. The
following figure illustrates a carry-lookahead design.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

R LOAD ENP ENT D – A CK QD – QA RCO

0 X X X X ↑ 0 0
1 0 X X D – A ↑ d – a RCO
1 1 0 X X X No Chg RCO
1 1 X 0 X X No Chg 0
1 1 1 1 X ↑ Inc RCO

X4177

X74_162

QD

QC

QB

QA

CK

ENT

ENP

LOAD

D

C

B

A

RCO

R

Libraries Guide 3-487

Libraries Guide
Figure 3-220 Carry-Lookahead Design

The RCO output of the first stage of the ripple carry is connected to
the ENP input of the second stage and all subsequent stages. The
RCO output of the second stage and all subsequent stages is
connected to the ENT input of the next stage. The ENT of the second
stage is always enabled/tied to VCC. CE is always connected to the
ENT input of the first stage. This cascading method allows the first
stage of the ripple carry to be built as a prescaler. In other words, the
first stage is built to count very fast.

The counter recovers from any of six possible illegal states and
returns to a normal count sequence within two clock cycles.

X4719

ENT

ENP

RCO

ENT

ENP

RCO

ENT

ENP

RCOVcc

Vcc

ENTCE

ENP

RCO
3-488 Xilinx Development System

Design Elements
Figure 3-221 X74_162 XC2000/3000/4000 Implementation

RCO

AND5B2

QA

QD

ENT

QC

QB

B

QD

FTRSLE

CE
T

S

R

Q
L
D

C

D

RB

LB

CE T2 TQB
T3

AND2 AND3
AND2 OR2

C

INV

VCC

AND3B1

INV

T1

QB

FTRSLE

CE
T

S

R

Q
L
D

C

QA

FTRSLE

CE
T

S

R

Q
L
D

C

LOAD
A

CK

R

ENP

GND

AND3

TQAD

QC

FTRSLE

CE
T

S

R

Q
L
D

C

X74_162.4K
Libraries Guide 3-489

Libraries Guide
X74_163

4-Bit Counter with Parallel and Trickle Enables,
Active-Low Load Enable, and Synchronous Reset

X74_163 is a 4-stage, 4-bit, synchronous, loadable, resettable, cascad-
able binary counter. The active-Low synchronous reset (R), when
Low, overrides all other inputs and resets the data outputs (QD, QC,
QB, QA) and the ripple carry-out output (RCO) Low. When the
active-Low load enable (LOAD) is Low and R is High, parallel clock
enable (ENP) and trickle clock enable (ENT) are overridden and the
data on inputs (A, B, C, D) is loaded into the counter during the Low-
to-High clock (C) transition. The outputs (QD, QC, QB, QA) incre-
ment when LOAD, ENP, ENT, and R are High during the Low-to-
High clock transition. The counter ignores clock transitions when
LOAD is High and ENP or ENT are Low; RCO is High when
QD – QA and ENT are High.

RCO = (QD•QC•QB•QA•ENT)

d – a = state of referenced input one set-up time prior to active clock transition

The carry-lookahead design accommodates large counters without
extra gating. Both the ENT and ENP inputs must be High to count.
ENT is propagated forward to enable RCO, which produces a High
output with the approximate duration of the QA output. The
following figure illustrates a carry-lookahead design.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

R LOAD ENP ENT D – A CK QD – QA RCO

0 X X X X ↑ 0 0
1 0 X X D – A ↑ d – a RCO
1 1 0 X X X No Chg RCO
1 1 X 0 X X No Chg 0
1 1 1 1 X ↑ Inc RCO

X4178

X74_163

QD

QC

QB

QA

CK

ENT

ENP

LOAD

D

C

B

A

RCO

R

3-490 Xilinx Development System

Design Elements
Figure 3-222 Carry-Lookahead Design

The RCO output of the first stage of the ripple carry is connected to
the ENP input of the second stage and all subsequent stages. The
RCO output of the second stage and all subsequent stages is
connected to the ENT input of the next stage. The ENT of the second
stage is always enabled/tied to VCC. CE is always connected to the
ENT input of the first stage. This cascading method allows the first
stage of the ripple carry to be built as a prescaler. In other words, the
first stage is built to count very fast.

X4719

ENT

ENP

RCO

ENT

ENP

RCO

ENT

ENP

RCOVcc

Vcc

ENTCE

ENP

RCO
Libraries Guide 3-491

Libraries Guide
Figure 3-223 X74_163 XC2000/3000/4000 Implementation

LOADBLOAD

INV

INV

AND2

ENP
CE

Q0

C

D

L

Q

R

S

T

CE

FTRSLE

RB

CK

R

QB

QC

QD

D

C

B

A
VCC

T2

AND2

AND3

RCO

QA

T3

Q1

C

D

L

Q

R

S

T

CE

FTRSLE

Q2

C

D

L

Q

R

S

T

CE

FTRSLE

GND

Q3

C

D

L

Q

R

S

T

CE

FTRSLE

ENT

AND5
3-492 Xilinx Development System

Design Elements
X74_164

8-Bit Serial-In Parallel-Out Shift Register with
Active-Low Asynchronous Clear

X74_164 is an 8-bit, serial input (A and B), parallel output (QH – QA)
shift register with an active-Low asynchronous clear (CLR) input.
The asynchronous CLR, when Low, overrides the clock input and sets
the data outputs (QH – QA) Low. When CLR is High, the AND func-
tion of the two data inputs (A and B) is loaded into the first bit of the
shift register during the Low-to-High clock (C) transition and
appears on the QA output. During subsequent Low-to-High clock
transitions, with CLR High, the data is shifted to the next-highest bit
position as new data is loaded into QA (A and B➝QA, QA➝QB,
QB➝QC, and so forth).

Registers can be cascaded by connecting the QH output of one stage
to the A input of the next stage, by tying B High, and by connecting
the clock and CLR inputs in parallel.

qA – qG = state of referenced output one set-up time prior to active clock
transition

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

CLR A B CK QA QB – QH

0 X X X 0 0
1 1 1 ↑ 1 qA – qG
1 0 X ↑ 0 qA – qG
1 X 0 ↑ 0 qA – qG

X4179

X74_164

QD

QC

QB

QA

B

A

CLR

QH

QG

QF

QE

CK
Libraries Guide 3-493

Libraries Guide
Figure 3-224 X74_164 XC2000/3000/4000 Implementation

QH

FDCE

QD

CLR

CE

C

QG

FDCE

QD

CLR

CE

C

QF

FDCE

QD

CLR

CE

C

QE

FDCE

QD

CLR

CE

C

QD

FDCE

QD

CLR

CE

C

QC

FDCE

QD

CLR

CE

C

QB

FDCE

QD

CLR

CE

C

QH

QG

QF

QE

QD

QC

QB

QA
B

A

CLR

CK

VCC

INV

QA

FDCE

QD

CLR

CE

C

CLRB

AND2

SLI
3-494 Xilinx Development System

Design Elements
X74_165S

8-Bit Loadable Serial/Parallel-In Parallel-Out Shift
Register with Clock Enable

X74_165S is an 8-bit shift register with serial-input (SI), parallel-
inputs (H – A), parallel-outputs (QH – QA), and two control
inputs – clock enable (CE) and active-Low shift/load enable (S_L).
When S_L is Low, data on the H – A inputs is loaded into the corre-
sponding QH – QA bits of the register on the Low-to-High clock (C)
transition. When CE and S_L are High, data on the SI input is loaded
into the first bit of the register during the Low-to-High clock transi-
tion. During subsequent Low-to-High clock transitions, with CE and
S_L High, the data is shifted to the next-highest bit position (shift
right) as new data is loaded into QA (SI➝QA, QA➝QB, QB➝QC,
and so forth). The register ignores clock transitions when CE is Low
and S_L is High.

Registers can be cascaded by connecting the QH output of one stage
to the SI input of the next stage and connecting clock, CE, and S_L
inputs in parallel.

si, qn represent state of referenced input or output one set-up time prior to active
clock transition.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

S_L CE SI A – H CK QA QB – QH

0 X X A – H ↑ qa qb – qh
1 0 X X X --No Change---
1 1 SI X ↑ si qA – qG

X4180

X74_165S

C

B

A

G

F

E

D

CE

S_L
H

QD

SI

CK

QC

QB

QA

QF

QG

QH

QE
Libraries Guide 3-495

Libraries Guide
Figure 3-225 X74_165S XC2000/3000/4000 Implementation

L_OR_CE

OR2B1

A
QA

QB

QC

QD

QE

QF

QG

S_L

QH

CK

CE

MDA

MDB

MDD

MD2

MDH

MDG

MDF

MDE

GND

Q0

FDCE
QD

CLR

CE
C

MDC

D0
D1

O

S0

M2_1

MDB

D0
D1 O

S0

M2_1

MDA

D0
D1
S0

M2_1

Q3

FDCE

QD

CLR

CE
C

Q2

FDCE
QD

CLR

CE
C

Q1

FDCE
QD

CLR

CE
C

Q4

FDCE
QD

CLR
CE
C

Q6

FDCE
QD

CLR
CE
C

Q7

FDCE
QD

CLR

CE
C

MDF

D0
D1

O

S0

M2_1

MDH

D0
D1

O

S0

M2_1

MDG

D0
D1

O

S0

M2_1

Q5

FDCE

QD

CLR

CE
C

MDD

D0
D1 O

S0

M2_1

MDE

D0
D1

O

S0

M2_1

B

C

D

E

F

G

H

SI
3-496 Xilinx Development System

Design Elements
X74_168

4-Bit BCD Bidirectional Counter with Parallel and
Trickle Clock Enables and Active-Low Load Enable

X74_168 is a 4-stage, 4-bit, synchronous, loadable, cascadable, bidi-
rectional binary-coded-decimal (BCD) counter. The data on the D – A
inputs is loaded into the counter when the active-Low load enable
(LOAD) is Low during the Low-to-High clock (C) transition. The
LOAD input, when Low, has priority over parallel clock enable
(ENP), trickle clock enable (ENT), and the bidirectional (U_D)
control. The outputs (QD – QA) increment when U_D and LOAD are
High and ENP and ENT are Low during the Low-to-High clock tran-
sition. The outputs decrement when LOAD is High and ENP, ENT,
and U_D are Low during the Low-to-High clock transition. The
counter ignores clock transitions when LOAD and either ENP or
ENT are High.

RCO = (Q3•Q2•Q1•Q0•U_D•ENT) + (Q3•Q2•Q1•Q0•U_D•ENT)

qa – qd = state of referenced input one set-up time prior to active clock transition

The active-Low ripple carry-out output (RCO) is Low when QD, QA,
and U_D are High and QC, QB, and ENT are Low. RCO is also Low
when all outputs, ENT and U_D are Low. The following figure illus-
trates a carry-lookahead design.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

LOAD ENP ENT U_D A – D CK QA – QD RCO

0 X X X A – D ↑ qa – qd RCO
1 0 0 1 X ↑ Inc RCO
1 0 0 0 X ↑ Dec RCO
1 1 0 X X X No Chg RCO
1 X 1 X X X No Chg 1

X4278

X74_168

CK

U_D

ENT

ENP

LOAD

D

C
B

QC

QB

QAA

QD

RCO
Libraries Guide 3-497

Libraries Guide
Figure 3-226 Carry-Lookahead Design

The RCO output of the first stage of the ripple carry is connected to
the ENP input of the second stage and all subsequent stages. The
RCO output of second stage and all subsequent stages is connected to
the ENT input of the next stage. The ENT of the second stage is
always enabled/tied to VCC. CE is always connected to the ENT
input of the first stage. This cascading method allows the first stage of
the ripple carry to be built as a prescaler. In other words, the first
stage is built to count very fast.

X4719

ENT

ENP

RCO

ENT

ENP

RCO

ENT

ENP

RCOVcc

Vcc

ENTCE

ENP

RCO
3-498 Xilinx Development System

Design Elements
Figure 3-227 X74_168 XC2000/3000/4000 Implementation

QD

D

UPC

XOR2

UC1

QC

QA

QB

AND2

U_D
LOAD

CK

ENT
CE

B

A

DB1

D0
D1 O
S0

M2_1
DNC

XOR2

CC

DC3

DC2

OR3

UD2

AND4B1
OR2

UPD

DC

Q2

FDCE
QD

CLR
CE
C

D0
D1 O
S0

M2_1

UPB

UB4

UB2

AND3B2

RCO

NAND4B2

URC

OR2B2ENT_P
OR2

ENP

D0
D1 O
S0

M2_1

OR2

RC

DRC

DC1

DD1

AND4B4

D0
D1 O
S0

M2_1

OR4AND3B1

DD4

DD3

DD2

UB1

DB4

DB3

DB2

AND4B2

AND3B1

UDD

UDC

D0
D1 O
S0

M2_1

OR4

AND4B3

AND3B2

Q1

FDCE
QD

CLR
CE
C

Q0

FDCE
QD

CLR
CE
C

D0
D1 O
S0

M2_1

D0
D1 O
S0

M2_1

D0
D1 O
S0

M2_1

Q3

FDCE
QD

CLR
CE
C

DA

DD

GND

UDA
INV

AND2B1

AND2

DND

UD1

OR4

DB

UDBDNB

AND2

AND2

OR3

AND2B1

AND3

AND4B3

AND4B3

C

Libraries Guide 3-499

Libraries Guide
X74_174

6-Bit Data Register with Active-Low Asynchronous
Clear

The active-Low asynchronous clear input (CLR), when Low, over-
rides the clock and resets the six data outputs (Q6 – Q1) Low. When
CLR is High, the data on the six data inputs (D6 – D1) is transferred to
the corresponding data outputs on the Low-to-High clock (C) transi-
tion.

dn = state of referenced input one set-up time prior to active clock transition

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

CLR D6 – D1 CK Q6 – Q1

0 X X 0
1 D6 – D1 ↑ d6 – d1

X4193

X74_174

CK

D6

D5

D4

D3
D2

Q3

Q2

Q1D1

Q4

Q6

Q5

CLR
3-500 Xilinx Development System

Design Elements
Figure 3-228 X74_174 XC2000/3000/4000 Implementation

CLR

CK

INV

Q5

Q4

Q3

Q2

Q1

Q6

D1

D2

D4

D3

D6

D5

CLRB
Q6

QD

CLR
C

FDC
Q5

QD

CLR
C

FDC
Q4

QD

CLRC

FDC
Q3

QD

CLR
C

FDC
Q2

QD

CLRC

FDC
Q1

QD

CLRC

FDC
Libraries Guide 3-501

Libraries Guide
X74_194

4-Bit Loadable Bidirectional Serial/Parallel-In
Parallel-Out Shift Register

X74_194 is a 4-bit shift register with shift-right serial input (SRI), shift-
left serial input (SLI), parallel inputs (D – A), parallel outputs
(QD – QA), two control inputs (S1, S0), and active-Low asynchronous
clear (CLR). The shift register performs the following functions.

● Clear When CLR is Low, all other inputs are ignored and
outputs QD – QA go to logic state zero during the
Low-to-High clock transition.

● Load When S1 and S0 are High, the data on inputs D – A
is loaded into the corresponding output bits
QD – QA during the Low-to-High clock transition.

● Shift Right When S1 is Low and S0 is High, the data is shifted
to the next-highest bit position (right) as new data
is loaded into QA (SRI➝QA, QA➝QB, QB➝QC,
and so forth).

● Shift Left When S1 is High and S0 is Low, the data is shifted
to the next-lowest bit position (left) as new data is
loaded into QD (SLI➝QD, QD➝QC, QC➝QB, and
so forth).

Registers can be cascaded by connecting the QD output of one stage
to the SRI input of the next stage, the QA output of one stage to the
SRI input of the next stage, and connecting clock, S1, S0, and CLR
inputs in parallel.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

X4181

X74_194

CK

S1

S0

SRI

D

C

B

A
SLI

QD

QC

QB

QA

CLR
3-502 Xilinx Development System

Design Elements
Lowercase letters represent state of referenced input or output one set-up time
prior to active clock transition.

Figure 3-229 X74_194 XC2000/3000/4000 Implementation

Inputs Outputs

CLR S1 S0 SRI SLI A – D CK QA QB QC QD

0 X X X X X X 0 0 0 0
1 0 0 X X X X -----No Change--------
1 1 1 X X A – D ↑ a b c d
1 0 1 SRI X X ↑ sri qa qb qc
1 1 0 X SLI X ↑ qb qc qd sli

MD

D0
D1

O

S0

M2_1

MA

D0
D1

O

S0

M2_1

MC

D0
D1

O

S0

M2_1

MB

D0
D1 O

S0

M2_1

INV

MRD

D0
D1

O

S0

M2_1
MLD

D0
D1

O

S0

M2_1

MLB

D0
D1

O

S0

M2_1

MLA

D0
D1

O

S0

M2_1

MRC

D0
D1

O

S0

M2_1
MLC

D0
D1

O

S0

M2_1

MRB

D0
D1

O

S0

M2_1

MRA

D0
D1

O

S0

M2_1
QA

QC

QB

MD

MC

MB

MA

MLD

MRD

MRB

MLA

MLB

MRC

MLC

MRA

QD

SRI
A

B

C

CK

S0
CLR

S1
D

SLI

QD

QD

CLR
C

FDC

QC

QD

CLR
C

FDC

QB

QD

CLR
C

FDC

QA

QD

CLRC

FDC
Libraries Guide 3-503

Libraries Guide
X74_195

4-Bit Loadable Serial/Parallel-In Parallel-Out Shift
Register

X74_195 is a 4-bit shift register with shift-right serial inputs (J and K),
parallel inputs (D – A), parallel outputs (QD – QA) and QDB,
shift/load control input (S_L), and active-Low asynchronous clear
(CLR). Asynchronous CLR, when Low, overrides all other inputs and
resets data outputs QD – QA Low and QDB High. When S_L is Low
and CLR is High, data on the D – A inputs is loaded into the corre-
sponding QD – QA bits of the register during the Low-to-High clock
(C) transition. When S_L and CLR are High, the first bit of the register
(QA) responds to the J and K inputs during the Low-to-High clock
transition, as shown in the truth table. During subsequent Low-to-
High clock transitions, with S_L and CLR High, the data is shifted to
the next-highest bit position (shift right) as new data is loaded into
QA (J, K➝QA, QA➝QB, QB➝QC, and so forth).

Registers can be cascaded by connecting the QD and QDB outputs of
one stage to the J and K inputs, respectively, of the next stage and
connecting clock, S_L and CLR inputs in parallel.

Lowercase letters represent state of referenced input or output one set-up time
prior to active clock transition.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

CLR S_L J K A – D CK QA QB QC QD QDB

0 X X X X X 0 0 0 0 1
1 0 X X A – D ↑ a b c d d
1 1 0 0 X ↑ 0 qa qb qc qc
1 1 1 1 X ↑ 1 qa qb qc qc
1 1 0 1 X ↑ qa qa qb qc qc
1 1 1 0 X ↑ qa qa qb qc qc

X4182

X74_195

QD

QC

QB

QA

CK

S_L

K

J

D

C

B

A

CLR

QDB
3-504 Xilinx Development System

Design Elements
Figure 3-230 X74_195 XC2000/3000/4000 Implementation

CK
CLR

INV
CLRB

QA

QD

CLRC

FDC

QB

QD

CLRC

FDC

QC

QD

CLRC

FDC

QD

QD

CLRC

FDC

S_L

QB

QC

NAND2

NAND3B1

QD

INV

MB

D0
D1

O

S0

M2_1

MC

D0
D1 O
S0

M2_1

MD

D0
D1 O
S0

M2_1

MA

D0
D1 O

S0

M2_1

NAND3OR3B1

J

K

JK

D

B

A

MD

MB

MA QA

C
MC

QDB
Libraries Guide 3-505

Libraries Guide
X74_273

8-Bit Data Register with Active-Low Asynchronous
Clear

The active-Low asynchronous clear (CLR), when Low, overrides all
other inputs and resets the data outputs (Q8 – Q1) Low. When CLR is
High, the data on the data inputs (D8 – D1) is transferred to the corre-
sponding data outputs (Q8 – Q1) during the Low-to-High clock tran-
sition.

dn = state of referenced input one set-up time prior to active clock transition

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

CLR D8 – D1 CK Q8 – Q1

0 X X 0
1 D8 – D1 ↑ d8 – d1

X4183

X74_273

Q4

Q3

Q2

Q1

CK

D8

D7

D6

D5

D4

D3

D2

CLR

D1

Q8

Q7

Q6

Q5
3-506 Xilinx Development System

Design Elements
Figure 3-231 X74_273 XC2000/3000/4000 Implementation

CK

D8

D1

D2

D4

D3

D5

D6

D7

CLRB

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

INV

CLR
Q8

QD

CLR
C

FDC
Q7

QD

CLR
C

FDC Q6

QD

CLR
C

FDC Q5

QD

CLR
C

FDC
Q4

QD

CLR
C

FDC
Q3

QD

CLRC

FDC
Q2

QD

CLR
C

FDC Q1

QD

CLR
C

FDC
Libraries Guide 3-507

Libraries Guide
X74_280

9-Bit Odd/Even Parity Generator/Checker

* not supported for XC7336 designs

X74_280 parity generator/checker compares up to nine data inputs
(I – A) and provides both even (EVEN) and odd parity (ODD)
outputs. The EVEN output is High when an even number of inputs is
High. The ODD output is High when an odd number of inputs is
High.

Expansion to larger word sizes is accomplished by tying the ODD
outputs of up to nine parallel components to the data inputs of one
more X74_280; all other inputs are tied to ground.

Figure 3-232 X74_280 XC2000/3000/4000 Implementation

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive*

Inputs Outputs

Number of Ones
on A – I

EVEN ODD

0, 2, 4, 6, or 8 1 0
1, 3, 5, 7, or 9 0 1

X4184

X74_280

I

H

G

F

E

D

C

B
A

ODD

EVEN

XOR5

XOR4 XNOR2

XOR2

I

H
G
F

E
D
C
B
A

X4

X5

EVEN

ODD
3-508 Xilinx Development System

Design Elements
X74_283

4-Bit Full Adder with Carry-In and Carry-Out

* not supported for XC7336 designs

X74_283, a 4-bit full adder with carry-in and carry-out, adds two 4-bit
words (A4 – A1 and B4 – B1) and a carry-in (C0) and produces a
binary sum output (S4 – S1) and a carry-out (C4).

16(C4)+8(S4)+4(S3)+2(S2)+S1=8(A4+B4)+4(A3+B3)+2(A2+B2)+
(A1+B1)+CO, where “+” = addition.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive*

X4185

X74_283

B4

B3

B2

B1

A4

A3

A2

A1
CO

C4

S4

S3

S2
S1
Libraries Guide 3-509

Libraries Guide
Figure 3-233 X74_283 XC2000/3000/4000 Implementation

OR3

AND2

AND2

AND2

XOR3

XOR3

OR3

AND2

AND2

AND2

AND2

AND2

AND2

AND2

AND2

AND2

OR3

XOR3

XOR3

OR3

A1

A4

A3

A2

C0

B4

B3

B2

B1

C1

C2

C3

S2

C4

S1

S3

S4
3-510 Xilinx Development System

Design Elements
X74_298

Quadruple 2-Input Multiplexer with Storage and
Negative-Edge Clock

* not supported for XC7336 designs

X74_298 selects 4-bits of data from two sources (D1 – A1 or D2 – A2)
under the control of a common word select input (WS). When WS is
Low, D1 – A1 is chosen, and when WS is High, D2 – A2 is chosen. The
selected data is transferred into the output register (QD – QA) during
the High-to-Low transition of the negative-edge triggered clock (CK).
For XC7000, the CK input cannot be driven by a FastCLK signal
(from BUFG).

an – dn = state of referenced input one set-up time prior to active clock transition

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive*

Inputs Outputs

WS A1 – D1 A2 – D2 CK QA – QD

0 A1 – D1 X ↓ a1 – d1
1 X A2 – D2 ↓ a2 – d2

X4186

X74_298

CK

WS

D2

D1

C2

C1

B2

B1

A2

A1

QD

QC

QB

QA
Libraries Guide 3-511

Libraries Guide
Figure 3-234 X74_298 XC2000/3000/4000 Implementation

CK

QA

C

D Q

FD_1

QB

C

D Q

FD_1

QC

C

D Q

FD_1

QD

C

D Q

FD_1

D2
D1

C2
C1

B2
B1

A2

QCMC

MD

MB

MA

QD

WS

QA

QB

A1

MD

D0
D1

O

S0

M2_1

MC

D0
D1

O

S0

M2_1

MB

D0
D1

O

S0

M2_1

MA

D0
D1

O

S0

M2_1
3-512 Xilinx Development System

Design Elements
X74_352

Dual 4-to-1 Multiplexer with Active-Low Enables and
Outputs

X74_352 comprises two 4-to-1 multiplexers with separate enables
(G1 and G2) but with common select inputs (A and B). When an
active-Low enable (G1 or G2) is Low, the multiplexer chooses one
data bit from the four sources associated with the particular enable
(I1C3 – I1C0 for G1 and I2C3 – I2C0 for G2) under the control of the
common select inputs (A and B). The active-Low outputs (Y1 and Y2)
reflect the inverse of the selected data as shown in truth table. Y1 is
associated with G1 and Y2 is associated with G2. When an active-
Low enable is High, the associated output is High.

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

G B A IC0 IC1 IC2 IC3 Y

1 X X X X X X 1
0 0 0 IC0 X X X IC0
0 0 1 X IC1 X X IC1
0 1 0 X X IC2 X IC2
0 1 1 X X X IC3 IC3

X4187

X74_352

I1C3

I1C2

I1C1

I2C3

I2C2

I2C1

I2C0

G1

B

A

Y2

I1C0

G2

Y1
Libraries Guide 3-513

Libraries Guide
Figure 3-235 X74_352 XC2000/3000/4000 Implementation

M2C23

D0
D1

O

S0

M2_1

M1C23

D0
D1

O

S0

M2_1

B

M1C01

A

M2C01

D0
D1

O

S0

M2_1

G1

INV

G1B

Y1

INV

Y1B

I1C2

I1C0

I1C3
Y1

D1
D0

O

E
S0

M2_1E

M1C23

I1C1

INV

G2B

M2C01

I2C2
M2C23

Y2
D1
D0

O

E
S0

M2_1E
I2C0
I2C1

I2C3

Y2B

INV

Y2

G2

M1C01

D0
D1

O

S0

M2_1
3-514 Xilinx Development System

Design Elements
X74_377

8-Bit Data Register with Active-Low Clock Enable

When the active-Low clock enable (G) is Low, the data on the eight
data inputs (D8 – D1) is transferred to the corresponding data
outputs (Q8 – Q1) during the Low-to-High clock (CK) transition. The
register ignores clock transitions when G is High.

dn = state of referenced input one set-up time prior to active clock transition

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

Inputs Outputs

G D8 – D1 CK Q8 – Q1

1 X X No Change
0 D8 – D1 ↑ d8 – d1

X4188

X74_377

CK

G

D8

D7

D6

D5

D4

D3

D2

D1

Q7

Q5

Q3

Q1

Q6

Q4

Q2

Q8
Libraries Guide 3-515

Libraries Guide
Figure 3-236 X74_377 XC2000/3000/4000 Implementation

GND

INV

G

Q1D1

Q2D2

D3 Q3

D4 Q4

D5 Q5

D6 Q6

Q7D7

Q8D8

GB

CK

Q1

FDCE

QD

CLR

CE

C

Q2

FDCE
QD

CLR

CE

C

Q3

FDCE

QD

CLR

CE

C

Q4

FDCE
QD

CLR

CE

C

Q5

FDCE
QD

CLR

CE

C

Q6

FDCE

QD

CLR

CE

C

Q7

FDCE

QD

CLR

CE

C

Q8

FDCE

QD

CLR

CE

C

3-516 Xilinx Development System

Design Elements
X74_390

4-Bit BCD/Bi-Quinary Ripple Counter with
Negative-Edge Clocks and Asynchronous Clear

* not supported for XC7336 designs

X74_390 is a cascadable, resettable binary-coded decimal (BCD) or
bi-quinary counter that can be used to implement cycle lengths equal
to whole and/or cumulative multiples of 2 and/or 5. In BCD mode,
the output QA is connected to negative-edge clock input (CKB), and
data outputs (QD – QA) increment during the High-to-Low clock
transition as shown in the truth table, provided asynchronous clear
(CLR) is Low. In bi-quinary mode, output QD is connected to the
negative-edge clock input (CKA). As shown in the truth table, in bi-
quinary mode, QA supplies a divide-by-five output and QB supplies
a divide-by-two output, provided asynchronous CLR is Low. When
asynchronous CLR is High, the other inputs are overridden, and data
outputs (QD – QA) are reset Low.

Larger ripple counters are created by connecting the QD output (BCD
mode) or QA output (biquinary mode) of the first stage to the appro-
priate clock input of the next stage and connecting the CLR inputs in
parallel. For XC7000, CKA and CKB cannot be driven by a FastCLK
signal from (BUFG).

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive*

X4189

X74_390

CLR

QC

QB

QACKA

QD

CKB
Libraries Guide 3-517

Libraries Guide
Figure 3-237 X74_390 XC2000/3000/4000 Implementation

Count
BCD Bi-Quinary

QD QC QB QA QD QC QB QA

0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 1 0
2 0 0 1 0 0 1 0 0
3 0 0 1 1 0 1 1 0
4 0 1 0 0 1 0 0 0
5 0 1 0 1 0 0 0 1
6 0 1 1 0 0 0 1 1
7 0 1 1 1 0 1 0 1
8 1 0 0 0 0 1 1 1
9 1 0 0 1 1 0 0 1

QD

QD

CE

CLR

Q

C

D

FDCE_1

QC

CE

CLR

Q

C

D

FDCE_1

QB

CE

CLR

Q

C

D

FDCE_1

QA

CE

CLR

Q

C

D

FDCE_1
VCC

AND2B1

AND2

INV

OR2

XOR2

XOR2

NOR2

QC

QB

QA

A21

CKA

CKB

CLR

D0

AX2
D2

OX3
D3

D1
3-518 Xilinx Development System

Design Elements
X74_518

8-Bit Identity Comparator with Active-Low Enable

X74_518 is an 8-bit identity comparator with 16 data inputs for two
8-bit words (P7 – P0 and Q7 – Q0), data output (PEQ), and active-
Low enable (G). When G is High, the PEQ output is Low. When G is
Low and the two input words are equal, PEQ is High. Equality is
determined by a bit comparison of the two words. When any of the
two equivalent bits from the two words are not equal, PEQ is Low.

Figure 3-238 X74_518 XC2000/3000/4000 Implementation

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

X4190

X74_518

Q0

Q1

P1

P2

Q7

G

P0

P3

P4

Q3

Q4

Q2

Q5

Q6

P6

P7

P5

PEQ

G

PQ47

PQ03

AND3B1

PEQ

AND4

XNOR2

XNOR2

XNOR2

XNOR2

XNOR2

XNOR2

XNOR2

XNOR2

Q5

AND4

P0

P1

P2

P3

P4

P5

P6

P7

Q0

Q1

Q2

Q3

Q4

Q6

Q7

PQ2

PQ0

PQ6

PQ5

PQ1

PQ3

PQ7

PQ4
Libraries Guide 3-519

Libraries Guide
X74_521

8-Bit Identity Comparator with Active-Low Enable
and Output

X74_521 is an 8-bit identity comparator with 16 data inputs for two
8-bit words (P7 – P0 and Q7 – Q0), active-Low data output (PEQ), and
active-Low enable (G). When G is High, the PEQ output is High.
When G is Low and the two input words are equal, PEQ is Low.
X74_521 does a bit comparison of the two words to determine
equality. When any of the two equivalent bits from the two words are
not equal, PEQ is High.

