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Preface

About This Guide

The Memory Interface Generator (MIG) generates DDRII SRAM, DDR SDRAM, DDR2 
SDRAM, QDRII SRAM, and RLDRAM II interfaces for Virtex™-4 FPGAs and generates 
DDR SDRAM, DDR2 SDRAM, and QDRII SRAM interfaces for Virtex-5 FPGAs. It also 
generates DDR and DDR2 SDRAM interfaces for Spartan™-3, Spartan-3A, Spartan-3E, 
and Spartan-3A DSP FPGAs. The tool takes inputs such as the memory interface type, 
FPGA family, FPGA devices, frequencies, data width, memory mode register values, and 
so forth, from the user through a graphical user interface (GUI). The tool generates RTL, 
SDC, UCF, and document files as output. RTL or EDIF (EDIF is created after running a 
script file, where the script file is a tool output) files can be integrated with other design 
files.

Guide Contents
This manual contains the following chapters:

• Section I: “Introduction”

♦ Chapter 1, “Using MIG,” shows how to install and use the MIG design tool.

• Section II: “Virtex-4 FPGA to Memory Interfaces”

♦ Chapter 2, “Implementing DDR SDRAM Controllers,” describes how to 
implement DDR SDRAM interfaces that MIG creates for Virtex-4 FPGAs.

♦ Chapter 3, “Implementing DDR2 SDRAM Controllers,” describes how to 
implement DDR2 SDRAM interfaces that MIG creates for Virtex-4 FPGAs.

♦ Chapter 4, “Implementing QDRII SRAM Controllers,” describes how to 
implement QDRII SRAM interfaces that MIG creates for Virtex-4 FPGAs.

♦ Chapter 5, “Implementing DDRII SRAM Controllers,” describes how to 
implement DDRII SRAM interfaces that MIG creates for Virtex-4 FPGAs.

♦ Chapter 6, “Implementing RLDRAM II Controllers,” describes how to implement 
RLDRAM II interfaces that MIG creates for Virtex-4 FPGAs.

• Section III: “Spartan-3/3E/3A/3AN/3A DSP FPGA to Memory Interfaces”

♦ Chapter 7, “Implementing DDR SDRAM Controllers,” describes how to 
implement DDR SDRAM interfaces that MIG creates for Spartan-3 FPGAs.

♦ Chapter 8, “Implementing DDR2 SDRAM Controllers,” describes how to 
implement DDR2 SDRAM interfaces that MIG creates for Spartan-3 FPGAs.

• Section IV: “Virtex-5 FPGA to Memory Interfaces”

♦ Chapter 9, “Implementing DDR2 SDRAM Controllers,” describes how to 
implement DDR2 SDRAM interfaces that MIG creates for Virtex-5 FPGAs.
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♦ Chapter 10, “Implementing QDRII SRAM Controllers,” describes how to 
implement QDRII SRAM interfaces that MIG creates for Virtex-5 FPGAs.

♦ Chapter 11, “Implementing DDR SDRAM Controllers,” describes how to 
implement DDR SDRAM interfaces that MIG creates for Virtex-5 FPGAs.

• Section V: “DDR2 Debug Guide”

♦ Chapter 12, “Debugging MIG DDR2 Designs,” provides a step-by-step process for 
debugging designs that use MIG-generated memory interfaces.

• Section VI: “Appendices”

♦ Appendix A, “Memory Implementation Guidelines,” provides helpful rules for 
reference designs.

♦ Appendix B, “Required UCF and HDL Modifications for Pinout Changes,” 
provides detailed information about modifying pinout-dependent UCF 
constraints and top-level parameters when required by various design 
circumstances.

♦ Appendix C, “WASSO Limit Implementation Guidelines,” gives references to 
data and tools necessary for ensuring compliance with Simultaneous Switching 
Output (SSO) limitations.

♦ Appendix D, “Debug Port,” provides information on the Debug port added to all 
memory interface designs for MIG 2.2 and later.
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Typographical Conventions
This document uses the following typographical conventions. An example illustrates each 
convention.

Convention Meaning or Use Example

Italic font

References to other documents See the Virtex-4 Configuration 
Guide for more information.

Emphasis in text The address (F) is asserted after 
clock event 2.

Underlined Text Indicates a link to a web page. http://www.xilinx.com/virtex4
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Type Case of Port and Signal Names
Some port and signal names given in the figures and tables in this document might appear 
in uppercase type, even though those same names are in lowercase type in the designs 
themselves. This is strictly a typographical issue in the User Guide, and does not imply 
that the port and signal names in the designs need to be changed.
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Chapter 1, “Using MIG”
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Chapter 1

Using MIG

MIG is a tool used to generate memory interfaces for Xilinx FPGAs. MIG generates Verilog 
or VHDL RTL design files, user constraints file (UCF) constraints, and script files. The 
script files are used to run simulations, synthesis, map, and par for the selected 
configuration.

This chapter describes the user interface details of all memory interfaces supported in 
MIG. It provides MIG features, usage, and installation details and describes the output 
files. This chapter also summarizes the changes and enhancements made from earlier 
versions of MIG.

MIG 2.2 Changes from MIG 2.1
The new features of MIG 2.2 are summarized in this section:

• Support of Qimonda memory parts for the DDR2 SDRAM interface of all FPGA 
families.

• Multiple interface support in Virtex™-5 FPGAs for DDR2 SDRAM and QDRII SRAM 
designs:

♦ Provides an option to select DDR2 SDRAM and QDRII SRAM interfaces for 
multicontroller designs.

♦ Supports different frequencies for different memory interfaces.

♦ Provides controller-wise DCI Cascade support.

• Creates different UCF files for all the selected compatible FPGAs.

• Enhanced support for the Debug port option using VIO.

• Updates to Virtex-5 and Virtex-4 FPGA designs:

♦ Supports updated designs.

♦ Provides an option to browse the old project file (.prj) in the Verify UCF page.

♦ Provides IDELAYCTRL location constraints in the UCF.

• Added Debug port to all memory interface designs
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MIG 2.1 Changes from MIG 2.0
The new features of MIG 2.1 are summarized in this section: 

• Support for 64-bit/32-bit Linux Red Hat Enterprise 4.0

• Support for 64-bit Microsoft Windows® XP Professional

• Support for 32-bit Microsoft Vista Business

• Support for 64-bit SUSE 10 Enterprise

• Data mask enable/disable option for DDR and DDR2 SDRAM designs

• Debug signals support

• Real-time pin allocation implemented in the GUI. As the user selects the banks, the 
GUI displays the information as the total number of required pin count and the 
number of pins allocated for each group of signals.

• Implements the priority bank selection for the data. Priority is given for exclusive 
Data banks first, then Data banks with the combination of other groups.

• Creates the RLOC and DQS gate constraints to older versions of UCF files that use the 
design from MIG 2.0 or following versions for Virtex-5 FPGA DDR2 SDRAMs. An 
option is provided to add or not add the constraints while verifying the UCF.

• Simulations support for custom memory parts

• Reserve Pin banks are changed from list view to hierarchical view

• Implemented the DCI Cascade and Master Bank selection option for QDRII SRAM 
Virtex-5 FPGA designs

• Support for Spartan-3A FPGA DDR2 SDRAM 200 MHz design

• 166 MHz frequency support for all possible data widths for Spartan-3E, Spartan-3A, 
and Spartan-3A DSP families

• Uncommon banks are faded out in the Bank Selection page when the user selects 
compatible FPGAs, allowing only the common banks for pin allocation

• Attributes X_CORE_INFO and CORE_GENERATION_INFO support for all designs

• Updates to Virtex-5 FPGA designs:

♦ DDR2 SDRAM

- Changing the MIG 1.73 or prior versions of UCF files compatible to MIG 2.0 
or following versions of designs using Verify UCF feature

♦ QDRII SRAM

- BL2 support

- DCI cascade support

• Updates to Virtex-4 FPGA designs:

♦ DDR2 SDRAM Direct Clocking

- CAS latency 5 support

- Linear addressing support from the user interface

- Calibration algorithm modified to fix the low-frequency issues

♦ DDR2 SDRAM SerDes

- Linear addressing support from the user interface

♦ DDR SDRAM

- Linear addressing support from the user interface

http://www.xilinx.com
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♦ DDRII SRAM

- Two address FIFOs replaced by a common address FIFO for both write and 
read commands

• Updates to Spartan FPGA designs:

♦ DDR2 SDRAM and DDR SDRAM

- Linear addressing support from the user interface

For MIG 2.1 release notes and a list of specific issues addressed in this release, consult 
Xilinx Answer Record 29767.

MIG 2.0 Changes from MIG 1.73
The new features of MIG 2.0 are summarized in this section:

• MIG GUI is changed to WIZARD implementation

• Supports 32-bit Linux Red Hat Enterprise 4.0

• Generates a compatible simulation testbench for the generated design

• Supports Preset Configuration

• Updates to Virtex-5 FPGA designs:

♦ DDR SDRAM

- Support for DIMMs

♦ DDR2 SDRAM

- Major physical layer changes: Read capture architecture modified, support 
added for read postamble DQS glitch gating, operation of PHY logic at half 
clock speed. See XAPP858 for details.

- Support for unbuffered DIMMs. Implemented 2T timing to support 
unbuffered DIMMs

- 72-bit ECC support

♦ QDRII SRAM

- Partial support for DCI Cascade

- Allocating CQ, CQ# pins

- Allocating K, K# to P and N pairs

- Read data FIFOs removed from the user interface

• Unsupported features:

♦ Edit signal names

For MIG 2.0 release notes and a list of specific issues addressed in this release, consult 
Xilinx Answer Record 29312.

MIG 1.73 Changes from MIG 1.72
The new features of MIG 1.73 are summarized in this section:

• Spartan-3A DSP FPGAs are supported

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp858.pdf
http://www.xilinx.com/xlnx/xil_ans_display.jsp?iLanguageID=1&iCountryID=1&getPagePath=29312
http://www.xilinx.com/xlnx/xil_ans_display.jsp?iLanguageID=1&iCountryID=1&getPagePath=29767
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MIG 1.72 Changes from MIG 1.7
There are no new features added to this release from MIG 1.7.

For MIG 1.72 release notes and a list of specific issues addressed in this release, consult 
Xilinx Answer Record 25056.

MIG 1.7 Changes from MIG 1.6
The new features of MIG 1.7 are summarized in this section:

• Supports creating a new memory part by modifying an existing part

• Generates a script file to create an ISE™ project

• Updates to Virtex-5 FPGA designs:

♦ Supports DDR SDRAM Verilog and VHDL

♦ Supports QDRII SRAM and DDR2 SDRAM VHDL

• Updates to Virtex-4 FPGA designs:

♦ DDR2 SDRAM

- ECC supported in Pipelined or Unpipelined modes 

- Add per-bit deskew for DDR2 Direct clocking

- Change SerDes clock scheme

♦ QDRII SRAM

- No DCM support

♦ DDRII SRAM

- No DCM support

• Updates to Spartan-3 FPGA designs:

♦ Spartan-3A FPGA support for DDR and DDR2 SDRAMs

♦ Pinout compatibility with MIG 1.6 and MIG 1.5 versions for Spartan-3 and 
Spartan-3E devices. There are several limitations to this feature. Contact Xilinx 
support for more details.

For MIG 1.7 release notes and a list of specific issues addressed in this release, consult 
Xilinx Answer Record 25406.

MIG 1.6 Changes from MIG 1.5
The new features of MIG 1.6 are summarized in this section:

• Supports Virtex-5 FPGA interfaces

• Outputs two different folders with and without a testbench for the selected memory 
interface. This feature is supported for all interfaces.

• Supports batch mode

• Virtex-4 FPGA GUI changes

♦ DDR SDRAM

- No DCM support

♦ RLDRAM II

- No DCM support

http://www.xilinx.com
http://www.xilinx.com/xlnx/xil_ans_display.jsp?iLanguageID=1&iCountryID=1&getPagePath=25406
http://www.xilinx.com/xlnx/xil_ans_display.jsp?iLanguageID=1&iCountryID=1&getPagePath=25056
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♦ DCI for data

♦ DCL for address and control

• Spartan-3 FPGA GUI changes

♦ DDR2 SDRAM

- No DCM support

• Removed Add Testbench button. The tool by default outputs with and without 
testbench designs, hence it is not required to have the Add Testbench button. 

MIG 1.5 Changes from MIG 1.4
The new features of MIG 1.5 are summarized in this section:

• GUI changes:

♦ Clock-capable I/Os for strobes and read clocks for Direct clocking method

♦ Programmable Mode Register options

♦ Verify my UCF feature

♦ Programmable pin allocation limit for selected banks

♦ Reserved Pin list 

♦ Save option to a file

• DDR2 SDRAM Direct clocking (Virtex-4 FPGA interfaces) support:

♦ Synplicity Synplify 8.2 support

♦ SODIMM support

♦ Modified Read Enable implementation

• ISE 8.1.01i tool support (all MIG 1.5 designs support this ISE tool version)

• DDR2 SDRAM SerDes clocking (Virtex-4 FPGA interfaces) support

• DDR SDRAM for Virtex-4 FPGA interfaces:

♦ Synplicity Synplify 8.2 support

♦ CL = 2, 2.5, and 4

♦ BL = 2 and 8

♦ SODIMMs

♦ Support for more memory devices

♦ Modified Read Enable implementation

• DDR SDRAM for Spartan-3/Spartan-3E devices:

♦ CL = 2 and 2.5

♦ BL = 2 and 8 

♦ Synplicity Synplify 8.2

♦ Registered DIMMs

♦ Support for more memory devices

• DDR2 SDRAM for Spartan-3 devices:

♦ Synplicity Synplify 8.2

♦ BL = 8

♦ Registered DIMMs

http://www.xilinx.com
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• RLDRAM II:

♦ Synplicity Synplify 8.2 support

• QDRII and DDRII SRAMs:

♦ Synplicity Synplify 8.2 support

• Supports skip wait 200 μs delay for Verilog simulations. This feature is not supported 
for VHDL cases.

♦ To skip 200 μs initial delay, users should use the following run-time options for 
Verilog in ModelSim. 

♦ For DDR SDRAM for Virtex-4 FPGA interfaces:

vlog +define+simulation modulename_ddr_controller_0.v 

Where:

- simulation is the parameter. 

- modulename_ddr_controller.v is the file with the parameter 
'simulation'. The file modulename_ddr_controller.v must be present in 
the sim folder. 

♦ For DDR2 SDRAM for Virtex-4 FPGA interfaces:

vlog +define+simulation modulename_ddr2_controller_0.v 

♦ For Spartan-3 FPGA interfaces:

vlog +define+simulation modulename_ddr_infrastructure_top.v 

http://www.xilinx.com
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Tool Features
The key features of MIG are listed below: 

• Supported memory types for Virtex-5 FPGA interfaces:

♦ DDR2 SDRAM components and single-rank DIMMs

See “Supported Devices” in Chapter 9 for a complete listing of supported devices.

♦ QDRII SRAM

See “Supported Devices” in Chapter 10 for a complete listing of supported 
devices.

♦ DDR SDRAM components and single-rank DIMMs

See “Supported Devices” in Chapter 11 for a complete listing of supported 
devices.

Both Verilog and VHDL RTL are generated. Additional devices can be created using 
the “Create Custom Part” feature.

• Supported memory types for Virtex-4 FPGA interfaces:

♦ DDR SDRAM components, registered DIMMs, unbuffered DIMMs, and 
SODIMMs.

See “Supported Devices” in Chapter 2 for a complete listing of supported devices.

♦ DDR2 SDRAM components and single-rank DIMMs. The DDR2 controller 
supports deep memory depths from one to four.

See “Supported Devices” in Chapter 3 for a complete listing of supported devices.

♦ QDRII and DDRII SRAMs

See “Supported Devices” in Chapter 4 for a complete listing of supported QDRII 
devices.

See “Supported Devices” in Chapter 5 for a complete listing of supported DDRII 
devices.

♦ RLDRAM II CIO and SIO memories

See “Supported RLDRAM II Devices” in Chapter 6 for a complete listing of 
supported devices.

Additional devices can be created using the “Create Custom Part” feature. 

• Supported memory types for Spartan-3 FPGA interfaces:

♦ DDR SDRAM components, registered DIMMs, unbuffered DIMMs, and 
SODIMMs.

See “Supported Devices” in Chapter 7 for a complete listing of supported devices.

♦ DDR2 SDRAM components, registered DIMMs, unbuffered DIMMs, and 
SODIMMs.

See “Supported Devices” in Chapter 8 for a complete listing of supported devices.

Additional devices can be created using the “Create New Memory Part” feature.

• Supported memory types for Spartan-3E FPGA interfaces:

♦ DDR SDRAM components

See “Supported Devices” in Chapter 7 for a complete listing of supported devices.

Additional devices can be created using the “Create New Memory Part” feature.

http://www.xilinx.com
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• Supported memory types for Spartan-3A/3AN FPGA interfaces:

♦ DDR SDRAM components, registered DIMMs, unbuffered DIMMs, and 
SODIMMs.

See “Supported Devices” in Chapter 7 for a complete listing of supported devices.

♦ DDR2 SDRAM components, registered DIMMs, unbuffered DIMMs, and 
SODIMMs.

See “Supported Devices” in Chapter 8 for a complete listing of supported devices. 

Additional devices can be created using the “Create New Memory Part” feature.

• Supported memory types for Spartan-3A DSP FPGA interfaces:

♦ DDR SDRAM components, unbuffered DIMMs, and SODIMMs.

See “Supported Devices” in Chapter 7 for a complete listing of supported devices.

♦ DDR2 SDRAM components, unbuffered DIMMs, and SODIMMs.

See “Supported Devices” in Chapter 8 for a complete listing of supported devices. 

Additional devices can be created using the “Create New Memory Part” feature.

• Supported synthesis and place-and-route tools:

♦ XST (Xilinx ISE Design Suite 10.1) and Synplify Pro Version 8.8.0.4 are supported 
for Virtex-5, Virtex-4, and Spartan-3/3E/3A/3AN/3A DSP FPGA interfaces

• All currently available Virtex-5, Virtex-4, Spartan-3A, Spartan-3AN, Spartan-3A DSP, 
Spartan-3E, and Spartan-3 FPGAs are supported. 

• DDR2 designs can use either the SerDes or the Direct clocking technique. The 
individual bits are deskewed in the Direct clocking technique used in DDR2 designs. 
The Direct clocking technique for other memories does not deskew each bit. Details 
are explained in the appropriate application notes referenced in this document.

• Direct and SerDes clocking techniques for data capture for Virtex-4 FPGA interfaces. 

Direct clocking using per-bit deskew is explained in XAPP701 [Ref 17]. With this 
technique, it is not necessary to use clock-capable I/Os for strobes or read clocks. 
SerDes clocking is explained in XAPP721 [Ref 22]. The use of clock-capable I/Os for 
strobes and read clocks is recommended for maximum flexibility with higher 
frequency designs (200 MHz and above). 

• Local clocking technique for data capture for all Spartan-3, Spartan-3A/3AN/3A DSP, 
and Spartan-3E FPGA interfaces.

The data capture technique using Spartan-3 FPGAs is explained in XAPP768c [Ref 23].

• VHDL and Verilog RTLs are supported for all designs.

• Variable data widths in multiples of 8 up to 144 bits. 

The actual width depends upon the selected component. For a 9-bit wide component, 
data widths of 9, 18, 36, and 72 are supported.

For DDR2 SDRAM, most of the components support up to a 144-bit data width. 16-bit 
or 8-bit wide components can be used to create designs of any data width that is a 
multiple of 8.

• User-selectable banks for address, data, system control, and system clock signals. 

For QDRII SRAM and RLDRAM II (SIO) memories, the user selects the data banks for 
reads and writes separately.

• Different banks are supported with different I/O standards.
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MIG uses different banks for groups of signals whose I/O standards are different. If 
the I/O voltages for different groups (such as address, data, and system control) are 
different, the user must ensure enough banks are selected for MIG to use. If insufficient 
banks are selected, MIG cannot allocate pins.

• Various configurations are supported through changing bits in the Mode and 
Extended Mode registers.

• All fields not highlighted in the GUI either are not supported or are not relevant for 
that type of memory. 

• Only one type of component is supported per interface.

Users cannot mix different components to create an interface.

• Multiple DDR2 interfaces for Virtex-4 FPGA designs.

Users can create up to eight controllers.

• Multiple DDR2 and QDRII interfaces for Virtex-5 FPGA designs and the combination 
of both interfaces can be selected.

• Different frequencies can be set for different memory interfaces in Virtex-5 FPGA 
designs.

• Pin compatibility.

Users can select multiple devices with the same package to generate compatible 
pinouts.

• Update UCF. 

Users can update the old UCF files to be compatible with the latest MIG designs. 

Design Tools
All MIG designs have been tested with ISE Design Suite 10.1 and Synplify Pro. MIG is 
currently supported on the following operating systems: 64-bit/32-bit Microsoft Windows 
XP, 64-bit/32-bit Linux Red Hat Enterprise 4.0, 32-bit Vista Business, and 64-bit SUSE 10 
Enterprise.

Installation
MIG provides Xilinx CORE Generator™ reference designs and is included in the latest IP 
update. IP updates are available through the Xilinx Download Center or WebUpdate. Visit 
the Xilinx Download Center for the latest IP update and full documentation on both 
installation methods at http://www.xilinx.com/download.

Getting Started
MIG is a self-explanatory tool. This section is intended to help with understanding the 
various steps involved in using it. 

The following steps launch MIG:

1. The CORE Generator system is launched by selecting Start →Xilinx ISE Design Suite 
10.1 → ISE →Accessories →CORE Generator.

2. Create a CORE Generator project.

3. The Xilinx part must be correctly set because it cannot be changed inside MIG. 
Virtex-5, Virtex-4, and Spartan-3/Spartan-3E/Spartan-3A/3AN/3A DSP devices are 

http://www.xilinx.com
http://www.xilinx.com/support/download/index.htm
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supported. Select the part via the part's Project Options menu in the CORE Generator 
system. The Generation tab is used to select between Verilog or VHDL by “design 
entry” under “flow”. The “flow settings” and “vendor” must be chosen appropriately. 
The vendor choices are “Synplicity” for Synplify and “ISE” for XST.

4. Remember the location of the CORE Generator project directory. The “View by 
Function” tab to the left shows the available cores organized into folders.

5. MIG is launched by selecting Memories & Storage Elements →Memory Interface 
Generator →MIG.

6. The name of the module to be generated is entered in the Component Name text box. 
After entering all the parameters in the GUI, click Generate to generate the module 
files in a directory with the same name as the module name in the CORE Generator 
project directory.

7. After generation, the GUI is closed by selecting the Close button.

The “Generated IP” tab to the left lists the generated modules.

MIG User Interface

Getting Help
At any point in time, the MIG user manual can be accessed by clicking the User Guide 
button.

Version Information
The Version Info Button gives the information on new features added and the bugs fixed 
in the current version. It opens the web browser to display the contents.

http://www.xilinx.com
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CORE Generator Options

The CORE Generator Options screen displays the details of the selected CORE Generator 
options that are selected before invoking MIG. 

Note: CORE Generator project options are used in the generation of the memory controller. 
Correct CORE Generator project options must be selected. 

If the displayed CORE Generator Project Options are inaccurate, click the Cancel button 
and reselect the CORE Generator Project Options.

Click Next to move ahead. A new window shows the MIG Output Options page.

MIG Output Options
MIG can have five different output options. They are:

1. Create Design
2. Create Design for Xilinx Reference Boards
3. Verify UCF/Update Design
4. Create Preset Configuration
5. Spartan-3A FPGA DDR2 SDRAM 200 MHz Design

MIG outputs are generated with folder name <Component Name>.

Note: <Component Name> does not accept special characters. Only alphanumeric characters 
can be used to specify a component name. It should always start with an alphabet character and 
can end with an alphanumeric character.

Figure 1-1: CORE Generator Options
UG086_c1_04_091307
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For multicontroller applications, the number of controllers should be selected at the 
Number of controllers spin box. More than one controller can be selected for DDR2 
SDRAM Direct clocking interface for Virtex-4 FPGA designs and for DDR2 SDRAM and 
QDRII SRAM designs in Virtex-5 FPGA designs. In case more than one controller is 
selected, MIG limits the design generation to DDR2 SDRAM for Virtex-4 FPGA designs, 
and MIG limits the design generation to DDR2 SDRAM and QDRII SRAM for Virtex-5 
FPGA designs. Select the appropriate number (1-8) in the pull-down menu. The Number 
of controllers selection is enabled only for Virtex-5 and Virtex-4 FPGA families.

The Create Preset Configuration option is not supported for Virtex-5 FPGA designs, and 
the Verify UCF/ Update Design option is not supported for Spartan designs. 

Note: The Create Design option can use a multiple number of controllers. For the Create 
Design for Xilinx Reference Boards, Verify UCF/Update Design, and Create Preset Configuration 
options, the number of controllers is limited to one.

Click Back to return to previous page. Click Cancel to quit from the tool. Click Next to 
move ahead. The next page display depends upon the options selected in the current page.
o

Figure 1-2: MIG Output Options / Component Name / Number of Controllers
UG086_c1_05_022008
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The Spartan-3A DDR2 SDRAM 200MHz Design option appears only for Spartan-3A FPGA 
designs (see Figure 1-3). 

Create Design

Using the Create Design option, designs can be generated that are supported for that 
FPGA family. For example, the Virtex-4 family supports DDR2 SDRAM, DDR SDRAM, 
QDRII SRAM, DDRII SRAM, and RLDRAM II. Here is the flow for creating a design:

1. Pin Compatible FPGAs

2. Memory Selection

3. Controller Options

4. Set Mode Registers

5. Set Extended Mode Registers

6. FPGA Options

7. Reserve Pins

8. Bank Selection

9. Summary

Figure 1-3: MIG Output Options Page of Spartan-3A FPGA Design
UG086_c1_55_022008
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10. Memory Model License

11. PCB Information

12. Finish

All the options are described in this section.

Pin Compatible FPGAs

FPGAs in the selected family with the same package are listed here. In case the generated 
pinout from MIG needs to be reusable with any of these other FPGAs, use this option to 
select the FPGAs with which the pinout has to be compatible.

Note: The SerDes design is only supported for FPGAs with PMCDs. In case the target FPGA 
or the selected compatible FPGA has no PMCD, the capture method for DDR2 SDRAM is 
restricted to Direct clocking.

Select any number of compatible FPGAs out of the listed ones. Only the common pins 
between target and selected FPGAs are used by MIG. The name in the text box signifies the 
Target FPGA selected. Click Next to move ahead. The Memory Selection is displayed.

Memory Selection

This page displays all memory types that are supported by the selected FPGA family. An 
example is shown in Figure 1-5 for Virtex-4 FPGA designs and in Figure 1-6 for Virtex-5 
FPGA designs. In Virtex-5 FPGA designs, the user can select the combination of both 
DDR2 SDRAM and QDRII SRAM interfaces for a multicontroller design. 

Figure 1-4: Pin Compatible FPGAs

Figure 1-5: Memory Selection for Virtex-4 FPGA Designs

UG086_c1_06_122707
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Select the appropriate option, and then click Next to move ahead. The Controller Options 
window is displayed. 

Controller Options

This page shows the various controller options that can be selected. If the design has 
multiple controllers, this page is repeated for each of the controllers. The page is 
partitioned into a maximum of nine sections. The number of partitions depends on the 
type of selected memory.

• Capture Method. This feature deals with the data capture method. The DDR2 SDRAM 
controller for Virtex-4 devices supports two types of capture method. For other 
designs, the capture method is displayed, but it cannot be changed.

Click the pull-down menu button and select an option. Certain other options such as 
frequency and ECC are restricted based on this selection.

• Frequency. This feature indicates the desired frequency for all the controllers. This 
frequency block is limited by factors such as the selected FPGA, device speed grade, 
and clocking type.

Vary the frequency as required. Either use the spin box or enter a valid value through 
the keyboard. Values entered are restricted based on the minimum and maximum 
frequencies supported.

Note: For a Virtex-4 multicontroller design, the frequency selected for the first controller is used 
for all other controllers with the same memory interface. Memory parts and data width are 
restricted based on the frequency selection.

• Memory Type. For DDR2 SDRAM, MIG categorizes different memory components 
and modules available into components, UDIMMs, SODIMMs, and RDIMMs. This 
can vary according to the memory selected. 

Figure 1-6: Memory Selection for Virtex-5 FPGA Designs

Figure 1-7: Capture Method

Figure 1-8: Frequency

UG086_c1_56_022208
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Click the pull-down menu combo box and select the memory type. This selection 
restricts the available choices in memory part selection list and data width.

• Memory Part. This feature helps the selection of a memory part for the design. 
Selection can be made from an existing list, or a new part can be created. 

Select the appropriate memory part from the list. If the required part or its equivalent 
is unavailable, a new memory part can be created. To create a custom part, select the 
Create Custom Part from the drop down combo box. A new window appears as shown 
in Figure 1-11. 

The window called Create Custom Part includes all the details of the memory 
component selected in Select Base Part. Enter the appropriate memory part name in 
the text box. Select the suitable base part from the Select base part list. Edit the Value 
column as needed. Select the suitable values from the Row, Column, and Bank options 
as per the requirements. After editing the required fields, click the Save button. The 
new part can be saved with the selected name. This new part is added in the Memory 
Parts list as shown in Figure 1-12 and saved into the database for reuse and to produce 
the design.

Figure 1-9: Memory Type

Figure 1-10: Memory Part

UG086_c1_10_022708
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• Data Width. The data width value can be selected here based on the memory type 
selected earlier. The list shows all supported data widths for the selected part. Choose 
one of them. These values are generally multiples of the individual device data 
widths. In some cases, the width might not be an exact multiple. For example, though 
16 bits is the default data width for x16 components, 8 bits is also a valid value. 

Figure 1-11: Create Custom Part

Figure 1-12: Memory Part

UG086_c1_12_022008
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• Memory Depth. The DDR2 SDRAM Virtex-4 FPGA controller with Direct clocking as 
capture method and frequency less than or equal to 150 MHz supports memory depth 
of one to four. For other designs, this option is unavailable.

Select the appropriate option from the Memory Depth option.

• ECC. ECC stands for Error Correction Code. This feature enables the generation of 
ECC along with the code. This section is enabled based on selected data width. This 
option is available only for DDR2 SDRAM Virtex-4 and Virtex-5 FPGA designs. 

 

Note that ECC selection is enabled only when the appropriate data width is selected. 
DDR2 SDRAM Virtex-4 FPGA design supports three modes: ECC Disabled, 
Unpipeline Mode, and Pipeline Mode, as shown in Figure 1-15. Select the appropriate 
mode. The Pipeline mode improves frequency performance at the cost of an extra 
pipeline stage. 

For other Virtex-4 FPGA designs, this window is disabled as shown in Figure 1-16. For 
Virtex-5 FPGA DDR2 SDRAM designs, the two options are ECC Enabled and ECC 
Disabled.

Figure 1-13: Data Width

Figure 1-14: Memory Depth

Figure 1-15: ECC (a)

Figure 1-16: ECC (b)
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Figure 1-17 shows the ECC option section for the Virtex-5 FPGA design GUI. For 
Virtex-5 devices, ECC is supported for 72-bit or 144-bit DDR2 SDRAM designs.

• Data Mask. When this Data Mask check box is marked, the Data Mask pins are 
allocated. When this Data Mask check box is not checked, the data mask pins are not 
allocated, which increases the pin efficiency. This option is disabled and cannot be 
changed for memory parts that do not support data masks. This option is available 
only for DDR2 and DDR SDRAMs.

Select the option as per the requirement.

• Clock Capable I/O. Checking the Clock Capable I/O box makes use of the CC pins 
available in Virtex-4 FPGAs for strobes or read clocks. This option is enabled and 
cannot be changed for DDR2 SDRAM SerDes designs, but is editable for other 
designs. 

Select the option as per the requirement. 

• Write Pipe Stages. The Write Pipe Stages is supported only for Spartan FPGA designs. 
This option allows users to implement the write data pipelines in the user interface.

Figure 1-17: ECC (c)

Figure 1-18: Data Mask

Figure 1-19: Clock Capable I/O

Figure 1-20: Write Pipe Stages
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• Memory Details. This section displays details about the selected memory. For 
DIMMs, the details listed are the base component memory details.

The memory details change based on the selected Memory part.

Click Next to move ahead. The Set Mode Registers window is displayed for 
RLDRAM II, DDR, and DDR2 SDRAM devices. For other memories, the next window 
displayed is FPGA Options.

Set Mode Registers

This feature allows selection of various memory mode register values as supported by the 
controller type.

The Mode Register Value is loaded into the Load Mode register during initialization.

Note:  CAS latency values listed on this GUI are restricted by the frequency and the memory 
part selected in the prior page.

Click Next to move ahead. The Set Extended Mode Register window or FPGA Options 
window is displayed.

Figure 1-21: Memory Details

Figure 1-22: Mode Register Data
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Set Extended Mode Registers

Select the memory extended mode register values here. This page appears for DDR 
SDRAM and DDR2 SDRAM only, and the contents can change according to the selected 
memory.

These values are programmed into memory during initialization.

Click Next to move ahead. The FPGA Options window is displayed.

Figure 1-23: Extended Mode Register Data
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FPGA Options

This feature is partitioned into five sections: DCM, DCI, DCI Cascading Information, SSTL 
Class, and Debug Signals Control.

• DCM. DCM allows design generation with or without a DCM in the design.

• DCI. This feature indicates whether the Digitally Controlled Impedance is Disabled or 
Enabled. DCI can be enabled or disabled for Input/Inout pins or Outputs. This option 
can change according to the memory selected. They are listed as follows:

DDR2 SDRAM — DCI for DQ/DQS and DCI for Address/Control
DDR SDRAM — DCI for DQ/DQS and DCI for Address/Control
RLDRAM II — DCI for Data, Read Clocks, and Data Valid Signals and DCI for 
Address/Control
QDRII SRAM — DCI for Data and Read Clocks
DDRII SRAM — DCI for Data and Read Clocks

For multiple interfaces in Virtex-5 FPGA designs, when selected, DCI is applied for all 
the interfaces. The DCI for Address/Control is applicable only for DDR2 SDRAM 
designs when multiple interfaces are selected.

If DCI is enabled, the pins are characterized by the DCI I/O standards.

Figure 1-24: DCM Option

Figure 1-25: DCI Options

Figure 1-26: DCI Option for Multiple Interfaces Selected in Virtex-5 FPGA Designs
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• DCI Cascading Information. This option appears only for QDRII Virtex-5 FPGA 
designs. This option is necessary for generating 36-bit component designs with DCI 
support.

Note: If the DCI Cascading Information option is checked, the Bank Selection window shows 
the Master Bank selection box. The user must not reserve VRN/VRP pins in the Reserve Pins 
window for the selected master banks.

• SSTL Class Options. SSTL Class Option determines the I/O standard drive strength 
in the UCF of DDR SDRAM and DDR2 SDRAM. These I/O standards can be changed 
based on their application.

• Debug Signals Control. Selecting this option enables the debug signals to be port-
mapped to the ChipScope™ modules in the design top module. This helps in 
monitoring the debug signals on the ChipScope tool. When the generated design is 
run in batch mode using ise_flow.bat in the design's par folder, the CORE 
Generator system is called to generate ChipScope modules (that is, EDIF files are 
generated). Deselecting this option leaves the debug signals unconnected in the 
design top module. No ChipScope modules are instantiated in the design top module, 
and no ChipScope modules are generated by the CORE Generator system.

Figure 1-27: DCI Cascading Information Option

Figure 1-28: SSTL Class Options

Figure 1-29: Debug Signals Control
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In Virtex-5 FPGA multiple interface designs, the Debug port is supported for either the 
DDR2 SDRAM or the QDRII SRAM interface of the first controller.

Click Next to move ahead. The Reserve Pins window is displayed.

Reserve Pins

This feature allows reservation of specific pins for other applications. After selecting 
suitable pins as necessary, the reserved pins are not used by MIG while generating the 
pinout for that particular design. 

Select the pins from the Available Pins column, and click the Reserve button. The 
particular pin is transferred to Reserve Pins column along with its bank information. This 
signifies that the selected pin has been reserved. To unreserve a reserved pin, click the 
appropriate pin that needs to be removed, and then click the Unreserve button. The 
number 408 in the Available Pins header signifies the number of pins available for pinout, 
whereas the number 16 in the Reserve Pins header signifies the number of pins selected to 
be reserved. 