Figure 3-239 X74_521 XC2000/3000/4000 Implementation

XC2000 XC3000 XC4000 XC7000

Macro Macro Macro Primitive

X4191

X74_521

Q0

Q1

P1

P2

Q7

G

P0

P3

P4

Q3

Q4

Q2

Q5

Q6

P6

P7

P5

PEQ

XNOR2

XNOR2

P5

PQ4 NAND3B1

G

PQ47

PQ03

PEQ

AND4

XNOR2

XNOR2

XNOR2

XNOR2

XNOR2

XNOR2

Q5

AND4

P0

P1

P2

P3

P4

P6

P7

Q0

Q1

Q2

Q3

Q4

Q6

Q7

PQ2

PQ0

PQ6

PQ5

PQ1

PQ3

PQ7
3-520 Xilinx Development System

Chapter 4
XACT Libraries Guide — 0401410 01 4-1

Attributes, Constraints, and Carry Logic
This chapter lists and describes all the attributes and constraints that
you can use with your schematic entry software or enter in a
constraints file. In particular, it describes the relative location (RLOC)
constraint. It also describes PPR placement constraints, relationally
placed macros (RPMs), and carry logic.

Attributes are instructions placed on symbols or nets in an FPGA or
EPLD schematic to indicate their placement, implementation,
naming, directionality, and so forth. This information is used by the
design implementation software during placement and routing of a
design. Constraints, which are a type, or subset, of attributes, are
used only to indicate where an element should be placed.

All the attributes listed in this chapter are available in the schematic
entry tools directly supported by Xilinx unless otherwise noted, but
some may not be available in textual entry methods such as VHDL.

Attributes applicable only to a certain schematic entry tool are
described in the documentation for that tool. For third-party inter-
faces, consult the interface user guides for information on which
attributes are available and how they are used.

Attributes
There are three types of attributes discussed in this section:

● Component attributes, which affect only the component instances
on which they are placed.

● Global attributes, which affect the entire design. These attributes
apply to EPLD devices only.

● Net attributes, which affect individual component outputs or
inputs and are represented by attributes applied to nets.

Libraries Guide
In some software programs, particularly Mentor Graphic’s, attributes
are called properties, but their functionality is the same as that of
attributes. In this document, they are referred to as attributes.

There are two types of Mentor Graphics properties: in one, a property
is equal to a value, for example, LOC=AA; in the other, the property
name and the value are the same, for example, DECODE. In the first
type, “attribute” refers to the property; in the second, “attribute”
refers to the property and the value.

The attributes in this section are listed in alphabetical order.

BASE

Architectures
The BASE attribute applies to the XC2000 and XC3000 families only.

Description
The BASE attribute defines the base configuration of a CLB or an IOB.
For an IOB primitive, it should always be set to IO. For a CLB primi-
tive, it can be one of three modes in which the CLB function generator
operates.

In XC2000 devices, these three modes are the following:

● F mode allows any function of up to four variables to be imple-
mented, where one of the inputs can be the Q output of the flip-
flop in the CLB.

● FG mode allows two three-input functions to be implemented,
where the input can be chosen from the four inputs to the CLB and
the Q output of the flip-flop in the CLB.

● FGM mode is similar to FG mode except that the inputs must be
chosen from four inputs to the CLB or the Q feedback. The B input
to the CLB acts as the control for a multiplexer between the two
four-input functions.

The three modes are very similar in XC3000 devices:

● F mode allows the CLB to implement any one function of up to
five variables.

● FG mode gives the CLB any two functions of up to four variables.
4-2 Xilinx Development System

Attributes, Constraints, and Carry Logic
Of the two sets of four variables, one input (A) must be common,
two (B and C) can be either independent inputs or feedback from
the Qx and Qy outputs of the flip-flops within the CLB, and the
fourth can be either of the two other inputs to the CLB (D and E).

● FGM mode is similar to FG, but the fourth input must be the D
input. The E input is then used to control a multiplexer between
the two four-input functions, allowing some six- and seven-input
functions to be implemented.

The following two figures illustrate the CLB and IOB base configura-
tions of the XC2000 and XC3000 families, respectively. In these draw-
ings, BASE F, FG, and FGM are for CLBs; BASE IO is for IOBs.

Figure 4-1 Base Configurations for XC3000 CLB and IOB
Primitives

X4708

QX

QY

F

CLB: BASE F

QX

QY

CLB: BASE FG

F

G

QX

QY

F

CLB: BASE FGM IOB: BASE IO

G

PAD

M

E

Libraries Guide 4-3

Libraries Guide
Figure 4-2 Base Configurations for XC2000 CLB and IOB
Primitives

Syntax
The syntax of the BASE attribute is the following:

BASE=mode

where mode can be F, FG, or FGM for a CLB, or IO for an IOB.

BLKNM

Architectures
 The BLKNM attribute applies to all FPGA families.

Description
The BLKNM attribute assigns LCA block names to qualifying primi-
tives and logic elements. If the same BLKNM attribute is assigned to
more than one instance, the software attempts to map them into the
same LCA block. Conversely, two symbols with different BLKNM

X4707

QF

CLB: BASE F

Q

CLB: BASE FG

F

G

Q
F

CLB: BASE FGM IOB: BASE IO

G

PAD

B

M

4-4 Xilinx Development System

Attributes, Constraints, and Carry Logic
names are not mapped into the same block. Placing similar BLKNMs
on instances that do not fit within one LCA block creates an error.

Specifying identical BLKNM attributes on FMAP and/or HMAP
symbols tells the software to group the associated function genera-
tors into a single CLB. Using BLKNM, you can partition a complete
CLB without constraining the CLB to a physical location on the
device.

For an XC4000 CLB, the maximum number of elements that can be
assigned the same block name is two flip-flops, two FMAPs, and one
HMAP. For an XC3000 CLB, the maximum number of elements that
can be assigned the same block name is two flip-flops or one
CLBMAP. For an XC2000 CLB, the maximum number is one flip-flop
or one CLBMAP.

BLKNM attributes, like LOC constraints, are specified from the sche-
matic. Hierarchical paths are not prefixed to BLKNM attributes, so
BLKNM attributes for different CLBs must be unique throughout the
entire design. See the section on the HBLKNM attribute for informa-
tion on attaching hierarchy to block names.

Use the BLKNM attribute to attach a name to the following symbols:

● XC4000 flip-flop primitives (FDCE, FDPE)

● XC3000 flip-flop primitives (FDCE)

● XC2000 flip-flop and latch primitives (FDCP, LDCP)

● I/O buffers, flip-flops, and latches (IBUF, OBUF, OBUFT, ILD,
IFD, OFD, OFDT)

● PAD primitives (PAD, IPAD, OPAD, BPAD, UPAD, PADU)

● I/O block primitives (IOB symbols)

● Configurable logic blocks (CLB symbols)

● 3-state buffers (BUFT symbols)

● Mapping control symbols (CLBMAP, FMAP, HMAP)
Libraries Guide 4-5

Libraries Guide
Syntax
The syntax of the BLKNM attribute is the following:

BLKNM=blockname

where blockname is a valid LCA block name for that type of symbol.
For a list of prohibited block names, see the “Naming Conventions”
section of each user interface manual.

For information on assigning hierarchical block names, see the
HBLKNM attribute description in this chapter.

Example
Suppose that you want to map together two flip-flops within one
CLB. You give both the BLKNM=FFGRP1 attribute. You then trans-
late, place, and route the design. When you examine it in EditLCA,
you see that both flip-flops reside within a CLB named FFGRP1.

CAP

Architectures
The CAP attribute applies to the XC4000H family only.

Description
You can specify an XC4000H output driver as operating in either
resistive (RES) or capacitive, “softedge” (CAP) mode. In resistive
mode, the output is faster and draws more power. Use this mode
when the output is attached to purely resistive loads, or when ground
bounce is not expected to be a problem with the output.

The CAP attribute allows you to specify capacitive mode. Use capaci-
tive mode when connecting an output to a capacitive mode, or when
ground bounce is predicted to be a problem with the output. In
capacitive mode, the pull-down transistor is slowly turned off as the
output is pulled to ground, minimizing the likelihood of ground
bounce.

See the section on the RES attribute for more information.

Use the CAP attribute on the following symbols:
4-6 Xilinx Development System

Attributes, Constraints, and Carry Logic
● IOB output symbols OBUF, OBUFT

● IOB pads OPAD, IOPAD, UPAD

● Special function access symbols TDI, TMS, TCK

Syntax
The CAP attribute has the following syntax:

CAP

CLOCK_OPT

Architectures
The CLOCK_OPT attribute applies to the XC7200 and XC7300 fami-
lies only.

Description
The CLOCK_OPT global attribute controls FastCLK optimization for
the entire design. FastCLK optimization changes a product-term
clock to a FastCLK global signal, which reduces the number of
universal interconnect matrix (UIM) inputs and product terms
required by each function block.

Syntax
Use the following syntax with the CLOCK_OPT attribute:

CLOCK_OPT={on|off}

The On setting enables FastCLK optimization; the Off setting inhibits
it. On is the default.
Libraries Guide 4-7

Libraries Guide
CMOS

Architectures
The CMOS attribute applies to the XC4000H family only.

Description
The CMOS attribute configures output drivers on the XC4000H to
drive to CMOS-compatible levels. Similarly, it configures IOBs to
have CMOS-compatible input thresholds.

 To configure output drive levels, attach the CMOS attribute to any of
the following output symbols: OBUF, OBUFT, OUTFF/OFD,
OUTFFT/OFDT.

To configure input threshold levels, attach the CMOS attribute to any
of the following input symbols: IBUF, INFF/IFD, INLAT/ILD,
INREG.

See the section on the TTL attribute for more information.

Syntax
The syntax of the CMOS attribute is the following:

CMOS

CONFIG

Architectures
The CONFIG attribute applies to XC2000 and XC3000 families only.

Description
The CONFIG attribute specifies logic element inputs and the storage
element function for a CLB or IOB symbol.

CONFIG attributes can only be attached to IOB and CLB symbols.
4-8 Xilinx Development System

Attributes, Constraints, and Carry Logic
Syntax
Use the following syntax for the CONFIG attribute:

CONFIG=tag:[value]:[value]

where tag and value are derived from the following tables.

Table 4-1 XC2000 CLB Configuration Options

*For BASE FGM, M=F if B=1, and M=G if B=0.

Table 4-2 XC2000 IOB Configuration Options

Tag BASE F BASE FG BASE FGM*

X F, Q F, G, Q M, Q

Y F, Q F, G, Q M, Q

Q FF, LATCH FF, LATCH FF, LATCH

SET A, F A, F A, M

RES D, F D, G D, M

CLK K, C, F, NOT K, C, G, NOT K, C, M, NOT

F A, B, C, D, Q A, B, C, D, Q A, B, C, D, Q

G None A, B, C, D, Q A, B, C, D, Q

Tag BASE IO

I PAD, Q

BUF ON, TRI
Libraries Guide 4-9

Libraries Guide
Table 4-3 XC3000 CLB Configuration Options

*For BASE FGM, M=F if E=0, and M=G if E=1.

Table 4-4 XC3000 IOB Configuration Options

Example
Following is an example of a valid XC2000 CLB CONFIG attribute
value:

X:Q Y:G CLK:K:NOT Q:FF SET:A RES:D

Here is an example of a valid XC3000 CLB CONFIG attribute value:

X:QX Y:QY DX:F DY:G CLK:K ENCLK:EC

Tag BASE F BASE FG BASE FGM*

X F, QX F, QX M, QX

Y F, QY G, QY M, QY

DX DI, F DI, F, G DI, M

DY DI, F DI, F, G DI, M

CLK K, NOT K, NOT K, NOT

RSTDIR RD RD RD

ENCLK EC EC EC

F A,B,C,D,E,QX,
QY

A,B,C,D,E,QX,
QY

A,B,C,D,QX,
QY

G None A,B,C,D,E,QX,
QY

A,B,C,D,QX,
QY

Tag BASE IO

IN I, IQ, IKNOT, FF, LATCH,
PULLUP

OUT O, OQ, NOT, OKNOT, FAST

TRI T, NOT
4-10 Xilinx Development System

Attributes, Constraints, and Carry Logic
DECODE

Architectures
The DECODE attribute applies to the XC4000 family only.

Description
The DECODE attribute defines where a wired-AND (WAND)
instance is placed, either within a BUFT or an edge decoder. If the
DECODE attribute is placed on a single-input WAND1 gate, the gate
is implemented as an input to a wide-edge decoder in an XC4000
design.

Syntax
The syntax of the DECODE attribute is the following:

DECODE

DECODE attributes can only be attached to a WAND1 symbol.

DOUBLE

Architectures
The DOUBLE attribute applies to the XC3000 family only.

Description
The DOUBLE attribute specifies double pull-up resistors on the hori-
zontal longline. On XC3000 parts, there are internal nets that can be
set as 3-state with two programmable pull-up resistors available per
line. If the DOUBLE attribute is placed on a PULLUP symbol, both
pull-ups are used, enabling a fast, high-power line. If the DOUBLE
attribute is not placed on a pull-up, only one pull-up is used,
resulting in a slower, lower-power line.

When the DOUBLE attribute is present, the speed of the distributed
logic is increased, as is the power consumption of the part. When
only half of the longline is used, there is only one pull-up at each end
of the longline.
Libraries Guide 4-11

Libraries Guide
While the DOUBLE attribute can be used for the XC4000 family, it is
not recommended. PPR activates both pull-up resistors if the entire
longline (not a half-longline) is used.

Syntax
The syntax of the DOUBLE attribute is the following:

DOUBLE

The DOUBLE attribute can only be attached to a BUFT symbol.

EQUATE_F and EQUATE_G

Architectures
The EQUATE_F and EQUATE_G attributes apply to the XC2000 and
XC3000 families only.

Description
The EQUATE_F and EQUATE_G attributes set the logic equations
describing the F and G function generators of a CLB, respectively.

Syntax
The syntax of the EQUATE_F and EQUATE_G attributes is the
following:

EQUATE_For EQUATE_G

The following table lists the Boolean operators used in the logic equa-
tions.

Table 4-5 Valid XC2000 and XC3000 Boolean Operators

Symbol Boolean Equivalent

~ NOT

* AND

@ XOR

+ OR

() Group expression
4-12 Xilinx Development System

Attributes, Constraints, and Carry Logic
Example
Here are two examples illustrating the use of the EQUATE_F
attribute:

EQUATE_F=F=((~A*B)+D))@Q

F=A@B+(C*~D)

FAST

Architectures
The FAST attribute applies to XC3000, XC3000A/L, XC4000, and
XC4000A families only.

Description
The FAST slew-rate attribute is attached to an output buffer, output
flip-flop, or pad to increase the speed of an IOB output. It produces a
faster output but may increase noise and power consumption.

The FAST attribute can be attached to the following symbols:

● IOB symbols OBUF, OBUFT, OFD, OFDI, OFDT, OFDTI, OPAD,
IOPAD, UPAD

● Special function access symbols TDI, TMS, TCK

Syntax
The syntax of the FAST attribute is the following:

FAST

FILE

Architectures
The FILE attribute applies to all FPGA families.

Description
The FILE attribute is placed on symbols that do not have underlying
schematics. It references the XNF file containing the Xilinx netlist for
Libraries Guide 4-13

Libraries Guide
the logic represented by the symbol. When XNFMerge encounters
such a symbol, it looks in the design directory for the XNF file and
replaces the description of the symbol in the XNF file with the func-
tionality found in the XNF file.

Syntax
Use the following syntax for the FILE attribute:

FILE= filename

where filename is the name of an XNF file without the .xnf extension.

Example
Suppose that a symbol is created, called new_and2, whose function
mimics that of a 2-input AND gate. A Xilinx ABEL file describes the
function of the new_and2 symbol and is translated to an XNF file
called new_and2.xnf. A FILE attribute is placed on the symbol, and
the attribute is given a value of new_and2. The top-level design
containing the new_and2 symbol is translated to an XNF file, and the
following lines are found within it:

SYM, I$2, NEW_AND2, FILE=NEW_AND2
PIN, I1, I, NET_IN1
PIN, I2, I, NET_IN2
PIN, O1, O, NET_OUT1
END

The new_and2.xnf file contains the following lines:

SYM, I$1, AND2
PIN, 1, I, I1
PIN, 2, I, I2
PIN, O, O, O1
END
4-14 Xilinx Development System

Attributes, Constraints, and Carry Logic
The top-level file is then processed by XNFMerge, which reads
new_and2.xnf and replaces the description of the symbol with the
description of the functionality, resulting in the following lines in the
top-level design:

SYM, I$2/I$1, AND2
PIN, 1, I, NET_IN1
PIN, 2, I, NET_IN2
PIN, O, O, NET_OUT1
END

The functionality of the symbol is added to the top-level design,
while the connectivity found in the top-level design is maintained.

FOE_OPT

Architectures
The FOE_OPT attribute applies to the XC7200 and XC7300 families
only.

Description
The FOE_OPT global attribute controls the optimization of the fast
output enable (FOE) for the entire design. FOE optimization gener-
ally applies only to BUFE, OBUFE, or 3-state PLD outputs driving an
OBUF. FOE optimization changes a product-term 3-state signal to an
FOE global control signal. Like FastCLK assignment, it reduces the
number of UIM inputs and product terms required by each function
block.

Syntax
Use the following syntax with the FOE_OPT attribute:

FOE_OPT={on|off}

Off inhibits FOE optimization of the entire design, and On, which is
the default, activates it.
Libraries Guide 4-15

Libraries Guide
HBLKNM

Architectures
The HBLKNM attribute applies to all FPGA families.

Description
The HBLKNM attribute assigns hierarchical LCA block names to
logic elements and controls grouping in a flattened hierarchical
design. When elements on different levels of a hierarchical design
carry the same block name and the design is flattened, XNFMerge
prefixes a hierarchical path name to the HBLKNM value.

Like BLKNM, the HBLKNM attribute forces function generators and
flip-flops into the same CLB. Symbols with the same HBLKNM
attribute map into the same CLB, if possible. However, using
HBLKNM instead of BLKNM has the advantage of adding hierarchy
path names during translation, and therefore the same HBLKNM
attribute and value can be used on elements within different
instances of the same macro.

Use the HBLKNM attribute to attach a name to the following
symbols:

● XC4000 flip-flop primitives (FDCE, FDOP)

● XC3000 flip-flop primitives (FDCE)

● XC2000 flip-flop and latch primitives (FDCP, LDCP)

● I/O buffers, flip-flops, and latches (IBUF, OBUF, OBUFT, ILD, IFD,
OFD, OFDT)

● PAD primitives (PAD, IPAD, OPAD, BPAD, UPAD, PADU)

● I/O block primitives (IOB symbols)

● Configurable logic blocks (CLB symbols)

● 3-state buffers (BUFT symbols)

● Mapping control symbols (CLBMAP, FMAP, HMAP)
4-16 Xilinx Development System

Attributes, Constraints, and Carry Logic
Syntax
The syntax of the HBLKNM attribute is the following:

HBLKNM=blockname

where blockname is a valid LCA block name for that type of symbol.
For a list of prohibited block names, see the “Naming Conventions”
section of each user interface manual.

Example
A schematic is created that contains a four-input function and a flip-
flop. The logic function is mapped using an FMAP symbol. Both the
FMAP and the flip-flop are given the attribute HBLKNM=GROUP1.
A symbol is created to represent the schematic, and both are given
the name of FUNC. Another schematic is then created, and four
instances of FUNC are placed on it. Because hierarchy is taken into
account when the design is translated, the software recognizes four
distinct groups, as opposed to one large group called GROUP1, and
each instance of FUNC is mapped into a separate CLB.

HU_SET

Architectures
The HU_SET constraint applies to the XC4000 and XC4000A/H fami-
lies only.

Description
Like the H_SET constraint, the HU_SET constraint is defined by the
design hierarchy. However, it also allows you to specify a set name. It
is possible to have only one H_SET constraint within a given hierar-
chical element (macro) but by specifying set names, you can specify
several HU_SET sets.

XNFMerge hierarchically qualifies the name of the HU_SET as it flat-
tens the design and attaches the hierarchical names as prefixes. The
difference between an HU_SET constraint and an H_SET constraint is
that an HU_SET has an explicit user-defined and hierarchically quali-
fied name for the set, but an H_SET constraint has only an implicit
hierarchically qualified name generated by the design-flattening
program. An HU_SET set “starts” with the symbols that are assigned
Libraries Guide 4-17

Libraries Guide
the HU_SET constraint, but an H_SET set “starts” with the instanti-
ating macro one level above the symbols with the RLOC constraints.

For detailed information about this attribute, refer to the “Relative
Location (RLOC) Constraints” section later in this chapter.

Syntax
To designate a design element as a member of a HU_SET set, apply
the following syntax to a design element:

HU_SET=name

where name is the identifier for the set; it must be unique among all
the sets in the design.

INIT

Architectures
The INIT attribute applies to the XC4000 and XC4000A/H families
only.

Description
The INIT attribute initializes ROMs.

On a ROM, the INIT attribute gives an initial value to the contents of
the ROM. Either four or eight hexadecimal digits are required,
depending on the width of the ROM.

Syntax
Use the following syntax to implement the INIT attribute:

INIT= value

For ROMs, value can be four or eight hexadecimal digits, depending
on whether the ROM is a 16- or 32-word-deep ROM, respectively.
4-18 Xilinx Development System

Attributes, Constraints, and Carry Logic
LOC

Architectures
The LOC constraint applies to all families.

Description for FPGAs
For FPGAs, the LOC constraint defines where a symbol can be placed
within an FPGA. It specifies the absolute placement of a design
element on the FPGA die. It can be a single location, a range of loca-
tions, or a list of locations. The LOC constraint can only be specified
from the schematic. However, statements in a constraints file can also
be used to direct placement.

The LOC constraint can be used on the following elements:

● BUFTs

● Elements that map into a CLB: flip-flops, FMAPs, HMAPs, CLB-
MAPs, CLBs

● Elements that map into an IOB: pads, IBUFs, OBUFs, INFFs, OUT-
FFs, and so forth

● For XC4000 only, WANDs and clock buffers

If a LOC constraint is placed on a macro symbol, XNFMerge passes it
down onto every symbol of the appropriate type underneath that
macro. For example, if LOC=CLB_R3C7 is placed on a macro, that
LOC constraint is passed to flip-flops and map symbols but not to
BUFTs.

You can use the LOC constraint to assign a specific LCA location to
the following symbols:

● All flip-flop and latch primitives

● Xilinx soft macros (only flip-flops are affected)

● User-created symbols (only flip-flops are affected)

● Input buffers, output buffers, or pad symbols

● Clock buffers (ACLK, GCLK, BUFGP, BUFGS)

● I/O block primitives (IOB symbols) — XC2000, XC3000,
XC3000A/L, XC3100, and XC3100A only
Libraries Guide 4-19

Libraries Guide
● Configurable logic blocks (CLB symbols) — XC2000, XC3000,
XC3000A/L, XC3100, and XC3100A only

● 3-state buffers (BUFT symbols) — XC3000, XC3000A/L, XC3100,
XC3100, and XC4000 only

● XC3000 horizontal longline pull-up resistors (PULLUP symbols)

● XC4000 wide-edge decoders (WANDn and DECODEn symbols)

● Mapping control symbols (CLBMAP, FMAP, HMAP)

You can ignore LOC constraints in the design or in various parts of
the design by using the Ignore_xnf_locs option in XNFPrep and PPR.

You can specify multiple LOC constraints for the same symbol by
using a semicolon (;) to separate each LOC within the field. It speci-
fies that the symbols be placed or prohibited from being placed in any
of the locations specified. Also, you can specify an area in which to
place a symbol or group of symbols.

The legal names are a function of the target LCA part type. However,
to find the correct syntax for specifying a target location, you can load
an empty part into the XACT Design Editor (XDE). Place the cursor
on any block to display its location in the lower left corner of the
screen. Do not include the pin name such as .I, .O, or .T as part of the
location.

You can use the LOC constraint for logic that uses multiple CLBs,
IOBs, soft macros, or other symbols. To do this, use the LOC attribute
on a soft macro symbol, which passes the location information down
to the logic on the lower level. However, the location restrictions are
only applied to the flip-flops within the logic block or to mapping
symbols or 3-state buffers in user-created macros.

Description for EPLDs
 For EPLDs, use the LOC=pinname attribute on a PAD symbol to
assign the signal to a specific pin. The PAD symbols are IPAD, OPAD,
IOPAD, and UPAD.

Pin assignments are unconditional; that is, the software does not
attempt to relocate a pin if it cannot achieve the specified assignment.
You can apply the LOC constraint to as many PAD symbols in your
design as you like. However, each pin assignment further constrains
4-20 Xilinx Development System

Attributes, Constraints, and Carry Logic
the software as it automatically allocates logic and I/O resources to
internal nodes and I/O pins with no LOC constraints.

To save all resulting pin assignments so they are preserved the next
time you modify and re-integrate the design, use the PinSave
command in the XDM Translate menu. This command saves the pin
assignments to a design_name.vmf file. You can override individual
pin assignments saved in the VMF file by changing or adding
LOC=pinname attributes in the schematic.

Note: Pin assignment using the LOC attribute is not supported for
bus pad symbols such as OPAD8.

Syntax for FPGAs
The syntax for specifying single LOC constraints for FPGAs is the
following:

LOC=location

where location is a legal LCA location for the LCA part type.

You can specify areas of CLBs or BUFTs using the LOC constraint.
Specify the upper left and lower right corners of an area in which
logic is to be placed. Use a colon (:) to separate the two boundaries.

LOC=location: location

Conversely, you can also prohibit the placement of logic into a partic-
ular CLB or IOB by using the following syntax. Single locations or an
entire area can be prohibited.

LOC<>location

LOC<>location: location

LOC= and LOC<> constraints can be used on the same symbol. If
multiple LOC= constraints are placed on a single symbol or group of
symbols, such as a macro, they are interpreted by the software as
“ORing” each of the constraints together. Multiple LOC<>
constraints are interpreted as “ANDing” the constraints together. The
convention for specifying multiple LOC constraints is to separate
each of them with a semicolon (;). Examples are shown in the “Exam-
ples” section, following.
Libraries Guide 4-21

Libraries Guide
Syntax for EPLDs
For EPLDs, the LOC syntax is the following:

LOC=pinname

where the pin name is Pnn for PC packages; nn is a pin number. The
pin name is rc (row number and column number) for PG packages.
Examples are LOC=P24 and LOC=G2.

Examples
This section gives several examples of the LOC syntax for FPGAs.

Single LOC Constraints
Examples of the syntax for single LOC constraints are given in Table
4-6.

Table 4-6 Single LOC Constraint Examples

Attribute Description

LOC=P12 Place I/O at location P12.

LOC=B Place decode logic or I/O on the
bottom edge.

LOC=TL Place decode logic or I/O on the
top left edge, or global buffer in the
top left corner.

LOC=AA
(XC2000 and XC3000 only)

Place logic in CLB AA.

LOC=TBUF.AC.2
(XC2000 and XC3000 only)

Place BUFT in TBUF above and one
column to the right of CLB AC.

LOC=CLB_R3C5
(XC4000 only)

Place logic in the CLB in row 3, col-
umn 5.

LOC=CLB_R4C5.ffx
(XC4000 only)

Place CLB flip-flop in the X flip-flop
of the CLB in row 4,
column 5.

LOC=CLB_R4C5.F
(XC4000 only)

Place CLB function generator in the
F generator of CLB-R4C5.
4-22 Xilinx Development System

Attributes, Constraints, and Carry Logic
Area LOC Constraints
Examples of LOC constraints used to specify area are given in Table
4-7.

Table 4-7 Area LOC Constraint Examples

Prohibit LOC Constraints
Examples of the correct syntax for prohibiting locations are shown in
Table 4-8.

Table 4-8 Prohibit LOC Constraint Examples

LOC=TBUF_R2C1.1
(XC4000 only)

Place BUFT in row 2, column 1,
along the top.

LOC=TBUF_R*C0
(XC4000 only)

Place BUFT in any row in column 0.

Attribute Description

LOC=AA:FF
(XC2000 and XC3000 only)

Place CLB logic anywhere in the
top left corner of the LCA
bounded by row F and column F.

LOC=CLB_R1C1:CLB_R5C5
(XC4000 only)

Place logic in the top left corner
of the LCA in a 5 x 5 area
bounded by row 5 and column 5.

LOC=TBUF_R1C1:TBUF_R2C8
(XC4000 only)

Place BUFT anywhere in the area
bounded by row 1, column 1 and
row 2, column 8.

Attribute Description

LOC<>T Do not place I/O or decoder on
the top edge.

LOC<>A*
(XC2000 and XC3000 only)

Do not place logic anywhere in
the top row.

Attribute Description
Libraries Guide 4-23

Libraries Guide
Multiple LOC Constraints
Examples of multiple LOC constraints are provided in Table 4-9.

Table 4-9 Multiple LOC Constraint Examples

CLB Placement Examples
You can assign soft macros and flip-flops to a single CLB location, a
list of CLB locations, or a rectangular block of CLB locations. You can
also specify the exact function generator or flip-flop within a CLB.
CLB locations are identified as CLB_R#C# for an XC4000, or nn for an
XC2000 or XC3000, where nn is a two-letter designator. The upper left
CLB is CLB_R1C1 or AA.

The following examples illustrate the format of CLB constraints.
Enter LOC= or LOC<> and the pin or CLB location. If the target
symbol represents a soft macro, the LOC constraint is applied to all
appropriate symbols (flip-flops, maps) contained in that macro. If the

LOC<>CLB_R5C*.ffy
(XC4000 only)

Do not place the CLB flip-flop in
the Y flip-flop of any CLB in row
5.

LOC<>CLB_R1C1:CLB_R5C5
(XC4000 only)

Do not place the logic in any CLB
in the top left corner extending
to row 5, column 5.

LOC<>TBUF_R*C0
(XC4000 only)

Do not place BUFT anywhere in
column 0.

Attribute Description

LOC<>*A;LOC<>*D
(XC2000 and XC3000 only)

Do not place flip-flop in first or
fourth column of CLBs

LOC=T:LOC=L Place I/O or decoder (XC4000)
on the top or left edge.

LOC=CLB_R1C1:CLB_R5C5;
LOC<>CLB_R5C5
(must be specified in one
continuous line) (XC4000 only)

Place CLB logic in the top left
corner of the LCA in a 5 x 5 area,
but not in the CLB in row 5, col-
umn 5.

Attribute Description
4-24 Xilinx Development System

Attributes, Constraints, and Carry Logic
indicated logic does not fit into the specified blocks, an error is gener-
ated.

The following statements place logic in the designated CLB.

LOC=AA(XC2000 and XC3000)
LOC=CLB_R1C1(XC4000)

The following statements prohibit the placement of logic in the desig-
nated CLB.

LOC<>AA(XC2000 and XC3000)
LOC<>CLB_R1C1(XC4000)

The following statements place logic within the first column of CLBs.
The asterisk (*) is a wildcard character.

LOC=*A(XC2000 and XC3000)
LOC=CLB_R*C1(XC4000)

The next two statements place logic in any of the three designated
CLBs. There is no significance to the order of the LOC statements.

LOC=AA;LOC=AB;LOC=AC(XC2000 and XC3000)
LOC=CLB_R1C1;LOC=CLB_R1C2;LOC=CLB_R1C3(XC4000)

The following statements place logic within the rectangular block
defined by the first specified CLB in the upper left corner and the
second specified CLB in the lower right corner.

LOC=AA:HE(XC2000 and XC3000)
LOC=CLB_R1C1:CLB_R8C5(XC4000)

The next statement places logic in the X flip-flop of CLB_R2C2. For
the Y flip-flop, use the FFY tag.

LOC=CLB_R2C2.FFX(XC4000)

IOB Placement Examples
You can assign I/O pads, buffers, and registers to an individual IOB
location or to a specified die edge or half-edge. IOB locations are
identified by the corresponding package pin designation or by the
edge of the FPGA array.

The following examples illustrate the format of IOB constraints.
Specify either LOC= or LOC<> and the pin location. If the target
symbol represents a soft macro containing only I/O elements, for
Libraries Guide 4-25

Libraries Guide
example, INFF8, the LOC constraint is applied to all I/O elements
contained in that macro. If the indicated I/O elements do not fit into
the specified locations, an error is generated.

The following statement places the I/O element in location P13. For
PGA packages, the letter-number designation is used, for example,
B3.

LOC=P13

The next statement places I/O elements in IOBs along the top edge of
the die. For the other three die edges, use B (bottom), L (left), or R
(right).

LOC=T

The following statement places I/O elements in IOBs along the top
half of the left edge of the die. The first letter in this code represents
the die edge, and the second letter represents the desired half of that
edge. Other legal half-edge values are LB (left bottom), RT (right top),
RB (right bottom), TL (top left), TR (top right), BL (bottom left), and
BR (bottom right).

LOC=LT

The next statement prohibits the placement of I/O elements on the
left edge of the die.

LOC<>L

Note: The edges referred to in these constraints are die edges, which
do not necessarily correspond to package edges. View the device in
EditLCA to determine which pins are on which die edge.

BUFT Placement Examples
You can assign internal 3-state buffers (BUFTs) to an individual BUFT
location, a list of BUFT locations, or a rectangular block of BUFT loca-
tions. In XC4000, BUFT locations are identified by the adjacent CLB.
Thus, TBUF_R1C1.1 is just above CLB_R1C1, and TBUF_R1C1.2 is
just below it in an XC4000 part. In XC2000 and XC3000, BUFT loca-
tions are not as straightforward. View the device in EditLCA to deter-
mine the exact BUFT names.

BUFT constraints all refer to locations with a prefix of TBUF, which is
the name of the physical element on the device.
4-26 Xilinx Development System

Attributes, Constraints, and Carry Logic
The following examples illustrate the format of BUFT LOC
constraints. Specify either LOC= or LOC<> and the BUFT location.

The following statements place the BUFT in the designated location.

LOC=TBUF.AA.1 (XC2000 and XC3000)
LOC=TBUF_R1C1.1(XC4000)

The next statements place BUFTs at any location in the first column of
BUFTs. The asterisk (*) is a wildcard character.

LOC=TBUF.*A(XC2000 and XC3000)
LOC=TBUF_R*C0(XC4000)

The following statements place BUFTs within the rectangular block
defined by the first specified BUFT in the upper left corner and the
second specified BUFT in the lower right corner.

LOC=TBUF.AA:TBUF.BH(XC2000 and XC3000)
LOC=TBUF_R1C1:TBUF_R2C8(XC4000)

The following statements prohibit the placement of BUFTs at any
location in the first row of BUFTs.

LOC<>TBUF.A*(XC2000 and XC3000)
LOC<>TBUF_R1C*(XC4000)

Global Buffer Placement Examples (XC4000 Only)
You can assign global buffers (BUFGP and BUFGS) to one of the four
corners of the die. Specify either LOC= or LOC<> and the global
buffer location. The following example illustrates the format of global
buffer constraints.

LOC=TL

This statement places the global buffer in the top left corner of the
die. For the other three corners, use TR (top right), BL (bottom left),
and BR (bottom right).

You cannot assign placement to the GCLK or ACLK buffers in the
XC2000 and XC3000 families, since there is only one of each, and their
placements are fixed on the die.
Libraries Guide 4-27

Libraries Guide
Decode Logic Placement Examples (XC4000 Only)
In an XC4000 design, you can assign the decode logic to a specified
die edge or half-edge. All elements of a single decode function must
lie along the same edge.

The following example illustrates the format of decode constraints.
Specify either LOC= or LOC<> and the decode logic symbol location.
If the target symbol represents a soft macro containing only decode
logic, for example, DECODE8, the LOC constraint is applied to all
decode logic contained in that macro. If the indicated decode logic
does not fit into the specified decoders, an error is generated.

LOC=L

This statement places the decoder logic along the left edge of the die.
For the other three edges, use T (top), B (bottom), or R (right).

LOGIC_OPT

Architectures
The LOGIC_OPT attribute applies to the XC7200 and XC7300 families
only.

Description
The LOGIC_OPT global attribute controls the default logic optimiza-
tion for the entire design.

Syntax
The syntax for this attribute is the following:

LOGIC_OPT={on|off}

To inhibit logic optimization for the whole design, set this attribute to
Off. The default is On. You can override the global setting for indi-
vidual symbols using the OPT=on or OPT=off component attribute.
4-28 Xilinx Development System

Attributes, Constraints, and Carry Logic
LOWPWR

Architectures
The LOWPWR attribute applies to the XC7300 family only.

Description
You can use the LOWPWR attribute as either a global or component
attribute. When used as a component attribute, it determines the
power setting of the macrocells used by an individual symbol. When
used as a global attribute, it makes low power the global default
power setting.

This attribute is ignored if it is assigned to a symbol that uses no
macrocells, such as an inverter, AND/OR gate (when optimized),
input register, and so on.

Syntax
To make low power the setting of the macrocells used by an indi-
vidual symbol, use the following syntax:

LOWPWR={on|off}

To make low power the global default power setting, place the
following syntax in the schematic:

LOWPWR=ALL

The default is LOWPWR=off, indicating a high-speed power setting
for all macrocells used in the design unless otherwise specified.

MAP

Architectures
The MAP attribute applies to all FPGA families.

Description
The MAP attribute is placed on an FMAP, HMAP, or CLBMAP to
specify whether pin swapping and the merging of other functions
with the logic in the map are allowed. If pin swapping is allowed, the
net connections to the pins on the CLB may differ from the
Libraries Guide 4-29

Libraries Guide
connections to the map symbol. If merging with other functions is
allowed, other logic can also be placed within the CLB, if space
allows.

Syntax
The syntax of the MAP attribute is the following:

MAP={PLC|PUC|PLO|PUO}

where the keywords have the following meanings:

● PLC means that the CLB pins are locked, and the CLB is closed.

● PLO means that the CLB pins are locked, and the CLB is open.

● PUC means that the CLB pins are unlocked, and the CLB is closed.

● PUO means that the CLB pins are unlocked, and the CLB is open.

“Locked” in these definitions means that the software cannot swap
signals among the pins on the CLB; “unlocked” indicates that it can.
“Open” means that the software can add or remove logic from the
CLB; conversely, “closed” indicates that the software cannot add or
remove logic from the function specified by the MAP symbol.

The default is PUC.

Example
A two-input function is mapped using an FMAP. Upon reaching the
place and route stage of the design, the software determines that
additional logic could be merged into the function generator
containing the first function. If the MAP attribute value is PLO or
PUO, the logic is merged into the function generator. If the MAP
attribute value is PLC or PUC, the logic is not merged into the func-
tion generator. The software also determines that routing can be
improved if the first and second pins on the function generator
containing the 2-input function are swapped. If the MAP attribute is
PUC or PUO, the pins are swapped. If the MAP attribute value is PLC
or PLO, the pins are not swapped.
4-30 Xilinx Development System

Attributes, Constraints, and Carry Logic
MEDFAST and MEDSLOW

Architectures
The MEDFAST and MEDSLOW attributes apply to the XC4000A
family only.

Description
MEDFAST and MEDSLOW specify the slew rate of an XC4000A
output driver. MEDFAST decreases output transition time and is
slightly faster than MEDSLOW, possibly resulting in more noise and
power consumption that an output driver specified as MEDSLOW.

The MEDFAST and MEDSLOW attributes can be attached to the I/O
symbols and the special function access symbols TDI, TMS, and TCK.

Syntax
The syntax of the MEDFAST and MEDSLOW attributes is the
following:

MEDFASTor MEDSLOW

MINIMIZE

Architectures
The MINIMIZE attribute applies to the XC7200 and XC7300 families
only.

Description
The MINIMIZE global attribute determines whether or not the soft-
ware minimizes the logic for the whole design. If the logic is mini-
mized, any redundant or non-effective logic found in any user-speci-
fied equation files is eliminated through Boolean minimization.
Libraries Guide 4-31

Libraries Guide
Syntax
The syntax of the MINIMIZE attribute is the following:

MINIMIZE={on|off}

where On allows logic minimization, and Off inhibits it. The default
is On.

MRINPUT

Architectures
The MRINPUT attribute applies to the XC7300 family only.

Description
The MRINPUT global attribute in an XC7354 or XC7336 design
changes the master reset pin to an ordinary input pin. If this attribute
is set to On, the EPLD device is initialized only on power-up.

Syntax
The syntax of the MRINPUT attribute is the following:

MRINPUT={on|off}

The On setting changes the master reset pin to an ordinary input pin.

The default is Off.

Net

Architectures
Net attributes apply to all families except where noted in the
following paragraphs.
4-32 Xilinx Development System

Attributes, Constraints, and Carry Logic
Description
Attaching attributes to nets affects the mapping, placement,
and/or routing of the LCA design. Net attributes can be any of the
following values:

● C Critical (all FPGA families)

The C net attribute flags a net as critical so the software tries to
route the net earlier than others. See also W, the weight net
attribute.

Note: The use of the C (critical) and W (weight net) attributes is not
recommended. In many cases, their use can degrade rather than
improve routability and performance.

● F (XC7300 only)

The F net attribute in an XC7300 device specifies that the
macrocell implementing a component output should be placed in
a fast function block (FFB). When placed on the output of an IBUF,
the F attribute specifies that the input signal is to use the FastInput
(FI) path when the signal is used in a fast function block.

The F attribute is not valid on outputs of components that require
features only present in high-density function blocks, such as
PLFB9, ADD, ADSU, ACC, COMPM, LD, FDCP, FDCPE, XOR7,
XOR8, and XOR9.

Note: The BUFE symbol can be assigned to FFB only when driving
an OBUF, and it must allow FOE optimization.

● G G Output (XC2000 and XC2000L only on flip-flop clock pins
and latch enable pins)

Any CLB clocks driven by this net are connected to the G function
output.

● H (XC7300 only)

The H net attribute in an XC7300 device specifies that the
macrocell implementing a component output should be placed in
a high-density function block.

The H attribute is not valid on outputs of a PLFFB9 or any of the
input/output buffer symbols.
Libraries Guide 4-33

Libraries Guide
● I C Input (XC2000 and XC2000L only on flip-flop clock pins
and latch enable pins)

Any CLB clocks driven by this net are connected to the C input
pin.

● K K Input (XC2000 and XC2000L only on flip-flop clock pins
and latch enable pins)

Any CLB clocks driven by this net are connected to the K input.

● L Longline (XC2000, XC3000, and XC3100 only)

The APR router attempts to use a longline to route this net; a
longline is useful for nets with high fan-out that need low skew.

● N Non-critical (all FPGA families)

The N attribute flags a net as non-critical so the routing software
gives this signal low priority. See also W, the weight net attribute.

Note: The use of the N (non-critical) and W (weight net) attributes is
not recommended. In many cases, their use can degrade rather than
improve routability and performance.

● P Pin-lock (XC2000 and XC3000 only on CLBMAP primitives;
XC4000 only on FMAPs and HMAPs)

The P attribute specifies that the signal should not be moved from
the CLB pin to which it is assigned. It is useful for aligning CLB
inputs with a specified longline.

● S Save (all FPGA families)

The S attribute prevents the removal of unconnected signals,
which is useful when using the map-then-merge method on
lower-level hierarchy. If you do not have the S attribute on a net,
any signal not connected to logic and/or an I/O primitive is
removed.

● W Weight Net (all FPGA families)

The W attribute indicates the routing order of the specified net by
assigning it a net weight. For XC4000 and XC3000A/L (PPR)
designs, legal values are 1-99, with 0 being equivalent to the N
(non-critical) attribute and 100 being equivalent to the C (critical)
attribute. For XC2000 and XC3000 devices (APR), a value of 0 or 1
4-34 Xilinx Development System

Attributes, Constraints, and Carry Logic
means non-critical, 10 or higher means critical, and net weights of
2 through 9 are not graded.

Note: The use of the C (critical) or N (non-critical) and W (weight
net) attributes is not recommended. In many cases, their use can
degrade rather than improve routability and performance.

● X Explicit or External (all FPGA families)

With this attribute, XNFMAP or PPR ensures that a net is not
mapped inside the combinational logic of a CLB, which would
make the net “disappear.” For example, an external net between a
logic gate and a flip-flop forces the software to place the
combinational logic and the flip-flop in different CLBs. This
mapping may make the mapping of the design less efficient, but it
guarantees that the flagged net exists at a CLB output, which
allows the signal to be probed in XDE.

Syntax
Methods of entering this attribute vary by user interface. Consult the
appropriate user interface guide for instructions.

NODELAY

Architectures
The NODELAY attribute applies to the XC4000 and XC4000A fami-
lies only.

Description
The default configuration of IOB flip-flops in XC4000 and XC4000A
designs includes an input delay that results in no external hold time
on the input data path. However, this delay can be removed by
placing the NODELAY attribute on input flip-flops or latches,
resulting in a smaller setup time but a positive hold time.

The NODELAY attribute can be attached to the I/O symbols and the
special function access symbols TDI, TMS, and TCK.
Libraries Guide 4-35

Libraries Guide
Syntax
The syntax of the NODELAY attribute is the following:

NODELAY

OPT

Architectures
The OPT attribute applies to the XC7200 and XC7300 families only.

Description
The OPT attribute controls the optimization of all macrocells used by
a symbol.

If you build combinational logic using low-level gates and multi-
plexers, the logic optimizer attempts to pack all logic bounded
between device I/O pins and registers into a single macrocell.

The logic optimizer optimizes components forward into components
connected to their outputs. It also moves forward any logic, whether
combinational or sequential, that is buffered by a 3-state buffer.
However, logic that itself contains a 3-state control is not moved
forward.

The OPT=off attribute prevents any logic in a component from opti-
mizing forward.

The OPT attribute has no effect on any symbol that contains no
macrocell logic, such as an input/output buffer.

Syntax
The syntax of the OPT attribute is the following:

OPT={on|off}

OPT=on allows optimization of macrocell logic; OPT=off inhibits
optimization. The default is the value of the LOGIC_OPT attribute,
which is On unless otherwise specified.
4-36 Xilinx Development System

Attributes, Constraints, and Carry Logic
PLD

Architectures
The PLD attribute applies to XC7200 and XC7300 families only.

Description
The PLD attribute is placed on a PLD symbol to specify the name of
the file containing the logic equations for that PLD. Use it on custom
primitive symbols and the following PLDs: PL20V8, PL22V10,
PL20PIN, PL24PIN, PL48PIN, PLFB9, and PLFFB9.

All PLD components in your schematic design must be assigned the
PLD attribute. Running XEMake automatically assembles all equa-
tion files named by all PLD=filename attributes found in the sche-
matic. If you do not use XEMake, you must assemble each PLD file in
the design using PLUSASM before you run the FITNET command.

Like PLDs, user-specified (custom) primitives are defined by
PLUSASM equation files. The PLD=filename attribute is not required
but can be applied as a convenient way to have your equation file
automatically assembled when XEMake is invoked. If you omit the
PLD attribute, FITNET will expect to find a bitmap file for the symbol
(symbol_name.vmh) in your local CLIB subdirectory.

Syntax
Following is the syntax of the PLD attribute:

PLD=filename

Do not specify the filename extension. You must specify this filename
as the first parameter of the CHIP statement inside the equation file,
as described in the “PLUSASM Language Reference” section of the
XEPLD Reference Guide. Here is an example:

CHIP filename PL22V10
Libraries Guide 4-37

Libraries Guide
PRELOAD_OPT

Architectures
The PRELOAD_OPT attribute applies to XC7200 and XC7300 families
only.

Description
The PRELOAD_OPT global attribute allows the XEPLD software to
change the preload values in the design to match the preload values
supported by specified device resources such as fast function blocks
and input registers. The XEPLD software can therefore map your
design most efficiently, using the device resources most suited to the
elements of your design. Unless you specify PRELOAD_OPT=off, the
software is free to change the initial register states of any component,
including PLD (custom) components defined in PLUSASM. Use
PRELOAD=off to preserve the initial states specified in this manual
for library components and in the PRLD equations in your PLUSASM
file for PLD or custom components.

You can set a high or low preload for high-density function blocks.
The preload value of fast function blocks depends on the use of Set or
Reset. Input register preload values are fixed at 1, except for those on
the XC7272, which are undefined.

Syntax
The syntax of the PRELOAD_OPT attribute is the following:

PRELOAD_OPT={on|off}

The On setting, which is the default, allows XEPLD to change the
preload values; Off preserves all preload values defined in the library
and specified in your PLD equation files.
4-38 Xilinx Development System

Attributes, Constraints, and Carry Logic
REG_OPT

Architectures
The REG_OPT attribute applies to XC7200 and XC7300 families only.

Description
The REG_OPT global attribute controls input register optimization
for the entire design. Input register optimization reduces the number
of macrocells in a design by moving simple FD registers connected to
IBUFs into a pad register, provided that the IBUF has no other
fanouts. The clock by which the input register is controlled must be a
FastCLK or an input that can be assigned to a FastCLK pin.

Syntax
Use the following the syntax with the REG_OPT option:

REG_OPT={on|off}

To inhibit input register optimization, set this attribute to Off. To
enable this optimization, set it to On, which is the default.

RES

Architectures
The RES attribute applies to the XC4000H family only.

Description
You can specify an XC4000H output driver as operating in either
resistive (RES) or capacitive, “softedge” (CAP) mode. In resistive
mode, the output is faster and draws more power. Use this mode
when the output is attached to purely resistive loads, or when
ground bounce is not predicted to be a problem with the output. The
RES attribute allows you to specify resistive mode.
Libraries Guide 4-39

Libraries Guide
Use capacitive mode when connecting an output to a capacitive
mode, or when ground bounce is predicted to be a problem with the
output. In capacitive mode, the pull-down transistor is slowly turned
off as the output is pulled to ground, minimizing the likelihood of
ground bounce.

See the section on the CAP attribute for more information.

The RES attribute can be attached to the I/O symbols and the special
function access symbols TDI, TMS, and TCK.

Syntax
The syntax of the RES attribute is the following:

RES

RLOC

Architectures
The RLOC constraint applies to XC4000 and XC4000A/H families
only.

Description
Relative location (RLOC) constraints group logic elements into
discrete sets and allow you to define the location of any element
within the set relative to other elements in the set, regardless of even-
tual placement in the overall design. See the “Relative Location
(RLOC) Constraints” section later in this chapter for detailed infor-
mation about this type of constraint.

Syntax
Use the following syntax with the RLOC constraint:

RLOC=Rrow#Ccolumn#[. extension]

where the row and column numbers can be any positive integer,
including zero.

The optional .extension can take all the values that are available with
the current absolute LOC syntax: FFX, FFY, F, G, H, 1, and 2. The 1
and 2 values are available for BUFT primitives, and the rest are
4-40 Xilinx Development System

Attributes, Constraints, and Carry Logic
available for primitives associated with CLBs. Only extensions for the
XC4000 family designs are currently supported.

The RLOC value cannot specify a range or a list of several locations; it
must specify a single location.

See the “Relative Location (RLOC) Constraints” section later in this
chapter for information on the RLOC syntax.

RLOC_ORIGIN

Architectures
The RLOC_ORIGIN constraint applies to XC4000 and XC4000A/H
families only.

Description

An RLOC_ORIGIN constraint fixes the members of a set at exact die
locations. This constraint must specify a single location, not a range
or a list of several locations. For detailed information about this
constraint, refer to the “Relative Location (RLOC) Constraints”
section later in this chapter.

The RLOC_ORIGIN constraint is required for a set that includes
BUFT symbols.

Syntax
The syntax of the RLOC_ORIGIN constraint is the following:

RLOC_ORIGIN=Rrow#Ccolumn#

where the row and column numbers are positive non-zero integers.
Libraries Guide 4-41

Libraries Guide
RLOC_RANGE

Architectures
The RLOC_RANGE constraint applies to XC4000 and XC4000A/H
families only.

Description
The RLOC_RANGE constraint is similar to the RLOC_ORIGIN
constraint except that it limits the members of a set to a certain range
on the die. The range or list of locations is meant to apply to all appli-
cable elements with RLOCs, not just to the origin of the set.

Syntax
The RLOC_RANGE constraint has the following syntax:

RLOC_RANGE=Rrow1#Ccol#:R row2#Ccol2#

where the row numbers and the column numbers can be non-zero
positive numbers or the wildcard (*) character. This syntax allows
three kinds of range specifications, which are defined in the
RLOC_RANGE section of the “Relative Location (RLOC)
Constraints” section later in this chapter.

TNM

Architectures
The TNM attribute applies to XC3000A/L, XC3100A, and XC4000
families only, and only when XACT-Performance is used.

Description
The TNM attribute tags specific flip-flops, RAMs, pads, and input
latches as members of a group to simplify the application of timing
specifications to the group.

See the “XACT-Performance Utility” chapter of the XACT Reference
Guide for detailed information about this attribute.
4-42 Xilinx Development System

Attributes, Constraints, and Carry Logic
Syntax
Following is the syntax of the TNM attribute:

TNM=identifier

where identifier can be any combination of letters, numbers, or under-
scores.

Do not use reserved words, such as FFS, LATCHES, RAMS, or PADS
for TNM identifiers.

TSidentifier

Architectures
The TSidentifier attribute applies to XC3000A/L, XC3100A, and
XC4000 families only.

Description
TSidentifier properties beginning with the letters “TS” are placed on
the TIMESPEC symbol. The value of the TSidentifier attribute corre-
sponds to a specific timing specification that can then be applied to
paths in the design.

See the “XACT-Performance Utility” chapter of the XACT Reference
Guide for detailed information about this attribute.

Syntax
The syntax of the TSidentifier attribute is the following:

TSidentifier

where identifier can be any combination of letters, numbers, or under-
scores. It is commonly 01, 02, 03, and so forth. In Mentor, it must be
01, 02, 03, and so forth.
Libraries Guide 4-43

Libraries Guide
TTL

Architectures
The TTL attribute applies to the XC4000H family only.

Description
The TTL attribute configures output drivers on the XC4000H to drive
to TTL-compatible levels. Similarly, it configures IOBs to have TTL-
compatible input thresholds.

To configure output drive levels, attach the TTL attribute to any of the
following output symbols: OBUF, OBUFT, OUTFF/OFD, OUTFFT/
OFDT.

To configure input threshold levels, attach the TTL attribute to any of
the following input symbols: IBUF, INFF/IFD, INLAT/ILD, INREG.

See the section on the CMOS attribute for more information.

Syntax
The syntax of the TTL attribute is the following:

TTL

UIM_OPT

Architectures
The UIM_OPT attribute applies to the XC7200 and XC7300 families
only.

Description
UIM optimization extracts AND expressions and inverters out of
macrocell logic functions and moves them into the UIM, which
reduces the use of function block resources. The UIM_OPT global
attribute turns this type of optimization on or off.
4-44 Xilinx Development System

Attributes, Constraints, and Carry Logic
Syntax
The syntax of the UIM_OPT attribute is the following:

UIM_OPT={on|off}

where On activates UIM optimization, and Off inhibits it. The On
setting is the default.

USE_RLOC

Architectures
The USE_RLOC constraint applies to the XC4000 and XC4000A/H
families only.

Description
The USE_RLOC constraint turns on or off the RLOC constraint for a
specific element or section of a set. For detailed information about
this constraint, refer to the “Relative Location (RLOC) Constraints”
section later in this chapter.

Syntax
The syntax of the USE_RLOC constraint is the following:

USE_RLOC={true|false}

where True turns on the RLOC attribute for a specific element, and
False turns it off.

U_SET

Architectures
The U_SET constraint applies to the XC4000 and XC4000A/H fami-
lies only.

Description
The U_SET constraint groups design elements with attached RLOC
constraints that are distributed throughout the design hierarchy into
a single set. The elements that are members of a U_SET can cross the
Libraries Guide 4-45

Libraries Guide
design hierarchy; that is, you can arbitrarily select objects without
regard to the design hierarchy and tag them as members of a U_SET.
For detailed information about this attribute, refer to the “Relative
Location (RLOC) Constraints” section later in this chapter.

Syntax
The syntax of the U_SET constraint is the following:

U_SET=name

where name is the identifier of the set. This name is absolute; you
specify it, and it is not prefixed by a hierarchical qualifier.

PPR Placement Constraints
This section describes the legal PPR placement constraints for each
type of logic element, such as flip-flops, I/O pads, BUFTs, memories,
3-state buffers, global buffers, and edge decoders in FPGA designs.
Individual logic gates, such as AND or OR gates, are mapped into
CLB function generators before the constraints are read and therefore
cannot be constrained. However, if gates are represented by an FMAP
or HMAP symbol, you can place a placement constraint on that
symbol.

This section first describes the syntax for using constraints on sche-
matics and in a constraints (CST) file, then it gives examples showing
how both kinds of syntax are used to place constraints on the various
types of logic elements.

Schematic Syntax
This section describes how to place constraints on symbols on a sche-
matic. You can use LOC, RLOC, BLKNM, and HBLKNM constraints
on these symbols; these constraints are described earlier in this
chapter in the “Attributes” section. Although you can prohibit indi-
vidual symbols from being placed in a certain location, you cannot
prohibit symbol placement in general.

To specify a single location, use the following syntax:

constraint=location
4-46 Xilinx Development System

Attributes, Constraints, and Carry Logic
To specify a list of locations, use this syntax:

constraint=location; constraint=location; constraint=location
...;

The following syntax defines the two corners of a bounding box:

constraint=blockname: blockname

A colon is only used to separate the corners of a bounding box.

A semicolon separates locations.

The < > arrows can be substituted for the equals sign, =, to specify a
“prohibit” location constraint.

Here are some examples of location constraints:

LOC=CLB_R1C2

LOC=P12

LOC=CLB_R5C6;LOC=CLB_R6C6

LOC=CLB_R2C2:CLB_R3C3

LOC<>CLB_R1C2

LOC<>P7

Constraints File Syntax
This section describes how to place constraints on instances and
blocks in the constraints file. It also gives the syntax for all the state-
ments that can be placed in the constraints file.

Instances and Blocks
Because the statements in the constraints file concern instances and
blocks, these entities are defined here.

An instance is a symbol on the schematic. An instance name is the
symbol name as it appears in the XNF file. Instance constraints are
used for XC4000 designs.

A block is a CLB or an IOB. A block name depends on the design
family used. In XC3000 and XC3000A/L designs, the name is
assigned by XNFMAP using BLKNM, HBLKNM, and signal names
Libraries Guide 4-47

Libraries Guide
associated with the block. In XC4000 designs, you assign the block
name with the BLKNM or HBLKNM attribute.

Place Instance Constraints
The Place Instance constraint instructs PPR to place or not place an
instance in a specific location.The Place Instance and Notplace
Instance constraints cannot be used for XC3000A/L or XC3100A
designs, because the design is partitioned into CLBs before PPR
processes it. Only the Place Block and Notplace Block statements,
described in the next section, are allowed for these families, since
these constraints operate on mapped blocks instead of mapped
instances.

The general syntax for placing PPR constraints on an instance in the
constraints file is the following:

{place|notplace} instance instance_name: location;

where the keywords are the following:

● Place Instance specifies the location of an instance to be placed.

● Notplace Instance prohibits placement of an instance in the speci-
fied location.

Instance_name is the name of the instance affected by the keyword.

Location can be one of the following three types of locations:

● Single location

● List of locations separated by spaces

● Locations of two bounding box corners, which must be enclosed
in square brackets and separated by spaces.

The syntax that you can use to specify locations is given in the “State-
ments” section later in this chapter.

Each constraint statement must end with a semicolon(;).

A colon separates the instance name from the location in constraint
statements.
4-48 Xilinx Development System

Attributes, Constraints, and Carry Logic
Following are some examples showing how instances are
constrained:

place instance $1I2/$1I3:CLB_R5C3;

place instance $2I3/$2I5/$3I6:P12;

Place Block Constraints
The Place Block constraint constrains CLBs or IOBs that have been
named by BLKNM or HBLKNM attributes, or by XNFMAP for
XC3000, XC3000A/L, or XC3100A designs. The general syntax of this
constraint is the following:

{place|notplace} block blockname: location;

where the keywords are the following:

● Place Block specifies the location of a block to be placed.

● Notplace Block prohibits placement of a block in the specified
location.

For CLBs, the blockname field must match the BLKNM attribute on the
individual FMAPs, HMAPs, CLBMAPs, and/or flip-flops. For IOBs,
the blockname must match the BLKNM attribute on individual I/O
elements.

The location for CLBs can be a single CLB location, a range of CLBs, or
a wildcard constraint. For IOBs, the location is a package pin, such as
P12 or A6, or a die edge, such as T for top. The syntax that you can
use to specify locations is given in the “Statements” section later in
this chapter. Each constraint statement must end with a semicolon(;).

A colon separates the instance name from the location in constraint
statements.

Here are some examples showing how CLBs are constrained:

place block ABC:CLB_R3C7;
place block DEF:[CLB_R1C2 CLB_R5C4];
place block GHI:CLB_R*C3;

The Place Block constraint differs from other PPR constraints because
the logic is referenced by the LCA block name rather than the XNF
symbol’s instance name.
Libraries Guide 4-49

Libraries Guide
Syntactical Conventions
The following syntactical conventions are used in the CST file state-
ments given in the “Statements” section, following:

● Lower-case words are literal.

● [0-9] means a range of numbers between 0 and 9, inclusive.

● [a-z] means a range of characters between A and Z, inclusive.

● ::= means “can be composed of.”

● | indicates alternatives; you must select either one or the other.

● {} means that you must choose one of the items enclosed in the
brackets.

● [] enclose items that are optional. Brackets also enclose a range.

● Items in italics are variables for which you substitute a value.

● Items in Courier , or typewriter , font are to be entered liter-
ally.

Wildcards
You can use the wildcard (*) character in constraint statements as
follows.

In an instance name, a wildcard character by itself represents every
symbol of the appropriate type. For example, the following constraint
applies to every BUFT in the design:

notplace instance *: TBUF_R1C1.1;

If the wildcard character is used as part of a longer instance name, the
wildcard represents one or more characters at that position. However,
only symbols of the appropriate type are constrained. For example,
consider the following constraint:

notplace instance cntr/q*: CLB_R7C3;

This constraint would apply to a flip-flop named cntr/q7, but not to a
BUFT named cntr/q7_data.

In a location, a wildcard character can be used for either the row
number or column number. For example, the following constraint
4-50 Xilinx Development System

Attributes, Constraints, and Carry Logic
prevents the flip-flop named cntr/q0 from being placed in any CLB
in the third column:

notplace instance cntr/q0: CLB_R*C3;

Wildcard characters cannot be used in dot extensions; for example,
CLB_R1C3.* is illegal.