The reserved pins information can be saved in a user defined file using the Save as button. 
A browser window appears after clicking the Save as button. Set the file location here.

Figure 1-30: Debug Signals in Virtex-5 FPGA Multiple Interface Designs

Figure 1-31: Reserve Pins
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Use the Read UCF File button to read a reserve pins from a UCF. When the Read UCF File 
button is clicked, a new window pop ups. Select the UCF to be read. After reserving the 
pins, click the Next button to continue. The Bank Selection window is displayed.

Bank Selection

This feature allows selection of banks for the Memory interface. Banks can be selected for 
different classes of memory signals. The different classes are: 

• Address and Control Signals

• Data Signals

• System Control Signals

• System Clock

Figure 1-32: Bank Select (a)
UG086_c1_28_122907
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Select the appropriate bank and memory signals as required. 

The WASSO limit in conjunction with the Reserve pins limits the number of available I/Os 
in a bank. For more information on the WASSO limit, refer Appendix C, “WASSO Limit 
Implementation Guidelines.”

To unselect the banks that are selected, click the Deselect Banks button. To restore the 
defaults, click the Restore Defaults button.

In certain banks, global clock pins are not allowed for system clock. This is because system 
clock signals have different I/O standards as compared to those of any other signals in the 
design. In such banks, global clock pins are left unused.

• Real-time pin allocation. As the user selects the banks, pin allocation is done 
dynamically, and the number of pins required is updated for each group of signals. 

♦ The red circle with a cross mark at each group indicates that sufficient pins are not 
allocated, and additional pins are required for the selected configuration. 

♦ The green circle with a tick mark at each group indicates that sufficient pins are 
allocated for the selected configuration. 

♦ The denominator in each group indicates the total number of pins required for 
each group. 

The user must select banks until the numerator equals the denominator. The user 
cannot move to the next page unless sufficient pins are allocated for each group.

Figure 1-34 illustrates the conditions where sufficient banks are selected in order to 
successfully generate the design.

Figure 1-33: Bank Select (b)
UG086_c1_29_122907
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Figure 1-35 indicates when sufficient banks are not allocated for each signal group.

Figure 1-36 indicates sufficient pins are allocated for System Control and System Clock 
groups, but sufficient pins are not allocated for Data and Address groups.

Figure 1-34: Real-Time Pin Allocation: Sufficient Banks Selected

Figure 1-35: Real-Time Pin Allocation: Sufficient Banks Not Selected
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• Pin Allocation Priority. MIG allocates the pins starting with exclusive data banks 
first, followed by data banks that combine with other groups.

Figure 1-37 indicates that data banks are selected in bank 6 and bank 5. In bank 6, only 
data is selected; in bank 5, data, address, and system control are selected. Here, data is 
allocated first in bank 6 and then in bank 5. This Pin Allocation Priority is applicable 
only for data group signals in Virtex-4 and Virtex-5 devices.

Figure 1-36: Real-Time Pin Allocation: Insufficient Pins for Data/Address Groups

Figure 1-37: Pin Allocation Priority
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• Master Bank selection. This is applicable only for QDRII Virtex-5 FPGA designs when 
the DCI Cascading Information option is selected. A Master bank should be selected 
in each column when a Data Read is selected in that particular column. There is an 
exception for the middle column. The middle column is divided into two parts: above 
zero bank and below zero bank. The middle column can have two Master banks, 
depending on where the Read Data banks are selected. If the Read Data bank is 
selected either above or below the Zero bank, only one Master Bank is required. If the 
Read Data banks are selected both above and below Zero bank, two Master banks are 
required. 

Figure 1-38 shows that the Data Read is selected in both the columns and user needs to 
select the Master Banks in both the columns. Master bank combo box lists all the 
possible banks that can be selected as Master Bank. MIG does not show the Master 
Bank selection check box for a column if that column does not have enough pins in the 
banks.

Figure 1-38: Master Bank Selection (a)
UG086_c1_49_122907
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Figure 1-39 shows the Master Bank selection in the center column. It uses all the pins 
for Read Data from the center column. 

After the selection of the banks, click the Next button to move ahead. The Memory Model 
License window is displayed.

Figure 1-39: Master Bank Selection (b)
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• Bank Selections for Multiple Memory Interfaces in Virtex-5 FPGA Designs. For a 
multiple interface design, a particular group is allowed to select in a bank only for 
compatible I/O standards. For example, Controller 0 is DDR2 SDRAM (see 
Figure 1-40) and Controller 1 is QDRII SRAM (see Figure 1-41). In DDR2 SDRAM, 
bank 20 is checked for Data and Bank 19 is checked for Address and System Control. 
In QDRII SRAM, neither bank 20 nor bank 19 is allowed to select Data Read, because 
the I/O standard for DDR2 SDRAM Data and Address is SSTL18_II_DCI, and the I/O 
standard for QDRII SRAM Data Read is HSTL_I_DCI_18. These two I/O standards 
are not compatible. Hence MIG does not allow bank selection for the group of signals 
that do not follow the I/O standard compatibility rules.

Figure 1-40: DDR2 SDRAM Bank Selection in a Multiple Interface Design
UG086_c1_60_022108
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Figure 1-41: QDRII SRAM Bank Selection in a Multiple Interface Design
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Summary

This window provides complete details about the bank selection, Interface parameters, 
CORE Generator options, and FPGA options of the active project.

Click the Next button to move to the License Agreement page of the selected memory of 
the Micron memory model.

Figure 1-42: Summary
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Memory Model License

MIG outputs a Micron memory model for simulation purposes for memories such as DDR 
SDRAM, DDR2 SDRAM, and RLDRAM II. To access the models in the output sim folder, 
click the Micron License Agreement check box. Read the License Agreement carefully 
and mark the Accept License Agreement check box to accept it.

If the License Agreement is not agreed to, the memory model is not available. The user 
then needs to get the appropriate memory model by some other means to simulate the 
design.

Click the Generate button to generate the design files. MIG generates two output 
directories example_design and user_design. After generating the design, a new 
window called PCB Information page is displayed.

Figure 1-43: License Agreement
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PCB Information

This page displays the PCB related information to be considered while designing the board 
that uses MIG generated designs. Click Next to go to the Finish page.

Figure 1-44: PCB Information
UG086_c1_42_090407
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Finish

This window shows if the design was generated successfully. This page provides the 
design notes that should be taken into account while using MIG generated designs.

The text in the blue color indicates the path of the design output files. Click the blue text to 
go through the output files. Click the Finish button to quit. The Quit Confirmation 
window shown in Figure 1-46 appears.

Click Yes to exit or No to return to the Finish page.

Figure 1-45: Finish

Figure 1-46: Quit Confirmation
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Output Files

A MIG-generated design has the following output files and directory:

• A <component name>_xmdf.tcl file, used for the CORE Generator application.

• A <component name>.vho file, used for the core to be instantiated, created only 
when a VHDL design is generated.

• A <component name>.veo file, used for the core to be instantiated, created only 
when a Verilog design is generated.

• A <component name> directory.

In the <component name> directory, three folders are created:

• docs

• example_design

• user_design

Any relevant documents, such as application notes, timing analysis spreadsheets, and user 
guide are in the docs directory.

The example_design and user_design folders contain several other folders and files. 
They are:

• rtl — Contains all the RTL files (either VHDL or Verilog design files).

• par — Contains the UCF with constraints for the design. Two scripts files are 
generated:

♦ ise_flow.bat — The user double-clicks the ise_flow.bat script file to run 
the design through synthesis, build, map, and par. This script file sets all the 
required options. Users should refer to this file for the recommended build 
options for the design.

♦ create_ise.bat — The user double-clicks the create_ise.bat file to 
create an ISE project. The ISE project thus generated contains the recommended 
build options for the design. To run the project in GUI mode, the user double-
clicks the ISE project file to open up ISE in GUI mode with all project settings.

• synth — Contains the SDC file which has design constraints for Synplify Pro 
synthesis tool. This folder also has the script files, which set various tool options. 
There is also a project file, through which the RTL files are passed for synthesis.

• sim — Contains the testbench files that are needed to simulate the design. It also has 
an executable and a .do file. If sim.exe is double-clicked, the design is 
automatically simulated using the ModelSim simulator. 

There is a simulation_help.chm file in the sim folder that helps you to understand 
the simulation environment provided. For the user_design folder, a synthesizable 
testbench module is also present in the sim folder.

Caution! Recommended Build Options. The ise_flow.bat file in the par folder of the 
component name directory contains the recommended build options for the design. Failure to follow 
the recommended build options could produce unexpected results.
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Create Design for Xilinx Reference Boards

To create a design for the Xilinx Reference Boards, select Create Design for Xilinx 
Reference Boards from the MIG Output Options. It is intended to generate the board files 
for various Xilinx Reference Boards. Click the Next button to move ahead.

The flow is as follows:

1. Reference Board Designs

2. Memory Model License

3. PCB Information

4. Finish

Reference Board Designs

This section allows selection of the board for which the designs are to be generated.

The pull-down menu includes a list of boards. Select the appropriate board. Details about 
the particular board are displayed in the pane below. After selecting the board, click Next 
to move to next page. 

Figure 1-47: Create Design for Xilinx Reference Boards
UG086_c1_34_090407
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Memory Model License

MIG outputs a Micron memory model for simulation purpose for memories like DDR 
SDRAM, DDR2 SDRAM, and RLDRAM II. To generate the board files for the specified 
Xilinx Reference Board, read the License Agreement carefully and mark the Accept 
License Agreement checkbox to accept it.

If the License Agreement is not accepted, the user cannot generate board files. The Next 
button is disabled unless the License Agreement is accepted.

After accepting the agreement, click Generate to generate the board files for the specified 
Xilinx Reference Board. After the successful generation of board files, the PCB Information 
page is displayed.

Figure 1-48: Memory Model License
UG086_c1_54_010108
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PCB Information

This page displays the PCB-related information to be considered while designing the 
board that is to use a MIG generated design. Click Next to go to the Finish page.

Clicking Next displays the Finish page.

Figure 1-49: PCB Information
UG086_c1_51_123007
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Finish

The blue text above the pane shows the path of the output folder. Click the Back button to 
choose a different board. Click the Close button to terminate.

Click Yes to exit or No to return to the Finish page.

Note: In order to run the simulations in batch mode using ModelSim for the board design files, the 
sim.exe file must be copied to the respective board design's sim folder. The sim.exe file is 
provided in the simulation_executable folder.

Figure 1-50: Finish

Figure 1-51: Quit Confirmation
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Verify UCF/Update Design

To verify and update the user constraints file (UCF), select the third option (Verify 
UCF/Update Design) from the MIG Output Options page. Verify UCF is intended for 
verification of UCF files that are generated from MIG and later modified. Update Design is 
intended to update the old UCF files to be compatible to the current RTL design. This 
feature ensures that the pinout still follows the rules required for the generated design.

Click the Next button to move ahead. 

The flow is as follows:

1. Verify UCF File

2. Summary

3. Update Design

4. Memory Model License

5. Verification Report

6. PCB Information

7. Finish

Verify UCF File

Provide the input UCF path at the Load UCF File box and input the project file path 
(mig.prj) at the Load Prj File Box, or click the Browse button to enter the UCF and Prj 
files through a browser window. 

Note: Update Design is not supported for the UCF signal names that were modified using the Edit 
Signal Names option of MIG 1.73. 

Select the appropriate files. After selecting the files, click Next to move ahead. 

Figure 1-52: Verify UCF File
UG086_c1_37_022108
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Summary

This page provides complete details about the bank selection, Interface parameters, CORE 
Generator options and FPGA options of the project for which the UCF is to be verified.

Click the Verify button to generate the verification report file. After verification, the 
Update Design page is displayed if the loaded UCF does not contain any required 
constraints or any changes required to be compatible with the current design. If the loaded 
UCF is compatible with the current design, the Finish page is displayed.

Figure 1-53: Summary Page
UG086_c1_38_091707
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Update Design

If the user selects Update UCF file and clicks the Next button, the License agreement page 
appears for Micron parts. The Finish page appears for other memory parts. 

Click Next to move ahead. 

Memory Model License

MIG outputs a Micron memory model for simulation purposes for memories such as DDR 
SDRAM, DDR2 SDRAM, and RLDRAM II. To get the simulation model in the output 
folder, click the Micron License Agreement check box. Read the License Agreement 
carefully and mark the Accept License Agreement check box to accept it.

If the License Agreement is not agreed to, the simulation model is not output into the 
output folder. 

Figure 1-54: Update Design

Figure 1-55: Micron License Agreement
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Click the Generate button to generate the complete design with the loaded Prj settings and 
modified UCF (the UCF is updated without affecting the pin location constraints) in the 
updated_ucf folder.

Verification Report

This window indicates if the loaded UCF has been verified successfully or provides 
warnings and errors if the loaded UCF does not follow the pin allocation rules.

Click the Next button to move to the PCB information page.

Figure 1-56: Verification Report
UG086_c1_63_022108
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PCB Information

This page displays the PCB related information to be considered while designing the board 
that uses MIG generated designs. Click Next to go to the Finish page.

Figure 1-57: PCB Information
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Finish

This window shows if the design was generated successfully. This page provides the 
design notes that should be taken into account while using MIG generated designs.

The text in the blue color indicates the path of the design output files. Click the blue text to 
go through the output files. Click the Finish button to quit. 

Click Yes to exit or No to return to the Finish page.

Figure 1-58: Finish

Figure 1-59: Quit Confirmation
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Features Verified

Features verified using Verify UCF option are described as follows:

• Whether all the data bits are allocated in the selected banks.

• The associated groups are allocated in the same bank. For example, data bits 
corresponding to a DQS in SDRAMs are treated as a group, and data read bits 
corresponding to a CQ in QDRII SRAMs are treated as a group. All the signals within 
the same group should be in the same bank.

• The selected data width. For example if the data width is 32 bits and the reference 
UCF has more bits, the tool verifies the required bits and ignores the excess data.

• The uniqueness of the pins. It flags an error if two signals are allocated to the same pin 
or vice versa, or if the same signal is allocated to more than one pin.

• The strobe signals are allocated to the CC pins when the CC pins option is enabled.

• The signals are allocated within the selected banks.

Error Messages

This section describes the different error messages that can be generated when verifying 
the UCF.

The reference UCF must follow the MIG naming conventions (refer to the UCF generated 
by MIG). For example, the Virtex-4 FPGA DDR2 SDRAM controller 0 should have 
cntrl0_ddr2_dq[0] for data bits, and RLDRAM controller 0 should have cntrl0_rld2_dq[0] 
for data bits.

• Uniqueness. If two signals are allocated to the same pins in the reference UCF, an error 
message is listed in the directed file with a user-assigned name.

The error message format is “<signal_name1> and <I> are allocated to same pins.”

For example, if cntrl0_ddr2_dq[0] and cntrl0_ddr2_dqs[0] are allocated to same pin, 
such as:

NET "cntrl0_ddr2_dq[0]" LOC = "D12" ;

NET "cntrl0_ddr2_dqs[0]" LOC = "D12" ;

Then the following error message is printed:

ERROR: cntrl0_ddr2_dq[0] and cntrl0_ddr2_dqs[0] are allocated to the 
same pins. Pins are not unique.

• Association. Signals in the same group (for example, assume dqs[0] and dq[0:7] form 
the same group) should go to the same bank, otherwise an error message is printed in 
the same user directed file. This Association rule is not applied for data write bits in 
SIO components.

The error message format is “<signal_name1> and <signal_name2> are not allocated in 
the same banks.”

For example:

NET "cntrl0_ddr2_dq[0]" LOC = "D12" ; #bank 6

NET "cntrl0_ddr2_dq[1]" LOC = "C12" ; #bank 6

NET "cntrl0_ddr2_dq[2]" LOC = "B10" ; #bank 6

NET "cntrl0_ddr2_dq[3]" LOC = "C10" ; #bank 7

Assume cntrl0_ddr2_dq[3] and cntrl0_ddr2_dq[2] are allocated to pins of different 
banks, such as bank 7 and bank 6, respectively. The following error messages are 
printed:
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ERROR: cntrl0_ddr2_dq[0](6) and cntrl0_ddr2_dq[3](7) are not 
allocated in the same banks

ERROR: cntrl0_ddr2_dq[1](6) and cntrl0_ddr2_dq[3](7) are not 
allocated in the same banks

ERROR: cntrl0_ddr2_dq[2](6) and cntrl0_ddr2_dq[3](7) are not 
allocated in the same banks

These types of error messages are printed for each pair of signals of same group, but 
are allocated to different banks.

• Clock Capable I/Os for strobes/read clock. Check for CC pins if Use CC for Direct 
clocking is clicked. In this case, the strobe/read_clock signals should be allocated to 
the CC pins only. If not, an error message is displayed.

The error message format is “<signal_name> should be allocated to the CC Pins.” For 
example, cntrl0_ddr2_dqs[0] is a strobe. Assume it is allocated to the K12 pin, which is 
not a clock capable I/O pin. The following error message is printed:

ERROR: cntrl0_ddr2_dqs[0 should be allocated to the CC Pins.

• Absence of signals. If one or more signal-pin pair is missing and/or commented in the 
given UCF against the selected inputs, the verification result indicates the absence of 
those signal-pin pairs as a warning.

The warning message format is ”<signal_name> is forbidden in the given UCF against 
the selected inputs.”

For example, assume the reference UCF has 8 bits (dq[0:7]), and the data width passed 
through PRJ is 16 bits. While checking, MIG verifies only 8 bits and reports the other 
expected bits as follows:

WARNING : cntrl0_ddr2_dq[8] is expected, but not present in the UCF.

WARNING : cntrl0_ddr2_dq[9] is expected, but not present in the UCF.

WARNING : cntrl0_ddr2_dq[10] is expected, but not present in the 
UCF.

WARNING : cntrl0_ddr2_dq[11] is expected, but not present in the 
UCF.

WARNING : cntrl0_ddr2_dq[12] is expected, but not present in the 
UCF.

WARNING : cntrl0_ddr2_dq[13] is expected, but not present in the 
UCF.

WARNING : cntrl0_ddr2_dq[14] is expected, but not present in the 
UCF.

WARNING : cntrl0_ddr2_dq[15] is expected, but not present in the 
UCF.

• Bank selection. If one or more banks are not selected and one or more pins from that 
(those) bank(s) is (are) used for some purpose, an error message is printed.

The error message format is “<signal_name> (<signal_group>) is not allowed to be 
allocated in Bank (<bank_number>) against the selected inputs.”

For example:

NET "cntrl0_ddr2_dqs[0]" LOC = "D12" ;#bank 6

Bank 6 is not selected for Data (as cntrl0_ddr2_dqs[0] from Data). Assume that 
cntrl0_ddr2_dqs[0], which belongs to the strobe group, is allocated to a pin belonging 
to bank 6. The following error message is printed:

ERROR: cntrl0_ddr2_dqs[0] (strobe) should not be allocated to bank 6.
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Create Preset Configuration

This option outputs pre-verified configurations for the selected FPGA. The preset 
configurations meet the specified frequency with a reasonable margin. Banks, frequency, 
memory component, and all the other parameters are already selected. When the preset 
configuration option is selected and Next is clicked, the Preset Configurations page 
appears.

The flow for preset configuration is as follows:

1. Create Preset Configuration

2. Memory License Agreement

3. Summary

4. PCB Information

5. Finish

Select the controller type here to select the memory and click the Next button. In case of 
DDR2 SDRAM Direct clocking, DDR2 SDRAM SerDes, DDR SDRAM, and RLDRAM II 
memories, the Micron License page is displayed. For other memories, the Summary page is 
displayed.

Memory License Agreement

Check or uncheck the check box to accept the License Agreement and then click Next. 

Summary

This page gives details about the options set for Preset Configuration. Make sure to check 
this page and ensure that the preset parameters are good for the design requirements. 
Refer to the Summary section for details.

Click the Generate button to generate the design files. This displays the PCB information 
page. 

PCB Information

Refer to the PCB Information section for details. Clicking Next displays the Finish page. 

Figure 1-60: Preset Configurations
UG086_c1_41_090407
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Finish

Refer to the Finish section for more information.

Spartan-3A FPGA DDR2 SDRAM 200 MHz Design
This page is displayed only for Spartan-3A FPGA designs. It provides links to XAPP458 
[Ref 15] and the Spartan-3A DDR2 SDRAM 200 MHz reference design. 

Figure 1-61: Spartan-3A FPGA 200 MHz Design Support
UG086_c1_53_010208
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Using MIG in Batch Mode
To run MIG in batch mode, the XCO and MIG.PRJ files must be created by running MIG in 
GUI mode through the CORE Generator system. 

XCO File
The XCO file contains the following information:

• Path of the MIG.prj file

• Synthesis tool to be used

• FPGA device information

• HDL to be used

To change these parameters they must be set in the XCO file.

MIG.prj File
The user can change various parameter values in the PRJ file with valid input data and can 
regenerate the design. Parameters with a fixed value cannot be changed. Table 1-1 
describes the information contained in the PRJ file.

Table 1-1: PRJ File Parameters

Parameter Description

Controller number Indicates the most recent controller selected in the GUI before generating the design. 

NoOfControllers Indicates the number of controllers selected. Multicontrollers are supported only for 
Virtex-4 FPGA DDR2 SDRAM Direct clocking designs.

MemoryDevice Contains the memory device configuration. For a multicontroller case, this parameter 
contains the most recent memory device selected. 

SelectedPins If the user reserves some pins, this parameter displays the remaining pins along with the 
bank number from the selected banks. If the user does not reserve any pins, no pins are 
displayed (the user can use all the pins). 

ReservedPins Displays the pins that are reserved by the user. If the user does not reserve any pins, no pins 
are displayed. 

DCM Indicates whether DCM is enabled [1] or disabled [0]. 

ModuleName Displays the top-level design name assigned by the user.

dci_inouts_inputs Indicates whether Digitally Controlled Impedance (DCI) for inputs and inouts is enabled 
[1] or disabled [0]. If DCI is enabled, input and inout pins have the DCI I/O standards.

dci_outputs Indicates whether Digitally Controlled Impedance (DCI) for address and control signals is 
enabled [1] or disabled [0]. If DCI is enabled, address and control pins have the DCI I/O 
standards.

FPGADevice Displays the compatible devices selected by the user for the selected target device. If the 
compatible devices are not selected, nothing is displayed.

Class Indicates the I/O standard class. It can be either Class I or Class II. They determine the 
various drive strengths of the signal.

Debug_En Indicates whether the debug signals are to be port-mapped to the ChipScope modules in 
design_top.
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Controller number Information related to each controller is between “<Controller number="X">” and 
“</Controller>”. X holds the values from 0 to NoOfControllers – 1. It is different than 
ControllerNumber. The options selected by the user for each controller are listed below:

MemoryDevice Gives the selected memory device and the memory type. 

Clocking Denotes the selected clocking type. 

CCCheck Indicates whether the Clock Capable (CC) option is enabled [1] 
or disabled [0]. If CC is enabled, strobe pins are allocated to the 
CC pins only. 

Frequency Indicates the frequency selected by the user for that controller. 

DataWidth Data width selected by the user.

Data Mask Indicates whether Data Mask pin is to be allocated.

DeepMemory Indicates the depth of the memory. This parameter is supported 
for Virtex-4 DDR2 SDRAM Direct clocking designs only. The 
depth of the memory for that controller is increased by 
multiples of DeepMemory value.

RowAddress Indicates the row address width, this is the parameter of the 
Create New Memory Part. 

MasterBanks Indicates the Master Banks selected. (This appears only for the 
QDRII Virtex-5 FPGA design.)

ColAddress Indicates the column address width, this is the parameter of the 
Create New Memory Part. 

BankAddress Indicates the bank address width, this is the parameter of the 
Create New Memory Part.

TimingParameters Indicates various timing parameters of the selected Memory 
component.

ECC Error Correction Code (ECC) is supported for Virtex-4 DDR2 
SDRAM Direct clocking designs only.

WritePipeLine Represents the pipeline stages.  This parameter is supported for 
Spartan-3, Spartan-3E, Spartan-3A, and Spartan-3A DSP 
designs only. 

BankSelection Displays the banks selected by the user for that controller. 
Information about the particular bank is “<Bank Control="0" 
Address="0" SysClk="1" Dwrite="0" Data="0" name="3" 
wasso="16" />”, where:

• “0” denotes signals that are not allocated in that bank.
• “1” denotes signals that are allocated in that bank. 
• Control, Address, SysClk, Dwrite, and Data are the different 

signal groups. 
• “name” denotes the bank number.
• “wasso” denotes the number of pins limited by the user in the 

particular bank.

Notes: 
1. All the above parameters might not be available for all the designs. They vary according to the design.

Table 1-1: PRJ File Parameters (Continued)

Parameter Description
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Load Mode and Extended Mode Register value parameters are listed in “Mode Register 
Values.” These define specific modes of operation. These mode registers are not supported 
by all designs. They appear controller-wise.

Table 1-2: Mode Register Values

Description

<mrBurstLength name="Burst Length" >8(011)</mrBurstLength> Denotes the Burst length selected by 
the user. Valid values are 2 (001), 4 
(010), or 8 (011), depending on the 
design. 

<mrBurstType name="Burst Type" >sequential(0)</mrBurstType> Gives information about the burst 
type. Not all designs support this 
parameter. 

<mrCasLatency name="Cas Latency" >4(100)</mrCasLatency> Supported CAS latencies are 3 (011), 
4 (100) and 5 (101). Some designs 
do not have this concept. 

<mrMode name="Mode" >normal(0)</mrMode> MIG supports normal mode only. 
The test mode is used only by the 
manufacturer.

<mrDllReset name="DLL Reset" >no(0)</mrDllReset> Self-clearing is supported when ‘1’. 
MIG does not support this option for 
all designs.

<mrPdMode name="PD Mode" >fast exit(0)</mrPdMode> Power Down mode determines the 
performance versus power savings. 
MIG only supports fast exit mode.

<mrWriteRecovery name="Write Recovery" >5(100)</mrWriteRecovery> During a WRITE with auto 
precharge operation, the DDR2 
SDRAM delays the internal auto 
precharge operation by WR clocks. 
WR supports the following values: 2 
(001), 3 (010), 4 (011), 5 (100) and 6 
(101). This value varies depending 
on the user-selected frequency. 

<emrDllEnable name="DLL Enable" >Enable-
Normal(0)</emrDllEnable>

The DLL should be enabled for 
normal mode of operation.

<emrOutputDriveStrength name="Output Drive Strength">
Fullstrength(0)</emrOutputDriveStrength>

It selects full drive strength for all 
outputs. MIG supports full drive 
strength alone.

<emrRTT name="RTT (nominal) - ODT" >150ohms(10)</emrRTT> On-Die Termination effective 
resistance (RTT) has the following 
values: Disabled (00), 75Ω (01), 150Ω 
(10), and 50Ω (11). MIG does not 
support 50Ω (11). 

<emrPosted name="Additive Latency (AL)" >2(010)</emrPosted> Additive Latency (AL) can have 
values of 0 (000), 1 (001), 2 (010), 3 
(011), and 4 (100). MIG only 
supports AL values of 0, 1, and 2, 
depending on the design.
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Running in Batch Mode
The following GUI features are not supported in batch mode:

• Generate board files

• Verify UCF

• Read ucf file in the Reserve Pins option

• Save as option in the Reserve Pins option

• User guide

• Create New Memory Part

• Version info

• Real-time pin allocation

MIG designs can also be generated through the CORE Generator tool in batch mode as 
follows:

• First set the command prompt to the output path. To generate the MIG design, the 
following command is executed from the command prompt:

coregen -b <xcofilename>.xco -p <project path>

Where the <project path> indicates the path of the mig.prj file.

For example,

coregen -b test.xco -p D:\MIG_testing\coregen_test\v4_design

• After this command is executed, all the outputs are generated in the 
<Component Name> folder.

<emrOCD name="OCD Operation" >OCD Exit(000)</emrOCD> Not supported by MIG. 

<emrDQS name="DQS# Enable" >Enable(0)</emrDQS> A 0 enables differential DQS. 
A 1 enables single DQS. This is 
applicable for designs supporting 
both differential and single-ended 
DQSs. For example, Virtex-4 DDR2 
SDRAM designs supports both 
differential DQS and single-ended 
DQS.

<emrRDQS name="RDQS Enable" >Disable(0)</emrRDQS> When enabled, RDQS is identical in 
function and timing to data strobe 
DQS during a READ operation. 
During a WRITE operation, RDQS is 
ignored by the DDR2 SDRAM. MIG 
does not support this option, which 
is disabled in the tool. 

<emrOutputs name="Outputs" >Enable(0)</emrOutputs> This value should always be 0 
(enables the outputs). A value of 1 is 
not supported. 

Table 1-2: Mode Register Values (Continued)

Description
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Section II:  Virtex-4 FPGA to Memory Interfaces

Chapter 2, “Implementing DDR SDRAM Controllers”

Chapter 3, “Implementing DDR2 SDRAM Controllers”

Chapter 4, “Implementing QDRII SRAM Controllers”

Chapter 5, “Implementing DDRII SRAM Controllers”

Chapter 6, “Implementing RLDRAM II Controllers”
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Chapter 2

Implementing DDR SDRAM Controllers

This chapter describes how to implement DDR SDRAM interfaces for Virtex™-4 FPGAs 
generated by MIG. This design is based on XAPP709 [Ref 20]. 

Feature Summary

Supported Features
The DDR SDRAM controller design supports the following:

• Burst lengths of two, four, and eight

• Sequential and interleaved burst types

• CAS latencies of 2, 2.5, and 3

• Precharge based on the row to be accessed or the precharge command given by the 
user

• Registered DIMMs, unbuffered DIMMs, and SODIMMs

• Different memories (density/speed)

• Auto refresh

• Linear addressing

• VHDL and Verilog

• With and without a testbench

• With and without a DCM

The supported features are described in more detail in “Architecture.”

Design Frequency Ranges

Table 2-1: Design Frequency Range in MHz

Memory

FPGA Speed Grade

-10 -11 -12

Min Max Min Max Min Max

Component 100 165 100 170 100 175

DIMM 100 165 100 170 100 175
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Unsupported Features
• Dual Rank DIMMs

• Deep Memory

• Auto Precharge

• Bank Management

• Multi Controller

Architecture

Interface Model
DDR SDRAM interfaces are source-synchronous and double data rate. They transfer data 
on both edges of the clock cycle. A memory interface can be modularly represented as 
shown in Figure 2-1. A modular interface has many advantages. It allows designs to be 
ported easily and also makes it possible to share parts of the design across different types 
of memory interfaces.

Implemented Features
This section provides details on the supported features of the DDR SDRAM controller. 
Based on user selection, the tool generates a parameter file, which is used to set various 
features of the memory and to generate the control signals accordingly.

The parameter file provides the settings for burst length, CAS latency, sequential or 
interleaved addressing, number of row address bits, number of column address bits, bank 
address, and the timing parameters based on the frequency and the speed grade selected 
from the GUI. The DDR SDRAM controller uses these parameters directly. 

Figure 2-1: Modular Memory Interface Representation

Application Interface Layer

Xilinx FPGA

Physical Layer

Control Layer

UG086_c2_01_012507
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The user issues a command through the FIFOs (user_interface). The user address (i.e., 
APP_AF_ADDR that is written into the FIFO as shown in Figure 2-10 or Figure 2-12) is 
decoded in a sequence. The total width of the Read/Write Address FIFO 
(rd_wr_addr_fifo) is 36 bits. The user writes the column address (least-significant bits), 
row address, bank address, chip address [31:0], and the command to be issued [34:32]. The 
36th bit (APP_AF_ADDR[35]) is reserved by the design to manipulate whether or not the 
row to be accessed is same as that of the previous row. The APP_AF_ADDR[35] input is a 
don't care for the design. The controller takes the row and column address bits based on 
the selected component. The “Write Interface” and “Read Interface” sections provide 
further details on how to issue the write and read commands, respectively.

Table 2-2 lists the commands that the user can issue through the User interface. If the user 
issues an invalid command, the state of the controller is undefined. The functionality is not 
guaranteed when an invalid command is issued.

Burst Length

Bits M0:M3 of the Mode Register define the burst length and burst type. Read and write 
accesses to the DDR SDRAM are burst-oriented. The burst length is programmable to 
either 2, 4, or 8 from the GUI. It determines the maximum number of column locations 
accessed for a given READ or WRITE command.

The DDR SDRAM ddr_controller module implements the user-selected burst length from 
MIG.

CAS Latency

Bits M4:M6 of the Mode Register define the CAS latency (CL). CL is the delay in clock 
cycles between the registration of a READ command and the availability of the first bit of 
output data. CL can be set to 2, 2.5, or 3 clocks from the GUI.

The controller supports CAS latencies of 2, 2.5, and 3.

During read data operations, the generation of the read_en signal varies according to the 
CL in the ddr_controller module.

Registered DIMMs

DDR SDRAM supports registered DIMMs. This feature is implemented in the 
ddr_controller module. For registered DIMMs, the READ and WRITE commands and 
address have one additional clock latency than unbuffered DIMMs. Also for registered 
DIMMs, the controller delays the data and the strobe by one clock because the command 
has one clock latency due to the register in the DIMM. 

Table 2-2: User Commands

Command APP_AF_ADDR[34:32]

READ 101

WRITE 100

REFRESH 001

PRECHARGE 010
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Unbuffered DIMMs and SODIMMs

DDR SDRAM design supports unbuffered DIMMs and SODIMMs. Unbuffered DIMMs 
are normal DIMMs where a set of components are used to get a particular configuration. 
SODIMMs vary from the unbuffered DIMMs only by package type. They are functionally 
the same.

Precharge

The PRECHARGE command is issued before the next read or write is issued for a different 
row, but not if the read or write is in the same row. The PRECHARGE command checks the 
row address, bank address, and chip selects. The DDR Virtex-4 FPGA controller issues a 
PRECHARGE command if there is a change in any address where a read or write 
command is to be issued. The AUTO PRECHARGE command via the A10 column bit is 
not supported.

Auto Refresh

The DDR SDRAM controller issues AUTO REFRESH commands at specified intervals for 
the memory to refresh the charge required to retain the data in the memory. The user can 
also issue a REFRESH command through the user interface by setting bits 34, 33, and 32 of 
the app_af_addr signal in the user_interface module to 3’b001. If there is a refresh request 
while during an ongoing read or write burst, the controller issues a REFRESH command 
after completing the current read or write burst command.

Linear Addressing

The DDR SDRAM controller supports linear addressing. Linear addressing refers to the 
way the user provides the address of the memory to be accessed. For Virtex-4 DDR 
SDRAM controllers, the user provides the address information through the app_af_addr 
signal. As the densities of the memory devices vary, the number of column address bits 
and row address bits also changes. In any case, the row address bits in the app_af_addr 
signal always start from the next-higher bit, where the column address ends. This feature 
increases the number of devices that can be supported with the design.

Different Memories (Density/Speed)

This feature supports different memory components and DIMMs. The component 
densities can vary from 128 Mb to 1 Gb, and the DIMM densities can vary from 128 MB to 
1 GB. Higher densities can be created using the "Create new memory part" feature of MIG. 
The maximum supported column address is 13 bits, the maximum row address is 15 bits, 
and the maximum bank address is 2 bits. To support this feature, the design can decode 
write and read addresses from the user in the DDR SDRAM controller module. The user 
address consists of row, column, bank, and chip addresses, and the user command. Apart 
from the address decoding, timing parameters vary according to the density and speed 
grade.