Statements
Following are the statements that you can use in the CST file. It is not
recommended that you use the flag_constraint and weight_constraint
statements.

constraints ::= { place_constraint| flag_constraint| weight_constraint
| time_spec| time_grp}

Place Constraints
place_constraint ::= { place_instance| place_block}

place_instance ::= {place|notplace} instance instance_list:
loc_list;

instance_list ::= alphanum [alphanum alphanum alphanum...]

loc_list ::= loc_spec [loc_spec loc_spec loc_spec...]

loc_spec ::= { clb_locs| pin_locs| edge_locs| buft_locs}

clb_locs ::= { clb_loc[bel] |[clb_loc clb_loc][bel]} , where [clb_loc
clb_loc] is a range from the lowest to the highest.

bel ::= .{f|g|ffx|ffy|1|2}

clb_loc ::= clb_r row_col c row_col

row_col ::= number, where number can be any number between 0 and
99, inclusive.

pin_locs ::= See the appropriate data book for the pin package
names, for example, p12, or unbonded pad names, for example, u16.

edge_locs ::= {t|b|l|r|tl|tr|bl|br|rt|rb|lt|lb}

The edge locations corresponding to these terms are given in the
“I/O Constraints” section later in this chapter.
Libraries Guide 4-51

Libraries Guide
buft_locs ::= { buft_loc[bel]|[buft_loc buft_loc][bel]} , where
[buft_loc buft_loc] is a range from the lowest to the highest.

buft_loc ::= tbuf_r row_col c row_col

place_block ::= {place|notplace} block alphanum:
block_loc_list;

block_loc_list ::= block_loc_spec [block_loc_spec block_loc_spec
block_loc_spec...]

block_loc_spec ::= { clb_loc|[clb_loc clb_loc]| pin_locs|
edge_locs| buft_locs} , where [clb_loc clb_loc] is a range from the lowest
to the highest.

alphanum ::= Any combination or number of letters A through Z and
any combination or number of numbers 0 through 9 can be used.
Letters can be upper case or lower case. Underscores are acceptable.
Any characters that can be used in an XNF file are also acceptable;
however, alphanum must start with a letter.

Flag Constraints
flag_constraint ::= flag net {critical|uncritical} net_list;

net_list ::= alphanum [alphanum alphanum alphanum...]

Weight Constraints
weight_constraint ::= weight net net_weight net_list;

net_weight ::= [0-100]

TIMESPEC Constraints
timespec ::= TIMESPEC=” timespec_line” ;

timespec_line ::= tsIdentifier = timespec_statement

tsIdentifier ::= TS tlabel

tlabel ::= alphatnm [alphatnm ...]

alphatnm ::= {[a-z]|[A-Z]|[0-9]|_}

timespec_statement ::= { default_spec| delay_spec| link|ignore}

default_spec ::= { dc2s| dp2s| dc2p| dp2p}
4-52 Xilinx Development System

Attributes, Constraints, and Carry Logic
delay_spec ::= { from_to| c2s| p2s| c2p| p2p}

link ::= link: tsIdentifier[: tsIdentifier: tsIdentifier...]

dc2s ::= dc2s: dmax_delay[: thi]

dp2s ::= dp2s: dmax_delay

dc2p ::= dc2p: dmax_delay

dp2p ::= dp2p: dmax_delay

from_to ::= from: group:to: group=max_delay

c2s ::= c2s: dmax_delay[: thi]

p2s ::= p2s: dmax_delay[: signame]

c2p ::= c2p: dmax_delay[: signame]

p2p ::= p2p: dmax_delay: signame: signame

dmax_delay ::= { requirement|auto|ignore}

thi ::= float_number

group ::= { tlabel| whole_class|pattern}

whole_class ::= {ffs|pads|rams|latches}

max_delay ::= { requirement|auto}

pattern ::= whole_class (signame {: signame})

signame ::= { alphanum|*|?}[{ alphanum|*|?}...]

requirement ::= { float_number [unit]| reference}

unit ::= {ns|us|mhz|khz}

reference ::= tsIdentifier operator float_number

operator ::= *|/ In this case, the asterisk is a multiplier, not a wild-
card.

float_number ::= number [. number] , where number can be any
number between 0 and 9, inclusive.
Libraries Guide 4-53

Libraries Guide
TIMEGRP Constraints
timegrp ::= TIMEGRP=” timegrp_line” ;

timegrp_line ::= tlabel=derived_group

derived_group ::= compound| difference| rise_fall

compound ::= group[: group : group...]

difference ::= compound:except: compound

rise_fall ::= edge: group

edge ::= {rising|falling}

Restrictions
You should observe the following restrictions when using constraints
in the CST file.

● Use only pin_locs and edge_locs to place constraints on IOB ele-
ments.

● Use only two-character edge_locs on BUFGSs and BUFGPs.

● Since BUFGs can only go in corners, “tl” means the top left corner.
For IOBs, “tl” means the top left half-edge.

● Do not use Notplace Instance with decoders or WANDs having a
DECODE attribute.

● BUFT_locs can only be used on BUFT elements.

● On decoders only, use full- or half-edge constraints; no pin_locs are
allowed. You can only specify one location.

Determining Symbol Names
In a constraints file, each placement constraint acts upon one or more
symbols. Every symbol in a design carries a unique name, which is
defined in the input file. Use this name in a constraint statement to
identify the symbol.

For each type of constraint described in the following sections, the
method of determining the symbol name is explained and examples
are given.
4-54 Xilinx Development System

Attributes, Constraints, and Carry Logic
Flip-Flop Constraints
Flip-flops can be constrained to a specific CLB, a range of CLBs, a row
or column of CLBs, or a specific half-CLB. Flip-flop constraints can be
assigned from the schematic or through the CST file.

You cannot use Place Instance constraints on XC3000A/L flip-flops.

From the schematic, attach LOC constraints to the target flip-flop.
The constraints are then passed into the XNF and XTF files and read
by PPR. For more information on attaching LOC constraints, see the
appropriate interface user guide.

In the CST file, a flip-flop is identified by a unique instance name. A
flip-flop instance of type DFF can be found in the input file. Assume
that the following lines appear in the input file:

sym, /top-12/fdrd, dff, init=r
sym, /top-54/fdsd, dff, init=s

The instance names of these two flip-flops are /top-12/fdrd and
/top-54/fdsd. These names are used in the following examples
showing how constraints are applied to flip-flops on the schematic
and in the constraints file.

In the following examples, repeating the LOC constraint, separated
by a semicolon, specifies multiple locations for an element.

Example 1:
Schematic constraint loc=clb_rlc5

Constraints file place instance /top-12/fdrd:
clb_r1c5;

Place the flip-flop in the CLB in row 1, column 5. CLB R1C5 is in the
upper left corner of the device.

Example 2:
Schematic constraint loc=clb_r1c1:clb_r5c7

Constraints file place instance /top-12/fdrd:
[clb_r1c1 clb_r5c7];

Place the flip-flop in the rectangular area bounded by the CLB R1C1
in the upper left corner and CLB R5C7 in the lower right.
Libraries Guide 4-55

Libraries Guide
Example 3:
Schematic constraint loc=clb_r*c3

Constraints file place instance /top-12/fdrd
/top-54/fdsd: clb_r*c3;

Place the flip-flops in any row of column 3. The wildcard (*) character
can be used in place of either the row or column number to specify an
entire row or column of CLBs.

From the schematic, the same LOC constraint is attached to both flip-
flops.

Example 4:
Schematic constraint loc=clb_r2c4;loc=clb_r7c9

Constraints file place instance /top-54/fdsd:
clb_r2c4 clb_r7c9;

Place the flip-flop in either CLB R2C4 or CLB R7C9.

Example 5:
Schematic constraint loc=clb_r3c5.ffy

Constraints file place instance /top-12/fdrd:
clb_r3c5.ffy;

Place the flip-flop in CLB R3C5 and assign the flip-flop output to the
XQ pin. Use the FFY tag to indicate the YQ pin of the CLB. If the FFX
or FFY tags are specified, the wildcard (*) character cannot be used for
the row or column numbers.

Example 6:
Schematic constraint loc<>clb_r5c*

Constraints file notplace instance /top-12/fdrd:
clb_r5c*;

Do not place the flip-flop in any column of row 5. The wildcard (*)
character can be used in place of either the row or column number to
specify an entire row or column of CLBs.
4-56 Xilinx Development System

Attributes, Constraints, and Carry Logic
ROM and RAM Constraints
A ROM or RAM can be constrained to a specific CLB, a range of
CLBs, or a row or column of CLBs. Memory constraints can be
assigned from the schematic or through the CST file.

From the schematic, attach the LOC constraints to the memory
symbol. The constraints are then passed into the XNF and XTF files
and read by PPR. For more information on attaching LOC
constraints, see the appropriate interface user guide.

In the constraints file, a memory is identified by a unique instance
name. For a memory not created by MemGen, one or more memory
instances of type ROM or RAM can be found in the input file. All
memory macros larger than 16 x 1 or 32 x 1 are broken down into
these basic elements in the XNF file. Examples of non-MemGen
memory instances in the XNF file are shown following:

sym, /top-7/rq, rom, init=05a3
sym, /top-11-ram64x8/ram-3, ram

The instance name of the ROM primitive is /top-7/rq. The instance
name of the RAM primitive, which is a piece of a RAM64X8 macro, is
/top-11-ram64x8/ram-3. These names are used in the following
examples.

A MemGen-created memory is represented by a hierarchical symbol
in the XNF file, as shown in this example:

sym, /top-17/bigram, bigram, file=bigram

The instance name of the MemGen module is /top-17/bigram.

Example 1:
Schematic constraint loc=clb_r1c5

Constraints file place instance /top-7/rq:
clb_r1c5;

Place the memory in the CLB in row 1, column 5. CLB R1C5 is in the
upper left corner of the device. A single-CLB constraint such as this
can only be applied to a 16 x 1 or 32 x 1 memory.
Libraries Guide 4-57

Libraries Guide
Example 2:
Schematic constraint loc=clb_r2c4;loc=clb_r7c9

Constraints file place instance /top-7/rq:
clb_r2c4 clb_r7c9

Place the memory in either CLB R2C4 or CLB R7C9.

Example 3:
Schematic constraint loc=clb_r1c1:clb_r5c7

Constraints file place instance /top-17/bigram/*:
[clb_r1c1 clb_r5c7];

Place the MemGen module in the rectangular area bounded by the
CLB R1C1 in the upper left corner and CLB R5C7 in the lower right.

From the schematic, attach the LOC constraint to the MemGen
symbol.

In the CST file, the /* is appended to the end of the MemGen symbol
instance name found in the XNF file. The wildcard (*) character is
used here to specify all instances that begin with the /top-17/
bigram/ prefix.

Example 4:
Schematic constraint loc<>clb_r5c*

Constraints file notplace instance /top11ram64x8*:
clb_r5c*;

Do not place the memory in any column of row 5. The wildcard (*)
character can be used in place of either the row or column number in
the CLB name to specify an entire row or column of CLBs.

From the schematic, the LOC constraint is simply attached to the
RAM64X8 macro symbol and is passed through to each individual
RAM in the XNF file.

In the CST file, the wildcard (*) character specifies all instances that
begin with the /top-11-/ram64x8/ prefix.
4-58 Xilinx Development System

Attributes, Constraints, and Carry Logic
Mapping Constraints

FMAP and HMAP Constraints
The FMAP and HMAP symbols control mapping in an XC4000
design. They are similar to the XC2000/XC3000 CLBMAP symbol.

FMAP and HMAP control the mapping of logic into function genera-
tors. These symbols do not define logic on the schematic; instead,
they specify how portions of logic shown elsewhere on the schematic
should be mapped into a function generator.

The FMAP symbol defines mapping into a four-input (F) function
generator. PPR assigns this function to an F or G function generator,
so you are not required to specify whether it belongs in F or G.

The HMAP symbol defines mapping into a three-input (H) function
generator. If the HMAP has two FMAP outputs and, optionally, one
normal (non-FMAP) signal as its inputs, PPR normally places all the
logic related to these symbols into one CLB.

An example of how to use these symbols in your schematic appears
in Figure 4-3 and Figure 4-4.

For the FMAP symbol, as with the CLBMAP primitive, MAP={PUC,
PUO, PLC or PLO} is supported, as well as the LOC constraint.

For the HMAP symbol, only MAP=PUC is supported.

You can ignore FMAP and HMAP symbols in the input file by using
the PPR Ignore_maps option described in the “PPR” chapter of the
XACT Reference Guide.
Libraries Guide 4-59

Libraries Guide
Figure 4-3 FMAP and HMAP Schematics

Figure 4-4 PPR Implementation of FMAP and HMAP

Example 1:
Schematic constraint loc=clb_r7c3

Constraints file place instance $1I323: clb_r7c3;

Place the FMAP or HMAP symbol in the CLB at row 7, column 3.

X4403

A1

A2
A3
A4

B1
B2
B3

B4

SEL

A1 I4

FMAP

F_OUTI3

I2

I1

A2
O

A3

A4

AND2

F_OUT

G_OUT

AND2

AND2B1

OR2

RESULT

OR3

XOR3

AND2B1

OR2

B1 I4

FMAP

G_OUTI3

I2

I1

B2
O

I3

HMAP

RESULT
I2

I1

O

B3

B4

SEL

IN_H1

IN_F1

IN_F2

IN_F3

IN_F4

F

H
H_FUNC

G

IN_G1

IN_G2

IN_G3

IN_G4
X1890
4-60 Xilinx Development System

Attributes, Constraints, and Carry Logic
Example 2:
Schematic constraint loc=clb_r2c4;loc=clb_r3c4

Constraints file place instance top/dec0011:
clb_r2c4 clb_r3c4;

Place the FMAP or HMAP symbol in either the CLB at row 2, column
4 or the CLB at row 3, column 4.

Example 3:
Schematic constraint loc=clb_r5c5:clb_r10c8

Constraints file place instance $3I27: [clb_r5c5
clb_r10c8;

Place the FMAP or HMAP symbol in the area bounded by CLB R5C5
in the upper left corner and CLB R10C8 in the lower right.

Example 4:
Schematic constraint loc=clb_r10c11.f

Constraints file place instance top/done:
clb_r1011.f;

Place the FMAP in the F function generator of CLB R10C11. The .G
extension specifies the G function generator. An HMAP can only go
into the H function generator, so there is no need to specify this place-
ment explicitly.

CLBMAP Constraints
With the CLBMAP symbol, you can specify logic mapping at the
schematic level for all XC3000 designs. It is used in conjunction with
standard logic elements, such as gates and flip-flops. It implicitly
specifies the configuration of a CLB by defining the signals on its
pins. Use the CLBMAP symbol to control mapping when the default
mapping is not acceptable.

Enter the CLBMAP symbol on the schematic and assign signals to its
pins. XNFMAP processes this symbol and maps the appropriate
logic, as defined by the input and output signals, into one CLB. The
easiest way to define a CLBMAP is to connect a labeled wire segment
Libraries Guide 4-61

Libraries Guide
to each pin, which connects that pin to the net carrying the same
label.

If a CLBMAP specifies an illegal CLB configuration, XNFMAP
ignores the CLBMAP and issues a warning explaining why the
CLBMAP is illegal.

A CLBMAP can be either closed or open. A closed CLBMAP must
specify both the input and output signals for that CLB. XNFMAP
maps a closed CLBMAP exactly as specified, unless the indicated
configuration is illegal. XNFMAP does not add any logic to a CLB
specified with a closed CLBMAP.

An open CLBMAP specifies only the output signals for the CLB.
XNFMAP assigns those signals to the CLB output pins and maps the
source logic into the CLB as appropriate. Use an open CLBMAP to
specify the function of a CLB without specifying the exact configura-
tion.

Specify whether a CLBMAP is either open or closed by attaching the
appropriate MAP attribute to the symbol. See Table 4-10 for the exact
conventions.

The pins on a CLBMAP can be either locked or unlocked. Specify
whether a CLBMAP has locked or unlocked pins by attaching the
appropriate MAP attribute to the symbol. See Table 4-10 for the exact
conventions. With an open CLBMAP, only the output pins are locked.

If a CLBMAP is indicated as having unlocked pins, you can lock indi-
vidual CLBMAP pins by attaching a P (pin-lock) attribute to the
corresponding net. On an open CLBMAP, you can assign P attributes
only to output pins.

Table 4-10 Map Attributes for CLBMAP Symbols

Closed CLB Open CLB

Pins locked MAP=PLC MAP=PLO

Pins unlocked MAP=PUC MAP=PUO
4-62 Xilinx Development System

Attributes, Constraints, and Carry Logic
Example 1:
Schematic constraint loc=CB

Constraints file place block top/cntq7: CB;

Place the CLBMAP in the CB CLB.

Example 2:
Schematic constraint loc=AA:EE

Constraints file place block reg/bit7: [AA:EE];

Place the CLBMAP in the area bounded by CLB AA in the upper left
corner and CLB EE in the lower right.

CLB Constraints
You can prohibit PPR from using a specific CLB, a range of CLBs, or a
row or column of CLBs. Such prohibit constraints can be assigned
only through the constraints file. CLBs are prohibited by specifying a
Notplace Instance constraint with only a wildcard (*) character as the
instance name, as shown in the following examples.

Example 1:
Schematic constraint None

Constraints file notplace instance *: clb_r1c5;

Do not place any logic in the CLB in row 1, column 5. CLB R1C5 is in
the upper left corner of the device.

Example 2:
Schematic constraint None

Constraints file notplace instance *: [clb_r1c1
clb_r5c7];

Do not place any logic in the rectangular area bounded by the CLB
R1C1 in the upper left corner and CLB R5C7 in the lower right.
Libraries Guide 4-63

Libraries Guide
Example 3:
Schematic constraint None

Constraints file notplace instance *: clb_r*c3;

Do not place any logic in any row of column 3. The wildcard (*) char-
acter can be used in place of either the row or column number to
specify an entire row or column of CLBs.

Example 4:
Schematic constraint None

Constraints file notplace instance *: clb_r2c4
clb_r7c9;

Do not place any logic in either CLB R2C4 or CLB R7C9.

I/O Constraints
You can constrain I/Os to one edge of the die, half an edge of the die,
or a specific IOB. I/O constraints can be assigned from the schematic
or through the CST file.

From the schematic, attach LOC constraints to the target PAD symbol.
The constraints are then passed into the XNF and XTF files and read
by PPR. For more information on attaching LOC constraints, see the
appropriate interface user guide.

A pad can be found in the XNF file as an EXT record. Assume the
following lines appear in the XNF file.

ext, /top-102/data0, i,, blknm=data0
ext, /top-117/q13, o,, blknm=out13

For a CST file constraint, the instance names of these I/Os are /top-
102/data0_pad and /top-117/q13_pad.

Example 1:
This example uses a pin number to lock to one pin.

Schematic constraint loc=p17

Constraints file place instance /top-102/
data0_pad: p17;
4-64 Xilinx Development System

Attributes, Constraints, and Carry Logic
Place the I/O in the IOB at pin 17. For pin grid arrays, a pin name
such as B3 or T1 is used.

Example 2:
The following example uses a letter to lock to a side of the die.

Schematic constraint loc=t

Constraints file place instance /top-117/
q13_pad: t;

Place the I/O in any IOB on the top edge of the die. Table 4-11 shows
the legal edge designations.

Table 4-11 Legal Edge Designations for IOBs

Note: When assigning global location constraints specifically to IOBs
and edge decoders, refer to the die locations, not the package loca-
tions. The package edges do not necessarily correspond to the die
edges. The die locations are rotated with respect to the package loca-
tions. The only way to see where these edges are is to load the design
into EditLCA. See the EditLCA section in the “XACT Design Editor”
chapter of the XACT Reference Guide for additional information.

Example 3:
This example uses multiple locations.

Schematic constraint loc=t;loc=b

Constraints file place instance /top-117/
q13_pad: t b;

Place the I/O in any IOB on the top or bottom edges of the die.

Edge Code Edge Location

b Bottom edge

l Left edge

r Right edge

t Top edge
Libraries Guide 4-65

Libraries Guide
Example 4:
A two-letter combination is used to lock to a half-edge in the
following example.

Schematic constraint loc=tl

Constraints file place instance /top-102/
data0_pad: tl;

Place the I/O in any IOB on the left half of the top edge of the die.
Table 4-12 shows the legal half-edge designations.

Table 4-12 Legal Half-Edge Designations for IOBs

Example 5:
This example constrains I/Os to the right edge of the IOB.

Schematic constraint loc=r

Constraints file place instance /top-117/q*_pad:
r;

Place the I/Os in the IOBs on the right edge of the die.

From the schematic, the LOC constraint is attached to all target PAD
symbols.

In the CST file, the wildcard (*) character specifies all instances that
begin with /top-117/q and end with _pad. It identifies the external
signals /top-117/q0_pad, /top-117/q1_pad, and so on.

Half-Edge Code Edge Location

TL Left half of top edge

TR Right half of top edge

BL Left half of bottom edge

BR Right half of bottom edge

LT Top half of left edge

LB Bottom half of left edge

RT Top half of right edge

RB Bottom half of right edge
4-66 Xilinx Development System

Attributes, Constraints, and Carry Logic
IOB Constraints
You can prohibit PPR from using a specific IOB. This step might be
taken to keep user I/O signals away from semi-dedicated configura-
tion pins. Such prohibit constraints can be assigned only through the
CST file.

IOBs are prohibited by specifying a Notplace Instance constraint with
only a wildcard (*) character as the instance name, as shown in the
following example.

Schematic constraint None

Constraints file notplace instance *: p36 p37
p41;

Do not place user I/Os in the IOBs at pins 36, 37, or 41. For pin grid
arrays, pin names such as D14, C16, or H15 are used.

BUFT Constraints
You can constraint 3-state buffers to a specific BUFT, a range of
BUFTs, or a row or column of BUFTs. BUFT constraints can be
assigned from the schematic or through the CST file. BUFT
constraints all refer to locations with a prefix of TBUF, which is the
name of the physical element on the device.

From the schematic, LOC constraints are attached to the target BUFT.
The constraints are then passed into the XNF and XTF files and read
by PPR. For more information on attaching LOC constraints, see the
appropriate user interface guide.

In a constraints file, a BUFT is identified by a unique instance name.
A BUFT instance can found in the XNF file. Assume the following
lines appear in the XNF file. A BUFT symbol can be translated to the
equivalent TBUF type.

sym, /top-72/rd0, TBUF
sym, /top-79/ed7, TBUF

The instance names of these two BUFTs are /top-72/rd0 and
/top-79/ed7. These names are used in the following examples.
Libraries Guide 4-67

Libraries Guide
Example 1:
This example specifies BUFTs adjacent to a specific CLB.

Schematic constraint loc=TBUF_r1c5

Constraints file place instance /top-72/rd0:
TBUF_r1c5;

Place the BUFT adjacent to CLB R1C5. You can use either the longline
above the row of CLBs or the longline below.

Example 2:
The following example places a specific BUFT.

Schematic constraint loc=TBUF_r1c5.1

Constraints file place instance /top-72/rd0:
TBUF_r1c5.1;

Place the BUFT adjacent to CLB R1C5. The .1 tag specifies the longline
above the row of CLBs. The .2 tag specifies the longline below it.

BUFTs that drive the same signal must carry consistent constraints. If
you specify the longline for one BUFT constraint, you must specify it
for all constraints on that line of BUFTs. However, not all BUFTs on a
line need be constrained. Constraining one BUFT to a specific
longline forces the remaining BUFTs onto that line.

Example 3:
The next example specifies a column of BUFTs.

Schematic constraint loc=TBUF_r*c3

Constraints file place instance /top-72/rd0
top-79/ed7:TBUF_r*c3;

Place BUFTs in column 3 on any row. This constraint might be used to
align BUFTs with a common enable signal. You can use the wildcard
(*) character in place of either the row or column number to specify
an entire row or column of BUFTs.

From the schematic, the same LOC constraint is attached to both
BUFTs.
4-68 Xilinx Development System

Attributes, Constraints, and Carry Logic
Example 4:
This example specifies a row of BUFTs.

Schematic constraint loc=TBUF_r7c*

Constraints file place instance /top-79/ed7:
TBUF_r7c*;

Place the BUFT on either the top or bottom horizontal longline in row
7, in any column. You can use the wildcard (*) character in place of
either the row or column number to specify an entire row or column
of BUFTs.

Edge Decoder Constraints
Edge decoders can only be constrained to a single edge of the die;
they cannot be split across two edges of the die. If you use decoder
constraints, you must assign all decode inputs for a given function to
the same edge. From the schematic, attach LOC constraints to the
decode logic — either a DECODE macro or a WAND gate with the
DECODE attribute. The constraints are then passed into the XNF and
XTF files and read by PPR. For more information on attaching LOC
constraints, see the appropriate interface user guide.

Here is an example:

Schematic constraint loc=T

Constraints file place instance dec1/$1I1:T;

Place the decoder along the top edge of the die. Table 4-13 shows the
legal edge designations.

Table 4-13 Legal Edge Designations for Edge Decoders

Edge Code Edge Location

T Top edge

B Bottom edge

L Left edge

R Right edge

TL Left half of top edge
Libraries Guide 4-69

Libraries Guide
To constrain decoders to precise positions within a side, constrain the
associated pads. However, because PPR determines decoder edges
before processing pad constraints, it is not enough to constrain the
pads alone. To constrain decoders to a specific die side, use the
following rule. For every output net that you want to constrain,
specify the side for at least one of its input decoders (WAND gates),
using one of the following.

LOC=LLOC=T
LOC=RLOC=B

Global Buffer Constraints
You can constrain a global buffer — BUFGP or BUFGS — to a corner
of the die. From the schematic, attach LOC constraints to the global
buffer symbols. The constraints are then passed into the XNF and
XTF files and read by PPR. For more information on attaching LOC
constraints, see the appropriate interface user guide.

Here is an example:

Schematic constraint loc=TL

Constraints file place instance buf1:TL;

Place the global buffer in the top left corner of the die. Table 4-14
shows the legal corner designations.

TR Right half of top edge

BL Left half of bottom edge

BR Right half of bottom edge

LT Top half of left edge

LB Bottom half of left edge

RT Top half of right edge

RB Bottom half of right edge

Edge Code Edge Location
4-70 Xilinx Development System

Attributes, Constraints, and Carry Logic
Table 4-14 Legal Corner Designations for Global Buffers

If a global buffer is sourced by an external signal, the dedicated IOB
for that buffer must not be used by any other signal. For example, if a
BUFGP is constrained to TL, the PGCK1 pin must be used to source
it, and no other I/O can be assigned to that pin.

Relative Location (RLOC) Constraints
This section describes the relative location (RLOC) constraint, RLOC
sets, and RLOC set constraints and modifiers.

Description
Relative location constraints group logic elements into discrete sets.
You can define the location of any element within the set relative to
other elements in the set, regardless of eventual placement in the
overall design. For example, if RLOC constraints are applied to a
group of eight flip-flops organized in a column, PPR maintains the
columnar order and moves the entire group of flip-flops as a single
unit. In contrast, absolute location (LOC) constraints constrain design
elements to specific locations on the FPGA die with no relation to
other design elements.

RLOC constraints allow you to place logic blocks relative to each
other to increase speed, use die resources efficiently, and take advan-
tage of the special carry logic built into the control logic blocks (CLBs)
of the XC4000 devices. They provide an order and structure to related
design elements without requiring you to specify their absolute
placement on the FPGA die. They allow you to replace any existing
hard macro with an equivalent that can be directly simulated.

The relationally placed macro (RPM) library, which replaces the hard
macro library, uses RLOC constraints to define the order and

Corner Code Corner Location

TL Top left corner

TR Top right corner

BL Bottom left corner

BR Bottom right corner
Libraries Guide 4-71

Libraries Guide
structure of the underlying design primitives. The RPM library offers
the functionality and precision of the hard macro library with added
flexibility. You can optimize RPMs and merge other logic within
them. Because these macros are built upon standard schematic parts,
they do not have to be translated before simulation.

In the Unified Libraries, you can use RLOC constraints with BUFT-
and CLB-related primitives, that is, DFF, HMAP, FMAP, and CY4
primitives. You can also use them on non-primitive macro symbols.
There are some restrictions on the use of RLOC constraints on BUFT
symbols. See the section on the RLOC_ORIGIN attribute later in this
chapter. However, you cannot use RLOC constraints with decoders,
clocks, or I/O primitives. LOC constraints, on the other hand, can be
used on all primitives: BUFTs, CLBs, IOBs, decoders, and clocks.

The libraries created before the release of the Unified Libraries do not
include RLOC constraints on the primitive symbols below the macro
symbols. To add RLOC constraints to the underlying macro primi-
tives, make a copy of the library in your local directory and add the
RLOC=R0C0 constraint to the underlying primitives. You can also
attach RLOC constraints directly to non-macro primitives as you can
for the Unified Libraries.

The following symbols (primitives) accept RLOCs:

FDCE
FDPE
FMAP
HMAP
RAM16X1
RAM32X1
ROM16X1
ROM32X1
BUFT

Syntax
The syntax of the RLOC constraint is the following:

RLOC = R row#Ccolumn#[. extension]

where the optional .extension can take all the values that are available
with the current absolute LOC syntax: FFX, FFY, F, G, H, 1, and 2. The
1 and 2 values are available for BUFT primitives, and the rest are
4-72 Xilinx Development System

Attributes, Constraints, and Carry Logic
available for primitives associated with CLBs. Only extensions for the
XC4000 family designs are currently supported.

The row and column numbers can be any positive integer, including
zero. Absolute die locations, in contrast, cannot have zero as a row or
column number. Because row and column numbers in RLOC
constraints define only the order and relationship between design
elements and not their absolute die locations, their numbering can
include zero. Even though you can use any positive integer in
numbering rows and columns for RLOC constraints, it is recom-
mended that you use small integers for clarity and ease of use.

It is not the absolute values of the row and column numbers that is
important in RLOC specifications but their relative values or differ-
ences. For example, if design element A has an RLOC=R3C4
constraint and design element B has an RLOC=R6C7 constraint, the
absolute values of the row numbers (3 and 6) are not important in
themselves. However, the difference between them is important; in
this case, 3 (6 -3) specifies that the location of design element B is
three rows away from the location of design element A. To capture
this information, a normalization process is used at some point in the
design implementation. In the example just given, normalization
would reduce the RLOC on design element A to R0C0, and the RLOC
on design element B to R3C3.

In Xilinx programs, rows are numbered in increasing order from top
to bottom, and columns are numbered in increasing order from left to
right. RLOC constraints follow this numbering convention.

Figure 4-5a demonstrates the use of RLOC constraints. Four flip-flop
primitives named A, B, C, and D are assigned RLOC constraints as
shown. These RLOC constraints require each flip-flop to be placed in
a different CLB in the same column and stacked in the order shown:
A above B, C, and D. Within a CLB, however, they can be placed
either in the FFX or FFY position.

If you wish to place more than one of these flip-flop primitives per
CLB, you can specify the RLOCs as shown in Figure 4-5b. The
arrangement in Figure 4-5b requires that A and B be placed in a
single CLB and that C and D be placed in another CLB immediately
below the AB CLB. However, within a CLB, the flip-flops can be
placed in either of the two flip-flop positions, FFX or FFY.
Libraries Guide 4-73

Libraries Guide
To control the ordering of these flip-flop primitives specifically, you
can use the extension field, as shown in Figure 4-5c. In this figure, the
same four flip-flops are constrained to use specific resources in the
CLBs. This specification always ensures that these elements are
arranged exactly as shown: A must be placed in the FFX spot, B in
the same CLB at the FFY spot, and so on.

Figure 4-5 Different RLOC Specifications for Four Flip-flop
Primitives

RLOC Sets
As noted previously, RLOC constraints give order and structure to
related design elements. This section describes RLOC sets, which are
groups of related design elements to which RLOC constraints have
been applied. For example, the four flip-flops in Figure 4-5 are related
by RLOC constraints and form a set. Elements in a set are related by
RLOC constraints to other elements in the same set. Each member of
a set must have an RLOC constraint, which relates it to other
elements in the same set. You can create multiple sets, but a design
element can belong to one set only.

X4292

RLOC = R0C0
A

(a)

RLOC = R1C0
B

RLOC = R2C0
C

RLOC = R3C0
D

(b)

RLOC = R0C0.FFX
A

(c)

RLOC = R1C0.FFX
C

RLOC = R0C0.FFY
B

RLOC = R1C0.FFY
D

RLOC = R0C0
A

RLOC = R1C0
C

RLOC = R0C0
B

RLOC = R1C0
D

Shaded lines indicate a CLB grid.
4-74 Xilinx Development System

Attributes, Constraints, and Carry Logic
Sets can be defined in several ways: explicitly through the use of a
set parameter or implicitly through the structure of the design hier-
archy.

There are four distinct types of rules associated with each set:

● Definition rules define the requirements for membership in a set.

● Linkage rules specify how elements can be linked to other ele-
ments to form a single set.

● Modification rules dictate how to specify parameters that modify
RLOC values of all the members of the set.

● Naming rules specify the nomenclature of sets.

These rules are discussed in the sections that follow.

The following sections discuss three different set constraints: U_SET,
H_SET, and HU_SET. Elements must be tagged with both the RLOC
constraint and one of these set constraints to belong to a set.

U_SET
U_SET constraints enable you to group into a single set design
elements with attached RLOC constraints that are distributed
throughout the design hierarchy. The letter U in the name U_SET
indicates that the set is user-defined. U_SET constraints allow you to
group elements, even though they are not directly related by the
design hierarchy. By attaching a U_SET constraint to design elements,
you can explicitly define the members of a set. The design elements
tagged with a U_SET constraint can exist anywhere in the design
hierarchy; they can be primitive or non-primitive symbols. When
attached to non-primitive symbols, the U_SET constraint propagates
to all the primitive symbols with RLOC constraints that are below it
in the hierarchy.

The syntax of the U_SET constraint is the following:

U_SET=name

where name is the user-specified identifier of the set. All design
elements with RLOC constraints tagged with the same U_SET
constraint name belong to the same set. Names therefore must be
unique among all the sets in the design.
Libraries Guide 4-75

Libraries Guide
H_SET
In contrast to the U_SET constraint, which you explicitly define by
tagging design elements, the H_SET (hierarchy set) is defined implic-
itly through the design hierarchy. The combination of the design hier-
archy and the presence of RLOC constraints on elements defines a
hierarchical set, or H_SET set. You do not use an HSET constraint to
tag the design elements to indicate their set membership. The set is
defined automatically by the design hierarchy. All design elements
with RLOC constraints at a single node of the design hierarchy are
considered to be in the same H_SET set unless they are tagged with
another type of set constraint such as RLOC_ORIGIN or
RLOC_RANGE. These constraints are discussed later in this chapter.
If you explicitly tag any element with an RLOC_ORIGIN,
RLOC_RANGE, U_SET, or HU_SET constraint, it is removed from an
H_SET set. Most designs contain only H_SET constraints, since they
are the underlying mechanism for relationally placed macros.

The design-flattening program, XNFMerge, recognizes the implicit
H_SET set, derives its name, or identifier, attaches the H_SET
constraint to the correct members of the set, and writes them to the
output file.

The syntax of the H_SET constraint as generated by XNFMerge
follows:

H_SET=name

Name is the identifier of the set and is unique among all the sets in the
design. The base name for any H_SET is “hset,” to which XNFMerge
adds a hierarchy path prefix to obtain unique names for different
H_SET sets in the XNFMerge output file.
4-76 Xilinx Development System

Attributes, Constraints, and Carry Logic
Figure 4-6 Macro A Instantiated Twice

Note: In Figure 4-6 and the other figures shown in this section, the
italicized text prefixed by => is added by XNFMerge during the
design flattening process. You add all other text.

Figure 4-6 demonstrates a typical use of the implicit H_SET (hier-
archy set). The figure shows only the first “RLOC” portion of the
constraint. In a real design, the RLOC constraint must be specified
completely with RLOC=Rrow#Ccol#. In this example, macro A is orig-
inally designed with RLOC constraints on four flip-flops: A, B, C, and
D. The macro is then instantiated twice in the design: Inst1 and Inst2.
When the design is flattened, two different H_SET sets are recognized
because two distinct levels of hierarchy contain elements with RLOC
constraints. XNFMerge creates and attaches the appropriate H_SET
constraint to the set members: H_SET=Inst1/hset for the macro
instantiated in Inst1, and H_SET=Inst2/hset for the macro instanti-
ated in Inst2. The design implementation programs place each of the
two sets individually as a unit with relative ordering within each set
specified by the RLOC constraints. However, the two sets are
regarded as completely independent of each other.

Design-top

RLOC
= >H_SET = Inst2/hsetA

X4294

B

C

D

Inst1 Inst2

M
a
cr

o
 A

RLOC
= >H_SET = Inst2/hset

RLOC
= >H_SET = Inst2/hset

RLOC
= >H_SET = Inst2/hset

RLOC
= >H_SET = Inst1/hsetA

B

C

D

M
a
cr

o
 A

RLOC
= >H_SET = Inst1/hset

RLOC
= >H_SET = Inst1/hset

RLOC
= >H_SET = Inst1/hset
Libraries Guide 4-77

Libraries Guide
The name of the H_SET set is derived from the symbol or node in the
hierarchy that includes all the RLOC elements. In Figure 4-6, Inst1 is
the node (instantiating macro) that includes the four flip-flop
elements with RLOCs shown on the left of Figure 4-6. Therefore, the
name of this H_SET set is the hierarchically qualified name of “Inst1”
followed by “hset.” The Inst1 symbol is considered the “start” of the
H_SET, which gives a convenient handle to the entire H_SET and
attaches constraints that modify the entire H_SET. Constraints that
modify sets are discussed later in this chapter.

Figure 4-6 demonstrates the simplest use of a set that is defined and
confined to a single level of hierarchy. Through linkage and modifica-
tion, you can also create an H_SET set that is linked through two or
more levels of hierarchy. Linkage allows you to link elements through
the hierarchy into a single set. On the other hand, modification allows
you to modify RLOC values of the members of a set through the hier-
archy.

Set Linkage
The example in Figure 4-7 explains and illustrates the process of
linking together elements through the design hierarchy. Again, the
complete RLOC specification, RLOC=Rrow#Ccol#, is required for a
real design.

Note: In this and other illustrations in this section, the sets are shaded
differently to distinguish one set from another.
4-78 Xilinx Development System

Attributes, Constraints, and Carry Logic
Figure 4-7 Three H_SET Sets

As noted previously, all design elements with RLOC constraints at a
single node of the design hierarchy are considered to be in the same
H_SET set unless they are assigned another type of set constraint, an
RLOC_ORIGIN constraint, or an RLOC_RANGE constraint. In
Figure 4-7, RLOC constraints have been added on primitives and
non-primitives C, D, F, G, H, I, J, K, M, N, O, P, Q, and R. No RLOC
constraints were placed on B, E, L, or S. Macros C and D have an
RLOC constraint at node A, so all the primitives below C and D that
have RLOCs are members of a single H_SET set. Furthermore, the
name of this H_SET set is “A/hset” because it is at node A that the set
starts. The start of an H_SET set is the lowest common ancestor of all
the RLOC-tagged constraints that constitute the elements of that

RLOC

= > H_SET = A/hset

X4295

Design-top

A

G

F

B

C D ERLOC RLOC

H

I

RLOC

= > H_SET = A/hset

RLOC

= > H_SET = A/hset

RLOC

= > H_SET = A/hset

RLOC

= > H_SET = A/hset

K

J

RLOC

= > H_SET = A/hset

L

RLOC

= > H_SET = A/hset

P

O

RLOC

= > H_SET = A/hset

RLOC

= > H_SET = A/D/L/hsetQ

RLOC

= > H_SET = A/D/L/hsetR

S

RLOC

= > H_SET = A/E/hset

N

M

RLOC

= > H_SET = A/E/hset
Libraries Guide 4-79

Libraries Guide
H_SET set. Because element E does not have an RLOC constraint, it is
not linked to the A/hset set. The RLOC-tagged elements M and N,
which lie below element E, are therefore in their own H_SET set. The
start of that H_SET set is A/E, giving it the name “A/E/hset.”

Similarly, the Q and R primitives are in their own H_SET set because
they are not linked through element L to any other design elements.
The lowest common ancestor for their H_SET set is L, which gives it
the name “A/D/L/hset.” After the flattening, XNFMerge attaches
H_SET=A/hset to the F, G, H, O, P, J, and K primitives; H_SET=A/
D/L/hset to the Q and R primitives; and H_SET=A/E/hset to the M
and N primitives.

Consider a situation in which a set is created at the top of the design.
In Figure 4-7, there would be no lowest common ancestor if macro A
also had an RLOC constraint, since A is at the top of the design and
has no ancestor. In this case, the base name “hset” would have no
hierarchically qualified prefix, and the name of the H_SET set would
simply be “hset.”

Set Modification
As noted earlier, the RLOC constraint assigns a primitive an RLOC
value (the row and column numbers with the optional extensions),
specifies its membership in a set, and links together elements at
different levels of the hierarchy. In Figure 4-7, the RLOC constraint on
macros C and D links together all the objects with RLOC constraints
below them. An RLOC constraint is also used to modify the RLOC
values of constraints below it in the hierarchy. In other words, RLOC
values of elements affect the RLOC values of all other member
elements of the same H_SET set that lie below the given element in
the design hierarchy.

When the design is flattened, the row and column numbers of an
RLOC constraint on an element are added to the row and column
numbers of the RLOC constraints of the set members below it in the
hierarchy. This feature gives you the ability to modify existing RLOC
values in submodules and macros without changing the previously
assigned RLOC values on the primitive symbols. This modification
process also applies to the optional extension field. However, when
using extensions for modifications, you must ensure that inconsistent
extensions are not attached to the RLOC value of a design element
that may conflict with RLOC extensions placed on underlying
4-80 Xilinx Development System

Attributes, Constraints, and Carry Logic
elements. For example, if an element has an RLOC constraint with
the FFX extension, all the underlying elements with RLOC
constraints must either have the same extension, in this case FFX, or
no extension at all; any underlying element with an RLOC constraint
and an extension different from FFX, such as FFY or F, is flagged as an
error. After resolving all the RLOC constraints, extensions that are
not valid on primitives are removed from those primitives. For
example, if XNFMerge generates an FFX extension to be applied on a
primitive after propagating the RLOC constraints, it applies the
extension if and only if the primitive is a flip-flop. If the primitive is
an element other than a flip-flop, the extension is ignored. Only the
extension is ignored in this case, not the entire RLOC constraint.

Figure 4-8 illustrates the process of adding RLOC values down the
hierarchy. The row and column values between the parentheses show
the addition function performed by XNFMerge. The italicized text
prefixed by => is added by XNFMerge during the design flattening
process and replaces the original RLOC constraint that you added.

Figure 4-8 Adding RLOC Values Down the Hierarchy

A

Design-top

RLOC = R2C3

RLOC = R0C0 (+R2C3)

= >RLOC = R2C3

E

B

RLOC = R0C0 (+R5C3.FFX)
= >RLOC = R5C3.FFXF

G

X4296

C

D

RLOC = R1C0 (+R2C3)

= >RLOC = R3C3

RLOC = R2C0 (+R2C3)

= >RLOC = R4C3

RLOC = R3C0.FFX (+R2C3)

= >RLOC = R5C3.FFX

XNFMerge adds
R5C3.FFX below to
create new RLOC

RLOC = R1C0 (+R5C3.FFX)
= >RLOC = R6C3.FFX

XNFMerge adds
R2C3 below to
create new RLOC
Libraries Guide 4-81

Libraries Guide
The ability to modify RLOC values down the hierarchy is particularly
valuable when instantiating the same macro more than once. Typi-
cally, macros are designed with RLOC constraints that are modified
when the macro is instantiated. Figure 4-9 is a variation of the
sample design in Figure 4-6. The RLOC constraint on Inst1 and Inst2
now link all the objects in one H_SET set. Because the RLOC=R0C0
modifier on the Inst1 macro does not affect the objects below it,
XNFMerge only adds the H_SET tag to the objects and leaves the
RLOC values as they are. However, the RLOC=R0R1 modifier on the
Inst2 macro causes XNFMerge to change the RLOC values on objects
below it, as well as to add the H_SET tag, as shown in the italicized
text.

Figure 4-9 Modifying RLOC Values of Same Macro and Linking
Together as One Set

HU_SET
The HU_SET constraint is a variation of the implicit H_SET (hier-
archy set). Like H_SET, HU_SET is defined by the design hierarchy.
However, you can use the HU_SET constraint to assign a user-
defined name to the HU_SET.

The syntax of the HU_SET constraint is the following:

HU_SET=name

Design-top

RLOC = R0C1

RLOC = R0C0 (+R0C1)

= >H_SET = hsetA

X4297

B

C

add R0C1 to shift
the set 1 column
to the right

D

RLOC = R0C0

Inst1 Inst2

= >RLOC = R0C1

RLOC = R1C0 (+R0C1)

= >H_SET = hset
= >RLOC = R1C1

RLOC = R2C0 (+R0C1)

= >H_SET = hset
= >RLOC = R2C1

RLOC = R3C0 (+R0C1)

= >H_SET = hset
= >RLOC = R3C1

M
ac

ro
 A

RLOC = R0C0

= >H_SET = hsetA

B

C

D

M
ac

ro
 A

RLOC = R1C0

= >H_SET = hset

RLOC = R2C0

= >H_SET = hset

RLOC = R3C0

= >H_SET = hset

add R0C0—no
change
4-82 Xilinx Development System

Attributes, Constraints, and Carry Logic
where name is the identifier of the set; it must be unique among all the
sets in the design. You must define the base names to ensure unique
hierarchically qualified names for the sets after XNFMerge flattens
the design and attaches the hierarchical names as prefixes.

This user-defined name is the base name of the HU_SET set. Like the
H_SET set, in which the base name of “hset” is prefixed by the hierar-
chical name of the lowest common ancestor of the set elements, the
user-defined base name of an HU_SET set is prefixed by the hierar-
chical name of the lowest common ancestor of the set elements.

The HU_SET constraint defines the start of a new set: all design
elements at the same node that have the same user-defined value for
the HU_SET constraint are members of the same HU_SET set. Along
with the HU_SET constraint, elements can also have an RLOC
constraint. The presence of an RLOC constraint in an H_SET
constraint links the element to all elements tagged with RLOCs above
and below in the hierarchy. However, in the case of an HU_SET
constraint, the presence of an RLOC constraint along with the
HU_SET constraint on a design element does not automatically link
the element to other elements with RLOC constraints at the same
hierarchy level or above.
Libraries Guide 4-83

Libraries Guide
Figure 4-10 HU_SET Constraint Linking and Separating
Elements from H_SET Sets

Figure 4-10 demonstrates how HU_SET constraints designate
elements as set members, break links between elements tagged with
RLOC constraints in the hierarchy to separate them from H_SET sets,
and generate names as identifiers of these sets. The user-defined
HU_SET constraint on E separates its underlying design elements,
namely H, I, J, K, L, and M from the implicit H_SET=A/hset that
contains primitive members B, C, F, and G. The HU_SET set that is
defined at E includes H, I, and L (through the element J). XNFMerge
hierarchically qualifies the name value “bar” on element E to be A/
bar, since A is the lowest common ancestor for all the elements of the
HU_SET set, and attaches it to the set member primitives H, I, and L.
An HU_SET constraint on K starts another set that includes M, which

RLOC

= > H_SET = A/hset

X4298

Design-top

A

C

B

D

RLOC

= > H_SET = A/hset

RLOC E HU_SET = bar

RLOC

= > H_SET = A/hset

G

F

RLOC

= > H_SET = A/hset

RLOC

= > HU_SET = A/bar

I

H

J

RLOC

= > HU_SET = A/bar

RLOC K HU_SET = bar

RLOC

= > HU_SET = A/bar
L RLOC

= > HU_SET = A/E/bar
M

4-84 Xilinx Development System

Attributes, Constraints, and Carry Logic
receives the HU_SET=A/E/bar constraint after processing by
XNFMerge. In Figure 4-10, the same name field is used for the two
HU_SET constraints, but because they are attached to symbols at
different levels of the hierarchy, they define two different sets.

Figure 4-11 Linking Two HU_SET Sets

Figure 4-11 shows how HU_SET constraints link elements in the
same node together by naming them with the same identifier.
Because of the same name, “bar,” on two elements, D and E, the
elements tagged with RLOC constraints below D and E become part
of the same HU_SET.

Set Modifiers
A modifier, as its name suggests, modifies the RLOC constraints asso-
ciated with design elements. Since it modifies the RLOC constraints
of all the members of a set, it must be applied in a way that propa-
gates it to all the members of the set easily and intuitively.

A

Design-top

RLOC

= > H_SET = A/hset

RLOC

HU_SET = barD E

C

B

RLOC

= > HU_SET = A/bar

RLOC

= > HU_SET = A/bar

G

F RLOC

= > HU_SET = A/bar

RLOC

= > HU_SET = A/bar

H

I

X4299

= > H_SET = A/hset

HU_SET = bar
Libraries Guide 4-85

Libraries Guide
For this reason, the RLOC modifiers of a set are placed at the start of
that set. This section discusses the different modifiers that you can
use to modify the RLOC set constraints.

RLOC
As discussed previously, the RLOC constraint associated with a
design element modifies the values of other RLOC constraints below
the element in the hierarchy of the set. Regardless of the set type,
RLOC row, column, and extension values on an element always prop-
agate down the hierarchy and are added at lower levels of the hier-
archy to RLOC constraints on elements in the same set.

RLOC_ORIGIN
Specifying RLOC constraints to describe the spatial relationship of
the set members to themselves allows the members of the set to float
anywhere on the die as a unit. You can, however, fix the exact die
location of the set members. The RLOC_ORIGIN constraint allows
you to change the RLOC values into absolute LOC constraints that
respect the structure of the set.

Following is the syntax of this constraint:

RLOC_ORIGIN=Rrow#Ccolumn#

where the row and column numbers are positive non-zero integer
values. When an RLOC_ORIGIN constraint is applied to a set, the
row and column values of the RLOC_ORIGIN are added to the indi-
vidual RLOC values of the members of the set to obtain a final LOC
constraint for each element in the set. Since the row and column
numbers of an RLOC_ORIGIN constraint refer to actual die locations,
its value must exclude zero.

Note: In the XACT 5.0 release, you must use the RLOC_ORIGIN con-
straint with sets that include BUFT symbols. Sets with BUFT symbols
must be fixed to an exact die location.

The design flattening program, XNFMerge, translates the
RLOC_ORIGIN constraint into LOC constraints. The row and column
values of the RLOC_ORIGIN are added individually to the members
of the set after all RLOC modifications have been made to their row
and column values by addition through the hierarchy. The final
values are then turned into LOC constraints on individual primitives.
4-86 Xilinx Development System

Attributes, Constraints, and Carry Logic
When this constraint is used in conjunction with an implicit H_SET
(hierarchy set), it must be placed on the element that is the start of the
H_SET set, that is, on the lowest common ancestor of all the members
of the set. If you apply an RLOC_ORIGIN constraint to an HU_SET
constraint, place it on the element at the start of the HU_SET set, that
is, on an element with the HU_SET constraint. However, since there
could be several elements linked together with the HU_SET
constraint at the same node, the RLOC_ORIGIN constraint can be
applied to only one of these elements to prevent more than one
RLOC_ORIGIN constraint from being applied to the HU_SET set.
Similarly, when used with a U_SET constraint, the RLOC_ORIGIN
constraint can be placed on only one element with the U_SET
constraint. If you attach the RLOC_ORIGIN constraint to an element
that has only an RLOC constraint, the membership of that element in
any set is removed, and the element is considered the start of a new
H_SET set with the specified RLOC_ORIGIN constraint attached to
the newly created set.
Libraries Guide 4-87

Libraries Guide
Figure 4-12 Using an RLOC_ORIGIN Constraint to Modify an
H_SET Set

In Figure 4-12, the elements B, C, D, F, and G are members of an
H_SET set with the name A/hset. This figure is the same as Figure 4-
8 except for the presence of an RLOC_ORIGIN constraint at the start
of the H_SET set (at A). The RLOC_ORIGIN values are added to the
resultant RLOC values at each of the member elements to obtain the
values that are then converted by XNFMerge to LOC constraints. For
example, the RLOC value of F, given by adding the RLOC value at E
(R0C1) and that at F (R0C0), is added to the RLOC_ORIGIN value
(R2C3) to obtain the value of (R2C4), which is then converted to a
LOC constraint, LOC = CLB_R2C4.

A

Design-top

RLOC_ORIGIN = R2C3

RLOC = R0C0 (+R2C3)

= >LOC = CLB_R2C3

RLOC = R0C1E

B

RLOC = R0C0 (+R0C1 + R2C3)

= >LOC = CLB_R2C4F

G

X4300

XNFMerge adds ROC1 and RLOC_ORIGIN
(R2C3) below to get final LOC constraint

RLOC = R1C0 (+R0C1 + R2C3)

= >LOC = CLB_R3C4

RLOC = R1C0 (+R2C3)

= >LOC = CLB_R3C3C

RLOC = R2C0 (+R2C3)

= >LOC = CLB_R4C3D

XNFMerge adds RLOC_ORIGIN
(R2C3) below to get final LOC constraint
4-88 Xilinx Development System

Attributes, Constraints, and Carry Logic
Figure 4-13 Using an RLOC_ORIGIN to Modify H_SET and
HU_SET Sets

Figure 4-13 shows an example of an RLOC_ORIGIN constraint
modifying an HU_SET constraint. The start of the HU_SET A/bar is
given by element D or E. The RLOC_ORIGIN attached to E, therefore,
applies to this HU_SET set. On the other hand, the RLOC_ORIGIN at
A, which is the start of the H_SET set A/hset, applies to elements B
and C, which are members of the H_SET set.

RLOC_RANGE
As noted in the previous discussion, you can fix the members of a set
at exact die locations with the RLOC_ORIGIN constraint. In the
XACT 5.0 release, you must use the RLOC_ORIGIN constraint with
sets that include BUFT symbols. However, for sets that do not include
BUFT symbols, you can limit the members of a set to a certain range
on the die. In this case, the set could “float” as a unit within the range
until a final placement. Since every member of the set must fit within
the range, it is important that you specify a range that defines an area
large enough to respect the spatial structure of the set.

A

Design-top

RLOC_ORIGIN = R1C2

RLOC = R0C0 (+R1C2)
= > H_SET = A/hset

RLOC = R1C0 (+R1C2)

= > LOC = CLB_R2C2

HU_SET = bar RLOC_ORIGIN = R3C3
HU_SET = bar

RLOC = R0C1
D E

C

B

RLOC = R0C0 (+R3C3)
= > HU_SET = A/bar

RLOC = R1C0 (+R3C3)
= > HU_SET = A/bar

G

F RLOC = R0C0 (+R0C1 + R3C3)
= > HU_SET = A/bar

RLOC = R1C0 (+R0C1 + R3C3)
= > HU_SET = A/bar

H

I

X4301

add RLOC_ORIGIN
and RLOC below

add RLOC_ORIGIN
to H_SET

= > LOC = CLB_R1C2

= > H_SET = A/hset

= > LOC = CLB_R3C3

= > LOC = CLB_R4C3 = > LOC = CLB_R4C4

= > LOC = CLB_R3C4

add RLOC_ORIGIN
to H_SET
Libraries Guide 4-89

Libraries Guide
The syntax of this constraint is the following:

RLOC_RANGE=Rrow1#Ccol1#:R row2#Ccol2#

where row1, row2, col1, and col2 can be non-zero positive numbers, or
the wildcard (*) character. This syntax allows for three kinds of range
specifications:

● Rr1Cc1:R r2Cc2 — A rectangular region enclosed by rows r1, r2,
and columns c1, c2

● R*Cc1:R*C c2 — A region enclosed by the columns c1 and c2 (any
row number)

● Rr1C*:R r2C*— A region enclosed by the rows r1 and r2 (any col-
umn number)

For the second and third kinds of specifications with wildcards,
applying the wildcard asterisk differently on either side of the sepa-
rator colon creates an error. For example, specifying R*C1:R2C* is an
error since the wildcard asterisk is applied to rows on one side and to
columns on the other side of the separator colon.

The values of the RLOC_RANGE constraint are not simply added to
the RLOC values of the elements. In fact, the RLOC_RANGE
constraint does not change the values of the RLOC constraints on
underlying elements. It is an additional constraint that is attached
automatically by XNFMerge to every member of a set. The
RLOC_RANGE constraint is attached to design elements in exactly
the same way as the RLOC_ORIGIN constraint. The values of the
RLOC_RANGE constraint, like RLOC_ORIGIN values, must be non-
zero positive numbers since they directly correspond to die locations.

USE_RLOC
Another important set modifier is the USE_RLOC constraint. It turns
the RLOC constraints on and off for a specific element or section of a
set.

The syntax of this constraint is:

USE_RLOC=value

where value is either True or False.

The application of the USE_RLOC constraint is strictly based on hier-
archy. A USE_RLOC constraint attached to an element applies to all
4-90 Xilinx Development System

Attributes, Constraints, and Carry Logic
its underlying elements that are members of the same set. If it is
attached to a symbol that defines the start of a set, the constraint is
applied to all the underlying member elements, which represent the
entire set. However, if it is applied to an element below the start of
the set (for example, E in Figure 4-14), only the members of the set (H
and I) below the specified element are affected.You can also attach the
USE_RLOC constraint directly to a primitive symbol so that it affects
only that symbol.

Figure 4-14 Using the USE_RLOC Constraint to Control RLOC
Application on H_SET and HU_SET Sets

When the USE_RLOC=false constraint is applied, the RLOC and set
constraints are removed from the affected symbols in the XNFMerge
output file. This process is different than that followed for the
RLOC_ORIGIN constraint. For RLOC_ORIGIN, XNFMerge gener-
ates and outputs a LOC constraint in addition to all the set and RLOC
constraints in the output file. XNFMerge does not retain the original

A

Design-top

USE_RLOC = FALSE

RLOC = R0C0

= > H SET = A/hset

RLOC = R1C0

= > H SET = A/hset

HU_SET = bar

Parameters removed

Parameters removed

RLOC = R0C1
HU_SET = bar

USE_RLOC = FALSE
D E

C

B

RLOC = R0C0

= > HU_SET = A/bar

RLOC = R1C0

= HU_SET = A/bar

G

F RLOC = R0C0

= > HU_SET = A/bar

RLOC = R1C0

= > HU_SET = A/bar

Parameters
removed

Parameters
removed

H

I

X4302

propagate
USE_RLOC
and remove
set parameters
below

apply
USE_RLOC
to H_SET
Libraries Guide 4-91

Libraries Guide
constraints in the presence of a USE_RLOC=false constraint because
these cannot be turned on again in later programs.

Figure 4-14 illustrates the use of the USE_RLOC constraint to mask an
entire set as well as portions of a set.

Applying the USE_RLOC constraint on U_SET sets is a special case
because of the lack of hierarchy in the U_SET set. Because the
USE_RLOC constraint propagates strictly in a hierarchical manner,
the members of a U_SET set that are in different parts of the design
hierarchy must be tagged separately with USE_RLOC constraints; no
single USE_RLOC constraint is propagated to all the members of the
set that lie in different parts of the hierarchy. If you create a U_SET set
through an instantiating macro, you can attach the USE_RLOC
constraint to the instantiating macro to allow it to propagate hierar-
chically to all the members of the set. You can create this instantiating
macro by placing a U_SET constraint on a macro and letting
XNFMerge propagate that constraint to every symbol with an RLOC
constraint below it in the hierarchy.

Figure 4-15 illustrates an example of the use of the USE_RLOC=false
constraint. The USE_RLOC=false on primitive E removes it from the
U_SET set, and USE_RLOC=false on element F propagates to primi-
tive G and removes it from the U_SET set.

Figure 4-15 Using the USE_LOC Constraint to Control RLOC
Application on U_Sets

Design-top

X4303

G

A

U_SET = bar
RLOC = R0C0C

D

E
U_SET = bar

RLOC = R2C0

B

U_SET = bar
RLOC = R1C0

USE_RLOC = FALSE

F
U_SET = bar

USE_RLOC = FALSE

U_SET = bar

RLOC = R3C0

propagate USE_RLOC
and remove set parameters
below

Parameters
removed

Parameters
removed
4-92 Xilinx Development System

Attributes, Constraints, and Carry Logic
While propagating the USE_RLOC constraint, XNFMerge ignores
underlying USE_RLOC constraints if it encounters elements higher
in the hierarchy that already have USE_RLOC constraints. For
example, if XNFMerge encounters an underlying element with a
USE_RLOC=true constraint during the propagation of a
USE_RLOC=false constraint, it ignores the newly encountered True
constraint.

Xilinx Macros
Xilinx-supplied flip-flop macros include an RLOC_R0C0 constraint
on the underlying primitive, which allows you to attach an RLOC to
the macro symbol. This symbol links the underlying primitive to the
set that contains the macro symbol. Simply attach an appropriate
RLOC constraint to the instantiation of the actual Xilinx flip-flop
macro. XNFMerge adds the RLOC value that you specified to the
underlying primitive so that it has the desired value.

Figure 4-16 Typical Use of a Xilinx Macro

FD

RLOC=R0C0

QCE

D
R
C

FD

RLOC = R0C0 (+R1C1)

= > RLOC = R1C1

RLOC = R1C1

Inst 1

Propagate R1C1

FDRE Macro

F
D

R
E

X4304
Libraries Guide 4-93

Libraries Guide
For example, in Figure 4-16, the RLOC = R1C1 constraint is attached
to the instantiation (Inst1) of the FDRE macro. It is added to the R0C0
value of the RLOC constraint on the flip-flop within the macro to
obtain the new RLOC values.

If you do not put an RLOC constraint on the flip-flop macro symbol,
the underlying primitive symbol is the lone member of a set.
XNFMerge removes RLOC constraints from a primitive that is the
only member of a set or from a macro that has no RLOC objects below
it.

LOC Propagation Through Design Flattening
XNFMerge continues to propagate LOC constraints down the design
hierarchy. It adds this constraint to appropriate objects that are not
members of a set. While RLOC constraint propagation is limited to
sets, the LOC constraint is applied from its start point all the way
down the hierarchy.

Summary
Table 4-15 summarizes the RLOC set types and the constraints that
identify members of these sets.

Table 4-15 Summary of Set Types

Type Definition Naming Linkage Modification

Set A set is a collec-
tion of elements
to which rela-
tive location
constraints are
applied.

U_SET=
name

All elements
with the same
user-tagged
U_SET con-
straint value are
members of the
same U_SET set.

The name of the
set is the same as
the user-defined
name without
any hierarchical
qualification.

U_SET links ele-
ments to all other
elements with the
same value for the
U_SET constraint.

U_SET is modi-
fied by applying
RLOC_ORIGIN
or RLOC_RANGE
constraints on, at
most, one of the
U_SET constraint-
tagged elements.
4-94 Xilinx Development System

Attributes, Constraints, and Carry Logic
H_SET
(implicit
through
hier-
archy) is
not avail-
able as a
constraint
that you
can attach
to sym-
bols.