Table 2-3 lists the timing parameters for components, and Table 2-4 lists the timing 
parameters for DIMMs.
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Table 2-3: Timing Parameters for Components

Parameter Description
Micron 128 Mb Micron 256 Mb Micron 512 Mb Micron 1 Gb

-5 -75 -5 -75 -5 -75 -5 -75

TCK Clock Cycle 
Time

CL = 3 5 ns NA 5 ns NA 5 ns NA 5 ns NA

CL = 2.5 6 ns 7.5 ns 6 ns 7.5 ns 6 ns 7.5 ns 6 ns 7.5 ns

CL = 2 7.5 ns 10 ns 7.5 ns 10 ns 7.5 ns 10 ns 7.5 ns 10 ns

TMRD LOAD MODE 
Command Cycle Time

10 ns 15 ns 10 ns 15 ns 10 ns 15 ns 10 ns 15 ns

TRP PRECHARGE 
Command Period

15 ns 20 ns 15 ns 20 ns 15 ns 20 ns 15 ns 20 ns

TRFC REFRESH Time 70 ns 75 ns 70 ns 75 ns 70 ns 75 ns 120 ns 120 ns

TRCD ACTIVE to READ or 
WRITE Delay

15 ns 20 ns 15 ns 20 ns 15 ns 20 ns 15 ns 20 ns

TRAS ACTIVE to 
PRECHARGE 
Command

40 ns 40 ns 40 ns 40 ns 40 ns 40 ns 40 ns 40 ns

TRC ACTIVE to ACTIVE 
(Same Bank) Command

55 ns 65 ns 55 ns 65 ns 55 ns 65 ns 55 ns 65 ns

TWTR WRITE to READ 
Command Delay

2 * TCK 1 * TCK 2 * TCK 1 * TCK 2 * TCK 1 * TCK 2 * TCK 1 * TCK

TWR WRITE Recovery Time 15 ns 15 ns 15 ns 15 ns 15 ns 15 ns 15 ns 15 ns

Table 2-4: Timing Parameters for DIMMs (Unbuffered and Registered)

Parameter Description
Micron 128 MB Micron 256 MB Micron 512 MB Micron 1 GB

-40 -40 -40 -40

TCK Clock Cycle 
Time

CL = 3 5 ns 5 ns 5 ns 5 ns

CL = 2.5 6 ns 6 ns 6 ns 6 ns

CL = 2 7.5 ns 7.5 ns 7.5 ns 7.5 ns

TMRD LOAD MODE Command 
Cycle Time

10 ns 10 ns 10 ns 10 ns

TRP PRECHARGE Command 
Period

15 ns 15 ns 15 ns 15 ns

TRFC REFRESH Time 70 ns 70 ns 70 ns 70 ns

TRCD ACTIVE to READ or WRITE 
Delay

15 ns 15 ns 15 ns 15 ns

TRAS ACTIVE to PRECHARGE 
Command

40 ns 40 ns 40 ns 40 ns

TRC ACTIVE to ACTIVE (Same 
Bank) Command

55 ns 55 ns 55 ns 55 ns
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Note: For the latest timing information, refer to the vendor memory data sheets.

Hierarchy
Figure 2-2 shows the hierarchical structure of the DDR SDRAM design generated by MIG 
with a testbench and a DCM. The physical and control layers are clearly separated in this 
figure. MIG generates the entire DDR SDRAM controller as shown in this hierarchy, 
including the testbench. MIG also generates a parameter file where all user input 
parameters or some parameters used internally by the design are defined.

The modules are classified as follows: 

• Design modules

• Testbench modules

• Clocks and reset generation modules

TWTR WRITE to READ Command 
Delay

2 * TCK 2 * TCK 2 * TCK 2 * TCK

TWR WRITE Recovery Time 15 ns 15 ns 15 ns 15 ns

Table 2-4: Timing Parameters for DIMMs (Unbuffered and Registered) (Continued)

Parameter Description
Micron 128 MB Micron 256 MB Micron 512 MB Micron 1 GB

-40 -40 -40 -40

Figure 2-2: Hierarchical Structure of the Virtex-4 DDR SDRAM Design
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There is a parameter file generated with the design that has all the user input and design 
parameters selected from MIG. 

MIG can generate four different DDR SDRAM designs:

• With a testbench and a DCM 

• Without a testbench and with a DCM 

• With a testbench and without a DCM 

• Without a testbench and without a DCM

When the testbench is not generated by MIG, the top-level module has the user interface 
signals. The list of user interface signals is provided in Table 2-7.

Design clocks and resets are generated in the infrastructure module. The DCM clock is 
instantiated in the infrastructure module for designs with a DCM. The inputs to this 
module are the differential design clock and a 200 MHz differential clock for the 
IDELAYCTRL module. A user reset is also input to this module. Using the input clocks and 
reset signals, the system clocks and the system reset are generated in this module, which is 
used in the design.

The DCM primitive is not instantiated in this module if the Use DCM option is unchecked. 
So, the system operates on the user-provided clocks. The system reset is generated in the 
infrastructure module using the DCM_LOCK input signal.

Figure 2-3 shows a DDR SDRAM controller block diagram representation of the top-level 
module for a design with a DCM and a testbench. SYS_CLK_P and SYS_CLK_N are 
differential input system clocks. The DCM clock is instantiated in the infrastructure 
module that generates the required design clocks. CLK200_P and CLK200_N are used for 
the idelay_ctrl element. SYS_RESET_IN_N is the active-Low system reset signal. All 
design resets are gated by the dcm_lock signal. Memory device signals are prepended with 
the controller number. For example, DDR_RAS_N appears as cntrl0_DDR_RAS_N.

Figure 2-3: Top-Level Block Diagram of the DDR SDRAM Design with a DCM and a Testbench
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The error output signal indicates whether the case passes or fails. The testbench module 
does writes and reads, and also compares the read data with the written data. The error 
signal is driven High on data mismatches.

The init_done signal indicates the completion of initialization and calibration of the design. 

All the signals listed under the Memory Device category do not necessarily appear in the 
top level port list. The port list varies according to the memory type selected, such as a 
component or a registered DIMM. For example, a component does not have the 
ddr_reset_n signal.

Figure 2-4 shows a block diagram representation of the top-level module for a design with 
a DCM but without a testbench.

The DCM clock module is instantiated in the infrastructure module. Using the differential 
SYS_CLK_P and SYS_CLK_N signals, the internal DCM generates all the required clocks 
for the design. CLK200_P and CLK200_N are used by the idelay_ctrl element. 
SYS_RESET_IN_N is the active-Low system reset signal. All design resets are generated 
using the input reset signal gated by the dcm_lock signal.

The init_done signal indicates the completion of initialization and calibration of the design.

The application’s user interface signals are listed in Figure 2-4. The design provides the 
clk_tb and reset_tb signals to the user to synchronize with the design.

Figure 2-4: Top-Level Block Diagram of the DDR SDRAM Design with a DCM but without a Testbench
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Figure 2-5 shows a block diagram representation of the top-level module for a design 
without a DCM or a testbench. There is no DCM instantiated in the infrastructure module. 
All the clocks and dcm_lock should be given as inputs from the user interface. Resets are 
generated using the SYS_RESET_IN_N signal gated by the dcm_lock signal in the 
infrastructure module. Clk200 is used by the idelay_ctrl element. All the clocks should be 
single-ended. The user application must have a DCM primitive instantiated in the design.

The init_done signal indicates the completion of initialization and calibration of the design.

The user interface signals are also listed in the <top_module> module. The design 
provides the clk_tb and reset_tb signals to the user to synchronize with the design.

Figure 2-5: Top-Level Block Diagram of the DDR SDRAM Design without a DCM or a Testbench
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Figure 2-6 shows a block diagram representation of the top-level module for a design with 
a testbench but without a DCM. The user should provide all the clocks and the dcm_lock 
signal. These clocks should be single-ended. SYS_RESET_IN_N is the active-Low system 
reset signal. All design resets are gated by the dcm_lock signal.

The error output signal indicates whether the case passes or fails. The testbench module 
does writes and reads, and also compares the read data with the written data. The ERROR 
signal is driven High on data mismatches. The init_done signal indicates the completion of 
initialization and calibration of the design.

Figure 2-6: Top-Level Block Diagram of the DDR SDRAM Design with a Testbench but without a DCM
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Figure 2-7 shows the expanded block diagram of the design. The top module is expanded 
to show various internal blocks. The functions of these blocks are explained in the 
subsections following the figure.
I

Figure 2-7: Expanded DDR SDRAM Controller Block Diagram
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Controller

The DDR SDRAM controller initializes the memory, accepts and decodes user commands, 
and generates READ, WRITE, and REFRESH commands. The DDR SDRAM controller also 
generates signals for other modules. The memory is initialized and powered-up using a 
defined process. The controller state machine handles the initialization process upon 
power-up. If the AUTO REFRESH command is to be issued between any user read or write 
commands, then the read or write command is suspended until the ref_done flag is 
deasserted. 

Datapath

This module transmits data to the memories. Its major functions include storing the write 
data and calculating the tap value for the read datapath. The data_write and 
data_path_IOBs modules do the actual write functions. The Idelay_ctrl, tap_ctrl and 
data_tap_inc modules do the calibration. 

User Interface

This module stores write data in its Write Data FIFO (wr_data_fifo), stores write and read 
addresses in its Read/Write Address FIFO (rd_wr_addr_fifo), and stores received read 
data from memory in its Read Data FIFO (rd_data_fifo). The width of the Write Data FIFO 
is twice the data width and mask width of the memory. For example, for a 16-bit width, the 
width of the FIFO is 36 because the data width is 32 and the mask width is 4. The 
rd_wr_addr_fifo and wr_data_fifo modules store the data and address in block RAMs. The 
rd_data_fifo module captures the data in the LUT-based RAMs. 

The controller also generates user commands, such as READ and WRITE. 

The pattern_compare module registers the delay between the command and the data 
received from the IOBs. This delay is then applied to the Rden signal generated from the 
ddr_controller module during the actual read to register the valid data in the internal 
FIFOs.

Infrastructure 

The infrastructure module generates the FPGA clocks and reset signals. A DCM generates 
the phase-shifted clocks (clk0, clk90), refresh clock, and calibration clock. All the reset 
signals required for the design are also generated.

IOBS Module

All DDR SDRAM address, control, and data signals are transmitted and received in the 
through the input and output buffers.

DDR SDRAM Initialization and Calibration 
DDR memory is initialized through a specified sequence as shown in Figure 2-8. The 
controller starts the memory initialization at power up itself. Following the initialization, 
the relationship between the data and the FPGA clock is calculated using the TAP logic. 
The controller issues a dummy read command to the memory. As the data and the memory 
strobe are edge-aligned, the strobe is passed through the IDELAY elements of the Virtex-4 
device and the taps are adjusted to find the center of the strobe pulse. The sel_done port in 
tap_logic module indicates the completion of DQS to FPGA calibration. The number of 
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taps is then used to delay the data during normal reads to register the valid data in the 
FPGA. XAPP701 [Ref 17] provides more information about the calibration architecture.

Following the strobe detection, the controller does a read enable calibration. This 
calibration is used to determine the delay from read command to read data at rd_data_fifo. 
The delay between read command and read data is affected by the CAS latency 
parameters, the PCB traces, and the I/O buffer delays. Read enable calibration is used to 
generate a write enable to rd_data_fifo so that valid data is registered. Controller writes a 
known fixed pattern and reads back the data from memory. The read data is compared 
against the known fixed pattern. The comp_done port in rd_data module indicates the 
completion of the read enable calibration.

The init_done port indicates the completion of both DQS to FPGA calibration and read 
enable calibration. After initialization and calibration is done, the controller can start 
issuing user commands to the memory.

Figure 2-8: DDR Memory Initialization Sequence
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DDR SDRAM System and User Interface Signals
Table 2-5 describes the DDR SDRAM system interface signals for designs with the DCM. 
The system interface signals are the clocks and the reset signals given by the user to the 
FPGA. SYS_CLK_P and SYS_CLK_N are the two clocks to be provided to the design. These 
two clocks must have a phase difference of 180 degrees with respect to each other. 
SYS_RESET_IN_N resets all the logic.

Table 2-6 shows the system interface signals for designs without the DCM. The clk_0, 
clk_90, and clk_200 signals are the single-ended input clocks. The clk_90 signal must have 
a phase difference of 90° with respect to clk_0. The clk_200 signal is the clock used for the 
IDELAYCTRL primitives in Virtex-4 FPGAs.

Table 2-7 describes the DDR SDRAM user interface signals for designs without the 
testbench.

Table 2-5: DDR SDRAM System Interface Signals for Designs with DCM

Signal Name Direction Description

SYS_CLK_P, SYS_CLK_N Input Differential input clock to the DCM. The DDR SDRAM controller 
and memory operate on this frequency.

SYS_RESET_IN_N Input Active-Low reset to the DDR SDRAM controller.

CLK200_P, CLK200_N Input Differential clock used in the idelay_ctrl logic.

Table 2-6: System Interface Signals for Designs without the DCM

Signal Direction Description

clk_0 Input The DDR SDRAM controller and memory operate on this clock.

SYS_RESET_IN_N Input Active-Low reset to the DDR SDRAM controller. This signal is used 
to generate a synchronous system reset.

clk_90 Input 90° phase-shifted clock with the same frequency as clk0.

clk_200 Input 200 MHz input differential clock for the IDELAYCTRL primitive of 
the Virtex-4 FPGA.

dcm_lock Input The status signal indicating whether the DCM is locked or not. It is 
used to generate the synchronous system reset.

Table 2-7: DDR SDRAM User Interface Signals for Designs without the Testbench Case

Signal Name Direction Description

CLK_TB Output All user interface signals must be synchronized with respect to 
CLK_TB.

RESET_TB Output Active-High system reset for the user interface.

BURST_LENGTH_DIV2[2:0] Output Indicates the number of bursts that can be written to or read from 
the memory.

001: burst length = 2
010: burst length = 4
100: burst length = 8
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READ_DATA_VALID Output Status of the Read Data FIFO. This signal is asserted when read data 
is available in the Read Data FIFO.

READ_DATA_FIFO_OUT
[2n–1:0]

Output Read data from memory, where n is the data width of the interface. 
The read data is stored into the Read Data FIFO. This data can be 
read from the FIFO depending upon the status of the FIFO.

WDF_ALMOST_FULL Output ALMOST FULL status of the Write Data FIFO. When this signal is 
asserted, the user can write 5 more locations into the FIFO in designs 
generated with a testbench and 14 more locations in designs without 
a testbench.

AF_ALMOST_FULL Output ALMOST FULL status of the Read Address FIFO. The user can issue 
eight more locations into the FIFO after AF_ALMOST_FULL is 
asserted.

APP_AF_ADDR[35:0] Input Memory address and command. Bit 35 is used internally by the 
controller. The controller ignores this bit from the user interface. Bits 
[34:32] are used for dynamic commands as follows:

001: Auto Refresh
010: Precharge
100: Write
101: Read

Bits [31:0] form the memory chip select, bank address, row address, 
and column address. The positioning of the chip, bank, row, and 
column addresses changes based on the memory configuration.

APP_AF_WREN Input Write-enable signal to the Write Address FIFO. This signal is 
synchronized with the write address. The write address is written to 
the Write Address FIFO only when this signal is asserted High.

APP_MASK_DATA[2m–1:0] Input User mask data, where m indicates the data mask width of the 
interface. The mask data is twice the mask width of the interface. 
The mask data is written into the Write Data FIFO along with the 
write data.

APP_WDF_DATA[2n–1:0] Input User write data to the memory, where n indicates the data width of 
the interface. The user write data is twice the data width of the 
interface. The most-significant bits contain the rising-edge data, and 
the least-significant bits contain the falling-edge data. Memory write 
data is written into the Write Data FIFO, and the write address is 
written into the Write Address FIFO from the user interface. The 
DDR SDRAM controller reads the Write Address FIFO and Write 
Data FIFO.

APP_WDF_WREN Input Write-enable signal to the Write Data FIFO. This signal is 
synchronized with the write data. The write data is written to the 
Write Data FIFO only when this signal is asserted High.

Notes: 
1. All user interface signal names are prepended with a controller number, for example, cntrl0_APP_WDF_DATA. DDR SDRAM 

devices currently support only one controller. 

Table 2-7: DDR SDRAM User Interface Signals for Designs without the Testbench Case (Continued)

Signal Name Direction Description
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Table 2-8 describes the status signals that are available to the user.

User Interface Accesses
The user backend logic communicates with the memory controller through a FIFO-based 
user interface. This interface consists of three related buses: 

• A Command/Address FIFO bus, which accepts write/read commands as well as the 
corresponding memory address from the user

• A Write Data FIFO bus, which accepts the corresponding write data when the user 
issues a write command on the Command/Address bus

• A Read bus on which the corresponding read data for an issued read command is 
returned

The user interface has the following timing and signaling restriction: 

• When issuing a write command, the first write data word must be written to the Write 
Data FIFO no more than one clock cycle after the write command is issued. This 
restriction arises from the fact that the controller assumes write data is available when 
it receives the write command from the user. 

Write Interface
Figure 2-9 shows the user interface block diagram for write operations. 

Table 2-8: DDR SDRAM Design Status Signals

Signal Name Direction Description

init_done Output This signal indicates the completion of initialization and calibration 
of the design.

Figure 2-9: User Interface Block Diagram for Write Operations
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The following steps describe the architecture of the Address and Write Data FIFOs and 
show how to perform a write burst operation to DDR SDRAM from the user interface.

1. The user interface consists of an Address FIFO and a Write Data FIFO. These FIFOs are 
constructed using Virtex-4 FIFO16 primitives with a 512 x 36 configuration. The 36-bit 
architecture comprises one 32-bit port and one 4-bit port. For Write Data FIFOs, the 
32-bit port is used for data bits and the 4-bit port is used for mask bits.

2. The Common Address FIFO is used for both write and read commands, and comprises 
a command part and an address part. Command bits discriminate between write and 
read commands.

3. User interface data width app_wdf_data is twice that of the memory data width. For 
an 8-bit memory width, the user interface is 16 bits consisting of rise data and fall data. 
For every 8 bits of data, there is a mask bit. For 72-bit memory data, the user interface 
data width app_wdf_data is 144 bits, and the mask data app_mask_data is 18 bits.

4. The minimum configuration of the Write Data FIFO is 512 x 36 for a memory data 
width of 8 bits. For an 8-bit memory data width, the least significant 16 bits of the data 
port is used for write data. The controller internally pads all zeros for the most-
significant 16 bits. 

5. Depending on the memory data width, MIG instantiates multiple FIFO16s to gain the 
required width. For designs using 8-bit data width, one FIFO16 is instantiated; for 
72-bit data width, a total of five FIFO16s are instantiated. The bit architecture 
comprises 16 bits of rising-edge data, 2 bits of rising-edge mask, 16 bits of falling-edge 
data, and 2 bits of falling-edge mask, which are all stored in a FIFO16. MIG routes the 
app_wdf_data and app_mask_data to FIFO16s accordingly. 

6. The user can initiate a write to memory by writing to the Address FIFO and the Write 
Data FIFO when the FIFO Full flags are deasserted. Status signal af_almost_full is 
asserted when Address FIFO is full, and similarly wdf_almost_full is asserted when 
Write Data FIFO is full. 

7. Both the Address FIFO and Write Data FIFO Full flags are deasserted with power-on.

8. The user should assert the Address FIFO write-enable signal app_af_wren along with 
address app_af_addr to store the write address and write command into the Address 
FIFO.

9. The user should assert the Data FIFO write-enable signal app_wdf_wren along with 
write data app_wdf_data and mask data app_mask_data to store the write data and 
mask data into the Write Data FIFO. The user should provide both rise and fall data 
together for each write to the Data FIFO.

10. The controller reads the Address FIFO by issuing the ctrl_af_rden signal. The 
controller reads the Write Data FIFO by issuing the ctrl_wdf_rden signal after the 
Address FIFO is read. It decodes the command part after the Address FIFO is read.

11. The write command timing diagram in Figure 2-10 is derived from the MIG-generated 
test bench. As shown (burst length of 4), each write to the Address FIFO must be 
coupled with two writes to the Data FIFO. Similarly, for a burst length of 8, every write 
to the Address FIFO must be coupled with four writes to the Data FIFO. Failure to 
follow this rule can cause unpredictable behavior.
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Correlation between the Address and Data FIFOs
There is a worst case two-cycle latency from the time the address is loaded into the address 
FIFO on APP_AF_ADDR[35:0] to the time the controller decodes the address. Because of 
this latency, it is not necessary to provide the address on the last clock where data is 
entered into the data FIFO. If the address is written before the last data phase, the overall 
efficiency and performance increases because it eliminates or reduces the two-cycle 
latency. However, if the address is written before data is input into the data FIFO, a FIFO 
empty condition might result because the Data FIFO does not contain valid data.

Based on these considerations, Xilinx recommends entering the address into the address 
FIFO between the first data phase and the next-to-last data phase. For a burst of four or 
eight, this means the address can be asserted one clock before the first data phase. This 
implementation increases efficiency by reducing the one clock latency and guarantees that 
valid data is available in the Data FIFO. 

Figure 2-10: DDR SDRAM Write Burst for Four Bursts (BL = 4) 
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Read Interface
Figure 2-11 shows a block diagram of the read interface. 

The following steps describe the architecture of the Read Data FIFOs and show how to 
perform a burst read operation from DDR SDRAM from the user interface.

1. The read user interface consists of an Address FIFO and a Read Data FIFO. The 
Address FIFO is common to both read and write operations. These FIFOs are 
constructed using Virtex-4 Distributed RAMs with a 16 x 1 configuration. MIG 
instantiates a number of RAM16Ds depending on the data width. For example, for 
8-bit data width, MIG instantiates a total of 16 RAM16Ds, 8 for rising-edge data and 8 
for falling-edge data. Similarly, for 72-bit data width, MIG instantiates a total of 144 
RAM16Ds, 72 for rising-edge data and 72 for falling-edge data.

2. The user can initiate a read to memory by writing to the Address FIFO when the 
FIFO Full flag af_almost_full is deasserted.

3. To write the read address and read command into the Address FIFO, the user should 
issue the Address FIFO write-enable signal app_af_wren along with read address 
app_af_addr.

4. The controller reads the Address FIFO containing the address and command. After 
decoding the command, the controller generates the appropriate control signals to 
memory. 

5. Prior to the actual read and write commands, the design calibrates the latency (number 
of clock cycles) from the time the read command is issued to the time data is received. 
Using this pre-calibrated delay information, the controller generates the write-enable 
signals to the Read Data FIFOs.

6. The read_data_valid signal is asserted when data is available in the Read Data FIFOs.

7. Figure 2-12 shows a user interface timing diagram for a burst length of 4, CAS latency 
of 3 at 175 MHz, and a Trcd value of the memory part at 20 ns. The read latency is 
calculated from the point when the Read command is given by the user to the point 

Figure 2-11: User Interface Block Diagram for Read Operation
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when the data is available with the read_data_valid signal. The minimum latency in 
this case is 26 clocks, where no precharge is required, no auto-refresh request is 
pending, the user commands are issued after initialization is completed, and the first 
command issued is a Read command. The controller executes the commands only 
after initialization is done as indicated by the init_done signal.

8. After the address and command are loaded into the Address FIFO, it takes 26 clock 
cycles minimum for CL = 3 at a frequency of 175 MHz for the controller to assert the 
read_data_valid signal.

9. Read data is available only when the read_data_valid signal is asserted. The user 
should access the read data on every positive edge of the read_data_valid signal.

The read latency for the case where (1) CL = 3, (2) the read is written to an empty 
address/command FIFO, (3) the read targets an unopened bank/row, and (4) the 
frequency is 175 MHz, is broken down as indicated in Table 2-9.

In general, read latency varies based on the following parameters:

• Number of commands already in the FIFO pipeline before the read command is 
issued

• Whether an ACTIVATE command needs to be issued to open the new bank/row

• Whether a PRECHARGE command needs to be issued to close a previously opened 
bank

Figure 2-12: DDR SDRAM Read Burst for Four Bursts (BL = 4) 
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Table 2-9: Read Command to Read Data Clock Cycles

Parameter Number of Clock Cycles

Read Command to Empty Signal Deassertion 7 clocks

Empty to Active Command 5.5 clocks

Active to Read Command 4 clocks

Memory Read to Valid 9.5 clocks

Total: 26 clocks

http://www.xilinx.com


MIG User Guide www.xilinx.com 101
UG086 (v2.2) March 3, 2008

Simulating the DDR SDRAM Design
R

• Specific timing parameters for the memory, such as TRAS and TRCD in conjunction 
with the bus clock frequency

• Commands can be interrupted, and banks/rows can forcibly be closed when the 
periodic AUTO REFRESH command is issued

• CAS latency

• If the user issues the commands before initialization is complete, the latency cannot be 
determined.

• Board-level and chip-level (for both memory and FPGA) propagation delays

Table 2-10 shows the list of signals allocated in a group from bank selection check boxes. 
See Chapter 11, “Implementing DDR SDRAM Controllers,” for more factors. 

MIG allows selection of banks for different classes of memory signals. When a particular 
bank is checked for an address, MIG allocates the memory address, the memory control, 
and the memory clocks in that bank. When a bank is checked for data, MIG allocates the 
data, the data mask, and the data strobes in that bank. When a bank is checked for system 
control, MIG allocates the system reset and status signals in that bank. When a bank is 
checked for system clocks, MIG allocates the system clock signals in that bank.

Simulating the DDR SDRAM Design
After generating the design, MIG creates a sim folder in the specified path. This folder 
contains simulation files for a particular design. The sim folder contains the external 
testbench, memory model, do file and the executable file to simulate the generated design. 
The memory model files are currently generated in Verilog only. To learn more about the 
files in the sim folder and to simulate the design, refer to the simulation_help.chm 
file in sim folder.

Changing the Refresh Rate
Change the global ̀ define (for Verilog) or constant (for VHDL) variable MAX_REF_CNT in 
mymodule_parameters_0.v (or .vhd) so that MAX_REF_CNT = (refresh interval in 
clock periods) = (refresh interval) / (clock period). For example, for a refresh rate of 3.9 µs 
with a memory bus running at 200 MHz:

MAX_REF_CNT = 3.9 µs / (clock period) = 3.9 µs / 5 ns = 780 (decimal) = 0x30C 

If the above value exceeds 2MAX_REF_WIDTH – 1, the value of MAX_REF_WIDTH must be 
increased accordingly in parameters_0.v (or .vhd) to increase the width of the counter 
used to track the refresh interval. 

Table 2-10: DDR SDRAM Signal Allocations

Bank Selected Signals Allocated in the Group

Address Memory address, memory control, and memory clock signals 

Data Data, data mask, and data strobes 

System Control System reset from the user interface and status signals

System_Clock System clocks from the user interface
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Supported Devices
The design generated out of MIG is independent of the memory package, hence the 
package part of the memory component is replaced with XX or XXX, where XX or XXX to 
indicate a don't care condition. The tables below list the components (Table 2-11) and 
DIMMs (Table 2-12 through Table 2-14) supported by MIG for DDR SDRAM. In supported 
devices, XX in the memory component column denotes either single or two alphanumeric 
characters. For example, MT46V32M4XX-75 can be either MT46V32M4P-75 or 
MT46V32M4BN-75. An X in the DIMM columns (for Unbuffered, Registered, and SO 
DIMMs) denotes a single alphanumeric character. For example, MT9VDDF3272X-40B can 
be either MT9VDDF3272G-40B or MT9VDDF3272Y-40B. Similarly MT4VDDT1664AX-40B 
can be either MT4VDDT1664AG-40B or MT4VDDT1664AY-40B.

Table 2-11: Supported Components for DDR SDRAM

Components Packages (XX) Components Packages (XX)

MT46V32M4XX-75 P,TG MT46V32M4XX-5B -

MT46V64M4XX-75 FG,P,TG MT46V64M4XX-5B BG,FG,P,TG 

MT46V128M4XX-75 BN,FN,P,TG MT46V128M4XX-5B BN,FN,P,TG 

MT46V256M4XX-75 P,TG MT46V256M4XX-5B P,TG 

MT46V16M8XX-75 P,TG MT46V16M8XX-5B TG,P 

MT46V32M8XX-75 FG,P,TG MT46V32M8XX-5B BG,FG,P,TG 

MT46V64M8XX-75 BN,FN,P,TG MT46V64M8XX-5B BN,FN,P,TG

MT46V128M8XX-75 P,TG MT46V128M8XX-5B -

MT46V8M16XX-75 P,TG MT46V8M16XX-5B TG,P

MT46V16M16XX-75 BG,FG,P,TG MT46V16M16XX-5B BG,FG,P,TG

MT46V32M16XX-75 - MT46V32M16XX-5B BN,FN,P,TG

MT46V64M16XX-75 P,TG MT46V64M16XX-5B -

Table 2-12: Supported Unbuffered DIMMs for DDR SDRAM

Unbuffered DIMMs Packages (X) Unbuffered DIMMs Packages (X)

MT4VDDT1664AX-40B G,Y MT8VDDT3264AX-40B G,Y

MT4VDDT3264AX-40B G,Y MT9VDDT3272AX-40B Y

Table 2-13: Supported Registered DIMMs for DDR SDRAM

Registered DIMMs Packages (X) Registered DIMMs Packages (X)

MT9VDDF3272X-40B G,Y MT18VDDF6472X-40B D,G,Y

MT9VDDF6472X-40B G,Y MT18VDDF12872X-40B DY,G,Y

Table 2-14: Supported SODIMMs for DDR SDRAM

SODIMMs Packages (X) SODIMMs Packages (X)

MT4VDDT3264HX-40B G,Y MT9VDDT3272HX-40B -

MT4VDDT1664HX-40B Y MT9VDDT6472HX-40B G,Y

MT8VDDT3264HX-40B - MT9VDDT12872HX-40B -

MT8VDDT6464HX-40B DG,DY,G,Y
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Hardware Tested Configurations
The frequencies shown in Table 2-15 were achieved on the Virtex-4 FPGA ML461 Memory 
Interfaces Development Board under nominal conditions. This frequency should not be 
used to determine the maximum design frequency. The maximum design frequency 
supported in the MIG wizard is based on a combination of the TRCE results for fabric 
timing on multiple device/package combinations and I/O timing analysis using FPGA 
and memory timing parameters for a 64-bit wide interface.

Table 2-15: Hardware Tested Configurations

Synthesis Tools XST and Synplicity

HDL Verilog and VHDL

FPGA Device XC4VLX25-FF668-11

Burst Lengths 2, 4, 8

CAS Latency (CL) 2, 2.5, 3

16-bit Design Tested on 16-bit Component “MT46V32M16XX-5B”

72-bit Design Tested on 72-bit DIMM “MT18VDDF6472X-40B”

CL =2

Achieved Frequency 
Range for Component 110 MHz to 170 MHz

Achieved Frequency 
Range for DIMM 110 MHz to 150 MHz

CL=2.5

Achieved Frequency 
Range for Component 110 MHz to 230 MHz

Achieved Frequency 
Range for DIMM 110 MHz to 170 MHz

CL=3

Achieved Frequency 
Range for Component 110 MHz to 250 MHz

Achieved Frequency 
Range for DIMM 110 MHz to 230 MHz
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Chapter 3

Implementing DDR2 SDRAM Controllers

This chapter describes how to implement DDR2 SDRAM interfaces for Virtex-4 FPGAs 
generated by MIG. MIG supports two implementations of DDR2 SDRAM interfaces: 
Direct clocking and SerDes clocking. The Direct clocking interface supports frequencies up 
to 240 MHz. This design is based on XAPP702 [Ref 18]. The SerDes clocking design 
supports frequencies up to 300 MHz and is based on XAPP721 [Ref 22].

Interface Model 
DDR2 SDRAM interfaces are source-synchronous and double data rate. They transfer data 
on both edges of the clock cycle. A memory interface can be modularly represented as 
shown in Figure 3-1. A modular interface has many advantages. It allows designs to be 
ported easily and also makes it possible to share parts of the design across different types 
of memory interfaces.

Figure 3-1: Modular Memory Interface Representation
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Direct Clocking Interface

Feature Summary
This section summarizes the supported and unsupported features of the Direct clocking 
DDR2 SDRAM controller design.

Supported Features

The DDR2 SDRAM controller design supports the following:

• Burst lengths of four and eight

• Sequential and interleaved burst types

• CAS latencies of 3, 4, and 5

• Additive latencies of 0, 1, and 2

• Differential and single-ended DQS

• On-Die Termination (ODT)

• Up to four deep memories

• Memory components

• Registered DIMMs (up to 240 MHz)

• Unbuffered DIMMs (up to 200 MHz)

• Unbuffered SODIMMs (up to 200 MHz)

• Different memories (density/speed)

• Byte-wise data masking

• Precharge and auto refresh

• Linear addressing

• ECC support

• Verilog and VHDL

• With and without a testbench

• With and without a DCM

• Multicontrollers (up to eight)

The supported features are described in more detail in “Architecture.”

Design Frequency Ranges

Table 3-1: Design Frequency Range in MHz

Memory

FPGA Speed Grade

-10 -11 -12

Min Max Min Max Min Max

Component 125 220 125 230 125 240

UDIMM/SODIMM 125 200 125 200 125 200

RDIMM 125 220 125 230 125 240

Deep Memory / 
Dual Rank DIMM

125 150 125 150 125 150
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Unsupported Features

The DDR2 SDRAM controller design does not support:

• Additive latencies of 3 and 4

• Redundant DQS (RDQS)

• Unbuffered DIMMs (greater than 200 MHz)

• Unbuffered SODIMMs (greater than 200 MHz)

Architecture

Implemented Features

This section provides details on the supported features of the DDR2 SDRAM controller.

Burst Length

The DDR2 SDRAM controller supports burst lengths of four and eight. The burst length 
can be selected through the “Set mode register(s)” option from the GUI. For a design 
without a testbench (user design), the user has to provide bursts of the input data based on 
the chosen burst length. Bits M2:M0 of the Mode Register define the burst length, and bit 
M3 indicates the burst type (see the Micron data sheet). Read and write accesses to the 
DDR2 SDRAM are burst-oriented. It determines the maximum number of column 
locations accessed for a given READ or WRITE command.

CAS Latency

The DDR2 SDRAM controller supports CAS latencies (CLs) of three and four. CL can be 
selected in the “Set mode register(s)” option from the GUI. The CAS latency is 
implemented in the ddr2_controller module. During data write operations, the generation 
of the ctrl_Dqs_En and ctrl_Dqs_Rst signals varies according to the CL in the 
ddr2_controller module. During data read operations, the generation of the ctrl_RdEn 
signal varies according to the CL in the ddr2_controller module. Bits M4:M6 of the Mode 
Register define the CL (see the Micron data sheet). CL is the delay in clock cycles between 
the registration of a READ command and the availability of the first bit of output data. 

Additive Latency

DDR2 SDRAM devices support a feature called posted CAS additive latency (AL). The 
DDR2 SDRAM supports additive latencies of 0, 1, and 2. AL can be selected in the “Set 
mode register(s)” option from the GUI. Additive latency is implemented in the 
ddr2_controller module. The ddr2_controller module issues READ/WRITE commands 
prior to tRCD (minimum) depending on the user-selected AL value in the Extended Mode 
Register. This feature allows the READ command to be issued prior to tRCD (minimum) by 
delaying the internal command to the DDR2 SDRAM by AL clocks. Posted CAS AL makes 
the command and data bus efficient for sustainable bandwidths in DDR2 SDRAM. Bits 
E3:E5 of the Extended Mode Register define the value of AL (see the Micron data sheet).

Registered DIMMs

DDR2 SDRAM supports registered DIMMs. This feature is implemented in the 
ddr2_controller module. For registered DIMMs, the READ and WRITE commands and 
address have one additional clock latency than unbuffered DIMMs.
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Unbuffered DIMMs and SODIMMs

The DDR2 SDRAM design supports unbuffered DIMMs and SODIMMs. Unbuffered 
DIMMs are normal DIMMs, where a set of components are used to get a particular 
configuration. SODIMMs differ from the unbuffered DIMMs only by the package type. 
Otherwise they are functionally the same.

Multicontrollers

MIG supports multicontrollers for DDR2 SDRAMs. A maximum of eight controllers can be 
selected by the user from the tool. In multicontroller designs, MIG supports the same 
frequency for all the controllers.

Different Memories (Density/Speed)

The DDR2 SDRAM controller supports different densities. For DDR2 components shown 
in MIG, densities vary from 256 Mb to 2 Gb, and DIMM densities vary from 128 Mb to 
4 Gb. Higher densities can be created using the “Create new memory part” feature of MIG. 
The supported maximum column address is 13, the maximum row address is 15, and the 
maximum bank address is 3. The design can decode write and read addresses from the 
user in the DDR2 SDRAM controller module. The user address consists of column, row, 
bank, chip address, and user command.

Table 3-2 and Table 3-3 list sample timing sheets for Micron components and DIMMs, 
respectively.