RLOC on the
node. Any other
constraint
removes a node
from the H_SET
set.

The lowest com-
mon ancestor of
the members
defines the start
of the set. The
name is the hier-
archically quali-
fied name of the
start followed by
the base name,
“hset.”

H_SET links ele-
ments to other ele-
ments at the same
node that do not
have other con-
straints. It links
down to all ele-
ments that have
RLOC constraints
and no other con-
straints. Similarly,
it links to other
elements up the
hierarchy that
have RLOC con-
straints but no
other constraints.

H_SET is modified
by applying
RLOC_ORIGIN
and
RLOC_RANGE at
the start of the set:
the lowest com-
mon ancestor of
all the elements of
the set.

HU_SET=
name

All elements
with the same
hierarchically
qualified name
are members of
the same set.

The lowest com-
mon ancestor of
the members is
prefixed to the
user-defined
name to obtain
the name of the
set.

HU_SET links to
other elements at
the same node
with the same
HU_SET con-
straint value. It
links to elements
with RLOC con-
straints below.

The start of the set
is made up of the
elements on the
same node that are
tagged with the
same HU_SET
constraint value.
An
RLOC_ORIGIN
or an
RLOC_RANGE
can be applied to,
at most, one of
these start ele-
ments of an
HU_SET set.

Type Definition Naming Linkage Modification
Libraries Guide 4-95

Libraries Guide
Relationally Placed Macros (RPMs)
The Xilinx libraries contain three types of elements.

● Primitives are basic logical elements such as AND2 and OR2
gates.

● Soft macros are schematics made by combining primitives and
sometimes other soft macros.

● Relationally placed macros (RPMs) are soft macros that contain
relative location constraint (RLOC) information, carry logic sym-
bols, and FMAP/HMAP symbols, where appropriate. RPMs are
currently only available in the XC4000 library.

Designs created with RPMs can be functionally simulated.

The HM2RPM utility translates old custom hard macro files into RPM
files. If you created your own hard macro files, you must run
HM2RPM on each hard macro file and place the new XNF file in your
current working directory or in a search directory specified for
XNFMerge. For instructions on using the HM2RPM utility, see the
“HM2RPM” chapter of the XACT Reference Guide.

RPMs can, but need not, include all the following elements:

● FMAPs, HMAPs, and CLB-grouping attributes to control map-
ping. FMAPs and HMAPs have pin-lock attributes, which allow
better control over routing. FMAPs and HMAPs are described in
the “Mapping Constraints” section of the “PPR Placement Con-
straints” section earlier in this chapter.

● Relative location (RLOC) constraints to provide placement struc-
ture. They allow positioning of elements relative to each other.
They are discussed in the “Relative Location Constraints” section
earlier in this chapter.

● Carry logic primitive symbols. Carry logic is discussed in the next
section, “Carry Logic in XC4000 LCAs.”

These elements allow you to access carry logic easily and to control
mapping and block placement. Because RPMs are a super-set of ordi-
nary macros, you can design them in the normal design entry envi-
ronment. They can include any primitive logic. The macro logic is
fully visible to you and can be easily back-annotated with timing
information.
4-96 Xilinx Development System

Attributes, Constraints, and Carry Logic
RPMs do not include routing capability. XACT-Performance specifi-
cations address timing issues more effectively.

Carry Logic in XC4000 LCAs
This section describes the use of carry logic in XC4000 CLBs and lists
all the carry logic configuration mnemonics available. The XC4000
carry logic modes are shown in the following figure.

Figure 4-17 XC4000 Carry Logic Modes

ADD-F-CI

CY4_01

 X4460

ADD-FG-CI

CY4_02

 X4461

ADD-G-F1

CY4_03

 X4462

ADD-G-CI

CY4_04

 X4463

ADD-G-F3

CY4_05

 X4464

SUB-F-CI

CY4_06

 X4465

SUB-FG-CI

CY4_07

 X4466

SUB-G-1

CY4_08

 X4467

SUB-G-CI

CY4_09

 X4468

SUB-G-F1

CY4_10

 X4469

SUB-G-F3

CY4_11

 X4470

ADDSUB-F-CI

CY4_12

 X4471

ADDSUB-FG-CI

CY4_13

 X4472

ADDSUB-G-F1

CY4_14

 X4473

ADDSUB-G-CI

CY4_15

 X4474

ADDSUB-G-F3-

CY4_16

 X4475

INC-F-CI

CY4_17

 X4476

INC-FG-CI

CY4_18

 X4477

INC-FG-1

CY4_19

 X4478

INC-G-1

CY4_20

 X4479

INC-G-F1

CY4_21

 X4480

INC-G-CI

CY4_22

 X4481

INC-G-F3-

CY4_23

 X4482

DEC-F-CI

CY4_24

 X4483

DEC-FG-CI

CY4_25

 X4484

DEC-FG-0

CY4_26

 X4485

DEC-G-0

CY4_27

 X4486

DEC-G-F1

CY4_28

 X4487

DEC-G-CI

CY4_29

 X4488

DEC-G-F3-

CY4_30

 X4489

INCDEC-FG-CI

CY4_32

 X4491

INCDEC-FG-1

CY4_33

 X4492

INCDEC-G-0

CY4_34

 X4493

INCDEC-G-F1

CY4_35

 X4494

INCDEC-G-CI

CY4_36

 X4495

FORCE-0

CY4_37

 X4496

FORCE-1

CY4_38

 X4497

FORCE-F1

CY4_39

 X4498

FORCE-CI

CY4_40

 X4499

FORCE-F3-

CY4_41

 X4500

EXAMINE-CI

CY4_42

 X4501

INCDEC-F-CI

CY4_31

 X4490
Libraries Guide 4-97

Libraries Guide
The XC4000 CLB contains a feature called dedicated carry logic. This
carry logic is independent of the function generators, although it
shares some of the same input pins. Dedicated interconnect propa-
gates carry signals through a column of CLBs. The carry logic in each
CLB can implement approximately 40 different functions, which you
can use to build faster and more efficient adders, subtracters,
counters, comparators, and so forth. Figure 4-18 shows the carry logic
in an XC4000 CLB.

Figure 4-18 XC4000 CLB Carry Logic

Primitives and Symbols
The schematic capture libraries that Xilinx supports contain one
generic carry logic primitive and several specific carry mode primi-
tive symbols. The generic carry logic primitive represents the
complete carry logic in a single CLB. The carry mode primitive
symbols represent unique carry modes, such as ADD-FG-CI. To
specify the particular mode that you wish, connect a carry mode
symbol to the C0-C7 mode pins of the carry logic symbol. It is the pair
of symbols that defines the specific kind of carry logic desired.

X4592

G4

M

G3
G

G2

G1

M

M

F4F4

G1

G2

G3

G4 COUT

CIN

F3

F2

F1

F3
F

F2

F1

F3

F2

DOWN

UP

F
Carry
LogicF1

CIN

G4

Configuration Memory Bit

G1 G
Carry
LogicF3

COUT0

COUT1

COUT0

M

M

4-98 Xilinx Development System

Attributes, Constraints, and Carry Logic
A carry logic symbol requires you to place either a LOC or an RLOC
constraint on it. If a LOC constraint is used, it must be a single LOC=
constraint; it cannot be an area or prohibit LOC constraint or use
wildcards in its syntax.

Table 4-16 lists the carry mode names and symbols.

Table 4-16 Carry Modes

Carry Mode Name Symbol

ADD-F-CI cy4_01

ADD-FG-CI cy4_02

ADD-G-F1 cy4_03

ADD-G-CI cy4_04

ADD-G-F3 cy4_05

ADDSUB-F-CI cy4_12

ADDSUB-FG-CI cy4_13

ADDSUB-G-F1 cy4_14

ADDSUB-G-CI cy4_15

ADDSUB-G-F3 cy4_16

FORCE-0 cy4_37

FORCE-1 cy4_38

FORCE-F1 cy4_39

FORCE-CI cy4_40

FORCE-F3 cy4_41

EXAMINE-CI cy4_42

DEC-F-CI cy4_24

DEC-FG-CI cy4_25

DEC-FG-0 cy4_26

DEC-G-0 cy4_27

DEC-G-F1 cy4_28

DEC-G-CI cy4_29

DEC-G-F3- cy4_30
Libraries Guide 4-99

Libraries Guide
cy4 and cy4_n are not supported by XC7000.

Carry Logic Handling in XNFPrep
The XNFPrep program checks for legal connections between carry
logic symbols and also performs simple trimming on some carry
modes. CY4 symbols might be trimmed as follows:

● If neither the COUT0 pin nor the COUT pin is used, the CY4 sym-
bol is removed from the design. However, if the signal on the CIN
pin connects to other logic, XNFPrep converts the CY4 to the
EXAMINE-CI mode. An EXAMINE-CI mode CY4 is trimmed
only if there is no other load on the signal on the CIN pin.

INC-F-CI cy4_17

INC-FG-CI cy4_18

INC-FG-1 cy4_19

INC-G-1 cy4_20

INC-G-F1 cy4_21

INC-G-CI cy4_22

INC-G-F3- cy4_23

SUB-F-CI cy4_06

SUB-FG-CI cy4_07

SUB-G-1 cy4_08

SUB-G-F1 cy4_10

SUB-G-CI cy4_09

SUB-G-F3 cy4_11

INCDEC-F-CI cy4_31

INCDEC-FG-CI cy4_32

INCDEC-FG-1 cy4_33

INCDEC-G-0 cy4_34

INCDEC-G-F1 cy4_35

INCDEC-G-CI cy4_36

Carry Mode Name Symbol
4-100 Xilinx Development System

Attributes, Constraints, and Carry Logic
● If the COUT0 pin is used but the COUT pin is not, XNFPrep
attempts to convert the CY4 symbol to use a 1-bit equivalent
mode. That is, if the mode was originally of the form -FG-CI, it
converts it to the equivalent -F-CI mode, allowing signals to be
removed from the CY4 A1 and B1 operand inputs, which may
save routing resources.

● If the specified mode does not require any of the A0, B0, A1, B1,
and/or ADD CY4 inputs, XNFPrep removes the signals from
these pins, which may save routing resources.

Carry Mode Configuration Mnemonics
The first step in configuring a CLB for carry logic is to choose the
appropriate carry mode configuration mnemonic. Each of the 42
possible configurations of the carry logic has been assigned a three-
part mnemonic code, for example:

ADD-FG-CI

● The first field (ADD) describes the operation performed in the
CLB function generators, in this case, a binary addition. By impli-
cation, the carry logic in this CLB calculates the carry for this addi-
tion.

● The second field (FG) indicates which of the two function genera-
tors is used in the specified operation, in this case, both F and G.

● The last field (CI) specifies the source of the carry-in signal to the
CLB, in this case, the CIN pin itself.

Consider another example:

INCDEC-G-F1

This mnemonic describes a CLB in which the G function generator
performs an increment/decrement function. The carry-in to this CLB
is sourced by the F1 pin.

All available carry mode configuration mnemonics are listed in the
next section, “Carry Logic Configurations.”

To determine which carry mode primitive corresponds to which
mnemonic, see Table 4-16.
Libraries Guide 4-101

Libraries Guide
Carry Logic Configurations
This section lists and describes all the available carry mode configura-
tion mnemonics. The following information is given for each
mnemonic:

● The name of the mode mnemonic

● A brief description of the CLB function

● The COUT0 and COUT1 equations performed by the carry logic

● Default equations for the F and G function generators

● Default assignments for the F4, G2, and G3 inputs

The default F and G functions and default F4, G2, and G3 inputs are
based on the generic CLB function described. You can change these
defaults as required, allowing for features such as parallel enable or
synchronous reset. However, if these defaults are changed, the CLB
may no longer function as the mnemonic describes.

The COUT0 and COUT1 equations are absolutely determined by the
carry mode configuration mnemonic. The only way to change these
carry logic outputs is by selecting a different mnemonic.

ADD-F-CI
The ADD-F-CI configuration performs a 1-bit addition of A+B in the
F function generator, with the A and B inputs on the F1 and F2 pins.
The carry signal enters on the CIN pin, propagates through the F
carry logic, and exits on the COUT pin. This configuration can be
used as the MSB of an adder, with the G function generator accessing
the carry-out signal or calculating a twos-complement overflow.

F=(F1@F2)@F4

COUT0=(F1*F2) + CIN*(F1+F2)

G=

COUT1=COUT0

F4=CIN

G2=G2I (COUT0 for overflow, OFL=G2@G3, or for carry-out,
CO=G2)

G3=G3I (CIN for overflow, OFL=G2@G3)
4-102 Xilinx Development System

Attributes, Constraints, and Carry Logic
ADD-FG-CI
The ADD-FG-CI configuration performs a 2-bit addition of A+B in
both the F and G function generators, with the lower-order A and B
inputs on the F1 and F2 pins, and the higher-order A and B inputs on
the G1 and G4 pins. The carry signal enters on the CIN pin, propa-
gates through the F and G carry logic, and exits on the COUT pin.
This configuration comprises the middle bits of an adder.

F=(F1@F2)@F4

COUT0=(F1*F2) + CIN*(F1+F2)

G=(G4@G1)@G2

COUT1=(G4*G1) + COUT0*(G4+G1)

F4=CIN

G2=COUT0

G3=G3I

ADD-G-F1
The ADD-G-F1 configuration performs a 1-bit addition of A+B in the
G function generator, with the A and B inputs on the G1 and G4 pins.
The carry signal enters on the F1 pin, propagates through the G carry
logic, and exits on the COUT pin. This configuration comprises the
LSB of an adder, where the carry-in signal is routed to F1. The F func-
tion generator is not used.

F=

COUT0=F1

G=(G4@G1)@G2

COUT1=(G4*G1) + COUT0*(G4+G1)

F4=F4I

G2=COUT0

G3=G3I
Libraries Guide 4-103

Libraries Guide
ADD-G-CI
The ADD-G-CI configuration performs a 1-bit addition of A+B in the
G function generator, with the A and B inputs on the G1 and G4 pins.
The carry signal enters on the CIN pin, propagates through the G
carry logic, and exits on the COUT pin. This configuration is for the
middle bit of an adder, where the F function generator is reserved for
another purpose.

F=

COUT0=CIN

G=(G4@G1)@G2

COUT1=(G4*G1) + COUT0*(G4+G1)

F4=F4I

G2=COUT0

G3=G3I

ADD-G-F3-
The ADD-G-F3- configuration performs a 1-bit addition of A+B in the
G function generator, with the A and B inputs on the G1 and G4 pins.
The carry signal enters on the F3 pin, is inverted by the F carry logic,
propagates through the G carry logic, and exits on the COUT pin.
This configuration comprises the LSB of an adder, where the inverted
carry-in signal is routed to F3. The F function generator is not used.

F=

COUT0=~F3

G=(G4@G1)@G2

COUT1=(G4*G1) + COUT0*(G4+G1)

F4=F4I

G2=COUT0

G3=G3I
4-104 Xilinx Development System

Attributes, Constraints, and Carry Logic
SUB-F-CI
The SUB-F-CI configuration performs a 1-bit twos-complement
subtraction of A-B in the F function generator, with the A input on F1
and the B input on F2. The carry signal enters on the CIN pin, propa-
gates through the F carry logic, and exits on the COUT pin. This
configuration can be used as the MSB of a subtracter, with the G func-
tion generator accessing the carry-out signal or calculating a twos-
complement overflow.

F=(F1@F2)@~F4=~(F1@F2@F4)

COUT0=(F1*~F2) + CIN*(F1+~F2)

G=

COUT1=COUT0

F4=CIN

G2=G2I (COUT0 for overflow, OFL=G2@G3, or for carry-out,
CO=G2)

G3=G3I (CIN for overflow, OFL=G2@G3)

SUB-FG-CI
The SUB-FG-CI configuration performs a 2-bit twos-complement
subtraction of A-B in both the F and G function generators. For the
lower bit, the A input is on F1 and the B input is on F2. For the upper
bit, the A input is on G4 and the B input is on G1. The carry signal
enters on the CIN pin, propagates through the F and G carry logic,
and exits on the COUT pin. This configuration comprises the middle
bits of a subtracter.

F=(F1@F2)@~F4=~(F1@F2@F4)

COUT0=(F1*~F2) + CIN*(F1+~F2)

G=(G4@G1)@~G2=~(G4@G1@G2)

COUT1=(G4*~G1) +COUT0*(G4+~G1)

F4=CIN

G2=COUT0

G3=G3I
Libraries Guide 4-105

Libraries Guide
SUB-G-1
The SUB-G-1 configuration performs a 1-bit twos-complement
subtraction of A-B in the G function generator, with the A input on
G4 and the B input on G1. The carry-in is tied High (no borrow). The
carry signal propagates through the G carry logic and exits on the
COUT pin. This configuration comprises the LSB of a subtracter with
no carry-in. The F function generator is not used.

F=

COUT0=1

G=(G4@G1)

COUT1=(G4+~G1)

F4=F4I

G2=G2I

G3=G3I

SUB-G-F1
The SUB-G-F1 configuration performs a 1-bit twos-complement
subtraction of A-B in the G function generator, with the A input on
G4 and the B input on G1. The carry signal enters on the F1 pin, prop-
agates through the G carry logic, and exits on the COUT pin. This
configuration comprises the LSB of a subtracter, where the carry-in
signal is routed to F1. The F function generator is not used.

F=

COUT0=F1

G=(G4@G1)@~G2=~(G4@G1@G2)

COUT1=(G4*~G1) + COUT0*(G4+~G1)

F4=F4I

G2=COUT0

G3=G3I
4-106 Xilinx Development System

Attributes, Constraints, and Carry Logic
SUB-G-CI
The SUB-G-CI configuration performs a 1-bit twos-complement
subtraction of A-B in the G function generator, with the A input on
G4 and the B input on G1. The carry signal enters on the CIN pin,
propagates through the G carry logic, and exits on the COUT pin.
This configuration is for the middle bit of a subtracter, where the F
function generator is reserved for another purpose.

F=

COUT0=CIN

G=(G4@G1)@~G2=~(G4@G1@G2)

COUT1=(G4*~G1) + COUT0*(G4+~G1)

F4=F4I

G2=COUT0

G3=G3I

SUB-G-F3-
The SUB-G-F3- configuration performs a 1-bit twos-complement
subtraction of A-B in the G function generator, with the A input on
G4 and the B input on G1. The carry signal enters on the F3 pin, is
inverted by the F carry logic, propagates through the G carry logic,
and exits on the COUT pin. This configuration comprises the LSB of a
subtracter, where the inverted carry-in signal is routed to F3. The F
function generator is not used.

F=

COUT0=~F3

G=(G4@G1)@~G2=~(G4@G1@G2)

COUT1=(G4*~G1) + COUT0*(G4+~G1)

F4=F4I

G2=COUT0

G3=G3I
Libraries Guide 4-107

Libraries Guide
ADDSUB-F-CI
The ADDSUB-F-C1 configuration performs a 1-bit twos-complement
add/subtract of A+B in the F function generator, with the A input on
F1 and the B input on F2. The carry signal enters on the CIN pin,
propagates through the F carry logic, and exits on the COUT pin. The
F3 input indicates add (F3=1) or subtract (F3=0). This configuration
can be used as the MSB of an adder/subtracter, with the G function
generator accessing the carry-out signal or calculating a twos-comple-
ment overflow.

F=(F1@F2)@F4@~F3=~(F1@F2@F4@F3)

COUT0=F3*((F1*F2) + CIN*(F1+F2)) + ~F3*((F1*~F2) +
CIN*(F1+~F2))

G=

COUT1=COUT0

F4=CIN

G2=G2I (COUT0 for overflow, OFL=G2@G3, or for carry-out,
CO=G2)

G3=G3I (CIN for overflow, OFL=G2@G3)

ADDSUB-FG-CI
The ADDSUB-FG-CI configuration performs a 2-bit twos- comple-
ment add/subtract of A+B in both the F and G function generators.
For the lower bit, the A input is on F1 and the B input is on F2. For the
upper bit, the A input is on G4 and the B input is on G1. The carry
signal enters on the CIN pin, propagates through the F and G carry
logic, and exits on the COUT pin. The F3 and G3 inputs indicate add
(F3=G3=1) or subtract (F3=G3=0): the add/subtract control signal
must be routed to both the F3 and G3 pins. This configuration
comprises the middle bits of an adder/subtracter.

F=(F1@F2)@F4@~F3=~(F1@F2@F4@F3)

COUT0=F3*((F1*F2) + CIN*(F1+F2)) + ~F3*((F1*~F2) +
CIN*(F1+~F2))

G=(G4@G1)@G2@~G3=~(G4@G1@G2@G3)
4-108 Xilinx Development System

Attributes, Constraints, and Carry Logic
COUT1=F3*((G4*G1)+COUT0*(G4+G1))+~F3*((G4*~G1)+COUT0*(G
4+~G1))

F4=CIN

G2=COUT0

G3=G3I

ADDSUB-G-F1
The ADDSUB-G-F1 configuration performs a 1-bit twos-complement
add/subtract of A+B in the G function generator, with the A input on
G4 and the B input on G1. The carry signal enters on the F1 pin, prop-
agates through the G carry logic, and exits on the COUT pin. The F3
and G3 inputs indicate add (F3=G3=1) or subtract (F3=G3=0): the
add/subtract control signal must be routed to both the F3 and G3
pins. This configuration comprises the LSB of an adder/subtracter,
where the carry-in signal is routed to F1. The F function generator is
not used.

F=

COUT0=F1

G=(G4@G1)@G2@~G3=~(G4@G1@G2@G3)

COUT1=F3*((G4*G1)+COUT0*(G4+G1))+~F3*((G4*~G1)+COUT0*(G
4+~G1))

F4=F4I

G2=COUT0

G3=G3I
Libraries Guide 4-109

Libraries Guide
ADDSUB-G-CI
The ADDSUB-G-CI configuration performs a 1-bit twos-complement
add/subtract of A+B in the G function generator, with the A input on
G4 and the B input on G1. The carry signal enters on the CIN pin,
propagates through the G carry logic, and exits on the COUT pin. The
F3 and G3 inputs indicate add (F3=G3=1) or subtract (F3=G3=0): the
add/subtract control signal must be routed to both the F3 and G3
pins. This configuration is for the middle bit of an adder/subtracter,
where the F function generator is reserved for another purpose.

F=

COUT0=CIN

G=(G4@G1)@G2@~G3=~(G4@G1@G2@G3)

COUT1=F3*((G4*G1)+COUT0*(G4+G1))+~F3*((G4*~G1)+COUT0*(G
4+~G1))

F4=F4I

G2=COUT0

G3=G3I

ADDSUB-G-F3-
The ADDSUB-G-F3 configuration performs a 1-bit twos-complement
add/subtract of A+B in the G function generator, with the A input on
G4 and the B input on G1. The carry signal enters on the F3 pin, is
inverted by the F carry logic, propagates through the G carry logic,
and exits on the COUT pin. Because the F3 input also indicates add
(F3=1) or subtract (F3=0), the carry-in is always null (0 for add, 1 for
subtract). This configuration comprises the LSB of an adder/
subtracter with no carry-in. The F function generator is not used.

F=

COUT0=~F3

G=(G4@G1)

COUT1=F3*G4*G1 + ~F3(G4+~G1)

F4=F4I

G2=COUT0

G3=G3I
4-110 Xilinx Development System

Attributes, Constraints, and Carry Logic
INC-F-CI
The INC-F-CI configuration performs a 1-bit increment in the F func-
tion generator, with the input on the F1 pin. The carry signal enters
on the CIN pin, propagates through the F carry logic, and exits on the
COUT pin. The G function generator can be used to output the
terminal count of a counter.

F=(F1@F4)

COUT0=CIN*F1

G=

COUT1=COUT0

F4=CIN

G2=G2I (COUT0 for terminal count, TC=G2)

G3=G31

INC-FG-CI
The INC-FG-CI configuration performs a 2-bit increment in both the
F and G function generators, with the lower-order input on the F1 pin
and the higher-order input on the G4 pin. The carry signal enters on
the CIN pin, propagates through the F and G carry logic, and exits on
the COUT pin. This configuration comprises the middle bits of an
incrementer.

F=(F1@F4)

COUT0=CIN*F1

G=(G4@G2)

COUT1=COUT0*G4

F4=CIN

G2=COUT0

G3=G3I
Libraries Guide 4-111

Libraries Guide
INC-G-1
The INC-G-1 configuration performs a 1-bit increment in the G func-
tion generator, with the input on the G4 pin. The carry-in is tied High.
The carry signal propagates through the G carry logic and exits on the
COUT pin. This configuration comprises the LSB of an incrementer
that is always enabled. The F function generator is not used. This
configuration is identical to DEC-G-0, since the LSB of an incrementer
is identical to the LSB of a decrementer.

F=

COUT0=0

G=~(G4)

COUT1=G4

F4=F4I

G2=G2I

G3=G3I

INC-G-F1
The INC-G-F1 configuration performs a 1-bit increment in the G func-
tion generator, with the input on the G4 pin. The carry signal enters
on the F1 pin, propagates through the G carry logic, and exits on the
COUT pin. This configuration comprises the LSB of an incrementer
where F1 is an active-High enable. The F function generator is not
used.

F=

COUT0=F1

G=(G4@G2)

COUT1=COUT0*G4

F4=F4I

G2=COUT0

G3=G3I
4-112 Xilinx Development System

Attributes, Constraints, and Carry Logic
INC-G-CI
The INC-G-CI configuration performs a 1-bit increment in the G
function generator, with the input on the G4 pin. The carry signal
enters on the CIN pin, propagates through the G carry logic, and exits
on the COUT pin. This configuration is for the middle bit of an incre-
menter where the F function generator is reserved for another
purpose.

F=

COUT0=CIN

G=(G4@G2)

COUT1=COUT0*G4

F4=F4I

G2=COUT0

G3=G3I

INC-G-F3-
The INC-G-F3- configuration performs a 1-bit increment in the G
function generator, with the input on the G4 pin. The carry signal
enters on the F3 pin, is inverted in the F carry logic, propagates
through the G carry logic, and exits on the COUT pin. This configura-
tion comprises the LSB of an incrementer where F3 is an active-Low
enable. The F function generator is not used.

F=

COUT0=~F3

G=(G4@G2)

COUT1=COUT0*G4=~F3*G4

F4=F4I

G2=COUT0

G3=G3I
Libraries Guide 4-113

Libraries Guide
INC-FG-1
The INC-FG-1 configuration performs a 2-bit increment in both the F
and G function generator, with the lower-order A input on the F1 pin
and the higher-order A input on the G4 pin. The carry-in is tied High.
The carry signal propagates through the F and G carry logic and exits
on the COUT pin. This configuration comprises the two least signifi-
cant bits of an incrementer that is always enabled.

F=~(F1)

COUT0=F1

G=G2@G4

COUT1=COUT0*G4

F4=F4I or CIN

G2=COUT0

G3=G3I or CIN

DEC-F-CI
The DEC-F-CI configuration performs a 1-bit decrement in the F func-
tion generator, with the input on the F1 pin. The carry signal enters
on the CIN pin, propagates through the F carry logic, and exits on the
COUT pin. The G function generator can be used to output the
terminal count of a counter.

F=~(F1@F4)

COUT0=F1+CIN*~F1

G=

COUT1=COUT0

F4=CIN

G2=G2I (COUT0 for terminal count, TC=G2)

G3=G31
4-114 Xilinx Development System

Attributes, Constraints, and Carry Logic
DEC-FG-CI
The DEC-FG-CI configuration performs a 2-bit decrement in both the
F and G function generators, with the lower-order input on the F1 pin
and the higher-order input on the G4 pin. The carry signal enters on
the CIN pin, propagates through the F and G carry logic, and exits on
the COUT pin. This configuration comprises the middle bits of a
decrementer.

F=~(F1@F4)

COUT0=F1+CIN*~F1

G=~(G4@G2)

COUT1=G4+COUT0*~G4

F4=CIN

G2=COUT0

G3=G3I

DEC-G-0
The DEC-G-0 configuration performs a 1-bit decrement in the G func-
tion generator, with the input on the G4 pin. The carry-in is tied High
(no borrow). The carry signal propagates through the G carry logic
and exits on the COUT pin. This configuration comprises the LSB of a
decrementer that is always enabled. The F function generator is not
used. This configuration is identical to INC-G-1, since the LSB of an
incrementer is identical to the LSB of a decrementer.

F=

COUT0=0

G=~(G4)

COUT1=G4

F4=F4I

G2=G2I

G3=G3I
Libraries Guide 4-115

Libraries Guide
DEC-G-F1
The DEC-G-F1 configuration performs a 1-bit decrement in the G
function generator, with the input on the G4 pin. The carry signal
enters on the F1 pin, propagates through the G carry logic, and exits
on the COUT pin. This configuration comprises the LSB of a decre-
menter where F1 is an active-Low enable. The F function generator is
not used.

F=

COUT0=F1

G=~(G4@G2)

COUT1=COUT0 + G4

F4=F4I

G2=COUT0

G3=G3I

DEC-G-CI
The DEC-G-CI configuration performs a 1-bit decrement in the G
function generator, with the input on the G4 pin. The carry signal
enters on the CIN pin, propagates through the G carry logic, and exits
on the COUT pin. This configuration is for the middle bit of a decre-
menter, where the F function generator is reserved for another
purpose.

F=

COUT0=CIN

G=~(G4@G2)

COUT1=G4+COUT0*~G4

F4=F4I

G2=COUT0

G3=G3I
4-116 Xilinx Development System

Attributes, Constraints, and Carry Logic
DEC-G-F3-
The DEC-G-F3- configuration performs a 1-bit decrement in the G
function generator, with the input on the G4 pin. The carry signal
enters on the F3 pin, is inverted in the F carry logic, propagates
through the G carry logic, and exits on the COUT pin. This configura-
tion comprises the LSB of a decrementer, where F3 is an active-High
enable. The F function generator is not used.

F=

COUT0=~F3

G=~(G4@G2)

COUT1=COUT0 + G4

F4=F4I

G2=COUT0

G3=G3I

DEC-FG-0
The DEC-FG-0 configuration performs a 2-bit decrement in both the F
and G function generator, with the lower-order input on the F1 pin
and the higher order input on the G4 pin. The carry-in is tied Low.
The carry signal propagates through the F and G carry logic and exits
on the COUT pin. This configuration comprises the two least signifi-
cant bits of a decrementer that is always enabled.

F=~(F1)

COUT0=F1

G=~(G4@G2)

COUT=COUT1=(COUT0*~G4) + G4

F4=F4I

G2=COUT0

G3=G3I
Libraries Guide 4-117

Libraries Guide
INCDEC-F-CI
The INCDEC-F-CI configuration performs a 1-bit increment/decre-
ment in the F function generator, with the input on the F1 pin. The
carry signal enters on the CIN pin, propagates through the F carry
logic, and exits on the COUT pin. The F3 input indicates increment
(F3=1) or decrement (F3=0). The G function generator can be used to
output the terminal count of a counter.

F=(F1@F4)@~F3

COUT0=~F3*(F1+ CIN) + F3*F1*CIN

G=

COUT1=COUT0

F4=CIN

G2=G2I (COUT0 for terminal count, TC=G2)

G3=G31

INCDEC-FG-CI
The INCDEC-FG-CI configuration performs a 2-bit increment/decre-
ment in both the F and G function generators, with the lower-order
input on the F1 pin and the higher-order input on the G4 pin. The
carry signal enters on the CIN pin, propagates through the F and G
carry logic, and exits on the COUT pin. The F3 and G3 inputs indicate
increment (F3=G3=1) or decrement (F3=G3=0): the increment/decre-
ment control signal must be routed to both the F3 and G3 pins. This
configuration comprises the middle bits of an incrementer/decre-
menter.