Table 3-2: Timing Parameters for Components

Parameter Description
Micron 256 Mb Micron 512 Mb Micron 1 Gb

-37E -5E -37E -5E -37E -5E

TMRD LOAD MODE command cycle time 2 2 2 2 2 2

TRP PRECHARGE command period 15 15 15 15 15 15

TRFC REFRESH to ACTIVE or REFRESH to 
REFRESH command interval

75 75 105 105 127.5 127.5

TRCD ACTIVE to READ or WRITE delay 15 15 15 15 15 15

TRAS ACTIVE to PRECHARGE command 40 40 40 40 40 40

TRC ACTIVE to ACTIVE (same bank) command 55 55 55 55 55 55

TRTP READ to PRECHARGE command delay 7.5 7.5 7.5 7.5 7.5 7.5

TWTR WRITE to READ command delay 7.5 10 7.5 10 7.5 10

TWR WRITE Recovery time 15 15 15 15 15 15

Table 3-3: Timing Parameters for DIMMs

Parameter Description
MT4HTF MT8HTF MT16HTF MT9HTF MT18HTF

-53E -40E -53E -40E -53E -40E -53E -40E -53E -40E

TMRD LOAD MODE command 
cycle time

2 2 2 2 2 2 2 2 2 2

TRP PRECHARGE command 
period

15 15 15 15 15 15 15 15 15 15
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Note: For the latest timing information, refer to the vendor memory data sheets.

Data Masking

The DDR2 SDRAM design supports data masking per byte. Masking per nibble is not 
supported due to the limitation of the internal block RAM based FIFOs. So, the masking of 
data can be done on a per byte basis. The mask data is stored in the Data FIFO along with 
the actual data.

Precharge

The PRECHARGE command is used to close the open row in a bank if there is a command 
to be issued in the same bank. The PRECHARGE command checks the row address, bank 
address, and chip address, and the DDR2 Virtex™-4 controller issues a PRECHARGE 
command if there is a change in any of the addresses where a read or write command is to 
be issued. The auto precharge function is not supported.

Auto Refresh

The DDR2 SDRAM controller issues AUTO REFRESH commands at specified intervals for 
the memory to refresh the charge required to retain the data in the memory. The user can 
also issue a REFRESH command through the user interface by setting bits 34, 33, and 32 of 
the app_af_addr signal in the user_interface module to 3’b001. If there is a refresh request 
while there is an ongoing read or write burst, the controller issues a refresh command after 
completing the current read or write burst command. 

Linear Addressing

The DDR2 SDRAM controller supports linear addressing. Linear addressing refers to the 
way the user provides the address of the memory to be accessed. For Virtex-4 FPGA DDR2 
SDRAM controllers, the user provides address information through the app_af_addr bus. 
As the densities of the memory devices vary, the number of column address bits and row 

TRFC REFRESH to ACTIVE or 
REFRESH to REFRESH 
command interval

128 MB
75

75 256 MB
75

75 512 MB
75

75 256 MB
75

 75 512 MB
75

 75

256 MB
105

105 512 MB
105

105 1 GB
105

105 512 MB
105

105 1 GB 
105

105

512 MB
127.5

127.5 1 GB
127.5

127.5 2 GB
127.5

127.5 1 GB
127.5

127.5 2 GB
127.5

127.5

TRCD ACTIVE to READ or 
WRITE delay

15 15 15 15 15 15 15 15 15 15

TRAS ACTIVE to 
PRECHARGE command

40 40 40 40 40 40 40 40 40 40

TRC ACTIVE to ACTIVE 
(same bank) command

55 55 55 55 55 55 55 55 55 55

TRTP READ to PRECHARGE 
command delay

7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5

TWTR WRITE to READ 
command delay

7.5 10 7.5 10 7.5 10 7.5 10 7.5 10

TWR WRITE recovery time 15 15 15 15 15 15 15 15 15 15

Table 3-3: Timing Parameters for DIMMs (Continued)

Parameter Description
MT4HTF MT8HTF MT16HTF MT9HTF MT18HTF

-53E -40E -53E -40E -53E -40E -53E -40E -53E -40E
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address bits also change. In any case, the row address bits in the app_af_addr bus always 
start from the next higher bit, where the column address ends. This feature increases the 
number of devices that can be supported with the design.

On-Die Termination

The DDR2 SDRAM controller supports on-die termination (ODT). Through the “Set mode 
register(s)” option from the GUI, the user can disable ODT or can choose 75, 150, or 50. 
ODT can turn the termination on and off as needed to improve signal integrity in the 
system. Because DDR2 supports the deep memory maximum of four, a maximum of four 
ODTs is supported. Four examples are given below:

1. If the user selects deep memory = 4, the memory component sequence is 0, 1, 2, and 3. 
During write operations, the ODT is enabled for component 3 when writing into 0, 1, 
or 2, otherwise it is enabled for component 2 when writing into component 3. During 
read operations, the ODT is enabled for component 3 when reading from 0, 1, or 2, 
otherwise it is enabled for component 2 for reading from component 3. 

2. If the user selects deep memory = 3, the memory component sequence is 0, 1, and 2. 
During write operations, the ODT is enabled for component 2 when writing into 0 or 1, 
otherwise it is enabled for component 1 when writing into component 2. During read 
operations, the ODT is enabled for component 2 when reading from 0 or 1, otherwise 
it is enabled for component 1 for reading from component 2.

3. If the user selects deep memory = 2, the memory component sequence is 0 and 1. 
During write operations, the ODT is enabled for component 1 when writing into 0, 
otherwise it is enabled for component 0 when writing into component 1. During read 
operations, the ODT is enabled for component 1 when reading from 0, otherwise it is 
enabled for component 0 for reading from component 1.

4. If the user selects deep memory = 1, the memory component sequence is 0. During 
write operations, the ODT is enabled for component 0 when writing into 0. During 
read operations, the ODT is disabled.

Deep Memories

The MIG DDR2 SDRAM controller supports depths up to 4. Through the “Depth” option, 
the user can select various deep values. For deep memory implementations, MIG 
generates chip selects, CKE signals, and ODT signals for each memory. The clock widths 
(CK and CK_N) are a multiple factor of the deep configuration chosen in MIG. This feature 
increases the depth of the memory. For example, if the user selects a 256 Mb component 
and deep memory = 4 from MIG, the tool generates a memory interface for a 1 Gb design. 

Deep memory logic is implemented in the ddr2_ controller module. With deep memories, 
DDR2 SDRAMs are initialized one after the other to avoid loading the address and control 
buses, and the calibration is done on the last memory. Apart from initialization, the DDR2 
SDRAM controller module also demultiplexes the column, row, and bank addresses from 
the user address. The module also decodes the chip selects and rank addresses for 
components and DIMMs.

The formats of user read/write addresses for a 256 Mb component and 2 GB and 4 GB 
DIMMs are given in “Deep Memory Configurations.”

ECC Support

The DDR2 SDRAM controller supports ECC. ECC is supported for the following data 
widths:

• 40-bit (32-bit data and a 0 prepended to 7-bit parity) 
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• 72-bit (64-bit data and 8-bit parity)

• 144-bit (128-bit data and 16-bit parity)

The user can completely disable the ECC or can generate the design for the above data 
widths by choosing either the Unpipeline mode or the Pipeline mode from the GUI. 

ECC is based on XAPP645 [Ref 16]. The design can detect and correct all single bit errors, 
and it can detect double bit errors in the data. This design utilizes Hamming code for the 
ECC operations. The Pipeline mode improves the frequency performance at the cost of an 
extra pipeline stage.

Hierarchy

Figure 3-2 shows the hierarchical structure of the DDR2 SDRAM controller.

Figure 3-2 shows the hierarchical structure of the DDR2 SDRAM design generated by MIG 
with a testbench and a DCM. The modules are classified as follows: 

• Design modules

• Testbench modules

• Clocks and reset generation modules

There is a parameter file generated with the design that has all the user input and design 
parameters selected from MIG. 

Figure 3-2: Hierarchical Structure of the DDR2 Design (Direct Clocking)
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MIG can generate four different DDR2 SDRAM designs:

• With a testbench and a DCM 

• Without a testbench and with a DCM 

• With a testbench and without a DCM 

• Without a testbench and without a DCM

A design without a testbench (user_design) does not have testbench modules. The 
<top_module> module has the user interface signals for designs without a testbench. The 
list of user interface signals is provided in Table 3-6, page 119.

Design clocks and resets are generated in the infrastructure module. The DCM clock is 
instantiated in the infrastructure module for designs with a DCM. The inputs to this 
module are the differential design clock and a 200 MHz differential clock for the 
IDELAYCTRL module. A user reset is also input to this module. Using the input clocks and 
reset signals, the system clocks and the system reset are generated in this module, which is 
used in the design.

The DCM primitive is not instantiated in this module if the Use DCM option is unchecked. 
So, the system operates on the user-provided clocks. The system reset is generated in the 
infrastructure module using the DCM_LOCK input signal.

For ECC enabled designs, the corresponding shaded modules are present in the design. 
ECC data is generated from these modules. 
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Figure 3-3 shows a top-level block diagram of a DDR2 SDRAM design with a DCM and a 
testbench. SYS_CLK_P and SYS_CLK_N are differential input system clocks. The DCM is 
instantiated in the infrastructure module that generates the required design clocks. 
CLK200_P and CLK200_N are used for the idelay_ctrl element. SYS_RESET_IN_N is the 
active-Low system reset signal. All design resets are gated by the dcm_lock signal. The 
ERROR output signal indicates whether the case passes or fails. The testbench module 
does writes and reads, and also compares the read data with the written data. The ERROR 
signal is driven High on data mismatches. The INIT_DONE signal indicates the 
completion of initialization and calibration of the design. Memory device signals are 
prepended with the controller number. For example, for a single controller design, the 
DDR2_RAS_N signal appears as cntrl0_DDR2_RAS_N. Similarly, for a four-controller 
design with controllers 0, 1, 2, and 3, the controller 3 DDR2_RAS_N signal appears as 
cntrl3_DDR2_RAS_N.

All Memory Device ports do not necessarily appear for all MIG-generated designs. For 
example, port DDR2_RESET_N appears in the port list for Registered DIMM designs only. 
Similarly, DDR2_DQS_N does not appear for single-ended DQS designs. Port DDR2_DM 
appears only for parts that contain a data mask; a few RDIMMs have no data mask, and 
DDR2_DM does not appear in the port list for them.

Figure 3-3: Top-Level Block Diagram of the DDR2 SDRAM Design with a DCM and a Testbench
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Figure 3-4 shows a top-level block diagram of a DDR2 SDRAM design with a DCM but 
without a testbench. SYS_CLK_P and SYS_CLK_N are differential input system clocks. A 
DCM is instantiated in the infrastructure module that generates the required design clocks. 
CLK200_P and CLK200_N are used for the idelay_ctrl element. SYS_RESET_IN_N is an 
active-Low system reset signal. All design resets are gated by the dcm_lock signal. The 
user has to drive the user application signals. The design provides the CLK_TB and 
RESET_TB signals to the user to synchronize with the design. The INIT_DONE signal 
indicates the completion of initialization and calibration of the design.

Figure 3-4: Top-Level Block Diagram of the DDR2 SDRAM Design with a DCM but without a Testbench
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Figure 3-5 shows a top-level block diagram of a DDR2 SDRAM design without a DCM or 
a testbench. The user should provide all the clocks and the dcm_lock signal. These clocks 
should be single-ended. SYS_RESET_IN_N is an active-Low system reset signal. All design 
resets are gated by the dcm_lock signal. The user application must have a DCM primitive 
instantiated in the design. All user clocks should be driven through BUFGs. The user has to 
drive the user application signals. The design provides the CLK_TB and RESET_TB signals 
to the user to synchronize with the design. The INIT_DONE signal indicates the 
completion of initialization and calibration of the design. 

Figure 3-5: Top-Level Block Diagram of the DDR2 SDRAM Design without a DCM or a Testbench
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Figure 3-6 shows a top-level block diagram of a DDR2 SDRAM design with a testbench but 
without a DCM. The user should provide all the clocks and the dcm_lock signal. These 
clocks should be single-ended. SYS_RESET_IN_N is an active-Low system reset signal. All 
design resets are gated by the dcm_lock signal. The user application must have a DCM 
primitive instantiated in the design. All user clocks should be driven through BUFGs. The 
ERROR output signal indicates whether the case passes or fails. The testbench module 
does writes and reads, and also compares the read data with the written data. The ERROR 
signal is driven High on data mismatches. The INIT_DONE signal indicates the 
completion of initialization and calibration of the design.

Figure 3-6: Top-Level Block Diagram of the DDR2 SDRAM Design with a Testbench but without a DCM
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DDR2 Controller Submodules

Figure 3-7 is a detailed block diagram of the DDR2 SDRAM controller. The five blocks 
shown are the sub-blocks of the top module. User backend signals are provided by the tool 
for designs with a testbench. The user has to drive these signals for designs without a 
testbench. The functions of these blocks are explained in the subsections following the 
figure.
I

Controller

The DDR2 SDRAM ddr2_controller accepts and decodes user commands and generates 
read, write, and refresh commands. The DDR2 SDRAM controller also generates signals 
for other modules. The memory is initialized and powered-up using a defined process. The 
controller state machine handles the initialization process upon power-up. After memory 
initialization, the controller issues dummy read commands. During dummy reads, the 
tap_logic module calibrates and delays the data to center-align with the FPGA clock. After 
the calibration is done, the controller issues a dummy write and pattern read commands to 
get the delay between the read command and IOB output data.

The delay, calculated in number of clocks, is used as a write-enable signal to the read data 
FIFOs. For deep designs, the DQ calibration and pattern calibration are done only on the 
last memory. For example, for four deep designs, the fourth memory is used for 
calibration. There is no reason to use the fourth memory because the controller retains the 
last chip select during initialization of memory. Thus the same chip select is used for 
calibration. XAPP701 [Ref 17] provides more details about the calibration architecture.

User Interface

This module stores write data, write addresses, and read addresses in FIFOs and receives 
read data from the memory. The rd_data and rd_data_fifos modules capture the data in the 

Figure 3-7: DDR2 Memory Controller Block Diagram
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LUT-based RAMs. The rd_wr_addr_fifo and wr_data_fifo modules store the data and 
address in block RAMs. 

Once the calibration is done, the controller issues a pattern_write command with a known 
pattern (0xAA559966) to the memory. Then the controller issues a pattern_read command 
from the same location and compares the read data with the known pattern in the 
pattern_compare8 or the pattern_compare4 module. During the pattern_read command, 
the controller generates the ctrl_rden signal, which is delayed in the pattern_compare 
module to synchronize with the read data. This delay is applied to the ctrl_rden signal 
generated from the ddr2_controller module during a normal read to register the valid data 
in the internal FIFOs.

The FIRST_RISING logic is implemented in the pattern_compare module. FIRST_RISING 
is asserted when the first data is captured with respect to the falling edge of FPGA clock. 
This signal is used in rd_data_fifo to swap rise and fall data.

DDR2 SDRAM Initialization and Calibration
DDR2 memory is initialized through a specified sequence as per both Micron and JEDEC 
specifications. The controller starts the memory initialization at power-up. Following the 
initialization, the relationship between the data and the FPGA clock is calculated using the 
tap_logic. The controller issues a dummy write command and a dummy read command to 
the memory and compares read data with the fixed pattern. During dummy reads, the 
tap_logic module calibrates and delays the data to center-align with the FPGA clock. 

The sel_done port in the tap_logic module indicates the completion of the per-bit 
calibration. After the per-bit calibration is done, the controller does a read enable 
calibration. This calibration is used to determine the delay from read command to read 
data at rd_data_fifo. The delay between read command and read data is affected by the 
CAS latency and additive latency parameters, the PCB traces, and the I/O buffer delays. 
This in turn is used to generate a write enable to rd_data_fifo so that valid data is 
registered. The controller writes a known fixed pattern and reads back the data. The read 
data is compared against the known fixed pattern. The comp_done port in the rd_data 
module indicates the completion of the read enable calibration. 

The init_done port indicates the completion of both per-bit calibration and read enable 
calibration. After initialization and calibration is done, the controller can start issuing user 
commands to the memory.

DDR2 SDRAM System and User Interface Signals
Table 3-4 describes the DDR2 SDRAM system interface signals. The system interface 
signals are the clocks and the reset signals given by the user to the FPGA. SYS_CLK_P and 
SYS_CLK_N are the two clocks provided to the design. They must have a phase difference 
of 180° with respect to each other. Similarly, CLK200_P and CLK_200N are 200 MHz 
differential clocks for the IDELAYCTRL module. SYS_RESET_IN_N resets all the logic. 

Table 3-4: DDR2 SDRAM Controller System Interface Signals (with a DCM)

Signal Name Direction Description

SYS_CLK_P, SYS_CLK_N Input Differential input clock to the DCM. The DDR2 controller and 
memory operate at this frequency.

CLK200_P, CLK200_N Input Differential clock used in the idelay_ctrl logic.

SYS_RESET_IN_N Input Active-Low reset to the DDR2 controller.
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Table 3-5 shows the system interface signals for designs without a DCM. clk_0, clk_90, and 
clk_200 are single-ended input clocks. The clk_90 signal must have a phase difference of 
90° with respect to clk_0. The clk_200 signal is the clock used for the IDELAYCTRL 
primitives in Virtex-4 FPGAs.

Table 3-6 describes the DDR2 SDRAM user interface signals.

Table 3-5: DDR2 SDRAM Controller System Interface Signals (without a DCM)

Signal Direction Description

clk_0 Input The DDR2 SDRAM controller and memory operates on this clock.

SYS_RESET_IN_N Input Active-Low reset to the DDR2 SDRAM controller. This signal is used to 
generate the synchronous system reset.

clk_90 Input 90° phase-shifted clock with the same frequency as clk0.

clk_200 Input 200 MHz input differential clock for the IDELAYCTRL primitive of Virtex-4 
FPGAs.

dcm_lock Input This status signal indicates whether the DCM is locked or not. It is used to 
generate the synchronous system reset.

Table 3-6: DDR2 SDRAM Controller User Interface Signals

Signal Name(1) Direction Description

CLK_TB Output All user interface signals must be synchronized with respect to 
CLK_TB.

RESET_TB Output Reset signal for the User Interface.

BURST_LENGTH_DIV2[2:0] Output This signal determines the data burst length for each write 
address. 

010: burst length = 4

100: burst length = 8

WDF_ALMOST_FULL Output This signal indicates the ALMOST_FULL status of the Write 
Data FIFO. When this signal is asserted, the user can write 
5 more locations into the FIFO in designs generated with a 
testbench and 14 more locations in designs without a testbench.

APP_WDF_DATA[2n-1:0] Input User write data to the memory, where n indicates the data width 
of the interface. The user data is twice the data width of the 
interface. The most-significant bits contain the rising-edge data 
and the least-significant bits contain the falling-edge data.

APP_MASK_DATA[2m-1:0] Input User mask data to the memory, where m indicates the data mask 
width of the interface. The mask data is twice the mask width of 
the interface. The most-significant bits contain the rising-edge 
mask data and the least-significant bits contain the falling-edge 
mask data. These signals are not present when the memory part 
does not have mask support (for example, certain Registered 
DIMMs) or when the Data Mask option is not selected in the 
MIG GUI.

APP_WDF_WREN Input Write Enable signal to the Write Data FIFO.

AF_ALMOST_FULL Output This signal indicates the ALMOST_FULL status of the Address 
FIFO. The user can issue eight more locations into the FIFO after 
AF_ALMOST_FULL is asserted.
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User Interface Accesses

The user backend logic communicates with the memory controller through a FIFO-based 
user interface. This interface consists of three related buses: 

• A Command/Address FIFO bus, which accepts write/read commands as well as the 
corresponding memory address from the user

• A Write Data FIFO bus, which accepts the corresponding write data when the user 
issues a write command on the Command/Address bus

• A Read bus on which the corresponding read data for an issued read command is 
returned

The user interface has the following timing and signaling restrictions:

• Commands and write data cannot be written by the user until calibration is complete 
(as indicated by INIT_DONE). In addition, the following interface signals need to be 
held Low until calibration is complete: APP_AF_WREN, APP_WDF_WREN, 
APP_WDF_DATA, and APP_MASK_DATA. Failure to hold these signals Low causes 
errors during calibration. This restriction arises from the fact that the Write Data FIFO 
is used during calibration to hold the training patterns for the various stages of 
calibration.

APP_AF_ADDR[35:0] Input The user address consists of a memory address and dynamic 
commands. Bits [31:0] are the memory read/write address. Bits 
[31:0] form the memory chip select, bank address, row address, 
and column address. 

Bit 35 is reserved for internal use of the controller. Bits [34:32] 
represent the following dynamic commands:

001: Auto Refresh
010: Precharge
100: Write
101: Read

Other combinations are invalid. Functionality of the controller is 
unpredictable for unimplemented commands. 

APP_AF_WREN Input Write Enable signal to the Address FIFO.

READ_DATA_FIFO_OUT[2n-1:0] Output Read data from the memory, where n indicates the data width of 
the interface. The most-significant bits of the read data consist of 
the rising-edge data and the least-significant bits consist of the 
falling-edge data.

READ_DATA_VALID Output This signal is asserted to indicate the read data is available to the 
user.

INIT_DONE Output This signal indicates the completion of initialization and 
calibration of the design.

Notes: 
1. All user interface signal names are prepended with a controller number. DDR2 SDRAM devices support multicontroller operation, 

where a maximum of eight controllers can be selected by the user from MIG. For example, when the user selects eight controllers, 
the signal names have the following format: cntrl0_user_signal, cntrl1_user_signal, cntrl2_user_signal, cntrl3_user_signal, 
cntrl4_user_signal, cntrl5_user_signal, cntrl6_user_signal, and cntrl7_user_signal.

Table 3-6: DDR2 SDRAM Controller User Interface Signals (Continued)

Signal Name(1) Direction Description
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• When issuing a write command, the first write data word must be written to the Write 
Data FIFO no more than two clock cycles after the write command is issued. This 
restriction arises from the fact that the controller assumes write data is available when 
it receives the write command from the user. 

Write Interface

Figure 3-8 shows the user interface block diagram for write operations. 

The following steps describe the architecture of the Address and Write Data FIFOs and 
show how to perform a write burst operation to DDR2 SDRAM from the user interface.

1. The user interface consists of an Address FIFO and a Write Data FIFO. These FIFOs are 
constructed using Virtex-4 FIFO16 primitives with a 512 x 36 configuration. The 36-bit 
architecture comprises one 32-bit port and one 4-bit port. For Write Data FIFOs, the 
32-bit port is used for data bits and the 4-bit port is used for mask bits. Mask bits are 
available only when supported by the memory part and when Data Mask is enabled in 
the MIG GUI. Some memory parts, such as Registered DIMMs of x4 parts, do not 
support mask bits.

2. The Common Address FIFO is used for both write and read commands, and comprises 
a command part and an address part. Command bits discriminate between write and 
read commands.

3. User interface data width app_wdf_data is twice that of the memory data width. For 
an 8-bit memory width, the user interface is 16 bits consisting of rise data and fall data. 
For every 8 bits of data, there is a mask bit. For 72-bit memory data, the user interface 
data width app_wdf_data is 144 bits, and the mask data app_mask_data is 18 bits.

4. The minimum configuration of the Write Data FIFO is 512 x 36 for a memory data 
width of 8 bits. For an 8-bit memory data width, the least-significant 16 bits of the data 
port are used for write data and the least-significant two bits of the 4-bit port are used 

Figure 3-8: User Interface Block Diagram for Write Operations
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for mask bits. The controller internally pads all zeros for the most-significant 16 bits of 
the 32-bit port and the most-significant two bits of the 4-bit port. 

5. Depending on the memory data width, MIG instantiates multiple FIFO16s to gain the 
required width. For designs using 8-bit data width, one FIFO16 is instantiated; for 
72-bit data width, a total of five FIFO16s are instantiated. The bit architecture 
comprises 16 bits of rising-edge data, 2 bits of rising-edge mask, 16 bits of falling-edge 
data, and 2 bits of falling-edge mask, which are all stored in a FIFO16. MIG routes the 
app_wdf_data and app_mask_data to FIFO16s accordingly. 

6. The user can initiate a write to memory by writing to the Address FIFO and the Write 
Data FIFO when the FIFO Full flags are deasserted and after the init_done signal is 
asserted. Status signal af_almost_full is asserted when Address FIFO is full, and 
similarly wdf_almost_full is asserted when Write Data FIFO is full. 

7. Both the Address FIFO and Write Data FIFO Full flags are deasserted with power-on.

8. The user should assert the Address FIFO write-enable signal app_af_wren along with 
address app_af_addr to store the write address and write command into the Address 
FIFO.

9. The user should assert the Data FIFO write-enable signal app_wdf_wren along with 
write data app_wdf_data and mask data app_mask_data to store the write data and 
mask data into the Write Data FIFO. The user should provide both rise and fall data 
together for each write to the Data FIFO.

10. The controller reads the Address FIFO by issuing the ctrl_af_rden signal. The 
controller reads the Write Data FIFO by issuing the ctrl_wdf_rden signal after the 
Address FIFO is read. It decodes the command part after the Address FIFO is read.

11. The write command timing diagram in Figure 3-9 is derived from the MIG-generated 
test bench. As shown (burst length of 4), each write to the Address FIFO must be 
coupled with two writes to the Data FIFO. Similarly, for a burst length of 8, every write 

Figure 3-9: DDR2 SDRAM Write Burst (BL = 4) for Four Bursts
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to the Address FIFO must be coupled with four writes to the Data FIFO. Failure to 
follow this rule can cause unpredictable behavior.

Note: The user can start filling the Write Data FIFO two clocks after the Address FIFO is 
written, because there is a two-clock latency between the command fetch and reading the Data 
FIFO. Using the terms shown in Figure 3-10, therefore, the user can assert the A0 address two 
clocks before D0D1.

12. The write command timing diagram in Figure 3-10 is derived from the MIG-generated 
test bench. As shown (burst length of 8), each write to the Address FIFO must be 
coupled with four writes to the Data FIFO. Because the controller first reads the 
address and command together, the address need not coincide with the last data. After 
the command is analyzed (nearly two clocks later for a worst-case timing scenario), the 
controller sequentially reads the data in four clocks. Thus, there are six clocks from the 
time the address is read to the time the last data is read.

Correlation between the Address and Data FIFOs

There is a worst-case two-cycle latency from the time the address is loaded into the address 
FIFO on APP_AF_ADDR[35:0] to the time the controller decodes the address. Because of 
this latency, it is not necessary to provide the address on the last clock where data is 
entered into the data FIFO. If the address is written before the last data phase, the overall 
efficiency and performance increases because it eliminates or reduces the two-cycle 
latency. However, if the address is written before data is input into the data FIFO, a FIFO 
empty condition might result because the Data FIFO does not contain valid data. 

Based on these considerations, Xilinx recommends entering the address into the address 
FIFO between the first data phase and the next-to-last data phase. For a burst of four or 
eight, this means the Address can be asserted two clocks before the first data phase. This 

Figure 3-10: DDR2 SDRAM Write Burst (BL = 8) for Two Bursts
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implementation increases efficiency by reducing the two clock latency and guarantees that 
valid data is available in the Data FIFO.

Read Interface

Figure 3-11 shows a block diagram of the read interface. 

The following steps describe the architecture of the Read Data FIFOs and show how to 
perform a burst read operation from DDR SDRAM from the user interface.

1. The read user interface consists of an Address FIFO and a Read Data FIFO. The 
Address FIFO is common to both read and write operations. The Read Data FIFOs are 
constructed using Virtex-4 Distributed RAMs with a 16 x 1 configuration. MIG 
instantiates a number of RAM16Ds depending on the data width. For example, for 
8-bit data width, MIG instantiates a total of 16 RAM16Ds, 8 for rising-edge data and 8 
for falling-edge data. Similarly, for 72-bit data width, MIG instantiates a total of 144 
RAM16Ds, 72 for rising-edge data and 72 for falling-edge data.

2. The user can initiate a read to memory by writing to the Address FIFO when the 
FIFO Full flag af_almost_full is deasserted and after init_done is asserted.

3. To write the read address and read command into the Address FIFO, the user should 
issue the Address FIFO write-enable signal app_af_wren along with read address 
app_af_addr.

4. The controller reads the Address FIFO containing the address and command. After 
decoding the command, the controller generates the appropriate control signals to 
memory. 

5. Prior to the actual read and write commands, the design calibrates the latency (number 
of clock cycles) from the time the read command is issued to the time data is received. 
Using this pre-calibrated delay information, the controller generates the write-enable 
signals to the Read Data FIFOs.

6. The read_data_valid signal is asserted when data is available in the Read Data FIFOs.

Figure 3-11: User Interface Block Diagram for Read Operation
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7. Figure 3-12 shows the user interface timing diagram for a burst length of 4, and 
Figure 3-13 shows the user interface timing diagram for a burst length of 8. Both the 
cases shown here are for a CAS latency of 3 at 200 MHz. The read latency is calculated 
from the point when the read command is given by the user to the point when the data 
is available with the read_data_valid signal. The minimum latency in this case is 
25 clocks, where no precharge is required, no auto-refresh request is pending, the user 
commands are issued after initialization is completed, and the first command issued is 
a Read command. Controller executes the commands only after initialization is done 
as indicated by the init_done signal.

8. After the address and command are loaded into the Address FIFO, it takes 25 clock 
cycles minimum for the controller to assert the read_data_valid signal.

9. Read data is available only when the read_data_valid signal is asserted. The user 
should access the read data on every positive edge of the read_data_valid signal.

Figure 3-12: DDR2 SDRAM Read Burst (BL = 4) for Four Bursts
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Figure 3-13: DDR2 SDRAM Read Burst (BL = 8) for Two Bursts
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The 25 clocks from the read command to the read data, as shown in Figure 3-12 and 
Figure 3-13, are broken up as indicated in Table 3-7.

In general, read latency varies based on the following parameters:

• CAS latency (CL) and additive latency (AL)

• The number of commands already in the FIFO pipeline before the read command is 
issued

• Whether an ACTIVATE command needs to be issued to open the new bank/row

• Whether a PRECHARGE command needs to be issued to close a previously opened 
bank

• Specific timing parameters for the memory, such as TRAS, and TRCD in conjunction 
with the bus clock frequency

• Commands might be interrupted, and banks/rows might be forcibly closed when the 
periodic AUTO REFRESH command is issued

• If the user issues the commands before initialization is complete, the latency cannot be 
determined

• Board-level and chip-level (for both memory and FPGA) propagation delays

User to Controller Interface

Table 3-8 lists the signals between the User interface and the controller.

Table 3-7: Read Command to Read Data Clock Cycles

Parameter Number of Clocks

Read Address to Empty Deassert  7 clocks

Empty to Active Command  5.5 clocks

Active to Read Command 3 clocks

Memory Read Command to Read Data Valid  9.5 clocks

Total: 25 clocks

Table 3-8: List of Signals Between User Interface and Controller

Port Name
Port 

Width
Port Description Notes

af_addr 36 Output of the Address FIFO in the user 
interface. The mapping of these address 
bits is:

[31:0]: Memory Address (CS, Bank, 
Row, Column)

[34:32]: Dynamic Command Request

[35]: Reserved

Monitor FIFO-full status flag to write address into 
the Address FIFO 

af_empty 1 The user interface Address FIFO empty 
status flag output. The user application 
can write to the Address FIFO when this 
signal is asserted until the write data 
FIFO-full status flag is asserted.

FIFO16 Almost Empty flag
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The memory address (af_addr) includes the column address, row address, bank address, 
and chip-select width for deep memory interfaces.

Column Address

[column_address – 1:0]

Row Address

[column_address + row_address – 1:column_address]

Bank Address

[column_address + row_address + bank_address –  1:column_address + 
row_address]

Chip Select

[column_address + row_address + bank_address + chip_address – 1:
column_address + row_address + bank_address]

Dynamic Command Request 

Table 3-9 lists commands not required for normal operation of the controller. The user has 
the option of requesting these commands if the commands are required by their 
application.

ctrl_af_RdEn 1 Read Enable input to Address FIFO in 
the user interface. 

This signal is asserted for one clock cycle when 
the controller state is write, read, Load Mode 
register, Precharge All, Auto Refresh, or Active 
resulting from dynamic command requests. 
Figure 3-15 shows the timing waveform for burst 
length of eight with four back-to-back writes 
followed by four back-to-back reads.

ctrl_Wdf_RdEn 1 Read Enable input to Write Data FIFO in 
the user interface.

The controller asserts this signal two clock cycles 
after the first write state. This signal remains 
asserted for two clock cycles for a burst length of 
four and four clock cycles for a burst length of 
eight. Figure 3-15 shows the timing waveform. 
Sufficient data must be available in Write Data 
FIFO associated with a write address for the 
required burst length before issuing a write 
command. For example, for a 64-bit data bus and 
a burst length of four, the user should input two 
128-bit data words in the Write Data FIFO for 
every write address before issuing the write 
command.

Table 3-8: List of Signals Between User Interface and Controller (Continued)

Port Name
Port 

Width
Port Description Notes
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Figure 3-14 describes four consecutive writes followed by four consecutive reads with a 
burst length of 8.

Controller to Physical Layer Interface

Table 3-10 lists the signals between the controller and the physical layer.

Table 3-9: Optional Commands

Command Description

001 Auto Refresh

010 Precharge

100 Write

101 Read

Figure 3-14: Consecutive Writes Followed by Consecutive Reads with Burst Length of 8

UG086_c3_12_042507

top_00/clk_0

top_00/af_empty_w

top_00/ctrl_af_rden

top_00/ctrl_wr_df_rden

Table 3-10: Signals Between the Controller and Physical Layer

Port Name
Port 

Width
Port Description Notes

ctrl_Dummyread_Start 1 Output from the controller to the 
physical layer. When asserted, the 
physical layer begins strobe and 
data calibration after memory 
initialization.

This signal is asserted after read strobe 
begins to toggle in the dummy read state. 
This signal is deasserted when the 
phy_Dly_Slct_Done signal is asserted.

phy_Dly_Slct_Done 1 Output from the physical layer to 
the controller indicating 
calibration is complete. 

This signal is asserted after data bits have 
been delayed to center align with respect 
to the FPGA global clock. The 
ctrl_Dummyread_Start signal is 
deasserted when the phy_Dly_Slct_Done 
signal is asserted. Normal operation 
begins after this signal is asserted. 

ctrl_Dqs_Rst 1 Output from the controller to the 
physical layer for the write strobe 
preamble. 

This signal is asserted for one clock cycle 
during a write. The CAS latency and AL 
values determine how many clock cycles 
after the first write state this signal is 
asserted. Figure 3-15 shows the timing 
waveform for this signal with CAS latency 
of 3 and AL of 0 for four back-to-back 
writes with a burst length of 8.
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Figure 3-15 describes the timing waveform for control signals from the controller to the 
physical layer.

ctrl_Dqs_En 1 Output from the controller to the 
physical layer for a write strobe.

This signal is asserted for three clock 
cycles during a write with a burst length 
of four and five clock cycles with a burst 
length of 8. The CAS latency and AL 
values determine how many clock cycles 
after the first write or burst write state this 
signal is asserted. Figure 3-15 shows the 
timing waveform for this signal with CAS 
latency of 3 and AL of 0 for four back-to-
back writes with a burst length of 8.

ctrl_WrEn 1 Output from the controller to the 
physical layer for write data three-
state control.

This signal is asserted for two clock cycles 
during a write with a burst length of 4 and 
for four clock cycles with a burst length of 
8. The CAS latency and AL values 
determine how many clock cycles after 
the first write or burst write state this 
signal is asserted. Figure 3-15 shows the 
timing waveform for this signal with CAS 
latency of 3 and AL of 0 for four back-to-
back writes with a burst length of 8.

Table 3-10: Signals Between the Controller and Physical Layer (Continued)

Port Name
Port 

Width
Port Description Notes

Figure 3-15: Timing Waveform for Control Signals from the Controller to the Physical Layer
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Deep Memory Configurations
The following examples provide user address formats for different densities of 
components and DIMMs in deep memory designs. These are examples only, not associated 
with any specific memory part number from memory data sheets.

Components

Case 1: 256 Mb (x4 component)

Write Address/Read Address:

Density 256 Mb (256 Mb x 4 = 1 Gb)

Depth 4 

Row address 13

Column address 11

Bank address 2

Rank/chip + deep address 2

35 32 31 29 28 27 26 25 24 12 11 10 9 0

A10-A0      Column address

A23-A11 Row address

A25-A24 Bank address

A27 -A26 Rank + deep address

A31-A28 Assigned to all zeros

A34-A32 Dynamic commands

A35 Reserved for internal use
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Case 2: 256 Mb (x8 component)

Write Address/Read Address:

Density 256 Mb (256 Mb x 3 = 768 Mb)

Depth 3 

Row address 13

Column address 10

Bank address 2

Rank/chip + deep address 2

35 32 31 28 27 26 25 24 23 11 10 9 0

A9-A0     Column address

A22-A10 Row address

A24-A23 Bank address

A26-A25 Rank + deep address

A31-A27 Assigned to all zeros

A34-A32 Dynamic commands

A35 Reserved for internal use

http://www.xilinx.com


132 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 3: Implementing DDR2 SDRAM Controllers
R

Case 3: 256 Mb (x16 component)

Write Address/Read Address:

Density 256 Mb (256 Mb x 2 = 512 Mb)

Depth 2 

Row address 13

Column address    9

Bank address 2

Rank/chip + deep address 1

35 32 31 30 29 28 27 25 24 11 10 9 0

A8-A0      Column address

A21-A9 Row address

A23-A22 Bank address

A24 Rank + deep address

A31-A25 Assigned to all zeros

A34-A32 Dynamic commands

A35 Reserved for internal use
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DIMMs

Case 1: 2 GB

Write Address/Read Address:

Density 1 GB (1 x 2 = 2 GB)

Depth 2 

Row address 14

Column address 10

Bank address 3

Rank/chip + deep address 2

35 32 31 30 29 28 27 25 24 11 10 9 0

A9-A0      Column address

A23-A10 Row address

A26-A24 Bank address

A28-A27 Rank + deep address

A31-A29 Assigned to all zeros

A34-A32 Dynamic commands

A35 Reserved for internal use
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Case 2: (8 GB)

Write Address/Read Address:

Density  4 GB (4 x 2 = 8 GB)

Depth  2 

Row address  14

Column address  11

Bank address  3

Rank/chip + deep address  2 

35 32 31 30 29 28 26 25 12 11 10 9 0

A10-A0 Column address
A24-A11 Row address
A27-A25 Bank address
A29-A28 Rank + deep address
A31-A30 Assigned to zeros
A34 - A32 Dynamic commands
A35 Reserved for internal use
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Table 3-11 is an example showing the pin mapping for x4 registered DIMMs between the 
memory data sheet and the user constraint file (UCF).

MIG allows banks to be selected for different classes of memory signals. When a particular 
bank is checked for an address, MIG allocates the memory address, the memory control, 
and the memory clocks in that bank. When a bank is checked for data, MIG allocates the 
data, the data mask, and the data strobes in that bank. When a bank is checked for system 
control, MIG allocates the system reset and status signals in that bank. When a bank is 
checked for system clocks, MIG allocates the system clock signals in that bank.

Table 3-11: Pin Mapping for x4 DIMMs

Memory Data Sheet MIG UCF

DQ[63:0] DQ[63:0]

CB3 - CB0 DQ[67:64]

CB7 - CB4 DQ[71:68]

DQS0, DQS0 DQS[0], DQS_N[0]

DQS1, DQS1 DQS[2], DQS_N[2]

DQS2, DQS2 DQS[4], DQS_N[4]

DQS3, DQS3 DQS[6], DQS_N[6]

DQS4, DQS4 DQS[8], DQS_N[8]

DQS5, DQS5 DQS[10], DQS_N[10]

DQS6, DQS6 DQS[12], DQS_N[12]

DQS7, DQS7 DQS[14], DQS_N[14]

DQS8, DQS8 DQS[16], DQS_N[16]

DQS9, DQS9 DQS[1], DQS_N[1]

DQS10, DQS10 DQS[3], DQS_N[3]

DQS11, DQS11 DQS[5], DQS_N[5]

DQS12, DQS12 DQS[7], DQS_N[7]

DQS13, DQS13 DQS[9], DQS_N[9]

DQS14, DQS14 DQS[11], DQS_N[11]

DQS15, DQS15 DQS[13], DQS_N[13]

DQS16, DQS16 DQS[15], DQS_N[15]

DQS17, DQS17 DQS[17], DQS_N[17]
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Table 3-12 shows the list of signals allocated in a group from bank selection check boxes.

Simulating the DDR2 SDRAM Design
After generating the design, MIG creates a sim folder in the specified path. This folder 
contains simulation files for a particular design. The sim folder contains the external 
testbench, memory model, .do file, and the executable file to simulate the generated 
design. The memory model files are currently generated in Verilog only. To learn more 
details about the files in sim folder and to simulate the design, see the 
simulation_help.chm file in sim folder.

Changing the Refresh Rate

Change the global ̀ define (for Verilog) or constant (for VHDL) variable MAX_REF_CNT in 
mymodule_parameters_0.v (or .vhd) so that MAX_REF_CNT = (refresh interval in 
clock periods) = (refresh interval) / (clock period). For example, for a refresh rate of 3.9 µs 
with a memory bus running at 200 MHz:

MAX_REF_CNT = 3.9 µs / (clock period) = 3.9 µs / 5 ns = 780 (decimal) = 0x30C 

If the above value exceeds 2MAX_REF_WIDTH – 1, the value of MAX_REF_WIDTH must be 
increased accordingly in parameters_0.v (or .vhd) to increase the width of the counter 
used to track the refresh interval. 

Supported Devices
The design generated out of MIG is independent of memory package, hence the package 
part of the memory component is replaced with XX or XXX, where XX or XXX indicates a 
don't care condition. The tables below list the components (Table 3-13) and DIMMs 
(Table 3-14 through Table 3-16) supported by the tool for DDR2 Direct clocking designs. In 
supported devices, an X in the components column (for Components and Unbuffered 
DIMMs) denotes a single alphanumeric character. For example MT47H128M4XX-3 can be 
either MT47H128M4BP-3 or MT47H128M4B6-3. Similarly MT16HTF25664AX-40E can be 
either MT16HTF25664AY-40E or MT16HTF25664AG-40E. An XX for Registered DIMMs 
denotes a single or two alphanumeric characters. For example, MT9HTF3272XX-667 can be 
either MT9HTF3272Y-667 or MT9HTF3272DY-667. An XXX for Registered DIMMs denotes 
two or three alphanumeric characters. For example, MT18HTF12872XXX-667 can be either 
MT18HTF12872DY-667 or MT18HTF12872PDY-667.

Table 3-12: Direct Clocking DDR2 SDRAM Signal Allocations

Bank Selected Signals Allocated in the Group

Address Memory address, memory control, and memory clock signals 

Data Data, data mask, and data strobes

System Control System reset from user interface and status signals

System_Clock System clocks from the user interface
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Table 3-13: Supported Components for DDR2 SDRAM

Components Packages (XX) Components Packages (XX)

MT47H64M4XX-3 BP MT47H128M8XX-3 BT,HQ

MT47H64M4XX-37E BP MT47H128M8XX-37E BT,HQ

MT47H64M4XX-5E BP MT47H128M8XX-5E BT,HQ

MT47H128M4XX-3 B6,CB,GB MT47H256M8XX-3 HG

MT47H128M4XX-37E B6,CB,GB MT47H256M8XX-37E HG

MT47H128M4XX-5E B6,CB,GB MT47H256M8XX-5E HG

MT47H256M4XX-3 BT,HQ MT47H16M16XX-3 BG

MT47H256M4XX-37E BT,HQ MT47H16M16XX-37E BG

MT47H256M4XX-5E BT,HQ MT47H16M16XX-5E BG

MT47H512M4XX-3 HG MT47H32M16XX-3 BN,CC,FN,GC

MT47H512M4XX-37E HG MT47H32M16XX-37E BN,CC,FN,GC

MT47H512M4XX-5E HG MT47H32M16XX-5E BN,CC,FN,GC

MT47H32M8XX-3 BP MT47H64M16XX-3 BT,HR

MT47H32M8XX-37E BP MT47H64M16XX-37E BT,HR

MT47H32M8XX-5E BP MT47H64M16XX-5E BT,HR

MT47H64M8XX-3 B6,CB,F6,GB MT47H128M16XX-3 HG

MT47H64M8XX-37E B6,CB,F6,GB MT47H128M16XX-37E HG

MT47H64M8XX-5E B6,CB,F6,GB MT47H128M16XX-5E  --

Table 3-14: Supported Registered DIMMs for DDR2 SDRAM

Registered DIMMs Packages (X) Registered DIMMs Packages (X)

MT9HTF3272XX-667  -- MT18HTF25672XX-667 PDY,PY,Y

MT9HTF3272XX-53E Y MT18HTF25672XX-53E PDY,PY,Y

MT9HTF3272XX-40E Y MT18HTF25672XX-40E DY,PDY,Y

MT9HTF6472XX-667 PY,Y MT18HTF6472XXX-667  --

MT9HTF6472XX-53E Y MT18HTF6472XXX-53E DY,Y

MT9HTF6472XX-40E Y MT18HTF6472XXX-40E DY,Y

MT9HTF12872XX-667 PY MT18HTF12872XXX-667 DY,PDY,PY,Y

MT9HTF12872XX-53E PY,Y MT18HTF12872XXX-53E
DY,MY,NDY,

NY,PY,Y

MT9HTF12872XX-40E Y MT18HTF12872XXX-40E DY,PY,Y

MT18HTF6472G-53E  -- MT18HTF25672XXX-667 PDY,PY,Y

MT18HTF6472XX-667  -- MT18HTF25672XXX-53E PDY,PY,Y

MT18HTF6472XX-53E DY,Y MT18HTF25672XXX-40E DY,PDY,Y

MT18HTF6472XX-40E DY,Y MT36HTJ51272XX-667  --

MT18HTF12872XX-667 DY,PDY,PY,Y MT36HTJ51272XX-53E Y

MT18HTF12872XX-53E
DY,MY,NDY,

NY,PY,Y
MT36HTJ51272XX-40E Y

MT18HTF12872XX-40E DY,PY,Y  --  --
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Hardware Tested Configurations
The frequencies shown in Table 3-17 were achieved on the Virtex-4 FPGA ML461 Memory 
Interfaces Development Board under nominal conditions. This frequency should not be 
used to determine the maximum design frequency. The maximum design frequency 
supported in the MIG wizard is based on a combination of the TRCE results for fabric 
timing on multiple device/package combinations and I/O timing analysis using FPGA 
and memory timing parameters for a 64-bit wide interface.

Table 3-15: Supported Unbuffered DIMMs for DDR2 SDRAM

Unbuffered DIMMs Unbuffered DIMMs

MT4HTF1664AY-667 MT8HTF12864AY-667

MT4HTF1664AY-40E MT8HTF12864AY-40E

MT4HTF3264AY-667 MT9HTF3272AY-667

MT4HTF3264AY-40E MT9HTF3272AY-40E 

MT4HTF6464AY-667 MT9HTF6472AY-667 

MT4HTF6464AY-40E MT16HTF25664AX-40E

MT8HTF6464AY-667 MT18HTF6472AY-40E

MT8HTF6464AY-53E MT18HTF12872AY-40E

MT8HTF6464AY-40E MT18HTF25672AY-40E

Table 3-16: Supported SODIMMs for DDR2 SDRAM

SODIMMs SODIMMs

MT4HTF1664HY-667 MT8HTF3264HY-53E

MT4HTF1664HY-53E MT8HTF3264HY-40E

MT4HTF1664HY-40E MT8HTF6464HY-667

MT4HTF3264HY-667 MT8HTF6464HY-53E

MT4HTF3264HY-53E MT8HTF6464HY-40E

MT4HTF3264HY-40E MT8HTF3264HDY-40E

MT8HTF3264HY-667 MT8HTF6464HDY-40E

Table 3-17: Hardware Tested Configurations

Synthesis Tools XST and Synplicity

HDL Verilog and VHDL

FPGA Device XC4VLX25-FF668-11

Burst Lengths 4, 8

CAS Latency (CL) 3, 4

Additive Latency 0, 1, 2

8-bit Design Tested on 16-bit Component “MT47H32M16XX-3”

72-bit Design Tested on 72-bit DIMM “MT9HTF6472XX-667”

ECC with Pipelined Mode 72-bit Registered DIMM design
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SerDes Clocking Interface
This technique uses the Input Serializer/Deserializer (ISERDES) and Output 
Serializer/Deserializer (OSERDES) features available in every Virtex-4 I/O. A DDR2 
SDRAM interface is source-synchronous, where the read data and read data strobe are 
transmitted edge-aligned. To capture this transmitted data using Virtex-4 FPGAs, either 
the strobe or the data can be delayed. In this design, the read data is captured in the 
delayed strobe domain and recaptured in the FPGA clock domain in the ISERDES. The 
received signal, double data rate (DDR) read data, is converted to 4-bit parallel single data 
rate (SDR) data at the frequency of the interface using the ISERDES. The write data and 
strobe transmitted by the FPGA use the OSERDES. The OSERDEDS converts 4-bit parallel 
data at half the frequency of the interface to DDR data at the interface frequency.

Feature Summary
This section summarizes the supported and unsupported features of the SerDes clocking 
DDR2 SDRAM controller design.

Supported Features

The DDR2 SDRAM controller design supports:

• Burst lengths of four and eight
• Sequential and Interleaved burst types
• CAS latencies of 4 and 5
• Different memories (density/speed)
• Components
• Additive latencies 0, 1, and 2
• Verilog and VHDL
• Differential and single-ended DQS
• Linear addressing
• Without a testbench
• On Die Termination (ODT)
• DIMMs (registered DIMMs up to 300 MHz and unbuffered DIMMs up to 266 MHz)

The supported features are described in more detail in “Architecture.”

Frequency Range 110 MHz to 270 MHz for CL = 3

110 MHz to 300 MHz for CL = 4 or 5

Table 3-17: Hardware Tested Configurations (Continued)

Synthesis Tools XST and Synplicity
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Design Frequency Ranges

Unsupported Features

The DDR2 SDRAM controller design does not support:

• CAS latency of 3

• Additive latencies of 3 and 4

• Redundant DQS (RDQS)

• Auto precharge

• Deep memories

• ECC support

• Without a DCM

• Multicontroller

Architecture

Implemented Features

This section provides details on the supported features of the DDR2 SDRAM controller.

Burst Length

The DDR2 SDRAM controller supports burst lengths of four and eight. The burst length 
can be selected through the “Set mode register(s)” option in MIG. For a design without a 
testbench (user design), the user has to provide bursts of the input data based on the 
chosen burst length. Bits M2:M0 of the Mode Register define the burst length, and bit M3 
indicates the burst type (see the Micron data sheet). Read and write accesses to the DDR2 
SDRAM are burst-oriented. It determines the maximum number of column locations 
accessed for a given READ or WRITE command.

CAS Latency

The DDR2 SDRAM controller supports CAS latencies (CLs) of four and five. CL can be 
selected in the “Set mode register(s)” option from the GUI. The CAS latency is 
implemented in the ddr2_controller module. During data write operations, the generation 
of the ctrl_WrEn, ctrl_WrEn_Dis, and ctrl_Odd_Latency signals varies according to the CL 
in the ddr2_controller module. During data read operations, the generation of the 
ctrl_RdEn_div0 signal varies according to the CL in the ddr2_controller module. Bits 
M4:M6 of the Mode Register define the CL (see the Micron data sheet). CL is the delay in 
clock cycles between the registration of a READ command and the availability of the first 
bit of output data.

Table 3-18: Design Frequency Range in MHz

Memory

FPGA Speed Grade

-10 -11 -12

Min Max Min Max Min Max

Component 200 230 200 266 200 300

Registered DIMM 200 230 200 266 200 300

Unbuffered DIMM 200 230 200 266 200 266
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Additive Latency

DDR2 SDRAM devices support a feature called posted CAS additive latency (AL). The 
DDR2 SDRAM supports additive latencies of 0, 1, and 2. AL can be selected in the “Set 
mode register(s)” option. Additive latency is implemented in the ddr2_controller module. 
The ddr2_controller module issues READ/WRITE commands prior to tRCD (minimum) 
depending on the user-selected AL value in the Extended Mode Register. This feature 
allows the READ command to be issued prior to tRCD (minimum) by delaying the internal 
command to the DDR2 SDRAM by AL clocks. Posted CAS AL makes the command and 
data bus efficient for sustainable bandwidths in DDR2 SDRAM. Bits E3:E5 of the Extended 
Mode Register define the value of AL (see the Micron data sheet).

Registered DIMMs

DDR2 SDRAM supports registered DIMMs. This feature is implemented in the 
ddr2_controller module. For registered DIMMs, the address and command signals are 
registered at the DIMM and therefore have one additional clock latency than unbuffered 
DIMMs. 

Unbuffered DIMMs and SODIMMs

The DDR2 SDRAM design supports unbuffered DIMMs and SODIMMs. Unbuffered 
DIMMs do not have registers at the DIMM for address and command signals. SODIMMs 
differ from the unbuffered DIMMs only by the package type; otherwise they are 
functionally the same.

Different Memories (Density/Speed)

The DDR2 SDRAM controller supports different densities. For DDR2 components shown 
in MIG, densities vary from 256 Mb to 1 Gb, and DIMM densities vary from 128 Mb to 
4 Gb. The user can select various configurations using the “Create new memory part” 
feature of MIG. The supported maximum column address is 13, the maximum row address 
is 15, and the maximum bank address is 3. The design can decode write and read addresses 
from the user in the DDR2 SDRAM controller module. The user address consists of 
column, row, bank, chip address, and user command.

Table 3-19 and Table 3-20 list sample timing sheets for Micron components and DIMMs, 
respectively.

Table 3-19: Timing Parameters for Components

Parameter Description

Micron 
256 Mb

Micron 
512 Mb

Micron 1 Gb
Units

-37E -3 -37E -3 -37E -3

TMRD LOAD MODE command cycle time 2 2 2 2 2 2 TCK

TRP PRECHARGE command period 15 15 15 15 15 15 ns

TRFC REFRESH to ACTIVE or REFRESH to 
REFRESH command interval

75 75 105 105 127.5 127.5 ns

TRCD ACTIVE to READ or WRITE delay 15 15 15 15 15 15 ns

TRAS ACTIVE to PRECHARGE command 40 40 40 40 40 40 ns

TRC ACTIVE to ACTIVE (same bank) command 55 55 55 55 55 55 ns

TRTP READ to PRECHARGE command delay 7.5 7.5 7.5 7.5 7.5 7.5 ns
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Data Masking

The DDR2 SDRAM design supports data masking per byte. Masking per nibble is not 
supported due to the limitation of the internal block RAM based FIFOs. So, the masking of 
data can be done on per byte basis. The mask data is stored in the Data FIFO along with the 
actual data.

Precharge

The PRECHARGE command is used to close the open row in a bank if there is a command 
to be issued to a different row in the same bank. The PRECHARGE command checks the 
row address, bank address, and chip address, and the DDR2 Virtex-4 controller issues a 
PRECHARGE command if there is a change in any address where a read or write 
command is to be issued. The auto-precharge function is not supported.

TWTR WRITE to READ command delay 7.5 7.5 7.5 7.5 7.5 7.5 ns

TWR WRITE recovery time 15 15 15 15 15 15 ns

Table 3-19: Timing Parameters for Components (Continued)

Parameter Description

Micron 
256 Mb

Micron 
512 Mb

Micron 1 Gb
Units

-37E -3 -37E -3 -37E -3

Table 3-20: Timing Parameters for DIMMs

Para-
meter

Description
MT4HTF MT8HTF MT16HTF MT9HTF MT18HTF

-53E -40E -53E -40E -53E -40E -53E -40E -53E -40E

TMRD
LOAD MODE 
command cycle time 2 ns 2 ns 2 ns 2 ns 2 ns 2 ns 2 ns 2 ns 2 ns 2 ns

TRP
PRECHARGE 
command period 15 ns 15 ns 15 ns 15 ns 15 ns 15 ns 15 ns 15 ns 15 ns 15 ns

TRFC REFRESH time

128 MB
75 ns 75 ns 256 MB

75 ns 75 ns 512 MB
75 ns 75 ns 256 MB

75 ns 75 ns 512 MB
75 ns 75 ns

256 MB
105 ns 105 ns 512 MB

105 ns 105 ns 1 GB
105 ns 105 ns 512 MB 

105 ns 105 ns 1 GB
105 ns 105 ns

512 MB
127.5 ns 127.5 ns 1 GB

127.5 ns 127.5 ns 2 GB
127.5 ns 127.5 ns 1 GB

127.5 ns 127.5 ns 2 GB
127.5 ns 127.5 ns

TRCD
ACTIVE to READ or 
WRITE delay 15 ns 15 ns 15 ns 15 ns 15 ns 15 ns 15 ns 15 ns 15 ns 15 ns

TRAS

ACTIVE to 
PRECHARGE 
command

40 ns 40 ns 40 ns 40 ns 40 ns 40 ns 40 ns 40 ns 40 ns 40 ns

TRC
ACTIVE to ACTIVE 
command (same bank) 55 ns 55 ns 55 ns 55 ns 55 ns 55 ns 55 ns 55 ns 55 ns 55 ns

TRTP

READ to 
PRECHARGE 
command delay

7.5 ns 7.5 ns 7.5 ns 7.5 ns 7.5 ns 7.5 ns 7.5 ns 7.5 ns 7.5 ns 7.5 ns

TWTR
WRITE to READ 
command delay 7.5 ns 10 ns 7.5 ns 10 ns 7.5 ns 10 ns 7.5 ns 10 ns 7.5 ns 10 ns

TWR WRITE recovery time 15 ns 15 ns 15 ns 15 ns 15 ns 15 ns 15 ns 15 ns 15 ns 15 ns

Notes: 
1. For the latest timing information, refer to the vendor memory data sheets.
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Auto Refresh

The DDR2 SDRAM controller issues AUTO REFRESH commands at specified intervals for 
the memory to refresh the charge required to retain the data in the memory. The user can 
also issue a REFRESH command through the user interface by setting bits 34, 33, and 32 of 
the app_af_addr signal in the user_interface module to 3’b001. If there is a refresh request 
while there is an ongoing read or write burst, the controller issues a REFRESH command 
after completing the current read or write burst command.

Linear Addressing

The DDR2 SDRAM controller supports linear addressing. Linear addressing refers to the 
way the user provides the address of the memory to be accessed. For Virtex-4 DDR2 
SDRAM controllers, the user provides the address information through the app_af_addr 
signal. As the densities of the memory devices vary, the number of column address bits 
and row address bits also change. In any case, the row address bits in the app_af_addr 
signal always start from the next higher bit, where the column address ends. This feature 
increases the number of devices that can be supported with the design.

On-Die Termination

The DDR2 SDRAM controller supports on-die termination (ODT). Through the “Set mode 
register(s)” option from the GUI, the user can disable ODT or can choose 75, 150, or 50. 
ODT can turn the termination on and off as needed to improve the signal integrity in the 
system. ODT is only enabled on writes to DDR2 memory. It is disabled on read operations.
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Hierarchy

Figure 3-16 shows the hierarchical structure of the DDR2 SDRAM controller.

Figure 3-16 shows the hierarchical structure of the DDR2 SDRAM design generated by 
MIG with a testbench and a DCM. The modules are classified as follows: 

• Design modules
• Testbench modules
• Clocks and reset generation modules

There is a parameter file generated with the design that has all the user input and design 
parameters selected from MIG. 

MIG can generate two different DDR2 SDRAM designs:

• With a testbench and a DCM 
• Without a testbench and with a DCM 

A design without a testbench (user_design) does not have testbench modules. The 
<top_module> module has the user interface signals for designs without a testbench. The 
list of user interface signals is provided in Table 3-22.

Design clocks and resets are generated by using the DCM in the infrastructure module. 
The inputs to this module are the differential design clock and a 200 MHz differential clock 
for the IDELAYCTRL module. A user reset is also input to this module. Using the input 
clocks and reset signals, the system clocks and the system reset are generated in this 
module, which is used in the design.

Figure 3-16: Hierarchical Structure of the DDR2 SDRAM Design (SerDes Clocking)
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Figure 3-17 shows a top-level block diagram of a DDR2 SDRAM design with a DCM and a 
testbench. SYS_CLK_P and SYS_CLK_N are differential input system clocks. The DCM is 
instantiated in the infrastructure module that generates the required design clocks. 
CLK200_P and CLK200_N are used for the idelay_ctrl element. SYS_RESET_IN_N is an 
active-Low system reset signal. All design resets are gated by the dcm_lock signal. The 
ERROR output signal indicates whether a read passes or fails. The testbench module issues 
writes and reads, and also compares the read data with the written data. The ERROR 
signal is driven High on data mismatches. The INIT_COMPLETE signal indicates the 
completion of initialization and calibration of the design. Memory device signals are 
prepended with the controller number. For example, the DDR2_RAS_N signal appears as 
cntrl0_DDR2_RAS_N. 

All Memory Device ports do not necessarily appear for all MIG-generated designs. For 
example, port DDR2_RESET_N appears in the port list for Registered DIMM designs only. 
Similarly, DDR2_DQS_N does not appear for single-ended DQS designs. Port DDR2_DM 
appears only for parts that contain a data mask; a few RDIMMs have no data mask, and 
DDR2_DM does not appear in the port list for them.

Figure 3-18 shows a top-level block diagram of a DDR2 SDRAM design with a DCM but 
without a testbench. SYS_CLK_P and SYS_CLK_N are differential input system clocks. 
The DCM is instantiated in the infrastructure module that generates the required design 
clocks. CLK200_P and CLK200_N are used for the idelay_ctrl element. SYS_RESET_IN_N 
is an active-Low system reset signal. All design resets are gated by the dcm_lock signal. 
The user has to drive the user application signals. The design provides the clk_tb and 
reset_tb signals to the user to synchronize with the design. The INIT_COMPLETE signal 
indicates the completion of initialization and calibration of the design.

Figure 3-17: Top-Level Block Diagram of the DDR2 SDRAM Design with a DCM and a Testbench
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Figure 3-18: Top-Level Block Diagram of the DDR2 SDRAM Design with a DCM but without a Testbench
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DDR2 Controller Submodules

Figure 3-19 is a detailed block diagram of the DDR2 SDRAM controller. The five blocks 
shown are the sub-blocks of the top module. The user backend signals are provided by the 
tool for designs with a testbench. The user has to drive these signals for designs without a 
testbench. The functions of these blocks are explained in the subsections following 
Figure 3-19.
I

Controller

The DDR2 SDRAM ddr2_controller accepts and decodes user commands and generates 
read, write, and refresh commands. The DDR2 SDRAM controller also generates signals 
for other modules. The memory is initialized and powered up using a defined process. The 
controller state machine handles the initialization process upon power-up. When the 
initialization is over, the controller starts doing a dummy write and continuous dummy 
reads. During these dummy reads, the tap_logic module calibrates DQ and DQS by 
varying the delay to center-align the data with the FPGA clock. Then the tap_logic module 
asserts the dp_dqs_dq_calib_done signal. After this assertion, the controller does one more 
write and read to the memory for read-enable calibration to determine the delay between 

Figure 3-19: DDR2 Memory Controller Block Diagram (SerDes Clocking)
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the read command and data. Then dp_dly_slct_done is asserted to start writing to and 
reading from the memory.

The ddr2_controller is clocked at half the frequency of the interface using CLKDIV_0 and 
CLKDIV_90 and CLK_90. Therefore the address and bank address are driven and the 
command signals (RAS_L, CAS_L, and WE_L) are asserted for two clock cycles of the fast 
memory interface clock. The control signals (CS_L, CKE, and ODT) are DDR of the half 
frequency clock CLKDIV_0, ensuring that the control signals are asserted for just one clock 
cycle of the fast memory interface clock. Figure 3-20 shows the command and control 
timing diagram for unbuffered DIMMs and components in which CS_L is deasserted 3/4T 
earlier when the write command is at the positive edge of the device clock to the memory. 
For registered DIMMs, CS_L is deasserted T/2 earlier only.

Physical Layer

This module transmits data to and receives data from the memories. Its major functions 
include processing the data in the write datapath, and calibrating the data in the read 
datapath. The write datapath function is implemented in the data_write module and the 
read datapath function is implemented in the tap_ctrl, data_tap_inc, and idelay_rd_en_io 
modules. 

To start calibration in the read datapath, the write datapath first generates the training 
pattern (known data) and writes it to the memory during dummy writes. Calibration is 
done during the dummy reads. The read datapath expects the training pattern. When the 
received training pattern is correct, then DQ and DQS are aligned with the FPGA clock to 
capture the data without errors during actual writes and reads. After this calibration is 
finished, dp_dqs_dq_calib_done is asserted to start read-enable calibration to find the 
delay between the read command and data at the input of the Read Data FIFO. So the read 
enable generated from the controller with the read command is delayed by the same 
amount and is used as the write enable to the Read Data FIFO for normal reads. Once this 
read-enable calibration is complete, dp_dly_slct_done is asserted, which initiates writes 
and reads to the memory.

User Interface

This module stores write data and write addresses, writes the data into a location specified 
by the write address, stores read addresses used to read from a specific location, and also 
stores data read from the memory in FIFOs. The rd_data and rd_data_fifos modules store 
the data in LUT-based RAMs. The rd_wr_addr_fifo and wr_data_fifo modules store the 
data and address in block RAMs.

Figure 3-20: Command and Control Timing from Controller to DDR2 Memory
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 The width of the data stored by the wr_data_fifo module is four times the interface data 
width, because the data corresponding to four edges is given in one clock cycle.

Infrastructure Module

The infrastructure module generates the necessary FPGA clocks and reset signals. The 
clocking scheme used for this design includes one digital clock manager (DCM) and one 
phase-matched clock driver (PMCD) as shown in Figure 3-21.

Note: SerDes design is not supported for FPGAs that do not have PMCDs. Unsupported FPGAs for 
SerDes design are: 

DDR2 SDRAM Initialization and Calibration
DDR2 memory is initialized through a specified sequence as per both Micron and JEDEC 
specifications. The controller starts the memory initialization at power-up. Following the 
initialization, the relationship between the data and the FPGA clock is calculated using the 
tap_logic. The controller issues a dummy write command and dummy read command to 
the memory and compares read data with the fixed pattern. During dummy reads, the 
tap_logic module calibrates and delays the DQ and DQS to center-align with the FPGA 
clock. The dqs_dq_calib_done port in the tap_logic module indicates the completion of 
DQS to FPGA clock calibration and per bit calibration. 

After the per-bit calibration is done, the controller does a read enable calibration. This 
calibration is used to determine the delay from read command to read data at rd_data_fifo. 
The delay between read command and read data is affected by the CAS latency and 
additive latency parameters, the PCB traces, and the I/O buffer delays. This in turn is used 
to generate a write enable to rd_data_fifo so that valid data is registered. The controller 
issues a dummy read command and compares the read data with a fixed known pattern. 
The training_done port in the tap_logic module indicates the completion of the read enable 
calibration. 

The init_complete port indicates the completion of DQS to FPGA clock calibration, per-bit 
calibration, and read enable calibration. After initialization and calibration are done, the 
controller can start issuing user commands to the memory.

Figure 3-21: Clocking Scheme for the High-Performance Memory Interface Design
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DDR2 SDRAM System and User Interface Signals
Table 3-21 lists the system signals that are required for the design. The system interface 
signals are the clocks and the reset signals given by the user to the FPGA. SYS_CLK_P and 
SYS_CLK_N comprise the differential clock pair provided to the design. Similarly, 
CLK200_P and CLK_200N comprise the 200 MHz differential clock pair for the 
IDELAYCTRL module. SYS_RESET_IN_N resets all the logic.

Table 3-22 describes the DDR2 SDRAM user interface signals.

Table 3-21: DDR2 SDRAM System Signals

Signal Name Direction Description

SYS_CLK_P, SYS_CLK_N Input This differential clock pair generates the single-ended clock to the 
input of the DCM. Memory operates at this frequency, but the 
ddr2_controller, data_path, and user_interface modules, and all 
other FPGA slice logic are clocked at half of this frequency.

CLK200_P, CLK200_N Input Differential clock used in the idelay_ctrl logic.

SYS_RESET_IN_N Input Active-Low reset to the design.

Table 3-22: DDR2 SDRAM Controller User Interface Signals

Signal Name Direction Description

CLKDIV_0 Output All user interface signals must be synchronized with respect to the 
negative edge of CLKDIV_0.

RESET0 Output Reset signal for the User Interface. 

BURST_LENGTH_DIV2[2:0] Output This signal determines the data burst length for each write address.

010: burst length = 4

100: burst length = 8

WDF_ALMOST_FULL Output This signal indicates the ALMOST_FULL status of the Write Data 
FIFO. When this signal is asserted, the user can write 5 more data 
words into the FIFO for the with testbench case and 14 more data 
words for the without testbench case.

APP_WDF_DATA[4n-1:0] Input User write data to the memory, where n indicates the data width of 
the interface. The user data width is four times the data width of the 
interface. This bus has the data for two rising edges and two falling 
edges. The most-significant bits contain the second falling-edge data, 
and the least-significant bits contain the first rising-edge data.

APP_MASK_DATA[4m-1:0] Input User mask data to the memory, where m indicates the data mask 
width of the interface. The mask data width is four times the mask 
width of the interface. This bus also has the mask data for four edges. 
The most-significant bits contain the mask data for the second falling 
edge, and the least-significant bits contain the mask data for the first 
rising edge. These signals are not present when the memory part 
does not have mask support (for example, certain Registered 
DIMMs) or when the Data Mask option is not selected in the MIG 
GUI.

APP_WDF_WREN Input Write Enable signal to the Write Data FIFO.
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User Interface Accesses

The user backend logic communicates with the memory controller through a FIFO-based 
user interface. This interface consists of three related buses: 

• A Command/Address FIFO bus, which accepts write/read commands as well as the 
corresponding memory address from the user

• A Write Data FIFO bus, which accepts the corresponding write data when the user 
issues a write command on the Command/Address bus

• A Read bus on which the corresponding read data for an issued read command is 
returned

The user interface has the following timing and signaling restriction: When issuing a write 
command, the first write data word must be written to the Write Data FIFO no more than 
two clock cycles after the write command is issued. This restriction arises from the fact that 
the controller assumes write data is available when it receives the write command from the 
user. 

AF_ALMOST_FULL Output This signal indicates the ALMOST_FULL status of the Address FIFO. 
When this signal is asserted, the user can issue eight more 
commands/addresses to the FIFO.

APP_AF_ADDR[35:0] Input The user address consists of a memory address and dynamic 
commands. The address width [31:0] is the memory read/write 
address, which includes the column, row, bank, and chip address. 
The address width [35:32] represents dynamic commands.

001: Auto Refresh
010: Precharge All
100: Write
101: Read

APP_AF_WREN Input Write Enable signal to the Address FIFO.

READ_DATA0_FIFO_OUT[n-1:0] 
READ_DATA1_FIFO_OUT[n-1:0] 
READ_DATA2_FIFO_OUT[n-1:0] 
READ_DATA3_FIFO_OUT[n-1:0]

Output The read data captured from the memory is four parallel n-bit data 
buses, each at half the frequency of the interface, where n indicates 
the data width of the interface. READ_DATA0_FIFO_OUT is the first 
rising-edge data, READ_DATA1_FIFO_OUT is the second rising-
edge data, READ_DATA2_FIFO_OUT is the first falling-edge data, 
and READ_DATA3_FIFO_OUT is the second falling-edge data.

READ_DATA_VALID Output This signal is asserted to indicate the read data is available to the user.

INIT_COMPLETE Output This signal indicates the completion of initialization to the memory 
and calibration in the design.

Notes: 
1. All user interface signal names are prepended with a controller number for the without testbench case, because SerDes clocking 

supports only a single controller.

Table 3-22: DDR2 SDRAM Controller User Interface Signals (Continued)

Signal Name Direction Description
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Write Interface

Figure 3-22 shows the user interface block diagram for write operations. 

The following steps describe the architecture of the Address and Write Data FIFOs and 
show how to perform a write burst operation to DDR2 SDRAM from the user interface.

1. The user interface consists of an Address FIFO and a Write Data FIFO. These FIFOs are 
constructed using Virtex-4 FIFO16 primitives with a 512 x 36 configuration. The 36-bit 
architecture comprises one 32-bit port and one 4-bit port. For Write Data FIFOs, the 
32-bit port is used for data bits and the 4-bit port is used for mask bits. Mask bits are 
available only when supported by the memory part and when Data Mask is enabled in 
the MIG GUI. Some memory parts, such as Registered DIMMs of x4 parts, do not 
support mask bits.