F=(F1@F4)@~F3

COUT0=~F3*(F1+ CIN) + F3*F1*CIN

G=(G4@G2)@~G3

COUT1=~F3*(G4+ COUT0) + F3*G4*COUT0

F4=CIN

G2=COUT0

G3=G3I
4-118 Xilinx Development System

Attributes, Constraints, and Carry Logic
INCDEC-G-0
The INCDEC-G-0 configuration performs a 1-bit increment/decre-
ment in the G function generator, with the input on the G4 pin. The
carry-in is tied High. The carry signal propagates through the G carry
logic and exits on the COUT pin. This configuration comprises the
LSB of an incrementer/decrementer that is always enabled. The F
function generator is not used. F3 is not required for increment/
decrement control, since the LSB of an incrementer is identical to the
LSB of a decrementer; this configuration is identical to INC-G-1 and
DEC-G-0.

F=

COUT0=0

G=~(G4)

COUT1=G4

F4=F4I

G2=G2I

G3=G3I

INCDEC-G-F1
The INCDEC-G-F1 configuration performs a 1-bit increment/decre-
ment in the G function generator, with the input on the G4 pin. The
carry signal enters on the F1 pin, propagates through the G carry
logic, and exits on the COUT pin. This configuration comprises the
LSB of an incrementer/decrementer where the carry-in signal is
routed to F1. The carry-in is active-High for an increment operation
and active-Low for a decrement operation. The F function generator
is not used. The F3 and G3 inputs indicate increment (F3=G3=1) or
decrement (F3=G3=0): the increment/decrement control signal must
be routed to both the F3 and G3 pins.

F=

COUT0=F1

G=(G4@G2)@~G3

COUT1=F3*(G4*COUT0) + ~F3*(G4+COUT0)

F4=F4I

G2=COUT0

G3=G3I
Libraries Guide 4-119

Libraries Guide
4-120 Xilinx Development System

INCDEC-G-CI
The INCDEC-G-CI configuration performs a 1-bit increment/decre-
ment in the G function generator, with the input on the G4 pin. The
carry signal enters on the CIN pin, propagates through the G carry
logic, and exits on the COUT pin. The F3 and G3 inputs indicate
increment (F3=G3=1) or decrement (F3=G3=0): the increment/decre-
ment control signal must be routed to both the F3 and G3 pins. This
configuration is for the middle bit of an incrementer/decrementer,
where the F function generator is reserved for another purpose,
although the F3 pin is used by the carry logic.

F=

COUT0=CIN

G=(G4@G2)@~G3

COUT1=~F3*(G4+ COUT0) + F3*G4*COUT0

F4=F4I

G2=COUT0

G3=G3I

INCDEC-FG-1
The INCDEC-FG-1 configuration performs a 2-bit increment/decre-
ment in both the F and G function generator, with the lower- order
input on the F1 pin and the higher-order input on the G4 pin. The F3
and G3 inputs indicate increment (F3=G3=1) or decrement
(F3=G3=0): the increment/decrement control signal must be routed
to both the F3 and G3 pins. The carry-in is always active (High in
increment mode and Low in decrement mode). The carry signal prop-
agates through the F and G carry logic and exits on the COUT pin.
This configuration comprises the two least significant bits of an incre-
menter/decrementer that is always enabled.

F=~(F1)

COUT0=F1

G=(G2@G4)@~G3

COUT=COUT1=~F3*((COUT0*~G4)+G4) + F3*(G4*COUT0)

F4=F4I

G2=COUT0

G3=G3I

Attributes, Constraints, and Carry Logic
FORCE-0
The FORCE-0 configuration forces the carry-out signal on the COUT
pin to be 0.

COUT0=0

COUT1=0

FORCE-1
The FORCE-1 configuration forces the carry-out signal on the COUT
pin to be 1.

COUT0=1

COUT1=1

FORCE-F1
The FORCE-F1 configuration forces the signal on the F1 pin to pass
through to the COUT pin.

COUT0=F1

COUT1=COUT0=F1

FORCE-CI
The FORCE-CI configuration forces the signal on the CIN pin to pass
through to the COUT pin.

COUT0=CIN

COUT1=COUT0=CIN

FORCE-F3-
The FORCE-F3- configuration forces the signal on the F3 pin to pass
inverted to the COUT pin.

COUT0=~F3

COUT1=COUT0=~F3
Libraries Guide 4-121

Libraries Guide
EXAMINE-CI
The EXAMINE-CI configuration allows the carry signal on the CIN
pin to be used in the F or G function generators. This configuration
forces the signal on the CIN pin to pass through to the COUT pin and
is equivalent to the FORCE-CI configuration. EXAMINE-CI is
provided for CLBs in which the carry logic is unused but the CIN
signal is required.

COUT0=CIN

COUT1=COUT0=CIN
4-122 Xilinx Development System

Index

A
ACC, 4-33
ACLK, 4-19, 4-27

BPAD, 4-5
BUFE, 4-15
BUFGP, 4-19, 4-27, 4-54, 4-70, 4-71
Libraries Guide — 0401410 01 i

ADD, 4-33
ADD-F-CI, 4-102
ADD-FG-CI, 4-103
ADD-G-CI, 4-104
ADD-G-F1, 4-103
ADD-G-F3-, 4-104
ADDSUB-F-C1, 4-108
ADDSUB-FG-CI, 4-108
ADDSUB-G-CI, 4-110
ADDSUB-G-F1, 4-109
ADDSUB-G-F3, 4-110
ADSU, 4-33
APR, 4-34

B
BASE attribute

architectures, 4-2
purpose, 4-2
syntax, 4-4
XC2000 modes, 4-2
XC3000 modes, 4-2

BLKNM attribute, 4-4, 4-47
architectures, 4-4
Place Block constraint, 4-49
purpose, 4-4
symbols, 4-5
syntax, 4-6, 4-46

Boolean minimization, 4-31
Boolean operators

XC2000, 4-12
XC3000, 4-12

BUFGS, 4-19, 4-27, 4-54, 4-70
BUFT, 4-20, 4-67

constraints, 4-67
LOC placement examples, 4-26
placement constraint syntax, 4-52, 4-54
use with BLKNM attribute, 4-5
use with DECODE attribute, 4-11
use with DOUBLE attribute, 4-12
use with HBLKNM attribute, 4-16
use with LOC constraint, 4-19, 4-21, 4-
72
use with net attributes, 4-33
use with RLOC constraint, 4-40, 4-72
use with RLOC_ORIGIN constraint, 4-
41, 4-86
use with RLOC_RANGE constraint, 4-
89

bus pad symbols, 4-21

C
C net attribute, 4-33
CAP attribute

architectures, 4-6
purpose, 4-6
symbols, 4-6
syntax, 4-7

capacitive mode, 4-6, 4-40
carry logic, 4-96, 4-97

carry mode configuration mnemonics,
4-101
carry mode names and symbols, 4-99

Libraries Guide
carry mode primitive symbols, 4-98
handling in XNFPrep, 4-100
LOC constraints, 4-99
primitives, 4-98
RLOC constraints, 4-99

carry mode configuration mnemonics, 4-
101
carry mode names and symbols, 4-99
carry mode primitive symbols, 4-98
CIN pin, 4-100, 4-101
CIN pin see also individual carry mode con-
figuration mnemonics
CLBMAP, 4-20, 4-59

closed, 4-62
locked pins, 4-62
mapping constraints, 4-61
open, 4-62
unlocked pins, 4-62
use with BLKNM attribute, 4-5
use with HBLKNM attribute, 4-16
use with LOC constraint, 4-19
use with MAP attribute, 4-29
use with net attributes, 4-34
use with Place Block constraint, 4-49

CLBMAP constraints, 4-61
CLBs, 4-55

aligning inputs with longline, 4-34
base configuration, 4-2
block definition, 4-47
CLBMAP constraints, 4-61
clocks, 4-33
combinational logic, 4-35
constraints, 4-63
dedicated carry logic, 4-98, 4-101
flip-flop constraints, 4-55
LOC constraint examples, 4-24
mapping gates into function generators,
4-46
mapping with BLKNM attribute, 4-5
pin swapping, 4-29
Place Block constraint, 4-49

prohibiting logic placement, 4-21
ROM and RAM constraints, 4-57
setting logic equations for function
generators, 4-12
specifying functions with CONFIG
attribute, 4-8
symbols, 4-16, 4-20
use with BLKNM attribute, 4-5
use with LOC constraint, 4-19, 4-21, 4-
72
use with RLOC constraint, 4-73
XC2000 configuration options, 4-9
XC3000 configuration options, 4-10

clock buffers, 4-19
CLOCK_OPT attribute

architectures, 4-7
purpose, 4-7
syntax, 4-7

CMOS attribute
architectures, 4-8
output drive levels, 4-8
purpose, 4-8
symbols, 4-8
syntax, 4-8

COMPM, 4-33
CONFIG attribute

architectures, 4-8
purpose, 4-8
symbols, 4-8
syntax, 4-9
XC2000 CLB configuration options, 4-9
XC2000 IOB configuration options, 4-9
XC3000 CLB configuration options, 4-
10
XC3000 IOB configuration options, 4-10

constraints file see CST file, 4-46
COUT pin, 4-100
COUT pin see also individual carry mode
configuration mnemonics
COUT0 pin, 4-100, 4-102
COUT1 pin, 4-102
ii Xilinx Development System

Index
CST file, 4-46
BUFT constraints, 4-67
CLB constraints, 4-63
CLBMAP constraints, 4-61
edge decoder constraints, 4-69
flag constraints, 4-52
flip-flop constraints, 4-55
FMAP constraints, 4-59
global buffer constraints, 4-70
HMAP constraints, 4-59
I/O constraints, 4-64
IOB constraints, 4-67
Notplace Block constraints, 4-49
Notplace Instance constraints, 4-48, 4-
54, 4-63, 4-67
Place Block constraints, 4-49
place constraints, 4-51
Place Instance constraints, 4-48, 4-55
PPR, 4-55, 4-67
RAM constraints, 4-57
restrictions, 4-54
ROM constraints, 4-57
symbol names, 4-54
syntactical conventions, 4-50
TIMEGRP constraints, 4-54
TIMESPEC constraints, 4-52
weight constraints, 4-52
wildcards, 4-50, 4-66

CY4 symbols, 4-72, 4-99, 4-100

D
DEC-F-CI, 4-114
DEC-FG-0, 4-117
DEC-FG-CI, 4-115
DEC-G-0, 4-115
DEC-G-CI, 4-116
DEC-G-F1, 4-116
DEC-G-F3-, 4-117
DECODE attribute, 4-69

architectures, 4-11
purpose, 4-11
symbols, 4-11

syntax, 4-11
decode logic, 4-28
DECODE macro, 4-69
DECODEn symbols, 4-20
decoders, 4-72
dedicated carry logic, 4-98
design, 4-94
design hierarchy, 4-16, 4-17, 4-45, 4-75, 4-
76, 4-78, 4-79, 4-80, 4-82, 4-92
DFF, 4-72
DOUBLE attribute

architectures, 4-11
purpose, 4-11
symbols, 4-12
syntax, 4-12

E
edge decoders, 4-11, 4-46

constraints, 4-69
edge designations, 4-69

EditLCA, 4-6, 4-26, 4-65
EQUATE_F attribute

architectures, 4-12
purpose, 4-12
syntax, 4-12

EQUATE_G attribute
architectures, 4-12
purpose, 4-12
syntax, 4-12

EXAMINE-CI, 4-100, 4-122
EXT record, 4-64

F
F mode, 4-2
F net attribute, 4-33
FAST attribute

architectures, 4-13
purpose, 4-13
symbols, 4-13
syntax, 4-13

fast function blocks, 4-33, 4-38
FastCLK, 4-39
Libraries Guide iii

Libraries Guide
optimization, 4-7
FastInput path, 4-33
FD registers, 4-39
FDCE, 4-5, 4-72
FDCP, 4-5, 4-33
FDCPE, 4-33
FDPE, 4-5, 4-72
FFB, 4-33
FG mode, 4-2
FGM mode, 4-2
FILE attribute

architectures, 4-13
example, 4-14
purpose, 4-13
syntax, 4-14

FITNET command, 4-37
flag constraints, 4-52
flip-flops, 4-5

clock pins, 4-33
constraints, 4-55
CST file, 4-55
IOB, 4-35
macros, 4-93
Q output, 4-2
use with BLKNM attribute, 4-5
use with FAST attribute, 4-13
use with LOC constraint, 4-19, 4-24, 4-
55
use with RLOC constraint, 4-73, 4-78, 4-
81
X, 4-25
XC3000A/L, 4-55
XC4000 primitives, 4-5
Y, 4-25

FMAP
mapping constraints, 4-59
placement constraints, 4-46
relationally placed macros, 4-96
schematics example, 4-60
Unified Libraries, 4-72
use with BLKNM attribute, 4-5

use with HBLKNM attribute, 4-16
use with LOC constraint, 4-19, 4-20
use with MAP attribute, 4-29
use with net attributes, 4-34
use with Place Block constraint, 4-49
use with RLOC constraint, 4-72

FMAP constraints, 4-59
FOE, 4-15, 4-33
FOE_OPT attribute

architectures, 4-15
purpose, 4-15
syntax, 4-15

FORCE-0, 4-121
FORCE-1, 4-121
FORCE-CI, 4-121
FORCE-F1, 4-121
FORCE-F3-, 4-121
function generators, 4-101

base configuration modes, 4-2
carry logic, 4-98
carry mode configuration syntax, 4-101
grouping with BLKNM attribute, 4-5
grouping with HBLKNM attribute, 4-16
logic equations for F and G, 4-12, 4-102
mapping constraints, 4-59
mapping into F, 4-59
mapping into H, 4-59
merging with MAP attribute, 4-30
placement constraints, 4-46
specifying with LOC constraint, 4-24

function generators see also individual car-
ry mode configuration mnemonics

G
G net attribute, 4-33
GCLK, 4-19, 4-27
global buffers, 4-46

constraints, 4-70
corner designations, 4-70
LOC placement examples, 4-27

ground bounce, 4-6, 4-39
iv Xilinx Development System

Index
H
H net attribute, 4-33
H_SET constraint, 4-17, 4-76, 4-77, 4-87, 4-
95
HBLKNM attribute, 4-47

architectures, 4-16
purpose, 4-16
symbols, 4-16
syntax, 4-17, 4-46

hierarchical design see design hierarchy, 4-
16
high-density function blocks, 4-33, 4-38
HM2RPM utility, 4-96
HMAP

mapping constraints, 4-59
placement constraints, 4-46
relationally placed macros, 4-96
schematics example, 4-60
Unified Libraries, 4-72
use with BLKNM attribute, 4-5
use with HBLKNM attribute, 4-16
use with LOC constraint, 4-19, 4-20
use with MAP attribute, 4-29
use with net attributes, 4-34
use with Place Block constraint, 4-49
use with RLOC constraint, 4-72

HMAP constraints, 4-59
horizontal longline, 4-11, 4-20, 4-69
HU_SET constraint, 4-87, 4-95

architectures, 4-17
purpose, 4-17
purppose, 4-82
syntax, 4-18, 4-82

I
I net attribute, 4-34
I/O block primitives, 4-5, 4-16, 4-19
I/O buffers, 4-5, 4-16, 4-25, 4-36
I/O constraints, 4-64
I/O pads, 4-25, 4-46
I/O pins, 4-21, 4-36

I/O primitives, 4-34, 4-72
I/O registers, 4-25
I/O symbols, 4-31, 4-35, 4-40
IBUF, 4-5, 4-8, 4-19, 4-33, 4-39, 4-44
IFD, 4-5, 4-8, 4-44
Ignore_xnf_locs option, 4-20
ILD, 4-5, 4-8, 4-44
INCDEC-F-CI, 4-118
INCDEC-FG-1, 4-120
INCDEC-FG-CI, 4-118
INCDEC-G-0, 4-119
INCDEC-G-CI, 4-120
INCDEC-G-F1, 4-119
INC-F-CI, 4-111
INC-FG-1, 4-114
INC-FG-CI, 4-111
INC-G-1, 4-112
INC-G-CI, 4-113
INC-G-F1, 4-112
INC-G-F3-, 4-113
INFF, 4-8, 4-19, 4-44
INIT attribute

architectures, 4-18
purpose, 4-18
syntax, 4-18

INLAT, 4-8, 4-44
input buffers, 4-19
input registers, 4-29, 4-38, 4-39
input threshold levels, 4-8
INREG, 4-8, 4-44
IOBs, 4-67

base configuration, 4-2
block definition, 4-47
constraints, 4-54, 4-67
edge designations, 4-65
half-edge designations, 4-66
I/O constraints, 4-64
increasing output speed with FAST
attribute, 4-13
LOC constraint examples, 4-25
Notplace Instance constraints, 4-67
Libraries Guide v

Libraries Guide
output symbols, 4-7
pads, 4-7
prohibiting logic placement, 4-21
removing default delay, 4-35
specifying function with CONFIG
attribute, 4-8
symbols, 4-13, 4-19
use with BLKNM attribute, 4-5
use with global buffers, 4-71
use with LOC constraint, 4-72
XC2000 configuration options, 4-9
XC3000 configuration options, 4-10

IOPAD, 4-7, 4-13, 4-20
IPAD, 4-5, 4-20

K
K net attribute, 4-34

L
L net attribute, 4-34
latch enable pins, 4-33, 4-34
latches, 4-5, 4-16, 4-19, 4-35, 4-42
LCA block names, 4-4, 4-49
LD, 4-33
LDCP, 4-5
LOC constraint, 4-55, 4-57

architectures, 4-19
area constraints, 4-23, 4-99
BUFT placement examples, 4-26
carry logic, 4-99
CLB placement examples, 4-24
decode logic placement examples, 4-28
global buffer placement examples, 4-27
global buffers, 4-70
IOB placement examples, 4-25
multiple constraints, 4-24
prohibit constraints, 4-23, 4-99
propagation through flattening, 4-94
purpose for EPLDs, 4-20
purpose for FPGAs, 4-19
single constraints, 4-22, 4-99
syntax, 4-46

syntax for EPLDs, 4-22
syntax for FPGAs, 4-21

logic optimization, 4-36
LOGIC_OPT attribute

architectures, 4-28
purpose, 4-28
syntax, 4-28

LOWPWR attribute
architectures, 4-29
purpose, 4-29
syntax, 4-29

LSB, 4-103, 4-104, 4-106, 4-107, 4-109, 4-
110, 4-112, 4-113, 4-115, 4-116, 4-117, 4-119

M
macro symbols, 4-93
macrocells, 4-29, 4-33, 4-36, 4-39, 4-44
MAP attribute, 4-62

architectures, 4-29
purpose, 4-29
syntax, 4-30

mapping control symbols, 4-5
MEDFAST attribute

architectures, 4-31
purpose, 4-31
syntax, 4-31

MEDSLOW attribute
architectures, 4-31
purpose, 4-31
syntax, 4-31

MemGen, 4-57, 4-58
Mentor, 4-2, 4-43
MINIMIZE attribute

architectures, 4-31
purpose, 4-31
syntax, 4-32

MRINPUT attribute
architectures, 4-32
purpose, 4-32
syntax, 4-32

MSB, 4-102, 4-105, 4-108
vi Xilinx Development System

Index
N
N net attribute, 4-34
net attributes

architectures, 4-32
C, 4-33
F, 4-33
G, 4-33
H, 4-33
I, 4-34
K, 4-34
L, 4-34
N, 4-34
P, 4-34
purpose, 4-33
S, 4-34
syntax, 4-35
W, 4-34
X, 4-35

NODELAY attribute
architectures, 4-35
purpose, 4-35
syntax, 4-36

Notplace Block constraints, 4-49
Notplace Instance constraints, 4-48, 4-54,
4-63, 4-67

O
OBUF, 4-5, 4-7, 4-8, 4-13, 4-15, 4-19, 4-44
OBUFE, 4-15
OBUFT, 4-5, 4-7, 4-8, 4-13, 4-44
OFD, 4-5, 4-8, 4-13, 4-44
OFDI, 4-13
OFDT, 4-5, 4-8, 4-13, 4-44
OFDTI, 4-13
OPAD, 4-5, 4-7, 4-13, 4-20
OPT attribute

architectures, 4-36
purpose, 4-36
syntax, 4-36

OUTFF, 4-8, 4-19, 4-44
OUTFFT, 4-8, 4-44

output buffers, 4-19
output drive levels, 4-8

P
P net attribute, 4-34
PAD, 4-5, 4-20
pad names, 4-51
PAD primitives, 4-5, 4-16
pad registers, 4-39
PAD symbols, 4-20, 4-64, 4-66
pad symbols, 4-19, 4-21
pads, 4-42
PADU, 4-5
pin grid arrays, 4-67
PinSave command, 4-21
Place Block constraints, 4-49
place constraints, 4-51
Place Instance constraints, 4-48, 4-55
PLC, 4-30
PLD attribute

architectures, 4-37
purpose, 4-37
syntax, 4-37

PLD equation file, 4-38
PLFB9, 4-33
PLO, 4-30, 4-59
PLUSASM, 4-37, 4-38
PPR

BUFT constraints, 4-67
CLB constraints, 4-63
edge decoder constraints, 4-69
FMAP mapping, 4-59, 4-60
global buffer constraints, 4-70
HMAP mapping, 4-59, 4-60
I/O constraints, 4-64
Ignore_maps option, 4-59
Ignore-xnf_locs option, 4-20
IOB constraints, 4-67
LOC constraints, 4-55, 4-57
Place Block constraints, 4-49
Place Instance constraints, 4-48
placement constraints, 4-46
Libraries Guide vii

Libraries Guide
constraints file syntax, 4-47
schematic syntax, 4-46

RLOC constraints, 4-71
use with DOUBLE attribute, 4-12
weight net attribute values, 4-34
X net attribute, 4-35

PRELOAD_OPT attribute
architectures, 4-38
purpose, 4-38
syntax, 4-38

PRLD equations, 4-38
properties, 4-2
PUC, 4-30, 4-59
pull-down transistors, 4-6, 4-40
pull-up resistors, 4-11, 4-12, 4-20
PULLUP symbols, 4-11, 4-20
PUO, 4-30, 4-59

R
RAM constraints, 4-57
RAM16X1, 4-72
RAM32X1, 4-72
RAM64X8, 4-57, 4-58
RAMs, 4-42
REG_OPT attribute

architectures, 4-39
purpose, 4-39
syntax, 4-39

registers, 4-36, 4-38
relationally placed macros, 4-71, 4-96
RES attribute

architectures, 4-39
purpose, 4-39
syntax, 4-40

resistive mode, 4-6, 4-39
RLOC constraint, 4-18

architectures, 4-40
carry logic, 4-99
propagation, 4-94
purpose, 4-40, 4-71
set linkage, 4-78

set modification, 4-80
set modifiers, 4-85
sets, 4-74, 4-94
symbols, 4-72
syntax, 4-40, 4-46, 4-72
use with pre-Unified Libraries
elements, 4-72
use with Unified Libraries elements, 4-
72
use with Xilinx macros, 4-93

RLOC_ORIGIN constraint, 4-72, 4-91
architectures, 4-41
modifying H_SET, 4-87
modifying HU_SET, 4-87
purpose, 4-41, 4-86
syntax, 4-41, 4-86

RLOC_RANGE constraint
architectures, 4-42
purpose, 4-42, 4-89
syntax, 4-42, 4-90

ROM constraints, 4-57
ROM16X1, 4-72
ROM32X1, 4-72
ROMs, 4-18
RPMs, 4-71, 4-96

S
S net attribute, 4-34
soft macros, 4-19, 4-20, 4-24, 4-25, 4-96
special function access symbols, 4-7, 4-13,
4-31, 4-35, 4-40
SUB-F-CI, 4-105
SUB-FG-CI, 4-105
SUB-G-1, 4-106
SUB-G-CI, 4-107
SUB-G-F1, 4-106
SUB-G-F3-, 4-107
synchronous reset, 4-102

T
TCK, 4-7, 4-13, 4-31, 4-35, 4-40
TDI, 4-7, 4-13, 4-31, 4-35, 4-40
viii Xilinx Development System

Index
three-state buffers, 4-5, 4-46
three-state PLD outputs, 4-15
TIMEGRP constraints, 4-54
TIMESPEC constraints, 4-52
TMS, 4-7, 4-13, 4-31, 4-35, 4-40
TNM attribute

architectures, 4-42
purpose, 4-42
syntax, 4-43

Translate menu, 4-21
TSidentifier attribute

architectures, 4-43
purpose, 4-43
syntax, 4-43

TTL attribute
architectures, 4-44
purpose, 4-44
syntax, 4-44

U
U_SET constraint, 4-87, 4-94

architectures, 4-45
purpose, 4-45, 4-75
syntax, 4-46, 4-75
use with USE_RLOC constraint, 4-92

UIM optimization, 4-44
UIM_OPT attribute

architectures, 4-44
purpose, 4-44
syntax, 4-45

Unified Libraries, 4-72
universal interconnect matrix (UIM), 4-7
UPAD, 4-5, 4-7, 4-13, 4-20
USE_RLOC constraint

architectures, 4-45
purpose, 4-45, 4-90
syntax, 4-45, 4-90
using with U_SET, 4-92

user-created symbols, 4-19

V
VHDL, 4-1
VMF file, 4-21

W
W net attribute, 4-34
WAND, 4-19, 4-20, 4-54, 4-69, 4-70
WAND1, 4-11
weight constraints, 4-52
wide-edge decoders, 4-11, 4-20
wildcards, 4-25, 4-27, 4-42, 4-49, 4-50, 4-53,
4-56, 4-58, 4-63, 4-64, 4-66, 4-68, 4-90, 4-99

X
X net attribute, 4-35
XC4000H output driver, 4-6
XDE, 4-20, 4-35
XEMake, 4-37
Xilinx macros, 4-93
XNF file, 4-13, 4-55, 4-57, 4-58, 4-64, 4-67,
4-69, 4-70
XNFMAP, 4-35, 4-47, 4-49, 4-61
XNFMerge, 4-14, 4-15, 4-17, 4-19, 4-76, 4-
77, 4-81, 4-82, 4-85, 4-86, 4-91, 4-93, 4-94
XNFPrep, 4-20, 4-100, 4-101
XOR7, 4-33
XOR8, 4-33
XOR9, 4-33
XTF file, 4-55, 4-57, 4-64, 4-67, 4-69, 4-70
Libraries Guide ix

Libraries Guide
x Xilinx Development System

Trademark Information
Libraries Guide — 0401410 01

, XACT, XC2064, XC3090, XC4005, and XC-DS501 are registered trademarks of
Xilinx. All XC-prefix product designations, XACT-Floorplanner, XACT-Performance,
XAPP, XAM, X-BLOX, X-BLOX plus, XChecker, XDM, XDS, XEPLD, XPP, XSI, BITA,
Configurable Logic Cell, CLC, Dual Block, FastCLK, HardWire, LCA, Logic Cell,
LogicProfessor, MicroVia, PLUSASM, SMARTswitch, UIM, VectorMaze, VersaBlock,
VersaRing, and ZERO+ are trademarks of Xilinx. The Programmable Logic Company and
The Programmable Gate Array Company are service marks of Xilinx.

IBM is a registered trademark and PC/AT, PC/XT, PS/2 and Micro Channel are
trademarks of International Business Machines Corporation. DASH, Data I/O and
FutureNet are registered trademarks and ABEL, ABEL-HDL and ABEL-PLA are
trademarks of Data I/O Corporation. SimuCad and Silos are registered trademarks and P-
Silos and P/C-Silos are trademarks of SimuCad Corporation. Microsoft is a registered
trademark and MS-DOS is a trademark of Microsoft Corporation. Centronics is a
registered trademark of Centronics Data Computer Corporation. PAL and PALASM are
registered trademarks of Advanced Micro Devices, Inc. UNIX is a trademark of AT&T
Technologies, Inc. CUPL, PROLINK, and MAKEPRG are trademarks of Logical Devices,
Inc. Apollo and AEGIS are registered trademarks of Hewlett-Packard Corporation.
Mentor and IDEA are registered trademarks and NETED, Design Architect, QuickSim,
QuickSim II, and EXPAND are trademarks of Mentor Graphics, Inc. Sun is a registered
trademark of Sun Microsystems, Inc. SCHEMA II+ and SCHEMA III are trademarks of
Omation Corporation. OrCAD is a registered trademark of OrCAD Systems Corporation.
Viewlogic, Viewsim, and Viewdraw are registered trademarks of Viewlogic Systems, Inc.
CASE Technology is a trademark of CASE Technology, a division of the Teradyne
Electronic Design Automation Group. DECstation is a trademark of Digital Equipment
Corporation. Synopsys is a registered trademark of Synopsys, Inc. Verilog is a registered
trademark of Cadence Design Systems, Inc.

Xilinx does not assume any liability arising out of the application or use of any product
described or shown herein; nor does it convey any license under its patents, copyrights, or
maskwork rights or any rights of others. Xilinx reserves the right to make changes, at any
time, in order to improve reliability, function or design and to supply the best product
possible. Xilinx will not assume responsibility for the use of any circuitry described herein
other than circuitry entirely embodied in its products. Xilinx devices and products are
protected under one or more of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216;
4,713,557; 4,746,822; 4,750,155; 4,758,985; 4,820,937; 4,821,233; 4,835,418; 4,853,626;

R

Trademark Information
4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135; 5,023,606; 5,028,821;
5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056; 5,243,238;
5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704;
5,329,174; 5,329,181; 5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248;
5,349,249; 5,349,250; 5,349,691; 5,357,153; 5,360,747; 5,361,229; 5,362,999; 5,365,125;
5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925; 5,410,189; 5,410,194; 5,414,377; RE
34,363, RE 34,444, and RE 34,808. Other U.S. and foreign patents pending. Xilinx, Inc. does
not represent that devices shown or products described herein are free from patent
infringement or from any other third party right. Xilinx assumes no obligation to correct
any errors contained herein or to advise any user of this text of any correction if such be
made. Xilinx will not assume any liability for the accuracy or correctness of any
engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems.
Use of a Xilinx product in such applications without the written consent of the
appropriate Xilinx officer is prohibited.
Xilinx Development System

	COVER PAGE
	TRADEMARK INFORMATION
	TABLE OF CONTENTS
	BOOK CONVENTIONS
	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

	GO TO OTHER BOOKS
	Chapter 1 Xilinx Unified Libraries
	Overview
	Xilinx Unified Libraries
	Selection Guide
	Design Elements
	Attributes, Constraints, and Carry Logic

	Naming Conventions
	Flip-Flop, Counter, and Register Performance

	Chapter 2 Selection Guide
	Functional Categories
	Arithmetic Functions
	Buffers
	Comparators
	Counters
	Data Registers
	Decoders
	Edge Decoders
	Encoders
	Flip-Flops
	General
	Input/Output Flip-Flops
	Input/Output Functions
	Input Latches
	Latches
	Logic Primitives
	Map Elements
	Memory Elements
	Multiplexers
	PLD Elements
	Shift Registers
	Shifters

	Obsolete Macros
	XC2000 Replacement and Obsolete Macro Functions
	XC3000 Replacement and Obsolete Macro Functions
	XC4000 Replacement and Obsolete Macro Functions
	XC7000 Replacement and Obsolete Macro Functions

	Chapter 3 Design Elements
	ACC1
	1-Bit Loadable Cascadable Accumulator with Carry-I...
	Load
	Add
	Subtract

	ACC1X1
	1-Bit Loadable Cascadable Accumulator with Carry-O...
	Add
	Subtract

	ACC1X2
	1-Bit Loadable Cascadable Accumulator with Carry-I...
	Add
	Subtract

	ACC4
	4-Bit Loadable Cascadable Accumulator with Carry-I...
	Load
	Unsigned Binary Versus Twos-Complement
	Unsigned Binary Operation
	Twos-Complement Operation
	XC4000 Topology

	ACC4X1
	4-Bit Loadable Cascadable Accumulator with Carry-O...
	Add
	Subtract

	ACC4X2
	4-Bit Loadable Cascadable Accumulator with Carry-I...
	Add
	Subtract

	ACC8
	8-Bit Loadable Cascadable Accumulator with Carry-I...
	Load
	Unsigned Binary Versus Twos-Complement
	Unsigned Binary Operation
	Twos-Complement Operation
	XC4000 Topology

	ACC8X1
	8-Bit Loadable Cascadable Accumulator with Carry-O...
	Add
	Subtract

	ACC8X2
	8-Bit Loadable Cascadable Accumulator with Carry-I...
	Add
	Subtract

	ACC16
	16-Bit Loadable Cascadable Accumulator with Carry-...
	Load
	Unsigned Binary Versus Twos-Complement
	Unsigned Binary Operation
	Twos-Complement Operation
	XC4000 Topology

	ACC16X1
	16-Bit Loadable Cascadable Accumulator with Carry-...
	Add
	Subtract

	ACC16X2
	16-Bit Loadable Cascadable Accumulator with Carry-...
	Add
	Subtract

	ACLK
	Alternate Clock Buffer

	ADD1
	1-Bit Full Adder with Carry-In and Carry-Out

	ADD1X1
	1-Bit Cascadable Full Adder with Carry-Out for EPL...