2. The Common Address FIFO is used for both write and read commands, and comprises 
a command part and an address part. Command bits discriminate between write and 
read commands.

3. User interface data width app_wdf_data is four times that of the memory data width. 
For an 8-bit memory width, the user interface is 32 bits consisting of two rising-edge 
data and two falling-edge data. For every 8 bits of data, there is a mask bit. For 72-bit 
memory data, the user interface data width app_wdf_data is 288 bits, and the mask 
data app_mask_data is 36 bits.

4. The minimum configuration of the Write Data FIFO is 512 x 36 for a memory data 
width of 8 bits.

5. Depending on the memory data width, MIG instantiates multiple FIFO16s to gain the 
required width. For designs using 8-bit data width, one FIFO16 is instantiated; for 
72-bit data width, a total of nine FIFO16s are instantiated. The bit architecture 
comprises 16 bits of rising-edge data, 2 bits of rising-edge mask, 16 bits of falling-edge 
data, and 2 bits of falling-edge mask, which are all stored in a FIFO16. MIG routes the 
app_wdf_data and app_mask_data to FIFO16s accordingly.

Figure 3-22: User Interface Block Diagram for Write Operations
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6. The user can initiate a write to memory by writing to the Address FIFO and the Write 
Data FIFO when the FIFO Full flags are deasserted. Status signal af_almost_full is 
asserted when Address FIFO is full, and similarly wdf_almost_full is asserted when 
Write Data FIFO is full. 

7. Both the Address FIFO and Write Data FIFO Full flags are deasserted with power-on.

8. The user should assert the Address FIFO write-enable signal app_af_wren along with 
address app_af_addr to store the write address and write command into the Address 
FIFO.

9. The user should assert the Data FIFO write-enable signal app_wdf_wren along with 
write data app_wdf_data and mask data app_mask_data to store the write data and 
mask data into the Write Data FIFO. The user should provide two rising-edge and two 
falling-edge data together for each write to the Data FIFO.

10. The controller reads the Address FIFO by issuing the ctrl_af_rden signal. The 
controller reads the Write Data FIFO by issuing the ctrl_wdf_rden signal after the 
Address FIFO is read. It decodes the command part after the Address FIFO is read.

11. The write command timing diagram in Figure 3-23 is derived from the MIG-generated 
test bench. As shown (burst length of 4), each write to the Address FIFO must be 
coupled with one write to the Data FIFO. 

Note: The user can start filling the Write Data FIFO two clocks after the Address FIFO is 
written, because there is a two-clock latency between the command fetch and reading the Data 
FIFO. Using the terms shown in Figure 3-23 and Figure 3-24, therefore, the user can assert the 
A1 address two clocks before D0D1D2D3. Similarly, A2, A3, and A4 can be advanced by two 
clocks.

Figure 3-23: DDR2 SDRAM Write Burst (BL = 4) for Four Bursts
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12. The write command timing diagram in Figure 3-24 is derived from the MIG-generated 
test bench. As shown (burst length of 8), each write to the Address FIFO must be 
coupled with two writes to the Data FIFO. Because the controller first reads the address 
and command together, the address need not coincide with the last data. After the 
command is analyzed (nearly two clocks later for a worst-case timing scenario), the 
controller sequentially reads the data in four clocks. Thus, there are six clocks from the 
time the address is read to the time the last data is read.

Correlation between the Address and Data FIFOs

There is a worst case two-cycle latency from the time the address is loaded into the address 
FIFO on APP_AF_ADDR[35:0] to the time the controller decodes the address. Because of 
this latency, it is not necessary to provide the address on the last clock where data is 
entered into the data FIFO. If the address is written before the last data phase, the overall 
efficiency and performance increases because it eliminates or reduces the two-cycle 
latency. However, if the address is written before data is input into the data FIFO, a FIFO 
empty condition might result because the Data FIFO does not contain valid data.

Based on these considerations, Xilinx recommends entering the address into the address 
FIFO between the first data phase and the next-to-last data phase. For a burst of four or 
eight, this means the Address can be asserted two clocks before the first data phase. This 
implementation increases efficiency by reducing the two clock latency and guarantees that 
valid data is available in the Data FIFO. 

Figure 3-24: DDR2 SDRAM Write Burst (BL = 8) for Two Bursts
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Read Interface

Figure 3-25 shows a block diagram of the read interface. 

The following steps describe the architecture of the Read Data FIFOs and show how to 
perform a burst read operation from DDR SDRAM from the user interface.

1. The read user interface consists of an Address FIFO and a Read Data FIFO. The 
Address FIFO is common to both read and write operations. These FIFOs are 
constructed using Virtex-4 Distributed RAMs with a 16 x 1 configuration. MIG 
instantiates a number of RAM16Ds depending on the data width. For example, for 
8-bit data width, MIG instantiates a total of 32 RAM16Ds, 16 for first and second 
rising-edge data and 16 for first and second falling-edge data. Similarly, for 72-bit data 
width, MIG instantiates a total of 288 RAM16Ds, 144 for first and second rising-edge 
data and 144 for first and second falling-edge data.

Figure 3-25: User Interface Block Diagram for Read Operation
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2. The user can initiate a read to memory by writing to the Address FIFO when the 
FIFO Full flag af_almost_full is deasserted.

3. To write the read address and read command into the Address FIFO, the user should 
issue the Address FIFO write-enable signal app_af_wren along with read address 
app_af_addr.

4. The controller reads the Address FIFO containing the address and command. After 
decoding the command, the controller generates the appropriate control signals to 
memory. 

5. Prior to the actual read and write commands, the design calibrates the latency (number 
of clock cycles) from the time the read command is issued to the time data is received. 
Using this pre-calibrated delay information, the controller generates the write-enable 
signals to the Read Data FIFOs. 

After the power-up calibration is done, dummy reads are executed to set up the delay 
between the read command and read data from the memory. During the time these 
dummy reads are in progress, the read enable is generated with each read command 
and is delayed until the read data matches the write data. This delay includes CAS 
latency, trace delay, and path delay. This precalculated delay is used for asserting the 
read-enable signals that latch the data into the Read Data FIFOs. The delays are 
calculated on a per-DQS basis. For example, if a bank has two DQS signals, there are 
two read enables used to latch the read data to the FIFOs. The strobe (DQS), data (DQ), 
and clock (CK/CK) signals should be matched in trace length from the FPGA to the 
memory device. MIG ensures that a DQS and its corresponding DQ signals do not 
cross a bank boundary.

6. The read_data_valid signal is asserted when data is available in the Read Data FIFOs.

Figure 3-26: DDR2 SDRAM Read Burst (BL = 4) for Two Bursts
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7. Figure 3-26 shows the user interface timing diagram for a burst length of 4, and 
Figure 3-27 shows user interface timing diagram for a burst length of 8. Both the cases 
shown here are for a CAS latency of 4 at 200 MHz. The read latency is calculated from 
the point when the read command is given by the user to the point when the data is 
available with the read_data_valid signal. The minimum latency in this case is 25 
clocks, where no precharge is required, no auto-refresh request is pending, the user 
commands are issued after initialization is completed, and the first command issued is 
a Read command. Controller executes the commands only after initialization is done 
as indicated by the init_done signal.

8. After the address and command are loaded into the Address FIFO, it takes 25 clock 
cycles minimum for the controller to assert the read_data_valid signal.

9. Read data is available only when the read_data_valid signal is asserted. The user 
should access the read data on every positive edge of the read_data_valid signal.

Table 3-23 shows how the 25 clocks from the read command to the read data are broken up.

Figure 3-27: DDR2 SDRAM Read Burst (BL = 8) for Two Bursts
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Table 3-23: Read Command to Read Data Clock Cycles

Parameter
Number of Clocks 

(CLKDIV_0)

Read Command to Empty Signal Deassertion 7 Clocks

Empty to Active Command 5.5 Clocks

Active to Read Command 3 Clocks

Memory Read Command to Read Data Valid 9.5 Clocks

Total: 25 Clocks
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In general, read latency varies based on the following parameters:

• CAS latency (CL) and additive latency (AL)

• The number of commands already in the FIFO pipeline before the read command is 
issued

• Whether an ACTIVATE command needs to be issued to open the new bank/row

• Whether a PRECHARGE command needs to be issued to close a previously opened 
bank

• Specific timing parameters for the memory, such as TRAS, and TRCD in conjunction 
with the bus clock frequency

• Possible interruption of commands and/or forced closure of banks/rows when the 
periodic AUTO REFRESH command is issued

• Commands issued by the user before initialization is complete, causing latency to be 
indeterminate

• Board-level and chip-level (for both memory and FPGA) propagation delays

User to Controller Interface

Table 3-24 lists the signals between the user interface and the controller. 

Table 3-24: List of Signals Between User Interface and Controller

Port Name
Port 

Width
Port Description Notes

waf_addr 36 Output of the Address FIFO in the user interface. 
Mapping of these address bits:

Memory Address (CS, Bank, Row, Column): [31:0]

Dynamic Command Request: [34:32]

Reserved: [35]

Monitor FIFO-full status flag to 
write address into the Address 
FIFO 

af_almost_empty 1 The user interface Address FIFO empty status flag 
output. The user application can write to the 
Address FIFO when this signal is asserted until the 
write data FIFO-full status flag is asserted.

FIFO16 Almost Empty Flag

ctrl_waf_RdEn 1 Read Enable input to Address FIFO in the user 
interface

This signal is asserted for one 
CLKDIV_0 clock cycle when the 
controller state is write, read, 
Load Mode register, Precharge 
All, Auto Refresh, or Active 
resulting from dynamic 
command requests. Figure 3-28 
shows the timing waveform for a 
burst length of 8 with two back-
to-back writes followed by two 
back-to-back reads.
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The memory address (Waf_addr) includes the column address, row address, bank address, 
and chip-select width for deep memory interfaces.

Column Address

[‘column_address - 1:0]

Row Address

[(row_address + ‘column_address) - 1:‘column_address]

Bank Address 

[(‘bank_address + ‘row_address + ‘column_address) -
1:(‘column_address + ‘row_address)]

Chip Select

[‘cs_width + ‘bank_address + ‘row_address + ‘column_address -
1:‘bank_address + ‘row_address + ‘column_address]

ctrl_wdf_Rden 1 Read Enable input to Write Data FIFO in the user 
interface

The controller asserts this signal 
one CLKDIV_0 clock cycle after 
the first write state. This signal 
remains asserted for one clock 
cycle for a burst length of 4 and 
two clock cycles for a burst 
length of 8. Figure 3-28 shows the 
timing waveform. Sufficient data 
must be available in the Write 
Data FIFO associated with a 
write address for the required 
burst length before issuing a 
write command. For example, 
for a 64-bit data bus and a burst 
length of 4, the user should input 
four 64-bit data words in the 
Write Data FIFO for every write 
address before issuing the write 
command.

Table 3-24: List of Signals Between User Interface and Controller (Continued)

Port Name
Port 

Width
Port Description Notes
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Dynamic Command Request 

Table 3-25 lists the commands supported from user interface.

Figure 3-28 describes two consecutive writes followed by two consecutive reads with a 
burst length of 8. Table 3-26 lists the state signal values for Figure 3-28.

Table 3-25: User Interface Commands

Command Description

001 Auto Refresh

010 Precharge All

100 Write

101 Read

Figure 3-28: Controller Read of Command and Data from User Interface FIFOs for a Burst Length of 8
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Table 3-26: State Signal Values for Figure 3-28

State Signal Value (hex) Description

03 precharge

04 precharge_wait

07 active

08 active_wait

09 first_read

0A burst_read

0B read_wait

0C first_write

0D burst_write

0E write_wait

16 write_read
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Controller to Physical Layer Interface

Table 3-27 lists the signals between the controller and the physical layer.

Table 3-27: Signals Between the Controller and Physical Layer

Signal Name
Signal 
Width

Signal Description Notes

ctrl_wren    1 Output from the controller to the 
write datapath.

Write DQS and DQ generation 
begins when this signal is 
asserted.

Asserted for two CLKDIV_0 cycles for a 
burst length of 4 and three CLKDIV_0 
cycles for burst length of 8.

Asserted one CLKDIV_0 cycle earlier 
than the WRITE command for CAS 
latency values of 4 and 5.

ctrl_wr_dis    1 Output from the controller to the 
write datapath.

Write DQS and DQ generation 
ends when this signal is asserted.

Asserted for one CLKDIV_0 cycle for a 
burst length of 4 and two CLKDIV_0 
cycles for burst length of 8.

Asserted one CLKDIV_0 cycle earlier 
than the WRITE command for CAS 
latency values of 4 and 5.

ctrl_odd_latency 1 Output from the controller to the 
write datapath.

Asserted when the selected CAS 
latency is an odd number. 
Required for generation of write 
DQS and DQ after the correct 
latency (CAS latency – 1).

ctrl_RdEn_div0    1 Output from the controller to the 
datapath generated with each 
read command. This is delayed 
by the precalculated amount and 
is used as a write enable to the 
read data capture FIFOs.

This signal is asserted for one CLKDIV_0 
clock cycle for a burst length of 4 and two 
clock cycles for a burst length of 8.

ctrl_dummyread_start    1 Output from the controller to the 
write datapath. When this signal 
is asserted, the strobe and data 
calibration begin.

This signal must be asserted when valid 
read data is available on the read data 
bus.

This signal is deasserted when the 
dp_dly_slct_done signal is asserted.

dp_dly_slct_done    1 Output from the read datapath 
to the controller indicating the 
strobe and data calibration are 
complete.

This signal is asserted when the data and 
strobe are calibrated.

Normal operation begins after this signal 
is asserted.
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Figure 3-29 describes the timing waveform for control signals from the controller to the 
physical layer with a CAS latency of 4 and an additive latency of 0.

MIG allows bank selection for different classes of memory signals. When a particular bank 
is checked for address, MIG allocates the memory address, the memory control, and the 
memory clocks in that bank. When a bank is checked for data, MIG allocates the data, the 
data mask, and the data strobes in that bank. When a bank is checked for system control, 
MIG allocates the system reset and status signals in that bank. When a bank is checked for 
system clocks, MIG allocates the system clock signals in that bank.

Table 3-28 shows the list of signals allocated in a group from bank selection check boxes.

Simulating the DDR2 SDRAM Design
After generating the design, MIG creates a sim folder in the specified path. This folder 
contains simulation files for a particular design. The sim folder contains the external 
testbench, memory model, .do file, and the executable file to simulate the generated 
design. The memory model files are currently generated in Verilog only. To learn more 
details about the files in the sim folder and to simulate the design, see 
simulation_help.chm in the sim folder.

Changing the Refresh Rate

The formula is similar to the Virtex-4 DDR2 Direct Clocking case. However, since the 
refresh logic in the controller is running at half the memory bus rate, the formula is 
MAX_REF_CNT = (refresh interval) / (2 * clock period). For example, for a refresh rate of 
3.9 µs with a memory bus running at 267 MHz:

MAX_REF_CNT = 3.9 µs / (2 * clock period) = 3.9 µs / 7.49 ns = 521 (decimal) = 0x209 

Figure 3-29: Timing Waveform for Control Signals from the Controller to the Physical Layer
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Table 3-28: SerDes DDR2 SDRAM Signal Allocations

Bank Selected Signals Allocated in the Group

Address Memory address, memory control, and memory clock signals 

Data Data, data mask, and data strobes 

System Control System reset from user interface and status signals

System_Clock System clocks from user interface
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If the above value exceeds 2MAX_REF_WIDTH – 1, the value of MAX_REF_WIDTH must be 
increased accordingly in parameters_0.v (or .vhd) to increase the width of the counter 
used to track the refresh interval. 

Supported Devices
The design generated out of MIG is independent of memory package, hence the package 
part of the memory component is replaced with XX, where XX indicates a don't care 
condition. The tables below list the components (Table 3-29) and DIMMs (Table 3-30 
through Table 3-32) supported by the tool for DDR2 SerDes clocking designs.

In supported devices, an X in the component column denotes a single alphanumeric 
character. For example MT47H128M4XX-3 can be either MT47H128M4BP-3 or 
MT47H128M4B6-3. An XX for Registered DIMMs denotes a single or two alphanumeric 
characters. For example, MT9HTF3272XX-667 can be either MT9HTF3272Y-667 or 
MT9HTF3272DY-667.

Table 3-29: Supported Components for DDR2 SDRAM

Components Packages (XX) Components Packages (XX)

MT47H64M4XX-3 BP MT47H128M8XX-3 BT,HQ

MT47H64M4XX-37E BP MT47H128M8XX-37E BT,HQ

MT47H64M4XX-5E BP MT47H128M8XX-5E BT,HQ

MT47H128M4XX-3 B6,CB,GB MT47H256M8XX-3 HG

MT47H128M4XX-37E B6,CB,GB MT47H256M8XX-37E HG

MT47H128M4XX-5E B6,CB,GB MT47H256M8XX-5E HG

MT47H256M4XX-3 BT,HQ MT47H16M16XX-3 BG

MT47H256M4XX-37E BT,HQ MT47H16M16XX-37E BG

MT47H256M4XX-5E BT,HQ MT47H16M16XX-5E BG

MT47H512M4XX-3 HG MT47H32M16XX-3 BN,CC,FN,GC

MT47H512M4XX-37E HG MT47H32M16XX-37E BN,CC,FN,GC

MT47H512M4XX-5E HG MT47H32M16XX-5E BN,CC,FN,GC

MT47H32M8XX-3 BP MT47H64M16XX-3 BT,HR

MT47H32M8XX-37E BP MT47H64M16XX-37E BT,HR

MT47H32M8XX-5E BP MT47H64M16XX-5E BT,HR

MT47H64M8XX-3 B6,CB,F6,GB MT47H128M16XX-3 HG

MT47H64M8XX-37E B6,CB,F6,GB MT47H128M16XX-37E HG

MT47H64M8XX-5E B6,CB,F6,GB MT47H128M16XX-5E  --

Table 3-30: Supported Registered DIMMs for DDR2 SDRAM

Registered DIMMs Packages (X) Registered DIMMs Packages (X)

MT9HTF3272XX-667  -- MT18HTF25672XX-667 PDY,PY,Y

MT9HTF3272XX-53E Y MT18HTF25672XX-53E PDY,PY,Y

MT9HTF3272XX-40E Y MT18HTF25672XX-40E DY,PDY,Y

MT9HTF6472XX-667 PY,Y MT18HTF6472XXX-667  --

MT9HTF6472XX-53E Y MT18HTF6472XXX-53E DY,Y
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MT9HTF6472XX-40E Y MT18HTF6472XXX-40E DY,Y

MT9HTF12872XX-667 PY MT18HTF12872XXX-667 DY,PDY,PY,Y

MT9HTF12872XX-53E PY,Y MT18HTF12872XXX-53E
DY,MY,NDY,

NY,PY,Y

MT9HTF12872XX-40E Y MT18HTF12872XXX-40E DY,PY,Y

MT18HTF6472G-53E  -- MT18HTF25672XXX-667 PDY,PY,Y

MT18HTF6472XX-667  -- MT18HTF25672XXX-53E PDY,PY,Y

MT18HTF6472XX-53E DY,Y MT18HTF25672XXX-40E DY,PDY,Y

MT18HTF6472XX-40E DY,Y MT36HTJ51272XX-667  --

MT18HTF12872XX-667 DY,PDY,PY,Y MT36HTJ51272XX-53E Y

MT18HTF12872XX-53E
DY,MY,NDY,

NY,PY,Y MT36HTJ51272XX-40E Y

MT18HTF12872XX-40E DY,PY,Y  --  --

Table 3-31: Supported Unbuffered DIMMs for DDR2 SDRAM

Unbuffered DIMMs Unbuffered DIMMs

MT4HTF1664AY-667 MT8HTF12864AY-667

MT4HTF1664AY-40E MT8HTF12864AY-40E

MT4HTF3264AY-667 MT9HTF3272AY-667

MT4HTF3264AY-40E MT9HTF3272AY-40E 

MT4HTF6464AY-667 MT9HTF6472AY-667 

MT4HTF6464AY-40E MT16HTF25664AX-40E

MT8HTF6464AY-667 MT18HTF6472AY-40E

MT8HTF6464AY-53E MT18HTF12872AY-40E

MT8HTF6464AY-40E MT18HTF25672AY-40E

Table 3-32: Supported SODIMMs for DDR2 SDRAM

SODIMMs SODIMMs

MT4HTF1664HY-667 MT8HTF3264HY-53E

MT4HTF1664HY-53E MT8HTF3264HY-40E

MT4HTF1664HY-40E MT8HTF6464HY-667

MT4HTF3264HY-667 MT8HTF6464HY-53E

MT4HTF3264HY-53E MT8HTF6464HY-40E

MT4HTF3264HY-40E MT8HTF3264HDY-40E

MT8HTF3264HY-667 MT8HTF6464HDY-40E

Table 3-30: Supported Registered DIMMs for DDR2 SDRAM (Continued)

Registered DIMMs Packages (X) Registered DIMMs Packages (X)
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Hardware Tested Configurations
The frequencies shown in Table 3-33 were achieved on the Virtex-4 FPGA ML461 Memory 
Interfaces Development Board under nominal conditions. This frequency should not be 
used to determine the maximum design frequency. The maximum design frequency 
supported in the MIG wizard is based on a combination of the TRCE results for fabric 
timing on multiple device/package combinations and I/O timing analysis using FPGA 
and memory timing parameters for a 64-bit wide interface.

Table 3-33: Hardware Tested Configurations

Synthesis Tools XST and Synplicity

HDL Verilog and VHDL

FPGA Device XC4VLX25-FF668-11

Burst Lengths 4, 8

CAS Latency 4, 5

Additive Latency 0, 1, 2

8-bit Design Tested on 16-bit Component “MT47H32M16XX-3”

64-bit Design Tested on 64-bit DIMM “MT8HTF6464AY-667”

72-bit Design Tested on 72-bit DIMM “MT9HTF6472XX-667”

Frequency Range 140 MHz to 400 MHz for component and Registered DIMMs

140 MHz to 290 MHz for Unbuffered DIMMs
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Chapter 4

Implementing QDRII SRAM Controllers

This chapter describes how to implement QDRII SRAM interfaces for Virtex™-4 FPGAs 
generated with MIG. This design is based on XAPP703 [Ref 19].

Feature Summary
The QDRII controller design supports the following:

• A maximum frequency of 250 MHz

• 9-bit, 18-bit, 36-bit, and 72-bit data widths

• Burst lengths of two and four

• Implementation using different Virtex-4 devices

• Operation with any 9-bit, 18-bit, and 36-bit memory component

• Verilog and VHDL 

• With and without a testbench

• With and without a DCM

Design Frequency Range

Limitations
The controller performs consecutive read and writes when the User Read Address FIFO, 
the User Write Address FIFO, and the User Read Data FIFOs are not full. The controller 
might not follow the user issued commands sequence. When the User Read Address FIFO 
is empty, the controller performs writes with the memory, depending on the status of the 
User Write Data FIFOs and User Write Address FIFO. When the either the User Write Data 
FIFOs or the User Write Address FIFO is empty, the controller performs reads with the 
memory, depending on the status of the User Read Address FIFO. The controller remains 
in the IDLE state when the User Read Address FIFO, the User Write Address FIFO, and the 
User Write Data FIFOs are empty.

Table 4-1: Design Frequency Range in MHz

Memory

FPGA Speed Grade

-10 -11 -12

Min Max Min Max Min Max

Component 120 200 120 240 120 250
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Architecture
Figure 4-1 shows a top-level block diagram of the QDRII memory controller. One side of 
the QDRII memory controller connects to the user interface denoted as Block Application. 
The other side of the controller interfaces to QDRII memory. The memory interface data 
width is selectable. 

Data is double-pumped to QDRII SRAM on both the positive and the negative clock edges. 
The HSTL_18 Class I I/O standard is used for the data, address, and control signals.

QDRII SRAM interfaces are source-synchronous and double data rate like DDR SDRAM 
interfaces.

The key advantage to QDRII devices is they have separate data buses for reads and writes 
to SRAM. 

Interface Model
The memory interface is layered to simplify the design and make the design modular. 
Figure 4-2 shows the layered memory interface in the QDRII memory controller. The three 
layers are the application layer, the implementation layer, and the physical layer.

Figure 4-1: QDRII Memory Controller
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Figure 4-2: Interface Layering Model
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The application layer comprises the user interface, which initiates memory writes and 
reads by writing data and memory addresses to the User Interface FIFOs. The 
implementation layer comprises the infrastructure, datapath, and control logic.

• The infrastructure logic consists of the DCM and reset logic generation circuitry.

• The datapath logic consists of the calibration logic by which the data from the 
memory component is captured using the FPGA clock.

• The control logic determines the type of data transfer, that is, read/write with the 
memory component, depending on the User Interface FIFO’s status signals.

The physical layer comprises the I/O elements of the FPGA. The controller communicates 
with the memory component using this layer. The I/ O elements (such as IDDRs, ODDRs, 
and IDELAY elements) are associated with this layer.

Hierarchy
Figure 4-3 shows the QDRII SRAM controller hierarchy.

Figure 4-3 shows the hierarchical structure of the QDRII SRAM design generated by MIG 
with a testbench and a DCM. The modules are classified as follows: 

• Design modules

• Testbench modules

• Clocks and reset generation modules

Figure 4-3: QDRII SRAM Controller Hierarchy
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There is a parameter file generated with the design that has all the user input and design 
parameters selected from MIG. 

MIG can generate QDRII SRAM designs in four different ways:

• With a testbench and a DCM 

• Without a testbench and with a DCM 

• With a testbench and without a DCM 

• Without a testbench and without a DCM

For a design without a testbench (user_design) generated by MIG, the design top-level 
module has the user interface signals. The list of user interface signals is provided in 
Table 4-4, page 181.

Design clocks and resets are generated in the infrastructure_top module. When the 
Use DCM option is checked in MIG, a DCM primitive and the necessary clock buffers are 
instantiated in the infrastructure_top module. The inputs to this module are the 
differential design clock and a 200 MHz differential clock required for the IDELAYCTRL 
module. A user reset is also input to this module. Using the input clocks and reset signals, 
the system clocks and the system resets used in the design are generated in this module.

When the Use DCM option is unchecked in MIG, the infrastructure_top module does not 
have the DCM and the corresponding clock buffer instantiations; therefore, the system 
operates on the user-provided clocks. The system reset is generated in the 
infrastructure_top module using the DCM_LOCK signal and the ready signal of the 
IDELAYCTRL element.
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Figure 4-4 shows a top-level block diagram of a QDRII SRAM design with a DCM and a 
testbench. Inputs to the design are referenced to a differential clock pair (REFCLK_P and 
REFCLK_N) for the controller design, a 200 MHz differential clock pair (DLY_CLK_200_P 
and DLY_CLK_200_N) for the IDELAYCTRL element, and the system reset signal, 
SYS_RST_N. All design resets are generated using the DCM_LOCKED signal, the 
SYS_RST_N signal, and the dly_ready signal of the IDELAYCTRL element. The 
COMPARE_ERROR output signal indicates whether the design passes or fails. The 
DLY_CAL_DONE signal indicates the completion of initialization and calibration of the 
design. Because the DCM is instantiated in the infrastructure module, it generates the 
required clocks and reset signals for the design.

Figure 4-4: Top-Level Block Diagram of the QDRII SRAM Design with a DCM and a Testbench
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Figure 4-5 shows a top-level block diagram of a QDRII SRAM design without a DCM but 
with a testbench. The user should provide all the clocks and the DCM_LOCKED signal. 
These clocks should be single-ended. SYS_RST_N is the system reset signal. All design 
resets are generated using the DCM_LOCKED signal, the SYS_RST_N signal, and the 
dly_ready signal of the IDELAYCTRL element. The user application must have a DCM 
primitive instantiated in the design, and all user clocks should be driven through BUFGs. 
The COMPARE_ERROR signal, which is the output of the design, indicates whether the 
design passes or fails. The testbench module does writes and reads, and also compares the 
read data with written data. The COMPARE_ERROR signal is set High on data 
mismatches. The DLY_CAL_DONE signal indicates the completion of initialization and 
calibration of the design.

Figure 4-5: Top-Level Block Diagram of the QDRII SRAM Design with a Testbench but without a DCM
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Figure 4-6 shows a top-level block diagram of a QDRII SRAM design with a DCM but 
without a testbench. REFCLK_P and REFCLK_N are differential input reference clocks. 
The DCM is instantiated in the infrastructure module that generates the required design 
clocks. DLY_CLK_200_P and DLY_CLK_200_N are used for the IDELAYCTRL element. 
SYS_RST_N is the system reset signal. All design resets are generated using the 
DCM_LOCKED signal, the SYS_RST_N signal, and the dly_ready signal of IDELAYCTRL 
element. The user has to drive the user application signals. The design provides the 
USER_CLK and USER_RST signals to the user to synchronize the user application signals 
with the design. The DLY_CAL_DONE signal indicates the completion of initialization 
and calibration of the design.

Figure 4-6: Top-Level Block Diagram of the QDRII SRAM Design with a DCM but without a Testbench

main0

dly_ready

USER-RESET200

Memory
Device

UG086_c4_06_031207

User
Application

Reference
Clocks

and Reset

idelay_ctrl

Infrastructure
_top

CLK_200

IBUFGDS

clk_200_n

CLK0

clk_200_p

CLK270

USER_RESET

REFCLK_P

REFCLK_N

DLY_CLK_200_P

DLY_CLK_200_N

SYS_RST_N

USER_RESET270

QDR_DLL
_OFF_n

QDR_W_N

QDR_R_N

QDR_K

QDR_K_N

QDR_C

QDR_C_N

QDR_SA

QDR_BW_N

QDR_D

QDR_Q

QDR_CQ

DLY_CAL_DONE

USER_WR_FULL

USER_RD_FULL

USER_QR_EMPTY

USER_WR_ERR

USER_RD_ERR

USER_QR_ERR

USER_CLK

USER_RST

USER_DWL

USER_DWH

USER_QRL

USER_QRH

USER_BWL_n

USER_BWH_n

USER_AD_WR

USER_AD_RD

USER_QEN_n

USER_R_n

USER_W_n

http://www.xilinx.com


174 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 4: Implementing QDRII SRAM Controllers
R

Figure 4-7 shows a top-level block diagram of a QDRII SRAM design without a DCM or a 
testbench. The user should provide all the clocks and the DCM_LOCKED signal. These 
clocks should be single-ended. SYS_RST_N is the system reset signal. All design resets are 
generated using the DCM_LOCKED signal, the SYS_RST_N signal, and the dly_ready 
signal of the IDELAYCTRL element. The user application must have a DCM primitive 
instantiated in the design, and all user clocks should be driven through BUFGs. The user 
has to drive the user application signals. The design provides the USER_CLK and 
USER_RST signals to the user to synchronize the user application signals with the design. 
The DLY_CAL_DONE signal indicates the completion of initialization and calibration of 
the design. 

Figure 4-7: Top-Level Block Diagram of the QDRII SRAM Design without a DCM or a Testbench
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QDRII Memory Controller Modules
Figure 4-8 shows a detailed block diagram of the QDRII memory controller. The four 
blocks shown are sub-blocks of the top module. The functionalities of these blocks are 
explained in the subsections following the figure.

Figure 4-9 shows the QDRII memory controller modules with a 36-bit interface.

Figure 4-8: QDRII Memory Controller Modules
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Figure 4-9: QDRII Memory Controller Modules

User Interface Physical InterfaceRead / Write
State Machine

Read / Write Control

Address Path

FIFO Status

QDRII
Memory
Device

USER_CLK
USER_RESET

USER_W_n
USER_R_n
USER_QEN_n

USER_AD_WR
USER_AD_RD

USER_BWH_n

USER_BWL_n

USER_DWL
USER_DWH

USER_QRL
USER_QRH

USER_WR_FULL
USER_RD_FULL
USER_QR_EMPTY

QDR_W_N
QDR_R_N

QDR_SA

QDR_BW_N
QDR_D

QDR_CQ
QDR_Q

QDR_K
QDR_K_N

USER_CLK
USER_CLK270
USER_RESET

Write Path

Read Path

CLK_0 Delay
Calibration

State Machine

UG086_c4_09_090607

http://www.xilinx.com


176 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 4: Implementing QDRII SRAM Controllers
R

Controller

The QDRII memory controller initiates alternate Write and Read commands to the 
memory as long as the User Write Data FIFOs, the User Write Address FIFO, and the User 
Read Address FIFO are not empty, and the User Read Data FIFOs are not full.

The user writes the write data and the write address into the User Write Data FIFOs and 
the User Write Address FIFO, respectively. When neither the User Write Data FIFOs nor 
the User Write Address FIFO is empty, the QDRII controller generates a write-enable signal 
to the memory. When the write enable is asserted, the write data and the write address are 
transferred to memory from the User Write Data FIFOs and the User Write Address FIFO, 
respectively. 

The read address from where the data is to be read from memory is stored by the user in 
the User Read Address FIFO. The QDRII memory controller generates a read-enable signal 
to the memory when the User Read Address FIFO is not empty and the User Read Data 
FIFOs are not full. When the read enable is asserted, the read address from the Read 
Address FIFO is transferred to memory. The captured read data from the memory 
corresponding to the read address is stored in the User Read Data FIFOs. The user can 
access the data read from memory by reading the User Read Data FIFOs. 

Figure 4-10 shows the QDRII memory controller state machine for burst lengths of four. 
The controller state machine is in the IDLE state when the calibration is complete. When 
the User Write Data FIFO and the User Write Address FIFO are not empty (that is, when 
there are user-written write data and write address bits in the corresponding FIFOs), the 
state machine goes to the WRITE state, initiating a memory write of one complete burst. 

When the User Read Address FIFO is not empty (that is, the user has written read address 
bits into the User Read Address FIFO) and either Read Data FIFO is not full, the state 
machine goes to the READ state, initiating a memory read of one burst.

From the IDLE state, the QDRII memory controller can go to either the WRITE or the 
READ state depending on the not empty status of the Write Address FIFO and the Write 
Data FIFOs or the Read Address FIFO, and not full status of the Read Data FIFOs, 
respectively. Writes are given priority. In the WRITE state, a memory write is initiated, and 
the User Read Address Not Empty and User Read Data FIFOs full status are checked to 
transfer into the READ state. When the User Read Address FIFO is empty, or the User Read 
Data FIFOs are full, the state machine goes to the IDLE state.

In the READ state, a memory read is initiated, and the User Write Data and the User Write 
Address FIFO Not Empty status is checked before going to the WRITE state. If the FIFOs 
are empty, the state machine goes to the IDLE state.

Figure 4-10: QDRII Memory Controller State Machine with Burst Lengths of 4
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Figure 4-11 shows a state machine of the QDR II memory controller for burst lengths of 
two. When calibration is complete, the state machine is in the IDLE state. When the User 
Write Data FIFO or Write Address FIFO is not empty (that is, when there are user-written 
write data and write address bits in the corresponding FIFOs), the state machine goes to 
the READ_WRITE state, initiating a memory write of one complete burst, or when the 
User Read Address FIFO is not empty, that is, the user has written read address bits into 
the User Read Address FIFO, and the User Read Data FIFOs are not full, the state machine 
goes to the READ_WRITE state, initiating a memory read of one complete burst.

From the IDLE state, the QDR II memory controller goes to READ_WRITE state if either:

• the User Write Address FIFO and the User Write Data FIFO are not empty or,

• the User Read Address FIFO is not empty and the User Read Data FIFOs are not full

In the READ_WRITE state, the User Read Address Not Empty and User Read Data FIFOs 
Not Full status are checked to initiate a memory read. To initiate a memory write in the 
READ_WRITE state, the User Write Data FIFOs and the User Write Address FIFO Not 
Empty status are checked. If both the User Write Data FIFOs and User Write Address FIFO 
are empty, and the User Read Address FIFO is empty, or the User Read Data FIFOs are full, 
the state machine goes to the IDLE state. If the User Write Data FIFO and User Write 
Address FIFO are not empty, or the User Read Address FIFO is not empty and the User 
Read Data FIFO is not full, the state machine remains in the READ_WRITE state to issue 
memory writes or reads.

Refer to XAPP703 [Ref 19] for detailed design and timing analysis of the QDRII memory 
controller module. 

Datapath

The Datapath module transmits and receives data to and from the memories. Its major 
functions are listed below:

• Asserts a write-enable signal for memories with burst lengths of two or four 

• Asserts a read-enable signal to memory and a write-enable signal to the User Read 
Data FIFO

• Generates increment/decrement signals (tap count) for IDELAY elements in the IOBS 

• Center-aligns the data window to the FPGA clock 

Figure 4-11: QDRII Memory Controller State Machine with Burst Lengths of 2
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Refer to XAPP703 [Ref 19] for techniques on data writes to memory and data captures from 
memory. For burst lengths of two, the write-enable signal to memory is asserted at the 
same time that write data is driven. For burst lengths of four, the write-enable signal is 
asserted one clock before the write data is driven on the memory bus. The data is driven on 
both edges of the clock. The address to memory is driven for one full clock cycle for burst 
lengths of 4 and on both the edges of the clock cycle for burst lengths of 2. 

Memory read data is edge-aligned with the source-synchronous clock, CQ. The QDRII 
memory clock, to which data is synchronized, is a free-running strobe. The free-running 
strobe from the memory CQ is captured using the FPGA clock. Thus the relation between 
the CQ strobe and the FPGA clock is found, and the strobe CQ is center-aligned with the 
FPGA clock. The same logic is applied to the read data Q window, which is center-aligned 
with the same FPGA clock. This in turn means that the same amount of tap delays are 
applied to both Q and CQ through IDELAY elements to center-align the Q and CQ 
windows with respect to the FPGA clock. By center-aligning the Read Data window Q 
with respect to the FPGA clock, the data capturing logic is complete.

The delay calibration circuit generates the delay reset, delay select, and delay increment 
values for IDELAY elements used in delaying strobes and data read from memory. The 
strobe is center-aligned with the FPGA clock, which results in the data window falling to 
the center of the FPGA clock. Refer to XAPP703 [Ref 19] for details about the delay 
calibration. 

Infrastructure

The Infrastructure (infrastructure_top) module comprises the reset logic generation 
circuitry and instantiates a DCM primitive for clock source generation. Inputs to the 
infrastructure_top module are REFCLK_P and REFCLK_N (the differential clock pair for 
the entire design), DLY_CLK_200_P and DLY_CLK_200_N (the differential clock pair for 
the IDELAYCTRL elements) and SYS_RST_N (the user reset signal). REFCLK_P and 
REFCLK_N are used by the DCM primitive to generate the clock and the 270° phase-
shifted version of the clock. This module generates multiple reset signals, each 
synchronous to its respective clock domain for the controller design.

IOBS

All the input and output signals of the QDRII SRAM controller are implemented in the 
IOBS module. All address and byte enable signals are registered in the IOBs and driven 
out.

The IDELAY elements for the read strobe and data read from memory are implemented in 
the IOBS. The IOBS also implements Inout buffers for write and read data. It registers the 
output data (ODDR) before driving it out and registers the input data (IDDR). 
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QDRII SRAM Initialization and Calibration
QDRII memory is initialized through a specified sequence. The QDRII device requires 
2048 clock cycles of clock input after its DLL has been enabled. After the DCM clocks are 
stable, the controller waits for a specified amount of time before asserting the 
QDR_DLL_OFF_n signal to the memory. This signal can also be pulled up to a High on the 
memory device without being driven from the FPGA. 

Any command can be issued to the memory only after the 2048 clock cycle wait time. After 
2048 clock cycles, the INIT_DONE signal is asserted indicating the completion of the 
initialization sequence. Following initialization, the relationship between the data and the 
FPGA clock is calculated using the TAP logic. The memory strobe CQ is a free-running 
clock from the memory component. Because the read data Q and the memory strobe CQ 
are edge-aligned, the strobe is passed through the IDELAY elements of the Virtex-4 device 
and the taps are adjusted to center-align the strobe pulse with respect to the FPGA clock. 
The same number of taps are applied to the data window's IDELAY element to center-align 
the data window with respect to the FPGA clock. XAPP701 [Ref 17] provides more 
information about the calibration architecture.

Calibration is done in two stages:

1. In the first stage of calibration, the read strobe CQ is center-aligned with respect to the 
FPGA clock. CQ is a free-running clock from QDRII memory. The read data Q is edge-
aligned with the read strobe CQ. The first and second edges of the CQ strobe are 
detected using the FPGA clock to determine the center of the CQ window. 

Once the CQ window is center-aligned with the FPGA clock, the same amount of delay 
(tap counts) is applied to the read data windows Q through the IDELAY element, so 
that the Q window is center-aligned with the FPGA clock. 

Port cq_q_cal_done in the data_path module indicates the status of the first stage 
calibration. When cq_q_cal_done is asserted High, it indicates the completion of first 
stage calibration. After the first stage calibration is complete, the second stage 
calibration starts.

2. In the second stage of calibration, the write enable signal for the Read Data FIFO is 
determined by delaying the controller-issued read command. This delay is calibrated 
based on the delay between the read command and the corresponding read data at the 
Read Data FIFO. For this delay calibration, the controller writes a known fixed pattern 
of data into a memory location and reads back from the same location. This read data 
is compared against the known fixed pattern. The delay between the read command 
and the correct pattern read data comparison is the delay calibration.

The final_dly_cal_done port in the data_path module indicates the status of the second 
stage calibration. When final_dly_cal_done is asserted High, it indicates the 
completion of second stage calibration, which implies the completion of the whole 
initialization and calibration process. After the initialization and calibration is done 
(i.e., the dly_cal_done signal in design_top is asserted High), the controller can start 
issuing user commands to the memory.

In the second stage calibration, when the pattern read data does not match with the 
pattern write data, the controller does not issue any further pattern read commands, 
and the controller gets stuck in the calibration state. The design must be restarted for 
the calibration to start from the beginning.
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QDRII Controller System and User Interface Signals
Table 4-2 through Table 4-3 describe the QDRII controller system interface signals with and 
without a DCM, respectively. Table 4-4 describes the QDRII user interface signals without 
a testbench. Table 4-5 describes the QDRII memory interface signals. In these tables, all 
signal directions are with respect to the QDRII memory controller. 

Table 4-2: QDRII SRAM System Interface Signals (with a DCM)

Signal Name Direction Description

REFCLK_P, REFCLK_N Input Reference clock input made up of differential clock pairs. This clock 
pair goes to a differential input buffer. The differential buffer output 
goes to the DCM input. The DCM generates the required clocks for the 
design.

When the Without a DCM option is selected, this clock pair is not 
present.

DLY_CLK_200_P, 
DLY_CLK_200_N

Input 200 MHz differential clock used in the idelay_ctrl logic.

SYS_RST_N Input Reset to the QDRII memory controller.

COMPARE_ERROR Output This signal represents the status of the comparison between the read 
data and the corresponding write data.

DLY_CAL_DONE Output This signal is asserted when the design initialization and calibration is 
complete.

Table 4-3: QDRII SRAM System Interface Signals (without a DCM)

Signal Name Direction Description

CLK_0 Input Input clock

CLK_270 Input Input clock with a 270° phase difference.

CLK_200 Input 200 MHz clock for the IDELAYCTRL primitives.

DCM_LOCKED Input This active-High signal indicates whether the user DCM is locked or 
not.

SYS_RST_N Input Reset to the QDRII memory controller.

COMPARE_ERROR Output This signal represents the status of the comparison between the read 
data and the corresponding write data.

DLY_CAL_DONE Output This signal is asserted when the design initialization and calibration is 
complete.
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Table 4-4: QDRII SRAM User Interface Signals (without a Testbench)

Signal Name Direction Description

USER_WR_FULL Output This signal indicates the User Write FIFO status. It is asserted 
when either the User Write Address FIFO or the User Write 
Data FIFO is full. When this signal is asserted, any writes to 
the User Write Address FIFO and the User Write Data FIFO 
are invalid, possibly leading to controller malfunction.

USER_RD_FULL Output This signal indicates the User Read Address FIFO status. It is 
asserted when the User Read Address FIFO is full. When this 
signal is asserted, all writes to the User Read Address FIFO 
are ignored.

USER_QR_EMPTY Output This signal indicates the User Read Data FIFO status. This 
signal is asserted when the User Read Data FIFO is empty. 
When this signal is asserted, all reads to the User Read Data 
FIFO are invalid.

USER_WR_ERR Output This signal is asserted when an error occurs while writing to 
the User Write Data FIFO or the User Write Address FIFO.

USER_RD_ERR Output This signal is asserted when an error occurs while writing to 
the User Read Address FIFO.

USER_QR_ERR Output This signal is asserted when an error occurs while reading 
the User Read Data FIFO.

DLY_CAL_DONE Output This signal is asserted to indicate that the calibration is done.

USER_CLK Output All user interface signals are to be synchronized to this clock.

USER_RST Output This reset is active until the DCM is not locked.

USER_DWL [(data_width-1):0] Input Positive-edge data for memory writes. This data bus is valid 
when USER_W_ n is asserted.

USER_DWH [(data_width-1):0] Input Negative-edge data for memory writes. This data bus is valid 
when USER_W_ n is asserted.

USER_QRL [(data_width-1):0] Output Positive-edge data read from memory. This data is output 
when USER_QEN_n is asserted.

USER_QRH [(data_width-1):0] Output Negative-edge data read from memory. This data is output 
when USER_QEN_n is asserted.

USER_BWL_n [(BW_width-1):0] Input Byte enables for QDRII memory positive-edge write data. 
These byte enables are valid when USER_W_n is asserted.

USER_BWH_n [(BW_width-1):0] Input Byte enables for QDRII memory negative-edge write data. 
These byte enables are valid when USER_W_n is asserted.

USER_AD_WR [(addr_width-1):0] Input QDRII memory address for write data. This bus is valid 
when USER_W_n is asserted.

USER_AD_RD [(addr_width-1):0] Input QDRII memory address for read data. This bus is valid when 
USER_R_n is asserted.
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USER_QEN_n Input This active-Low signal is the read enable for the User Read 
Data FIFOs. The QDRII memory controller captures the data 
read from memory and stores it in the Read Data FIFOs. The 
user can access these FIFOs to get the data read from 
memory.

USER_W_n Input This active-Low signal is the write enable for the User Write 
Data and User Write Address FIFOs. The user asserts this 
signal to write new data to the FIFOs. The QDRII memory 
controller reads the data from the User Write Data FIFO and 
writes to memory at the address located in the User Write 
Address FIFO.

USER_R_n Input This active-Low signal is the write enable for the User Read 
Address FIFO. The user asserts this signal to read new data 
from memory. The QDRII memory controller reads the 
address from the Read Address FIFO and does a memory 
read to the corresponding memory address.

Notes: 
1. All user interface signal names are prepended with a controller number, for example, cntrl0_QDR_Q. QDRII SRAM devices 

currently support only one controller.

Table 4-4: QDRII SRAM User Interface Signals (without a Testbench) (Continued)

Signal Name Direction Description

Table 4-5: QDRII SRAM Interface Signals

Signal Name Direction Description

QDR_D Output During WRITE commands, the data is sampled on both edges of K.

QDR_Q Input During READ commands, the data is sampled on both edges of the 
FPGA clk.

QDR_BW_N Output Byte enables for QDRII memory write data. The byte enables are valid 
when USER_W_n is asserted

QDR_SA Output Address for READ and WRITE operations.

QDR_W_N Output This signal represents the WRITE command.

QDR_R_N Output This signal represents the READ command.

QDR_CQ Input This read data clock transmitted by the QDRII SRAM is edge-aligned 
with the read data. 

K, K_N Output Differential write data clocks.

C, C_N Output Input clock for output data.

QDR_DLL_OFF_n Output The DLL is disabled when this signal is Low.
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Write Interface
Figure 4-12 illustrates the user interface block diagram for write operations. 

The following steps describe the architecture of Address and Write Data FIFOs and how to 
perform a write burst operation to QDRII memory from user interface.

1. The user interface consists of an Address FIFO, Data FIFOs and a byte write FIFO. 
These FIFOs are built out of Virtex-4 FIFO16 primitives of configuration 512x 36. 

2. The Address FIFO stores the QDRII memory address where the data is to be written 
from the user interface. A single instantiation of a FIFO16 constitutes the Address 
FIFO.

3. Two separate sets of Data FIFOs store the rising-edge and falling-edge data to be 
written to QDRII memory from the user interface. For 9-bit, 18-bit, and 36-bit data 
widths, two FIFO16s are required for storing rising-edge and falling-edge data. For a 
72-bit data width, two FIFO16s are required for storing rising-edge data and two 
FIFO16s for storing falling-edge data. MIG instantiates the required number of FIFOs 
depending on the memory data width selected. For 9-bit and 18-bit configurations, the 
controller pads the extra bits of the Data FIFO with 0s.

Figure 4-12: Write User Interface Block Diagram
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4. The Byte Write FIFO stores the Byte Write signals to QDRII memory from the user 
interface. Extra bits are padded with zeros.

5. The user can initiate a write command to memory by writing to the Address FIFO, 
Data FIFOs, and Byte Write FIFOs when FIFO Full flags are deasserted and after the 
calibration done signal dly_cal_done is asserted. Users should not access any of these 
FIFOs until dly_cal_done is asserted. The dly_cal_done signal assures that the clocks 
are stable, the reset process is completed, and the controller is ready to accept 
commands. Status signal user_wr_full is asserted when the Address FIFO, Data FIFOs, 
or Byte Write FIFOs are full. 

6. When user_w_n is asserted, user_ad_wr is stored in the Address FIFO, user_dwl and 
user_dwh are stored in the Data FIFO, and user_bwl and user_bwh are stored in the 
Byte Write FIFOs. A common write-enable signal is used to store the data into all three 
FIFOs.

7. The controller reads the Address, Data, and Byte Write FIFOs when they are not empty 
by issuing the wr_init_n signal. A QDRII memory write command is generated from 
the wr_init_n signal by properly timing it.

8. Figure 4-13 shows the timing diagram for a write command of BL = 4. The address 
must be asserted for one clock cycle as shown. For burst lengths of four, each write to 
the Address FIFO must have two writes to the Data FIFO consisting of two rising edge 
data and two falling edge data.

9. Figure 4-14 shows the timing diagram for a write command of BL = 2. For a burst 
length of two, each write to the Address FIFO is coupled to one write to the Data FIFO, 
consisting of one rising edge data and one falling edge data. For BL = 2, commands can 
be given in every clock.

Figure 4-13: Write User Interface Timing Diagram for BL = 4
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Figure 4-14: Write User Interface Timing Diagram for BL = 2

user_clk

dly_cal_done

user_wr_full

user_wr_err

user_w_n

user_ad_wr

user_dwl

user_dwh

DWL-0 DWL-1 DWL-2 DWL-3 DWL-4

DWH-0 DWH-1 DWH-2 DWH-3 DWH-4

A0 A1 A3A2 A4

user_bwl_n

iser_bwh_n

BWL-0 BWL-1 BWL-2 BWL-3 BWL-4

BWH-0 BWH-1 BWH-2 BWH-3 BWH-4

UG086_c4_17_010108

http://www.xilinx.com


186 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 4: Implementing QDRII SRAM Controllers
R

Read Interface
Figure 4-15 shows a block diagram for the read interface. 

The following steps describe the architecture of the Read Data FIFOs and show how to 
perform a QDRII SRAM burst read operation from the user interface.

1. The read user interface consists of an Address FIFO and a Read Data FIFO. The 
Address FIFO and Read Data FIFO are built from Virtex-4 FIFO16s of configuration 
512 x 36. 

2. The size of the Address FIFO is always of 512 x 16. 

3. The number of Read Data FIFOs required depends on the number of QDRII 
components being used. Using 9-bit components for 36-bit data width, a total of eight 
FIFOs are required, four for rising-edge data and four for falling-edge data. Although 
each FIFO can accommodate 36-bit data, the requirement of having one FIFO per 
component arises from CQ pattern calibration, where an internal pattern calibration is 
done per CQ. The controller generates the Read Data FIFO write-enable signal for each 
FIFO separately depending on the CQ pattern calibration. 

4. To initiate a QDRII read command, the user must write the Address FIFO when the 
FIFO full flag user_rd_full is deasserted and the calibration done signal dly_cal_done 
is asserted. Writing to the Address FIFO indicates to the controller that it is a Read 
command. The dly_cal_done signal assures that the controller clocks are stable, the 
internal reset process is completed, and the controller is ready to accept commands.

Figure 4-15: Read User Interface Block Diagram
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5. The user must issue an Address FIFO write-enable signal user_r_n along with the read 
address user_ad_rd to write the read address to the Address FIFO. 

6. The controller reads the Address FIFO when status signal fifo_rd_empty is deasserted 
and generates the appropriate control signals to QDRII memory required for a read 
command. 

7. Prior to the actual read and write commands, the design calibrates the latency (number 
of clock cycles) from when the read command is issued to when the data is received. 
Using this precalibrated delay information, the controller generates the write-enable 
signals to the Read Data FIFOs. The delay calibration is done per QDRII component.

8. The Low state of user_qr_empty indicates read data is available. Asserting user_qen_n 
reads rising-edge data and falling-edge data simultaneously on every rising edge of 
the clock.

9. Figure 4-16 and Figure 4-17 show the user interface timing diagrams for BL = 4 and 
BL = 2. 

10. After the address is loaded into the Address FIFO, it can take 18 clock cycles (worst 
case) for the controller to write the Data FIFOs.

Figure 4-16: Read User Interface Timing Diagram for BL = 4
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Table 4-6 shows the maximum read latency of the controller. 

Figure 4-17: Read User Interface Timing Diagram for BL = 2

Table 4-6: Maximum Read Latency

Parameter
Number of 

Clocks
Description

User command to 
address FIFO empty 
flag 

5 (2 + 3) Two clocks for the two-stage pipeline before the 
FIFO input. An empty FIFO takes three clocks to 
deassert the empty status signal after the FIFO is 
written with the first data. 

Command from 
controller state machine 
to QDR memory

3 One clock cycle to read the FIFO and two clocks 
for decoding and passing the command to QDR 
memory.

QDR command to FIFO 
input data 

6 Two clocks for QDRII memory latency, two 
clocks for calibration delay, and two clocks for 
the input pipeline.

FIFO input to FIFO 
output 

4 Four clocks to deassert the empty status signal 
in fall-through mode.

Total Latency 18 Total latency from read command issued to 
Address FIFO, to data input to user interface.
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Table 4-7 shows the list of signals for a QDRII SRAM design allocated in a group from bank 
selection check boxes in MIG. 

When the Address box is checked in a bank, the address, QDR_W_N, QDR_R_N, and 
QDR_DLL_OFF_n bits are assigned to that particular bank.

When the Data Write box is checked in a bank, the memory data write and memory byte 
write are assigned to that particular bank.

When the Data Read box is checked in a bank, the memory data read, memory read clocks, 
memory write clocks, and memory input clock for the output data are assigned to that 
particular bank.

When the System Control box is checked in a bank, the SYS_RST_N, COMPARE_ERROR, 
and DLY_CAL_DONE bits are assigned to that particular bank.

When the System_Clock box is checked in a bank, the REFCLK_P, REFCLK_N, 
DLY_CLK_200_P, and DLY_CLK_200_N bits are assigned to that particular bank.

For special cases, such as without a testbench and without a DCM, the corresponding 
input and output ports are not assigned to any FPGA pins in the design UCF because the 
user can connect these ports to the FPGA pins or can connect to some logic internal to the 
same FPGA.

Supported Devices
The design generated out of MIG is independent of the memory package, hence the 
package part of the memory component is replaced with X, where X indicates a don't care 
condition. Table 4-8 shows the list of components supported by MIG.

Table 4-7: QDRII Signal Allocations

Bank Selected Signals Allocated in the Group

Address Memory address and memory control 

Data Write Memory write data and memory byte write 

Data Read Memory read data, memory CQ, and K and C clocks

System Control System reset from the user interface and status signals

System_Clock System clocks from the user interface

Table 4-8: Supported Devices for QDRII SRAM

Virtex-4 FPGAs (Verilog and VHDL)

Components Make Configuration

CY7C1314BV18-167BZXC Cypress x36

CY7C1315BV18-250BZC Cypress x36

CY7C1426AV18-250BZC Cypress x9

CY7C1526V18-250BZC Cypress x9

CY7C1911BV18-250BZC Cypress x9

CY7C1515V18-250BZC Cypress x36

K7R160982B-FC25 Samsung x9
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Simulating the QDRII SRAM Design
After generating the design, MIG creates a sim folder in the specified path. This folder 
contains simulation files for a particular design. The sim folder contains an external 
testbench, a memory model, a .do file, and an executable file to simulate the generated 
design. The Samsung memory model files are currently generated in Verilog only. For 
Cypress memory controller designs, a sample VHDL memory model file is provided. To 
learn more details about the files in the sim folder and to simulate the design, see 
simulation_help.chm in the sim folder.

K7R161882B-FC25 Samsung x18

K7R161884B-FC25 Samsung x18

K7R163682B-FC25 Samsung x36

K7R163684B-FC25 Samsung x36

K7R320982C-FC20 Samsung x9

K7R320982M-FC20 Samsung x9

K7R321882C-FC20 Samsung x18

K7R321882M-FC20 Samsung x18

K7R321884C-FC25 Samsung x18

K7R321884M-FC25 Samsung x18

K7R323682C-FC20 Samsung x36

K7R323682M-FC20 Samsung x36

K7R323684C-FC25 Samsung x36

K7R323684M-FC25 Samsung x36

K7R640982M-FC25 Samsung x9

K7R641882M-FC25 Samsung x18

K7R641884M-FC25 Samsung x18

K7R643682M-FC25 Samsung x36

K7R643684M-FC30 Samsung x36

Table 4-8: Supported Devices for QDRII SRAM (Continued)

Virtex-4 FPGAs (Verilog and VHDL)

Components Make Configuration
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Hardware Tested Configurations
The frequencies shown in Table 4-9 were achieved on the Virtex-4 FPGA ML461 Memory 
Interfaces Development Board under nominal conditions. This frequency should not be 
used to determine the maximum design frequency. The maximum design frequency 
supported in the MIG wizard is based on a combination of the TRCE results for fabric 
timing on multiple device/package combinations and I/O timing analysis using FPGA 
and memory timing parameters for a 72-bit wide interface.

Table 4-9: Hardware Tested Configurations

Synthesis Tools XST and Synplicity 

HDL Verilog and VHDL

FPGA Device XC4VLX25-FF668-11

Memory Component K7R163684B-FC25

Burst Length 4

Data Widths 36, 72

36-bit Frequency Range 110 to 350 MHz

72-bit Frequency Range 110 to 320 MHz
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Chapter 5

Implementing DDRII SRAM Controllers

This chapter describes how to implement DDRII SRAM interfaces for Virtex™-4 FPGAs 
generated by MIG. 

Feature Summary
This section summarizes the supported and unsupported features of the DDRII SRAM 
controller design.

Supported Features
The DDRII SRAM controller design supports:

• A maximum frequency of 250 MHz

• Data widths of 9, 18, 36, and 72 bits

• Burst lengths of two and four

• Implementation using different Virtex-4 devices

• Operation with any 9-bit, 18-bit, and 36-bit memory component

• Verilog and VHDL 

• With and without a testbench

• With and without a DCM

Design Frequency Range

Unsupported Features
The DDRII SRAM controller design does not support:

• DDR SIO memory

Table 5-1: Design Frequency Range in MHz

Memory

FPGA Speed Grade

-10 -11 -12

Min Max Min Max Min Max

Component 120 200 120 240 120 250
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Architecture
Figure 5-1 shows a top-level block diagram of the DDRII SRAM controller interface. One 
side of the DDRII SRAM controller connects to the user interface denoted as Block 
Application. The other side of the controller interfaces to DDRII memory. The memory 
interface data width is selectable. 

Data is double-pumped to DDRII memory on both the positive and the negative edges of 
the clock. The HSTL_18 Class II I/O standard is used for data, and the HSTL_18 Class I 
I/O standard is used for address, control, and memory clock signals.

DDRII memory interfaces are source-synchronous and double data rate like DDR SDRAM 
interfaces. 

Interface Model
The Memory interface is layered to simplify the design and make the design modular. 
Figure 5-2 shows the layered memory interface used in the DDRII SRAM controller. The 
three layers are the application layer, the implementation layer, and the physical layer.

Figure 5-1: DDRII SRAM Controller Interface
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Figure 5-2: Interface Layering Model
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The application layer comprises the user interface, which initiates memory writes and 
reads by writing data and memory addresses to the User Interface FIFOs. The 
implementation layer comprises the infrastructure, datapath, and control logic.

• The infrastructure logic consists of the DCM and reset logic generation circuitry.

• The datapath logic consists of the calibration logic by which the data from the 
memory component is captured using the FPGA clock.

• The control logic determines the type of data transfer, that is, read/write with the 
memory component, depending on the User Interface FIFO’s status signals.

The physical layer comprises the I/O elements of the FPGA. The controller communicates 
with the memory component using this layer. I/ O elements (such as IDDRs, ODDRs, 
IDELAY, and OFLOPs) are associated with this layer.

Hierarchy
Figure 5-3 shows the hierarchical structure of the DDRII SRAM design generated by MIG 
with a testbench and a DCM. 

The modules are classified as follows: 

• Design modules

• Testbench modules

• Clocks and reset generation modules

Figure 5-3: DDRII SRAM Controller Hierarchy
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There is a parameter file generated with the design that has all the user input and design 
parameters selected from MIG. 

MIG can generate DDRII SRAM designs in four different ways:

• With a testbench and a DCM 

• Without a testbench and with a DCM 

• With a testbench and without a DCM 

• Without a testbench and without a DCM

For a design without a testbench (user_design) generated by MIG, the design 
<top_module> module has the user interface signals.

The list of user interface signals is provided in Table 5-4.

Design clocks and resets are generated in the infrastructure_top module. When Use DCM 
option is checked in MIG, a DCM primitive and the necessary clock buffers are instantiated 
in the infrastructure_top module. The inputs to this module are the differential design 
clock and a 200 MHz differential clock required for the IDELAYCTRL module. A user reset 
is also input to this module. Using the input clocks and reset signals, the system clocks and 
system resets used in the design are generated in this module.

When the Use DCM option is unchecked in MIG, the infrastructure_top module does not 
have the DCM and the corresponding clock buffer instantiations. Therefore, the system 
operates on the user-provided clocks. The system reset is generated in the 
infrastructure_top module using the DCM_LOCK signal and the ready signal of the 
IDELAYCTRL element.
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Figure 5-4 shows a top-level block diagram of a DDRII SRAM design with a DCM and a 
testbench. REFCLK_P and REFCLK_N are differential input reference clocks. The DCM is 
instantiated in the infrastructure module that generates the required design clocks. 
DLY_CLK_200_P and DLY_CLK_200_N are used for the IDELAYCTRL element. 
SYS_RST_N is the system reset signal. All design resets are generated using the 
DCM_LOCKED signal, the SYS_RST_N signal, and the dly_ready signal of the 
IDELAYCTRL element. The COMPARE_ERROR output signal indicates whether the 
design passes or fails. The DLY_CAL_DONE signal indicates the completion of 
initialization and calibration of the design. Because the DCM is instantiated in the 
infrastructure module, it generates the required clocks and resets signals for the design.

Figure 5-4: Top-Level Block Diagram of the DDRII SRAM Design with a DCM and a Testbench
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Figure 5-5 shows a top-level block diagram of a DDRII SRAM design with a testbench but 
without a DCM. The user should provide all the clocks and the DCM_LOCKED signal. 
These clocks should be single-ended. SYS_RST_N is the system reset signal. All design 
resets are generated using the DCM_LOCKED signal, the SYS_RST_N signal, and the 
dly_ready signal of the IDELAYCTRL element. The user application must have a DCM 
primitive instantiated in the design, and all user clocks should be driven through BUFGs. 
The COMPARE_ERROR output signal indicates whether the design passes or fails. The 
testbench module does writes and reads, and also compares the read data with the written 
data. The COMPARE_ERROR signal is driven High on data mismatches. The 
DLY_CAL_DONE signal indicates the completion of initialization and calibration of the 
design.

Figure 5-5: Top-Level Block Diagram of the DDRII SRAM Design without a DCM but with a Testbench
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Figure 5-6 shows a top-level block diagram of a DDRII SRAM design with a DCM but 
without a testbench. REFCLK_P and REFCLK_N are differential input reference clocks. 
The DCM is instantiated in the infrastructure module that generates the required design 
clocks. DLY_CLK_200_P and DLY_CLK_200_N are used for the IDELAYCTRL element. 
SYS_RST_N is the system reset signal. All design resets are generated using the 
DCM_LOCKED signal, the SYS_RST_N signal, and the dly_ready signal of the 
IDELAYCTRL element. The user has to drive the user application signals. The design 
provides the USER_CLK and USER_RST signals to the user to synchronize the user 
application signals with the design. The DLY_CAL_DONE signal indicates the completion 
of initialization and calibration of the design.

Figure 5-6: Top-Level Block Diagram of the DDRII SRAM Design with a DCM but without a Testbench

main0

dly_ready

USER-RESET200

Memory
Device

UG086_c5_06_121907

User
Application

Reference
Clocks

and Reset

idelay_ctrl

Infrastructure
_top

CLK_200

IBUFGDS

CLK_200_N

USER_CLK0

CLK_200_P

USEER_CLK270

USER_RESET

REFCLK_P

REFCLK_N

DLY_CLK_200_P

DLY_CLK_200_N

SYS_RST_N

USER_RESET270

DDR_DLL
_OFF_n

DDR_LD_N

DDR_RW_N

DDR_K

DDR_K_N

DDR_C

DDR_C_N

DDR_SA

DDR_BW_N

DDR_DQ

DLY_CAL_DONE

WR_DATA_FULL

ADDR_FULL

RD_DATA_VALID

WR_DATA_WRERR

ADDR_WRERR

RD_DATA_RDERR

USER_CLK

USER_RST

USER_DWL

USER_DWH

USER_QRL

USER_QRH

USER_BWL_n

USER_BWH_n

USER_ADDR_CMD

USER_DATA_WR_ENA_n

USER_ADDR_WR_ENA_n

RD_DATA_EMPTY

USER_QEN_n

DDR_CQ

http://www.xilinx.com


200 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 5: Implementing DDRII SRAM Controllers
R

Figure 5-7 shows a top-level block diagram of a DDRII SRAM design without a DCM or a 
testbench. The user should provide all the clocks and the DCM_LOCKED signal. These 
clocks should be single-ended. SYS_RST_N is the system reset signal. All design resets are 
generated using the DCM_LOCKED signal, the SYS_RST_N signal, and the dly_ready 
signal of the IDELAYCTRL element. The user application must have a DCM primitive 
instantiated in the design, and all user clocks should be driven through BUFGs. The user 
has to drive the user application signals. The design provides the USER_CLK and 
USER_RST signals to the user to synchronize the user application signals with the design. 
The DLY_CAL_DONE signal indicates the completion of initialization and calibration of 
the design. 

Figure 5-7: Top-Level Block Diagram of the DDRII SRAM Design without a DCM or a Testbench
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DDRII SRAM Controller Modules
Figure 5-8 shows a detailed block diagram of the DDRII SRAM controller. The four blocks 
shown are sub-blocks of the top module. The functionalities of these blocks are explained 
in the subsections following the figure.

Figure 5-9 shows the DDRII SRAM controller modules with a 36-bit interface.

Figure 5-8: DDRII SRAM Controller Modules
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Figure 5-9: DDRII SRAM Controller Modules with Interface Signals
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Controller

The DDRII SRAM controller initializes the memory, accepts and decodes the user 
commands, and generates the READ and WRITE commands. It also generates control 
signals for other modules. After power on it starts the calibration, after the calibration is 
completed it process the READ or WRITE commands.

Datapath

The Datapath module transmits and receives data to and from the memories. Its major 
functions are listed below:

• Asserts a write-enable signal for memories with burst lengths of two or four 

• Asserts a read-enable signal to memory and a write-enable signal to the User Read 
Data FIFO

• Generates increment/decrement signals (tap count) for IDELAY elements in the IOBS 

• Center-aligns the data window to the FPGA clock 

Refer to XAPP703 [Ref 19] for techniques on data writes to memory and data captures from 
memory. For burst lengths of four and two, the write-enable signal is asserted one clock 
before the write data is driven on the memory bus. The data is driven on both edges of the 
clock. The address to memory is driven for one full clock cycle. 

Memory read data is edge-aligned with the source-synchronous clock, CQ. The DDRII 
clock, CQ, to which read data is synchronized, is a free-running strobe. The free-running 
strobe from the memory CQ is captured using the FPGA clock. Thus the relation between 
the CQ strobe and FPGA clock is found, and the strobe CQ is center-aligned with the FPGA 
clock by delaying the CQ strobe in the IDELAY element. The same logic is applied to the 
read data window. The read data window is center-aligned with the same FPGA clock. 
This in turn means that the same amount of tap delays are applied on both the read data 
window and the strobe CQ through the IDELAY elements to center-align the read data and 
strobe CQ windows with respect to the FPGA clock. Center-aligning the read data window 
with respect to the FPGA clock completes the data capturing logic.

The delay calibration circuit generates the delay reset, delay select, and delay increment 
values for IDELAY elements used in delaying strobes and data read from memory. The 
strobe is center-aligned with the FPGA clock, which results in the data window falling to 
the center of the FPGA clock. Refer to XAPP703 [Ref 19] for details about the delay 
calibration. 

Infrastructure 

The Infrastructure (infrastructure_top) module comprises the reset logic generation 
circuitry and instantiates a DCM primitive for clock source generation. Inputs to the 
infrastructure_top module are the REFCLK_P and REFCLK_N differential clock pair for 
the entire design, the DLY_CLK_200_P and DLY_CLK_200_N differential clock pair for the 
IDELAYCTRL elements, and the user reset signal SYS_RST_N. The REFCLK_P and 
REFCLK_N differential clock pair is used by the DCM primitive to generate the clock and 
the 270° phase-shifted version of the clock. This module generates multiple reset signals, 
each synchronous to its respective clock domain.

IOBS

All the input and output signals of the DDRII SRAM controller are implemented in the 
IOBS module. All address and byte enable signals are registered in the IOBs and driven 
out.
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The IDELAY elements for the read strobe and data read from memory are implemented in 
the IOBS. The IOBS also implements Inout buffers for write and read data. The IOBS 
registers the output data (ODDR) before driving it out and also registers the input data 
(IDDR). 

DDRII SRAM Initialization and Calibration
DDRII SRAM is initialized through a specified sequence. Following the initialization, the 
relationship between the read data and the FPGA clock is calculated using the TAP logic. 
After the DCM clocks are stable, the controller waits for a specified amount of time before 
asserting the DDR_DLL_OFF_n signal to the memory. This signal can also be pulled up to 
a High on the memory device without being driven from the FPGA. 

The memory strobe CQ is a free-running clock from the memory component. Because the 
read data and the memory strobe CQ are edge-aligned, the strobe is passed through the 
IDELAY elements of the Virtex-4 device and the taps are adjusted to center-align the strobe 
pulse with respect to the FPGA clock. The same number of taps are applied to the data 
window's IDELAY element to center-align the data window with respect to the FPGA 
clock. XAPP701 [Ref 17] provides more information about the calibration architecture.

Calibration is done in two stages:

1. In the first stage of calibration, the read strobe CQ is center-aligned with respect to the 
FPGA clock. CQ is a free-running clock from DDRII SRAM. The read data window is 
edge-aligned with the read strobe CQ. The first and second edges of the CQ strobe are 
detected using the FPGA clock to determine the center of the CQ window. 

Once the CQ window is center-aligned with the FPGA clock, the same amount of delay 
(tap counts) is applied to the read data window through the IDELAY element, so that 
the read data window is center-aligned with the FPGA clock. 

Port cq_q_cal_done in the data_path module indicates the status of the first stage 
calibration. When cq_q_cal_done is asserted High, it indicates the completion of first 
stage calibration. After the first stage calibration is complete, the second stage 
calibration starts.

2. In the second stage of calibration, the write enable signal for the Read Data FIFO is 
determined by delaying the controller-issued read command. This delay is calibrated 
based on the delay between the read command and the corresponding read data at the 
Read Data FIFO. For this delay calibration, the controller writes a known fixed pattern 
of data into a memory location and reads back from the same location. This read data 
is compared against the known fixed pattern. The delay between the read command 
and the correct pattern read data comparison is the delay calibration.