	ADD1X2
	1-Bit Cascadable Full Adder with Carry-In and Carr...

	ADD4
	4-Bit Cascadable Full Adder with Carry-In, Carry-O...
	Unsigned Binary Versus Twos Complement
	Unsigned Binary Operation
	Twos-Complement Operation
	XC4000 Topology

	ADD4X1
	4-Bit Cascadable Full Adder with Carry-Out for EPL...

	ADD4X2
	4-Bit Cascadable Full Adder with Carry-In and Carr...

	ADD8
	8-Bit Cascadable Full Adder with Carry-In, Carry-O...
	Unsigned Binary Versus Twos-Complement
	Unsigned Binary Operation
	Twos-Complement Operation
	XC4000 Topology

	ADD8X1
	8-Bit Loadable Cascadable Full Adder with Carry-Ou...

	ADD8X2
	8-Bit Cascadable Full Adder with Carry-In and Carr...

	ADD16
	16-Bit Cascadable Full Adder with Carry-In, Carry-...
	Unsigned Binary Versus Twos-Complement
	Unsigned Binary Operation
	Twos-Complement Operation
	XC4000 Topology

	ADD16X1
	16-Bit Cascadable Full Adder with Carry-Out for EP...

	ADD16X2
	16-Bit Cascadable Full Adder with Carry-In and Car...

	ADSU1
	1-Bit Cascadable Adder/Subtracter with Carry-In an...

	ADSU1X1
	1-Bit Cascadable Adder/Subtracter with Carry-Out f...

	ADSU1X2
	1-Bit Cascadable Adder/Subtracter with Carry-In an...

	ADSU4
	4-Bit Cascadable Adder/Subtracter with Carry-In, C...
	Unsigned Binary Versus Twos-Complement
	Unsigned Binary Operation
	Twos-Complement Operation
	XC4000 Topology

	ADSU4X1
	4-Bit Cascadable Adder/Subtracter with Carry-Out f...

	ADSU4X2
	4-Bit Cascadable Adder/Subtracter with Carry-In an...

	ADSU8
	8-Bit Cascadable Adder/Subtracter with Carry-In, C...
	Unsigned Binary Versus Twos-Complement
	Unsigned Binary Operation
	Twos-Complement Operation
	XC4000 Topology

	ADSU8X1
	8-Bit Cascadable Adder/Subtracter with Carry-Out f...

	ADSU8X2
	8-Bit Cascadable Adder/Subtracter with Carry-In an...

	ADSU16
	16-Bit Cascadable Adder/Subtracter with Carry-In, ...
	Unsigned Binary Versus Twos-Complement
	Unsigned Binary Operation
	Twos-Complement Operation
	XC4000 Topology

	ADSU16X1
	16-Bit Cascadable Adder/Subtracter with Carry-Out ...

	ADSU16X2
	16-Bit Cascadable Adder/Subtracter with Carry-In a...

	AND
	2- to 9-Input AND Gates with Inverted and Non-Inve...

	BRLSHFT4
	4-Bit Barrel Shifter

	BRLSHFT8
	8-Bit Barrel Shifter

	BSCAN
	Boundary Scan Logic Control Circuit

	BUF, BUF4, BUF8, and BUF16
	General-Purpose Buffers

	BUFCE
	Global Clock-Enable Buffer for EPLD

	BUFE, BUFE4, BUFE8, and BUFE16
	Internal 3-State Buffers

	BUFFOE
	Global Fast Output Enable Buffer for EPLD

	BUFG
	Global Clock Buffer

	BUFGP
	Primary Global Buffer for Driving Clocks or Longli...

	BUFGS
	Secondary Global Buffer for Driving Clocks or Long...

	BUFOD
	Open-Drain Buffer

	BUFT, BUFT4, BUFT8, and BUFT16
	Internal 3-State Buffers

	CB2CE
	2-Bit Cascadable Binary Counter with Clock Enable ...

	CB2CLE
	2-Bit Loadable Cascadable Binary Counter with Cloc...

	CB2CLED
	2-Bit Loadable Cascadable Bidirectional Binary Cou...

	CB2RE
	2-Bit Cascadable Binary Counter with Clock Enable ...

	CB2RLE
	2-Bit Loadable Cascadable Binary Counter with Cloc...

	CB2X1
	2-Bit Loadable Cascadable Bidirectional Binary Cou...

	CB2X2
	2-Bit Loadable Cascadable Bidirectional Binary Cou...

	CB4CE
	4-Bit Cascadable Binary Counter with Clock Enable ...

	CB4CLE
	4-Bit Loadable Cascadable Binary Counter with Cloc...

	CB4CLED
	4-Bit Loadable Cascadable Bidirectional Binary Cou...

	CB4RE
	4-Bit Cascadable Binary Counter with Clock Enable ...

	CB4RLE
	4-Bit Loadable Cascadable Binary Counter with Cloc...

	CB4X1
	4-Bit Loadable Cascadable Bidirectional Binary Cou...

	CB4X2
	4-Bit Loadable Cascadable Bidirectional Binary Cou...

	CB8CE
	8-Bit Cascadable Binary Counter with Clock Enable ...

	CB8CLE
	8-Bit Loadable Cascadable Binary Counter with Cloc...

	CB8CLED
	8-Bit Loadable Cascadable Bidirectional Binary Cou...

	CB8RE
	8-Bit Cascadable Binary Counter with Clock Enable ...

	CB8RLE
	8-Bit Loadable Cascadable Binary Counter with Cloc...

	CB8X1
	8-Bit Loadable Cascadable Bidirectional Binary Cou...

	CB8X2
	8-Bit Loadable Cascadable Bidirectional Binary Cou...

	CB16CE
	16-Bit Cascadable Binary Counter with Clock Enable...

	CB16CLE
	16-Bit Loadable Cascadable Binary Counter with Clo...

	CB16CLED
	16-Bit Loadable Cascadable Bidirectional Binary Co...

	CB16RE
	16-Bit Cascadable Binary Counter with Clock Enable...

	CB16RLE
	16-Bit Loadable Cascadable Binary Counter with Clo...

	CB16X1
	16-Bit Loadable Cascadable Bidirectional Binary Co...

	CB16X2
	16-Bit Loadable Cascadable Bidirectional Binary Co...

	CC8CE
	8-Bit Cascadable Binary Counter with Clock Enable ...
	XC4000 Topology

	CC8CLE
	8-Bit Loadable Cascadable Binary Counter with Cloc...
	XC4000 Topology

	CC8CLED
	8-Bit Loadable Cascadable Bidirectional Binary Cou...
	XC4000 Topology

	CC8RE
	8-Bit Cascadable Binary Counter with Clock Enable ...
	XC4000 Topology

	CC16CE
	16-Bit Cascadable Binary Counter with Clock Enable...
	XC4000 Topology

	CC16CLE
	16-Bit Loadable Cascadable Binary Counter with Clo...
	XC4000 Topology

	CC16CLED
	16-Bit Loadable Cascadable Bidirectional Binary Co...
	XC4000 Topology

	CC16RE
	16-Bit Cascadable Binary Counter with Clock Enable...
	XC4000 Topology

	CD4CE
	4-Bit Cascadable BCD Counter with Clock Enable and...

	CD4CLE
	4-Bit Loadable Cascadable BCD Counter with Clock E...

	CD4RE
	4-Bit Cascadable BCD Counter with Clock Enable and...

	CD4RLE
	4-Bit Loadable Cascadable BCD Counter with Clock E...

	CJ4CE
	4-Bit Johnson Counter with Clock Enable and Asynch...

	CJ4RE
	4-Bit Johnson Counter with Clock Enable and Synchr...

	CJ5CE
	5-Bit Johnson Counter with Clock Enable and Asynch...

	CJ5RE
	5-Bit Johnson Counter with Clock Enable and Synchr...

	CJ8CE
	8-Bit Johnson Counter with Clock Enable and Asynch...

	CJ8RE
	8-Bit Johnson Counter with Clock Enable and Synchr...

	CLB
	CLB Configuration Symbol

	CLBMAP
	Logic-Partitioning Control Symbol

	COMP2
	2-Bit Identity Comparator

	COMP4
	4-Bit Identity Comparator

	COMP8
	8-Bit Identity Comparator

	COMP16
	16-Bit Identity Comparator

	COMPM2
	2-Bit Magnitude Comparator

	COMPM4
	4-Bit Magnitude Comparator

	COMPM8
	8-Bit Magnitude Comparator

	COMPM16
	16-Bit Magnitude Comparator

	COMPMC8
	8-Bit Magnitude Comparator
	XC4000 Topology

	COMPMC16
	16-Bit Magnitude Comparator
	XC4000 Topology

	CR8CE
	8-Bit Negative-Edge Binary Ripple Counter with Clo...

	CR16CE
	16-Bit Negative-Edge Binary Ripple Counter with Cl...

	D2_4E
	2- to 4-Line Decoder/Demultiplexer with Enable

	D3_8E
	3- to 8-Line Decoder/Demultiplexer with Enable

	D4_16E
	4- to 16-Line Decoder/Demultiplexer with Enable

	DECODE4, DECODE8, and DECODE 16
	4-, 8-, and 16-Bit Active-Low Edge Decoders

	FD, FD4, FD8, and FD16
	Single and Multiple D Flip-Flops

	FD_1
	D Flip-Flop with Negative-Edge Clock

	FD4CE
	4-Bit Data Register with Clock Enable and Asynchro...

	FD4RE
	4-Bit Data Register with Clock Enable and Synchron...

	FD8CE
	8-Bit Data Register with Clock Enable and Asynchro...

	FD8RE
	8-Bit Data Register with Clock Enable and Synchron...

	FD16CE
	16-Bit Data Register with Clock Enable and Asynchr...

	FD16RE
	16-Bit Data Register with Clock Enable and Synchro...

	FDC
	D Flip-Flop with Asynchronous Clear

	FDC_1
	D Flip-Flop with Negative-Edge Clock and Asynchron...

	FDCE
	D Flip-Flop with Clock Enable and Asynchronous Cle...

	FDCE_1
	D Flip-Flop with Negative-Edge Clock, Clock Enable...

	FDCP
	D Flip-Flop with Asynchronous Preset and Clear

	FDCPE
	D Flip-Flop with Clock Enable and Asynchronous Pre...

	FDP
	D Flip-Flop with Asynchronous Preset

	FDP_1
	D Flip-Flop with Negative-Edge Clock and Asynchron...

	FDPE
	D Flip-Flop with Clock Enable and Asynchronous Pre...

	FDPE_1
	D Flip-Flop with Negative-Edge Clock, Clock Enable...

	FDR
	D Flip-Flop with Synchronous Reset

	FDRE
	D Flip-Flop with Clock Enable and Synchronous Rese...

	FDRS
	D Flip-Flop with Synchronous Reset and Synchronous...

	FDRSE
	D Flip-Flop with Synchronous Reset and Set and Clo...

	FDS
	D Flip-Flop with Synchronous Set

	FDSE
	D Flip-Flop with Clock Enable and Synchronous Set

	FDSR
	D Flip-Flop with Synchronous Set and Reset

	FDSRE
	D Flip-Flop with Synchronous Set and Reset and Clo...

	FJKC
	J-K Flip-Flop with Asynchronous Clear

	FJKCE
	J-K Flip-Flop with Clock Enable and Asynchronous C...

	FJKCP
	J-K Flip-Flop with Asynchronous Clear and Preset

	FJKCPE
	J-K Flip-Flop with Asynchronous Clear and Preset a...

	FJKP
	J-K Flip-Flop with Asynchronous Preset

	FJKPE
	J-K Flip-Flop with Clock Enable and Asynchronous P...

	FJKRSE
	J-K Flip-Flop with Clock Enable and Synchronous Re...

	FJKSRE
	J-K Flip-Flop with Clock Enable and Synchronous Se...

	FMAP
	F Function Generator Partitioning Control Symbol

	FTC
	Toggle Flip-Flop with Toggle Enable and Asynchrono...

	FTCE
	Toggle Flip-Flop with Toggle and Clock Enable and ...

	FTCLE
	Toggle/Loadable Flip-Flop with Toggle and Clock En...

	FTCP
	Toggle Flip-Flop with Toggle Enable and Asynchrono...

	FTCPE
	Toggle Flip-Flop with Toggle and Clock Enable and ...

	FTCPLE
	Loadable Toggle Flip-Flop with Toggle and Clock En...

	FTP
	Toggle Flip-Flop with Toggle Enable and Asynchrono...

	FTPE
	Toggle Flip-Flop with Toggle and Clock Enable and ...

	FTPLE
	Toggle/Loadable Flip-Flop with Toggle and Clock En...

	FTRSE
	Toggle Flip-Flop with Toggle and Clock Enable and ...

	FTRSLE
	Toggle/Loadable Flip-Flop with Toggle and Clock En...

	FTSRE
	Toggle Flip-Flop with Toggle and Clock Enable and ...

	FTSRLE
	Toggle/Loadable Flip-Flop with Toggle and Clock En...

	GCLK
	Global Clock Buffer

	GND
	Ground-Connection Signal Tag

	GXTL
	Crystal Oscillator with ACLK Buffer

	HMAP
	H Function Generator Partitioning Control Symbol

	IBUF, IBUF4, IBUF8, and IBUF16
	Single- and Multiple-Input Buffers

	IFD, IFD4, IFD8, and IFD16
	Single- and Multiple-Input D Flip-Flops

	IFD_1
	Input D Flip-Flop with Inverted Clock

	IFDX1, IFD4X1, IFD8X1, and IFD16X1
	Input D Flip-Flops for EPLD

	IFDI
	Input D Flip-Flop (Asynchronous Set)

	IFDI_1
	D Flip-Flop with Inverted Clock (Asynchronous Set)...

	ILD, ILD4, ILD8, and ILD16
	Input Transparent Data Latches
	XC4000 ILD
	XC3000 ILD

	ILD_1
	Transparent Input Data Latch with Inverted Gate

	ILDI
	Input Transparent Data Latch (Asynchronous Set)

	ILDI_1
	Transparent Input Data Latch with Inverted Gate (A...

	INV, INV4, INV8, and INV16
	Single and Multiple Inverters

	IOB
	IOB Configuration Symbol

	IOPAD, IOPAD4, IOPAD8, and IOPAD16
	Input/Output Pads

	IPAD
	Single- and Multiple-Input Pads

	LD, LD4, LD8, and LD16
	Single and Multiple Transparent Data Latches

	LD_1
	Transparent Data Latch with Inverted Gate

	LDC
	Transparent Data Latch with Asynchronous Clear

	LD4CE, LD8CE, and LD16CE
	Transparent Data Latches with Asynchronous Clear a...

	LDCP
	Transparent Data Latch with Asynchronous Clear and...

	LDCPE
	Transparent Data Latch with Asynchronous Clear and...

	LDC_1
	Transparent Data Latch with Asynchronous Clear and...

	MD0
	Mode 0/Input Pad Used for Readback Trigger Input

	MD1
	Mode 1/Output Pad Used for Readback Data Output

	MD2
	Mode 2/Input Pad

	M2_1
	2-to-1 Multiplexer

	M2_1B1
	2-to-1 Multiplexer with D0 Inverted

	M2_1B2
	2-to-1 Multiplexer with D0 and D1 Inverted

	M2_1E
	2-to-1 Multiplexer with Enable

	M4_1E
	4-to-1 Multiplexer with Enable

	M8_1E
	8-to-1 Multiplexer with Enable

	M16_1E
	16-to-1 Multiplexer with Enable

	NAND
	2- to 9-Input NAND Gates with Inverted and Non-Inv...

	NOR
	2- to 9-Input NOR Gates with Inverted and Non-Inve...

	OBUF, OBUF4, OBUF8, and OBUF16
	Single- and Multiple-Output Buffers

	OBUFE, OBUFE4, OBUFE8, and OBUFE16
	3-State Output Buffers with Active-High Output Ena...

	OBUFEX1, OBUFE4X1, OBUFE8X1, and OBUFEX2
	EPLD 3-State Output Buffers with Active-High Outpu...

	OBUFT, OBUFT4, OBUFT8, and OBUFT16
	Single and Multiple 3-State Output Buffers with Ac...

	OFD, OFD4, OFD8, and OFD16
	Single- and Multiple-Output D Flip-Flops

	OFD_1
	Output D Flip-Flop with Inverted Clock

	OFDE, OFDE4, OFDE8, and OFDE16
	D Flip-Flops with Active-High Enable Output Buffer...

	OFDE_1
	D Flip-Flop with Active-High Enable Output Buffer ...

	OFDEI
	D Flip-Flop with Active-High Enable Output Buffer ...

	OFDEI_1
	D Flip-Flop with Active-High Enable Output Buffer ...

	OFDI
	Output D Flip-Flop (Asynchronous Set)

	OFDI_1
	Output D Flip-Flop with Inverted Clock (Asynchrono...

	OFDT, OFDT4, OFDT8, and OFDT16
	Single and Multiple D Flip-Flops with Active-High ...

	OFDT_1
	D Flip-Flop with Active-High 3-State and Active-Lo...

	OFDTI
	D Flip-Flop with Active-High 3-State and Active-Lo...

	OFDTI_1
	D Flip-Flop with Active-High 3-State, Active-Low O...

	OPAD, OPAD4, OPAD8, and OPAD16
	Single- and Multiple-Output Pads

	OR
	2- to 9-Input OR Gates with Inverted and Non-Inver...

	OSC
	Crystal Oscillator Amplifier

	OSC4
	Internal 5-Frequency Clock-Signal Generator

	PL20PIN, PL24PIN, and PL48PIN
	Generic PLD Symbols for EPLD
	EPLD Device Limitations

	PL20V8
	20V8-Compatible PLD Symbol for EPLD
	GAL20V8-Compatible Functionality
	GAL20V8 Exceptions
	Extended Functionality
	Pin Description
	EPLD Device Limitations

	PL22V10
	22V10-Compatible PLD Symbol for EPLD
	PAL22V10-Compatible Functionality
	PAL22V10 Exceptions
	Extended Functionality
	Pin Description
	EPLD Device Limitations

	PLFB9
	EPLD High-Density Function Block PLD Symbol
	PLFB9 Inputs and Outputs
	EPLD Device Limitations
	Arithmetic Carry
	Pin Descriptions

	PLFFB9
	EPLD Fast Function Block PLD Symbol
	PLFFB9 Inputs and Outputs
	Pin Descriptions

	PULLDOWN
	Resistor to GND for Input Pads

	PULLUP
	Resistor to VCC for Input PADs, Open-Drain, and 3-...

	RAM16X1
	16-Deep by 1-Wide Static RAM

	RAM16X2
	16-Deep by 2-Wide Static RAM

	RAM16X4
	16-Deep by 4-Wide Static Ram

	RAM16X8
	16-Deep by 8-Wide Static RAM

	RAM32X1
	32-Deep by 1-Wide Static RAM

	RAM32X2
	32-Deep by 2-Wide Static RAM

	RAM32X4
	32-Deep by 4-Wide Static RAM

	RAM32X8
	32-Deep by 8-Wide Static RAM

	READBACK
	FPGA Bitstream Readback Controller

	ROM16X1
	16-Deep by 1-Wide ROM

	ROM32X1
	32-Deep by 1-Wide ROM

	SOP
	Sum Of Products

	SR4CE
	4-Bit Serial-In Parallel-Out Shift Register with C...

	SR4CLE
	4-Bit Loadable Serial/Parallel-In Parallel-Out Shi...

	SR4CLED
	4-Bit Shift Register with Clock Enable and Asynchr...

	SR4RE
	4-Bit Serial-In Parallel-Out Shift Register with C...

	SR4RLE
	4-Bit Loadable Serial/Parallel-In Parallel-Out Shi...

	SR4RLED
	4-Bit Shift Register with Clock Enable and Synchro...

	SR8CE
	8-Bit Serial-In Parallel-Out Shift Register with C...

	SR8CLE
	8-Bit Loadable Serial/Parallel-In Parallel-Out Shi...

	SR8CLED
	8-Bit Shift Register with Clock Enable and Asynchr...

	SR8RE
	8-Bit Serial-In Parallel-Out Shift Register with C...

	SR8RLE
	8-Bit Loadable Serial/Parallel-In Parallel-Out Shi...

	SR8RLED
	8-Bit Shift Register with Clock Enable and Synchro...

	SR16CE
	16-Bit Serial-In Parallel-Out Shift Register with ...

	SR16CLE
	16-Bit Loadable Serial/Parallel-In Parallel-Out Sh...

	SR16CLED
	16-Bit Shift Register with Clock Enable and Asynch...

	SR16RE
	16-Bit Serial-In Parallel-Out Shift Register with ...

	SR16RLE
	16-Bit Loadable Serial/Parallel-In Parallel-Out Sh...

	SR16RLED
	16-Bit Shift Register with Clock Enable and Synchr...

	STARTUP
	User Interface to Global Clock, Reset, and 3-State...

	TCK
	Boundary-Scan Test Clock Input Pad

	TDI
	Boundary-Scan Test Data Input Pad

	TDO
	Boundary-Scan Data Output Pad

	TIMEGRP
	Schematic-Level Table of Basic Timing Specificatio...

	TIMESPEC
	Schematic-Level Timing Requirement Table
	XC4000 OrCAD Only Schematic-Level Timing Requireme...

	TMS
	Boundary-Scan Test Mode Select Input Pad

	UPAD
	Connects the I/O Node of an IOB to the Internal PL...

	VCC
	VCC-Connection Signal Tag

	WAND1, WAND4, WAND8, and WAND16
	Open-Drain Buffers

	WOR2AND
	2-Input OR Gate with Wired-AND Open-Drain Buffer O...

	XNOR
	2- to 9-Input XNOR Gates with Non-Inverted Inputs

	XOR
	2- to 9-Input XOR Gates with Non-Inverted Inputs

	X74_42
	4- to 10-Line BCD-to-Decimal Decoder with Active-L...

	X74_L85
	4-Bit Expandable Magnitude Comparator

	X74_138
	3- to 8-Line Decoder/Demultiplexer with Active-Low...

	X74_139
	2- to 4-Line Decoder/Demultiplexer with Active-Low...

	X74_147
	10- to 4-Line Priority Encoder with Active-Low Inp...

	X74_148
	8- to 3-Line Cascadable Priority Encoder with Acti...

	X74_150
	16-to-1 Multiplexer with Active-Low Enable and Out...

	X74_151
	8-to-1 Multiplexer with Active-Low Enable and Comp...

	X74_152
	8-to-1 Multiplexer with Active-Low Output

	X74_153
	Dual 4-to-1 Multiplexer with Active-Low Enables an...

	X74_154
	4- to 16-Line Decoder/Demultiplexer with Two Enabl...

	X74_157
	Quadruple 2-to-1 Multiplexer with Common Select an...

	X74_158
	Quadruple 2-to-1 Multiplexer with Common Select, A...

	X74_160
	4-Bit BCD Counter with Parallel and Trickle Enable...

	X74_161
	4-Bit Counter with Parallel and Trickle Enables Ac...

	X74_162
	4-Bit Counter with Parallel and Trickle Enables an...

	X74_163
	4-Bit Counter with Parallel and Trickle Enables, A...

	X74_164
	8-Bit Serial-In Parallel-Out Shift Register with A...

	X74_165S
	8-Bit Loadable Serial/Parallel-In Parallel-Out Shi...

	X74_168
	4-Bit BCD Bidirectional Counter with Parallel and ...

	X74_174
	6-Bit Data Register with Active-Low Asynchronous C...

	X74_194
	4-Bit Loadable Bidirectional Serial/Parallel-In Pa...

	X74_195
	4-Bit Loadable Serial/Parallel-In Parallel-Out Shi...

	X74_273
	8-Bit Data Register with Active-Low Asynchronous C...

	X74_280
	9-Bit Odd/Even Parity Generator/Checker

	X74_283
	4-Bit Full Adder with Carry-In and Carry-Out

	X74_298
	Quadruple 2-Input Multiplexer with Storage and Neg...

	X74_352
	Dual 4-to-1 Multiplexer with Active-Low Enables an...

	X74_377
	8-Bit Data Register with Active-Low Clock Enable

	X74_390
	4-Bit BCD/Bi-Quinary Ripple Counter with Negative-...

	X74_518
	8-Bit Identity Comparator with Active-Low Enable

	X74_521
	8-Bit Identity Comparator with Active-Low Enable a...

	Chapter 4 Attributes, Constraints, and Carry Logic
	Attributes, Constraints, and Carry Logic
	Attributes
	BASE
	Architectures
	Description
	Syntax

	BLKNM
	Architectures
	Description
	Syntax
	Example

	CAP
	Architectures
	Description
	Syntax

	CLOCK_OPT
	Architectures
	Description
	Syntax

	CMOS
	Architectures
	Description
	Syntax

	CONFIG
	Architectures
	Description
	Syntax
	Example

	DECODE
	Architectures
	Description
	Syntax

	DOUBLE
	Architectures
	Description
	Syntax

	EQUATE_F and EQUATE_G
	Architectures
	Description
	Syntax
	Example

	FAST
	Architectures
	Description
	Syntax

	FILE
	Architectures
	Description
	Syntax
	Example

	FOE_OPT
	Architectures
	Description
	Syntax

	HBLKNM
	Architectures
	Description
	Syntax
	Example

	HU_SET
	Architectures
	Description
	Syntax

	INIT
	Architectures
	Description
	Syntax

	LOC
	Architectures
	Description for FPGAs
	Description for EPLDs
	Syntax for FPGAs
	Syntax for EPLDs
	Examples
	Single LOC Constraints
	Area LOC Constraints
	Prohibit LOC Constraints
	Multiple LOC Constraints
	CLB Placement Examples
	IOB Placement Examples
	BUFT Placement Examples
	Global Buffer Placement Examples (XC4000 Only)
	Decode Logic Placement Examples (XC4000 Only)

	LOGIC_OPT
	Architectures
	Description
	Syntax

	LOWPWR
	Architectures
	Description
	Syntax

	MAP
	Architectures
	Description
	Syntax
	Example

	MEDFAST and MEDSLOW
	Architectures
	Description
	Syntax

	MINIMIZE
	Architectures
	Description
	Syntax

	MRINPUT
	Architectures
	Description
	Syntax

	Net
	Architectures
	Description
	Syntax

	NODELAY
	Architectures
	Description
	Syntax

	OPT
	Architectures
	Description
	Syntax

	PLD
	Architectures
	Description
	Syntax

	PRELOAD_OPT
	Architectures
	Description
	Syntax

	REG_OPT
	Architectures
	Description
	Syntax

	RES
	Architectures
	Description
	Syntax

	RLOC
	Architectures
	Description
	Syntax

	RLOC_ORIGIN
	Architectures
	Syntax

	RLOC_RANGE
	Architectures
	Description
	Syntax

	TNM
	Architectures
	Description
	Syntax

	TSidentifier
	Architectures
	Description
	Syntax

	TTL
	Architectures
	Description
	Syntax

	UIM_OPT
	Architectures
	Description
	Syntax

	USE_RLOC
	Architectures
	Description
	Syntax

	U_SET
	Architectures
	Description
	Syntax

	PPR Placement Constraints
	Schematic Syntax
	Constraints File Syntax
	Instances and Blocks
	Place Instance Constraints
	Place Block Constraints
	Syntactical Conventions
	Wildcards
	Statements
	Place Constraints
	Flag Constraints
	Weight Constraints
	TIMESPEC Constraints
	TIMEGRP Constraints
	Restrictions

	Determining Symbol Names
	Flip-Flop Constraints
	Example 1:
	Example 2:
	Example 3:
	Example 4:
	Example 5:
	Example 6:

	ROM and RAM Constraints
	Example 1:
	Example 2:
	Example 3:
	Example 4:

	Mapping Constraints
	FMAP and HMAP Constraints
	Example 1:
	Example 2:
	Example 3:
	Example 4:
	CLBMAP Constraints
	Example 1:
	Example 2:

	CLB Constraints
	Example 1:
	Example 2:
	Example 3:
	Example 4:

	I/O Constraints
	Example 1:
	Example 2:
	Example 3:
	Example 4:
	Example 5:

	IOB Constraints
	BUFT Constraints
	Example 1:
	Example 2:
	Example 3:
	Example 4:

	Edge Decoder Constraints
	Global Buffer Constraints

	Relative Location (RLOC) Constraints
	Description
	Syntax
	RLOC Sets
	U_SET
	H_SET
	Set Linkage
	Set Modification
	HU_SET

	Set Modifiers
	RLOC
	RLOC_ORIGIN
	RLOC_RANGE
	USE_RLOC

	Xilinx Macros
	LOC Propagation Through Design Flattening
	Summary

	Relationally Placed Macros (RPMs)
	Carry Logic in XC4000 LCAs
	Primitives and Symbols
	Carry Logic Handling in XNFPrep
	Carry Mode Configuration Mnemonics
	Carry Logic Configurations
	ADD-F-CI
	ADD-FG-CI
	ADD-G-F1
	ADD-G-CI
	ADD-G-F3-
	SUB-F-CI
	SUB-FG-CI
	SUB-G-1
	SUB-G-F1
	SUB-G-CI
	SUB-G-F3-
	ADDSUB-F-CI
	ADDSUB-FG-CI
	ADDSUB-G-F1
	ADDSUB-G-CI
	ADDSUB-G-F3-
	INC-F-CI
	INC-FG-CI
	INC-G-1
	INC-G-F1
	INC-G-CI
	INC-G-F3-
	INC-FG-1
	DEC-F-CI
	DEC-FG-CI
	DEC-G-0
	DEC-G-F1
	DEC-G-CI
	DEC-G-F3-
	DEC-FG-0
	INCDEC-F-CI
	INCDEC-FG-CI
	INCDEC-G-0
	INCDEC-G-F1
	INCDEC-G-CI
	INCDEC-FG-1
	FORCE-0
	FORCE-1
	FORCE-F1
	FORCE-CI
	FORCE-F3-
	EXAMINE-CI