The final_dly_cal_done port in the data_path module indicates the status of the second 
stage calibration. When final_dly_cal_done is asserted High, it indicates the 
completion of second stage calibration, which implies the completion of the whole 
initialization and calibration process. After the initialization and calibration is done 
(i.e., the dly_cal_done signal in design_top is asserted High), the controller can start 
issuing user commands to the memory.

In the second stage calibration, when the pattern read data does not match with the 
pattern write data, the controller does not issue any further pattern read commands 
and the controller gets stuck in the calibration state. The design must be restarted for 
the calibration to start from the beginning.
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User Interface
The user interface consists of seven FIFOs. The User Write interface has four FIFOs: one 
FIFO is used for the memory address, two FIFOs contain positive-edge and negative-edge 
data for memory, and the remaining FIFO is used for Byte Writes. The DDRII SRAM 
controller checks the not empty status of these FIFOs and initiates a memory write. The 
user interface is single data rate (SDR). The controller handles the conversion from the SDR 
user interface to the DDR Memory interface and vice versa.

The User Read interface has three FIFOs, where one FIFO is used for the memory address 
and the remaining two FIFOs contain positive-edge and negative-edge data read from 
memory. The user writes to the User Read Address FIFO the memory address from which 
data is to be read. The DDRII SRAM controller checks the status of this FIFO and initiates 
a memory read burst. The data read is stored in the User Read Data FIFOs. The user reads 
these FIFOs to access the data read from memory.

Refer to Table 5-2 for how the user can access these FIFOs.

DDRII SRAM Controller Interface Signals
Table 5-2 through Table 5-3 describe the DDRII controller system interface signals. 
Table 5-4 describes the DDRII SRAM user interface signals. Table 5-5 describes the DDRII 
memory interface signals. In these tables, all signal directions are with respect to the DDRII 
memory controller. 

Table 5-2: DDRII SRAM System Interface Signals (with a DCM)

Signal Name Direction Description

REFCLK_P, REFCLK_N Input Reference clock input made up of differential clock pairs. This clock 
pair goes to a differential input buffer. The differential buffer output 
goes to the DCM input. The DCM generates the required clocks for the 
design.

DLY_CLK_200_P, 
DLY_CLK_200_N

Input 200 MHz differential clock used in the IDELAY_CTRL logic

SYS_RST_N Input Reset to the DDRII memory controller

COMPARE_ERROR Output This signal indicates the status of the comparison between the read 
data with the corresponding write data

DLY_CAL_DONE Output This signal is asserted when the design initialization and calibration is 
complete

Table 5-3: DDRII SRAM System Interface Signals (without a DCM)

Signal Name Direction Description

CLK_0 Input Input clock

CLK_270 Input Input clock with 270° phase difference

CLK_200 Input 200 MHz clock for IDELAYCTRL primitives

DCM_LOCKED Input This active-High signal indicates whether the user DCM is locked or 
not

SYS_RST_N Input Reset to the DDRII memory controller
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COMPARE_ERROR Output This signal indicates the status of the comparison between the read 
data with the corresponding write data

DLY_CAL_DONE Output This signal is asserted when the design initialization and calibration is 
complete.

Table 5-3: DDRII SRAM System Interface Signals (without a DCM) (Continued)

Signal Name Direction Description

Table 5-4: DDRII SRAM User Interface Signals (without a Testbench)

Signal Name Direction Description

WR_DATA_FULL Output This signal indicates the User Write FIFOs status. It is 
asserted when the User Write Data FIFOs are full. When 
this signal is asserted, any writes to the User Write Data 
FIFO are invalid, possibly leading to controller 
malfunction.

ADDR_FULL Output This signal indicates the User Read Write Address FIFO 
status. It is asserted when the User Read Write Address 
FIFO is full. When this signal is asserted, any writes to the 
User Read Write Address FIFO are ignored.

RD_DATA_VALID Output This signal indicate to the user that data available at read 
data FIFOs.

WR_DATA_WRERR Output This signal is asserted when an error occurs while writing 
to the User Write Data FIFOs.

ADDR_WRERR Output This signal is asserted when an error occurs while writing 
to the User Read Write Address FIFO.

RD_DATA_RDERR Output This signal is asserted when an error occurs while reading 
the User Read Data FIFO

DLY_CAL_DONE Output This signal is asserted to indicate that the calibration is done

USER_CLK Output All user interface signals are to be synchronized to this 
clock

USER_RST Output This reset is active until the DCM is not locked

USER_DWL [(data_width–1):0] Input Positive-edge data for memory writes. The data bus is valid 
when the WRITE command (DDR_LD_N=0 && 
DDR_RW_N=0) is asserted.

USER_DWH [(data_width–1):0] Input Negative-edge data for memory writes. The data bus is 
valid when the WRITE command (DDR_LD_N=0 && 
DDR_RW_N=0) is asserted.

USER_QRL [(data_width–1):0] Output Positive-edge data read from memory. This data is output 
when USER_QEN_n is asserted.

USER_QRH [(data_width–1):0] Output Negative-edge data read from memory. This data is output 
when USER_QEN_n is asserted.

USER_BWL_n [(BW_width–1):0] Input Byte enables for DDRII memory positive-edge write data. 
The byte enables are valid when the WRITE command 
(DDR_LD_N=0 && DDR_RW_N=0) is asserted.
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USER_BWH_n[(BW_width–1):0] Input Byte enables for DDRII memory negative-edge write data. 
The byte enables are valid when the WRITE command 
(DDR_LD_N=0 && DDR_RW_N=0) is asserted.

USR_ADDR_CMD[addr_width:0] Input DDRII memory address for read or write operation. This 
address is valid when USER_DATA_WR_ENA_n is 
asserted. An extra bit is driven by the user to represent the 
command.

USER_QEN_n Input This active-Low signal is the read enable for the User Read 
Data FIFOs. The DDRII memory controller captures the 
data read from memory and stores it in the Read Data 
FIFOs. The user can access these FIFOs to get the data read 
from memory.

USER_DATA_WR_ENA_n Input This active-Low signal is the write enable for the User Write 
Data FIFOs. The user asserts this signal to write new data to 
the FIFOs. The DDRII SRAM controller reads the data from 
the User Write Data FIFO and writes to memory.

USER_ADDR_WR_ENA_n Input This active-Low signal is the write enable for the User Read 
Write Address FIFO. The user asserts this signal to write 
write/read address and command in to user read write 
address FIFO.

Notes: 
1. All user interface signal names are prepended with a controller number, for example, cntrl0_DDR_DQ. DDRII SRAM devices 

currently support only one controller.

Table 5-4: DDRII SRAM User Interface Signals (without a Testbench) (Continued)

Signal Name Direction Description

Table 5-5: DDRII SRAM Interface Signals

Signal Name Direction Description

DDR_DQ Input/
Output

Bidirectional data bus. During READ commands, the data is sampled 
on both edges of the FPGA clk. During WRITE commands, the data is 
sampled on both edges of the K clk.

DDR_BW_N Output Byte enables for DDRII memory write data. The byte enables are valid 
when the WRITE command (DDR_LD_N=0 && DDR_RW_N=0) is 
asserted.

DDR_SA Output Address for READ and WRITE operations

DDR_LD_N Output Synchronous load pin. The bus cycle sequence is to be defined when 
this signal is Low.

DDR_RW_N Output Read/Write control pin. Read is active when High.

DDR_CQ Input This read data clock, transmitted by DDRII SRAM, is edge-aligned 
with read data

K, K_N Output Differential write data clocks

C, C_N Output Input clock for output data

DDR_DLL_OFF_n Output The DLL is disabled when this signal is Low
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Write Interface
Figure 5-10 shows the user interface block diagram for write operations.

The following steps describe the architecture of the Address and Write Data FIFOs and 
show how to perform a write burst operation to DDRII memory from the user interface.

1. The user interface consists of an Address FIFO, Data FIFOs, and a Byte Write FIFO. 
These FIFOs are constructed using Virtex-4 FIFO16 primitives with a 512 x 36 
configuration.

2. The common Address FIFO is used for both write and read commands, and comprises 
a command part and an address part. The command bit (bit 0 of the Address FIFO) 
discriminates between write and read commands; the address starts at bit 1. The 
command bit should be set to 0 for writes and to 1 for reads.

3. Two separate sets of Data FIFOs are used for storing the rising-edge and falling-edge 
data to be written to DDRII memory from the user interface. For 9-bit, 18-bit, and 36-bit 
data widths, two FIFO16s are required for storing rising-edge and falling-edge data. 
For 72-bit data width, two FIFO16s are required for rising-edge data and two for 
falling-edge data. MIG instantiates the required number of FIFOs to gain the required 

Figure 5-10: Write User Interface Block Diagram
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data width. For 9-bit and 18-bit configurations, the controller pads the extra bits of the 
Data FIFO with 0s.

4. The Byte Write FIFO is used to store the Byte Write signals to DDRII memory from the 
user interface. The controller internally pads all zeros for the unused bits. 

5. The user can initiate a write to memory by writing to the Address FIFO, Data FIFOs, 
and Byte Write FIFO when the FIFO full flags are deasserted and after dly_cal_done is 
asserted. The user should not access any of these FIFOs until dly_cal_done is asserted. 
The dly_cal_done signal assures that the clocks are stable, the reset process is 
completed, and the controller is ready to accept commands. Status signals addr_full 
and wr_data_full are asserted when the Address FIFO and Data FIFOs or Byte Write 
FIFO are full.

6. When user_addr_wr_ena_n is asserted, the user address is stored in the Address FIFO. 
Similarly, when user_data_wr_ena_n is asserted, user_dwl, user_dwh, user_bwl, and 
user_bwh are stored into corresponding FIFOs. A common write-enable signal is used 
to enable both the Data FIFO and the Byte Write FIFO.

7. The controller reads the address and decodes the command bit. The write command 
wr_init_n is issued if the command bit is 0 when the Address FIFO is not empty. This 
command acts as a read-enable to the Data and Byte Write FIFOs. The DDRII memory 
write command is generated from the wr_init_n signal by properly timing it.

8. Figure 5-11 shows the timing diagram for a write command of BL = 4. The address 
should be asserted for one clock cycle as shown. For burst lengths of four, each write to 
the Address FIFO should have two writes to the Data FIFO consisting of two rising-
edge data and two falling-edge data.

Figure 5-11: Write User Interface Timing diagram for BL = 4
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9. Figure 5-12 shows the timing diagram for a write command of BL = 2. For burst length 
of two, each write to Address FIFO has one write to Data FIFO, consisting of one 
rising-edge data and one falling-edge data. For burst length of two, commands can be 
given in every clock.

Figure 5-12: Write User Interface Timing diagram for BL = 2
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Read Interface
Figure 5-13 shows the user interface block diagram for read operations. 

The following steps describe the architecture of Read Data FIFOs and show how to 
perform a burst read operation from DDRII SRAM from the user interface.

1. The read user interface consists of a common Address FIFO and a Read Data FIFO. The 
Address FIFO and Read Data FIFO are constructed using FIFO16s with a 512 x 16 
configuration.

2. The number of Read Data FIFOs required depends on the number of DDRII 
components used. Using 9-bit components for 36-bit data width, a total of eight FIFOs 
are required, four FIFOs for rising-edge data and four FIFOs for falling-edge data. 
Though each FIFO can accommodate 36-bit data, the requirement of having one FIFO 
per component arises from the CQ pattern calibration. Internal pattern calibration is 
done per CQ. Controller generates the Read Data FIFO write-enable signal for each 
FIFO separately, depending on the CQ pattern calibration.

3. To initiate a DDRII read command, the user should write the Address FIFO with the 
command bit set to logic 1 when the FIFO addr_full flag is deasserted and the 
dly_cal_done signal is asserted. The dly_cal_done signal assures the controller clocks 
are stable, the internal reset process is completed, and the controller is ready to accept 
commands.

Figure 5-13: Read User Interface Block Diagram
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4. The user should issue the Address FIFO write enable signal user_addr_wr_ena_n 
along with user_addr_cmd to write the address to the Address FIFO.

5. When status signal addr_empty is deasserted, the controller reads the Address FIFO. 
If the command bit is 1 when the Read Data FIFO is not full, the appropriate control 
signal required for a read command is sent to the DDRII memory.

6. Prior to the actual read and write commands, the design calibrates the latency from the 
time the read command is issued to the time data is received in terms of the number of 
clock cycles. Using the precalibrated delay information between the read commands to 
read data, the controller generates the write-enable signals to the Read Data FIFOs.The 
delay calibration is done per DDRII component.

7. The Low state of rd_data_empty indicates read data is available. Asserting user_qen_n 
reads rising-edge data and falling-edge data simultaneously on every rising edge of 
the clock.

8. Figure 5-14 and Figure 5-15 shows the user interface timing diagrams for BL = 2 and 
BL = 4.

Figure 5-14: Read User Interface Timing Diagram for BL = 2
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Table 5-6 shows the maximum read latency of the controller. Maximum latency occurs 
when the read command is given to an empty FIFO. 

Figure 5-15: Read User Interface Timing Diagram for BL = 4
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Table 5-7 shows the list of signals for a DDRII SRAM design allocated in a group from bank 
selection check boxes in MIG.

When the Address box is checked in a bank, the address, DDR_LD_N, DDR_RW_N, 
DDR_DLL_OFF_n bits are assigned to that particular bank.

When the Data box is checked in a particular bank, the memory data, the memory byte 
write, the memory read clocks, the memory write clocks, and the memory input clock for 
the output data are assigned to that particular bank.

When the System Control box is checked in a bank, the SYS_RST_N, COMPARE_ERROR, 
and DLY_CAL_DONE bits are assigned to that particular bank.

When the System_Clock box is checked in a bank, the REFCLK_P, REFCLK_N, 
DLY_CLK_200_P, and DLY_CLK_200_N bits are assigned to that particular bank.

For special cases, such as without a testbench and without a DCM, the corresponding 
input and output ports are not assigned to any pins of the FPGA in the design UCF because 
the user can connect these ports to the FPGA pins or can connect to some logic internal to 
the same FPGA.

Supported Devices
The design generated out of MIG is independent of the memory package, hence the 
package part of the memory component is replaced with X, where X indicates a don't care 
condition. Table 5-8 shows the list of components supported by MIG.

Table 5-7: DDRII Signal Allocations

Bank Selected Signals Allocated in the Group

Address Memory address and memory control 

Data Memory data and memory byte read/write 

System Control System reset from the user interface and status signals

System_Clock System clocks from the user interface

Table 5-8: Supported Devices for DDRII SRAM

Virtex-4 FPGAs (Verilog and VHDL)

Components Make Configuration

CY7C1319BV18-250BZC Cypress x18

CY7C1318BV18-250BZC Cypress x18

CY7C1320BV18-200BZC Cypress x36

CY7C1320BV18-250BZC Cypress x36

CY7C1321AV18-250BZC Cypress x36

CY7C1321BV18-250BZC Cypress x36

CY7C1419AV18-250BZC Cypress x18

CY7C1420AV18-250BZC Cypress x36

CY7C1421AV18-250BZC Cypress x36
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Simulating the DDRII SRAM Design
After generating the design, MIG creates a sim folder in the specified path. This folder 
contains simulation files for a particular design. The sim folder contains an external 
testbench, a memory model, a .do file, and an executable file to simulate the generated 
design. The Samsung memory model files are currently generated in Verilog only. For 
Cypress memory controller designs, a sample VHDL memory model file is provided. To 
learn more details about the files in the sim folder and to simulate the design, see 
simulation_help.chm in the sim folder.

Hardware Tested Configurations
This design is not hardware verified.

CY7C1427AV18-250BZC Cypress x9

CY7C1428AV18-250BZC Cypress x9

CY7C1518V18-250BZC Cypress x18

CY7C1520V18-250BZC Cypress x36

CY7C1916BV18-250BZC Cypress x9

CY7C1917BV18-250BZC Cypress x9

K7I161882B-FC25 Samsung x18

K7I161884B-FC25 Samsung x18

K7I163682B-FC25 Samsung x36

K7I163684B-FC25 Samsung x36

K7I321884C-FC25 Samsung x18

K7I321884M-FC25 Samsung x18

K7I323684C-FC25 Samsung x36

K7I323684M-FC25 Samsung x36

K7I641882M-FC25 Samsung x18

Table 5-8: Supported Devices for DDRII SRAM (Continued)

Virtex-4 FPGAs (Verilog and VHDL)

Components Make Configuration
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Chapter 6

Implementing RLDRAM II Controllers

Reduced Latency DRAM (RLDRAM II) devices address high bandwidth memory 
requirements. The RLDRAM II utilizes an eight-bank architecture optimized for high-
speed operation and a double data rate I/O for increased bandwidth. This chapter 
describes how to implement RLDRAM II interfaces for Virtex™-4 FPGAs generated with 
MIG. This design is based on XAPP710 [Ref 21].

Feature Summary
This section summarizes the supported and unsupported features of the RLDRAM II 
controller design.

Supported Features
The RLDRAM II controller design supports the following:

• A maximum frequency of 250 MHz

• Both SIO and CIO memories

• Multiplexed and non-multiplexed addresses

• All configurations (Config1, Config2, and Config3)

• x9, x18, and x36 components

• Data widths of 9, 18, 36, and 72 bits

• Back-to-back read and write operations 

• Write followed by read operations 

• Read followed by write operations 

• All combinations of the Mode Register

• XST and Synplicity synthesis tools

• Verilog and VHDL

• With and without a testbench

• With or without a DCM
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Design Frequency Range

Unsupported Features
The RLDRAM II controller design does not support:

• Commands in successive clocks with a burst length of 2. The controller processes 
these commands with one extra clock latency. For example, a READ or WRITE 
sequence of commands, BL = 2, Configuration = Any, CIO/SIO.

Supported RLDRAM II Devices
The RLDRAM II controller design supports the RLDRAM II devices from Micron indicated 
in Table 6-2. MIG generates the designs for the list of components mentioned in Table 6-2 in 
both VHDL and Verilog. The design generated out of MIG is independent of memory 
package, hence the package part of the memory component is replaced with XX, where XX 
indicates any package.

Table 6-1: Design Frequency Range in MHz

Memory

FPGA Speed Grade

-10 -11 -12

Min Max Min Max Min Max

Component (SIO/CIO) 175 200 175 230 175 250

Table 6-2: Supported RLDRAM II Devices

Device Make CIO/SIO Configuration Speed Grade
Supported Data 
Widths (in bits)

MT49H32M9FM Micron CIO x9 (-5), (-25), (-33) 9, 18, 36, 72

MT49H32M9BM Micron CIO x9 (-5), (-25), (-33) 9, 18, 36, 72

MT49H16M18FM Micron CIO x18 (-5), (-25), (-33) 18, 36, 72

MT49H16M18BM Micron CIO x18 (-5), (-25), (-33) 18, 36, 72

MT49H8M36FM Micron CIO x36 (-5), (-25), (-33) 36, 72

MT49H8M36BM Micron CIO x36 (-5), (-25), (-33) 36, 72

MT49H32M9CFM Micron SIO x9 (-5), (-25), (-33) 9, 18, 36, 72

MT49H32M9CBM Micron SIO x9 (-5), (-25), (-33) 9, 18, 36, 72

MT49H16M18CFM Micron SIO x18 (-5), (-25), (-33) 18, 36, 72

MT49H16M18CBM Micron SIO x18 (-5), (-25), (-33) 18, 36, 72
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Architecture
Figure 6-1 shows a top-level block diagram of the RLDRAM II memory controller. 

Figure 6-2 shows the hierarchical structure of the RLDRAM II design generated by MIG 
with a testbench and a DCM. 

The modules are classified as follows: 

• Design modules

• Testbench modules

• Clocks and reset generation modules

There is a parameter file generated with the design that has all the user input and design 
parameters selected from MIG. 

Figure 6-1: RLDRAM II Memory Controller Block Diagram

User
Application

RLDRAM II
CIO/SIO
Memory

UG086_c6_01_012007

Memory Controller

Infrastructure_top

Top
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MIG can generate four different RLDRAM II designs:

• With a testbench and a DCM 

• Without a testbench and with a DCM 

• With a testbench and without a DCM 

• Without a testbench and without a DCM

When the testbench is not generated by MIG, the <top_module> module has the user 
interface signals for designs without a testbench. The list of user interface signals is 
provided in Table 6-10.

Design clocks and resets are generated in the infrastructure_top module, which comprises 
clk_module and rld_rst modules. The DCM clock is instantiated in the clk_module module 
for designs with a DCM. The differential design clock is an input to this module, which 
generates the system clocks. A user reset is input to the rld_rst module, which generates 
the system resets. A 200 MHz differential clock for the IDELAYCTRL module is derived 
from 200 MHz differential clocks. This clock is present in the top-level module. 

The clk_module is not instantiated in the infrastructure_top module if the “DCM” option 
is not checked in MIG. So, the system operates on the user-provided clocks. The system 
reset is generated in the rld_rst module using the DCM_LOCK signal and the ready signal 
of the idelay control element.
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Figure 6-3 shows a block diagram representation of an RLDRAM II design with a DCM 
and a testbench. The design inputs are the system clocks and the user reset. sysReset_n is 
the system reset signal. All design resets are generated using the DCM_LOCKED signal, 
the sysReset_n signal, and the idelay_ctrl_rdy signal of the IDELAYCTRL element. The 
PASS_FAIL output signal indicates whether the design passes or fails. The init_done signal 
indicates the completion of initialization and calibration of the design. Required clocks and 
reset signals for the design are generated from the clk_module and the rld_rst modules, 
respectively. clk_module instantiates the DCM primitive. The Infrastructure_top module 
instantiates the clk_module and the rld_rst modules.

Figure 6-3: Top-Level Block Diagram of the RLDRAM II Design with a DCM and a Testbench
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Figure 6-4 shows a block diagram representation of the top-level RLDRAM II module 
without a DCM but with a testbench. Design inputs are the user clocks and the user reset. 
sysReset_n is the system reset signal. All design resets are generated using the 
DCM_LOCKED signal, the sysReset_n signal, and the idelay_ctrl_rdy signal of the 
IDELAYCTRL element. The design uses the user input clocks. These clocks should be 
single-ended. The user application must have a DCM primitive instantiated in the design, 
and all user clocks should be driven through BUFGs. The PASS_FAIL output signal 
indicates whether the design passes or fails. The init_done signal indicates the completion 
of initialization and calibration of the design.

Figure 6-4: Top-Level Block Diagram of the RLDRAM II Design without a DCM but with a Testbench
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Figure 6-5 shows a block diagram representation of the top-level RLDRAM II module with 
a DCM but without a testbench. Design inputs are the system clocks and reset. sysReset_n 
is the system reset signal. All design resets are generated using the DCM_LOCKED signal, 
the sysReset_n signal, and the idelay_ctrl_rdy signal of the IDELAYCTRL element. User 
must drive the user application signals. The design provides the clkGlob_tb and 
rstHard_tb signals to the user to synchronize the user application signals with the design. 
The required clocks and reset signals for the design are generated from the clk_module and 
the rld_rst modules, respectively. clk_module instantiates the DCM primitive. The 
infrastructure_top module instantiates the clk_module and rld_rst modules. The Init_done 
signal indicates the completion of initialization and calibration of the design.

Figure 6-5: Top-Level Block Diagram of the RLDRAM II Design with a DCM but without a Testbench
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Figure 6-6 shows a block diagram representation of the top-level RLDRAM II module 
without a DCM or a testbench. Design inputs are the user clocks and the user reset. 
sysReset_n is the system reset signal. All design resets are generated using the 
DCM_LOCKED signal, the sysReset_n signal, and the idelay_ctrl_rdy signal of the 
IDELAYCTRL. The design uses the user input clocks, which should be single-ended. The 
user application must have a DCM primitive instantiated in the design, and all user clocks 
should be driven through BUFGs. User must drive the user application signals. The design 
provides the clkGlob_tb and rstHard_tb signals to the user to synchronize the user 
application signals with the design. The Init_done signal indicates the completion of 
initialization and calibration of the design. 

Figure 6-6: Top-Level Block Diagram of the RLDRAM II Design without a DCM or a Testbench
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The RLDRAM II memory controller processes the user commands to generate the 
RLDRAM II interface signals. The RLDRAM II memory controller has a built-in 
synthesizable testbench to generate all the RLDRAM commands. The built-in testbench 
enables simulation and validation of the design in hardware. To interface with the user 
application, the RLDRAM II memory controller must be separated from the built-in 
testbench. MIG generates designs with and without a testbench. The following parameters 
are selectable through the GUI: the type of the RLDRAM (SIO or CIO), the data width, the 
burst length, multiplexed or non-multiplexed address, memory component, and other 
configuration values. 

The design can use any selected banks of the Virtex-4 FPGAs. It can use different banks or 
the same banks for data, address, and control signals.

The HSTL_II_18 I/O standard is used for address, control, and data signals, and the 
DIFF_HSTL_II_DCI_18 I/O standard is used for clock signals.

Similar to other DRAM architectures, the RLDRAM II requires its entire content to be 
refreshed periodically. The AREF command initiates a refresh for the device and must be 
used each time a refresh is required. The RLDRAM II memory controller has an option to 
enable the execution of auto-refresh commands periodically. If this option is OFF, the user 
has to provide the auto-refresh commands at regular intervals. 

Implemented Features
This section provides details on the supported features of the RLDRAM II controller.

Address Multiplexing

The RLDRAM II memory controller supports multiplexed and non-multiplexed address 
modes. Bit A5 of the Mode Register determines whether the address mode is multiplexed 
(A5 = 1) or non-multiplexed (A5 = 0). In multiplexed address mode, the address is 
provided to the RLDRAM II memory in two cycles, which are latched into the memory on 
two consecutive rising clock edges. The advantage of this approach is a maximum of 11 
address bits are required to control the RLDRAM II memory.

In multiplexed address mode, the controller outputs an 11-bit address. The user has to 
properly connect the addresses to the RLDRAM II devices. Table 6-3 provides the address 
mapping between the controller and the RLDRAM II devices for the multiplexed address 
mode.

CIO/SIO

The RLDRAM II memory controller supports both CIO and SIO memory components. The 
GUI provides an option to select the required memory components. The separate 
RLDRAM I/O interface transfers two 18-bit or 9-bit data words per clock cycle at the I/O 
balls. The read port has dedicated data outputs to support read operations, while the write 
port has dedicated input balls to support write operations. Output data is referenced to the 

Table 6-3: Address Mapping in Multiplexed Address Mode

Address Address Mapping

Output 
Address A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

RLDRAM II 
Address A0 A3 A4 A5 A8 A9 A10 A13 A14 A17 A18

http://www.xilinx.com


224 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 6: Implementing RLDRAM II Controllers
R

free-running output data clock. This architecture eliminates the need for high-speed bus 
turnarounds.

Data Capture Using the Direct Clocking Technique

The read data from the RLDRAM II is captured using the Direct clocking technique. In this 
technique, data is delayed and center-aligned with respect to the internal FPGA clock. In 
this scheme, the internal FPGA clock captures the read data. The clock/strobe transmitted 
from the memory determines the delay value for the associated data bits. As a result, there 
are no restrictions on the number of data bits associated with a strobe. Because the strobe 
does not need to be distributed to the associated data bits, no additional clocking resources 
are required. Refer to XAPP701 [Ref 17] for details on this technique.

Calibration is done in two stages:

1. In the first stage of calibration, QK is center-aligned with respect to the FPGA clock. 
QK is a free-running clock from RLDRAM II. The DQ data is edge-aligned with the QK 
read strobe, and the QVLD read data valid signal is edge-aligned with the QK read 
strobe. The first and second edges of the QK strobe are detected using the FPGA clock 
to determine the center of the QK window. 

Once the QK window is center-aligned with the FPGA clock, the same amount of delay 
(tap counts) is applied to the DQ through the IDELAY element, so that the DQ window 
is center-aligned with the FPGA clock. Signal qk_tap_sel_done in the tap_logic 
module indicates the status of the first stage calibration. When qk_tap_sel_done is 
asserted High, it indicates the completion of first stage calibration. After the first stage 
calibration is complete, the second stage calibration starts.

2. In the second stage of calibration, the write-enable signal for the read data FIFO is 
determined in order to store the read data from memory into the Read Data FIFO. 
QVLD from RLDRAM II is delayed such that it exactly aligns with the delayed DQ 
window. This delayed QVLD signal is used as the write-enable signal for the Read 
Data FIFO. 

The sel_done port in the data_path module indicates the status of the second stage 
calibration. When sel_done is asserted High, it indicates the completion of second 
stage calibration, which implies the completion of the whole initialization and 
calibration process. After the initialization and calibration is done (i.e., the init_done 
signal in design_top is asserted High), the controller can start issuing user commands 
to the memory.

When calibration is complete, the calibration_done signal is asserted High.

Memory Initialization

The RLDRAM II device must be powered up and initialized in a predefined manner. The 
controller handles the initialization sequence as described in this section.

After all power supply and reference voltages are stable and the master clock (RLD_CK 
and RLD_CK_N) is stable, the RLDRAM II device requires a 200 μs (minimum) delay prior 
to applying an executable command. After the 200 μs (minimum) delay has passed, three 
MODE REGISTER SET (MRS) commands are issued. For non-multiplexed addressing, two 
dummy commands and one valid MRS command are issued. For multiplexed addressing, 
four MODE REGISTER SET (MRS) commands are issued, consisting of two dummy 
commands and two valid MRS commands.

Six clock cycles (tMRSC) after the valid MRS commands, eight AUTO REFRESH commands 
are issued, one on each bank, separated by 2048 cycles.
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Initialization is complete after tRC. The number of clock cycles (tRC) after auto refresh 
depends on the Mode Register configuration parameter. The RLDRAM II memory 
controller takes care of the tRC value for different configurations. The device is ready for 
normal operation as indicated by the init_done outputs to the application.

Block Diagram Description
Figure 6-7 shows a detailed block diagram of the RLDRAM II memory controller. The 
major blocks of the controller are described following the figure.

User Interface

The user interface of the RLDRAM II memory controller is a FIFO-based implementation. 
Three FIFOs are used: an Address FIFO, a Write Data FIFO, and a Read Data FIFO. The 
user interface also provides a configuration register and additional control signals.

Address FIFO 

This FIFO serves as the buffer for the user interface to store addresses corresponding to the 
read and write data as well as the user-controlled refreshes. All reads, writes, and user 
refreshes are scheduled in this FIFO. This synchronous FIFO is 26 bits wide and 16 words 
deep. Table 6-4 defines the configuration of the 26 bits.

Figure 6-7: Detailed Block Diagram of the RLDRAM II Memory Controller
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Table 6-4: Address FIFO Bit Configuration

Bit Configuration Description

25 User Refresh

24 Read/Write

[23:3] Memory Address bits A[20:0]

[2:0] Memory Bank Address bits BA[2:0]
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Write Data FIFO

The Write Data FIFO serves as a buffer for the user interface to store data to be written into 
memory. This synchronous FIFO is two times the memory data width plus the data mask 
(DM) width and is 15 words deep. For a burst length of two, each location in the Write Data 
FIFO comprises the required data. For a burst length of four, two locations in the Write 
Data FIFO comprise the required data. For a burst length of eight, four locations in the 
Write Data FIFO comprise the required data.

Table 6-5 defines the FIFO configuration for 36-bit data width using x36 memory 
components. 

Read Data FIFO

The Read Data FIFO serves as a buffer for the RLDRAM II memory controller to store data 
it has read from the memory. This synchronous FIFO is two times the width of the memory 
data width and 16 words deep. For x18 memory components, an 18-bit wide Base FIFO is 
used, and for x36 memory components, a 36-bit wide Base FIFO is used. Multiple Base 
FIFO instances are used to match the two times memory data width. For x18 components 
with a 36-bit data width, the Base Read FIFO width is 18 bits. Four Read FIFO instances are 
used to get two times the memory data width. For a burst length of two, each location in 
the Read Data FIFO constitutes the data read from the memory. For a burst length of four, 
two locations in the Read Data FIFO constitute the data read from the memory. For a burst 
length of eight, four locations in the Read Data FIFO constitute the data read from the 
memory. 

Table 6-6 defines the configuration of the Read Data FIFO for the selected memory data 
width of 36 bits.

Configuration Registers

This block provides an interface for the application to read from and write to the 
Configuration Registers. Table 6-7 shows the internal configuration register read and write 
details from the user interface. A 4-bit address from the user interface selects the internal 
controller register that is to be read or written. Eight bits can be read or written at a time to 
the selected register. 

Table 6-5: Write Data FIFO Bit Configuration for 36-bit Data Width

Bit Configuration Description

[73:72] Write Data Mask

[71:0] Write Data

Table 6-6: Read Data FIFO Bit Configuration for a 36-bit Data Width

 Bit Configuration Description

[71:0]  Read Data
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Auto refresh is ON by default, making the RLDRAM II memory controller send AREF 
commands to the memories at the required intervals. The user can turn auto refresh OFF 
via the confCycRef bit (an internal configuration bit that the user can update and read 
through the configuration read/write access port). In this case, the user is responsible for 
issuing USER REFRESH commands at required intervals.

The burst length can be changed from the GUI through the Mode Register settings or 
programmed from the user interface. 

Clock Generator 

This block generates all the required clocks for the RLDRAM II memory controller by 
using a DCM. The two clock phases output are 0 degrees and 90 degrees. The 200 MHz 
reference clock buffer is included in this module. This clock goes to all IDELAYCTRL 
primitives.

Reset Generator

This block generates different reset signals. It also performs the initialization and 
configuration (MRS) of the RLDRAM II memories.

Control Logic

The logic in this block controls NOP, READ, WRITE, and USER REFRESH operations with 
the memories. The RLDRAM II memory controller is triggered with data in the Address 
FIFO. Bit 24 of the Address FIFO discriminates between read and write commands. Bit 25 
is the USER REFRESH command. If the auto refresh bit is ON, the controller generates the 
AUTO REFRESH command periodically. The controller issues a read or a write grant only 
when there is no user refresh request command or no pending internal refresh request. If 
there is a pending refresh request, the RLDRAM II memory controller issues the read or the 
write grant after the refresh is done.

Table 6-7: Configuration Read/Write Details from the User Interface

ApConfA[3:0] 
(Address)

Register 
Selected

ApConfWr ApConfRd Description

0000 confMReg[7:0] High Low ApConfWrD[7:0] from the user interface is 
loaded into confMReg[7:0].

0000 confMReg[7:0] Low High confMReg[7:0] data is read into bits 
ApConfRdD[7:0].

0011 confRcCnt0[6:0] High Low ApConfWrD[6:0] from the user interface is 
loaded into register confRcCnt0[6:0].

0011 confRcCnt0[6:0] Low High confRcCnt0[6:0] data is read into bits 
ApConfRdD[6:0]

1010 confMReg[9:8] High Low ApConfWrD[1:0] from the user interface is 
loaded into confMReg[9:8].

1011 confCycRef High Low apConfWrD[0] from the user interface is 
loaded into register confCycRef.
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RLDRAM II Control Signal Physical Layer

This block has the pads that interface with the RLDRAM II data signals. A calibration 
circuit samples the QK/QK signals using the Virtex-4 ChipSync™ feature. The FPGA clock 
samples both the data and clock (for calibration) and the data itself to capture it in the same 
clock domain. Refer to XAPP701 [Ref 17] for more details.

RLDRAM II Interface Signals
Table 6-8 and Table 6-9 define the RLDRAM II system interface signals with and without a 
DCM, respectively.

Table 6-8: RLDRAM II System Interface Signals (with a DCM)

Signal Name Direction Description

sysClk_p, sysClk_n Input System clock input made up of differential clock pairs. This clock pair goes 
to a differential input buffer. The differential buffer output goes to the 
DCM input. The DCM generates the required clocks for the design.

When the Without DCM option is selected, this clock pair is not present.

CLK200_p, CLK200_n Input Differential clock used in the idelay_ctrl logic.

sysReset_n Input Active-Low reset to the RLDRAM II controller.

PASS_FAIL[2:0] Output This signal bus indicates the status the comparison between the read data 
compared with the corresponding write data.

001: INITIALIZATION STATE
010: PASS
100: FAIL

Init_done Output This signal is asserted when the design initialization and calibration is 
complete.

Table 6-9: RLDRAM II System Interface Signals (without a DCM)

Signal Name Direction Description

CLKGLOB Input Input clock

CLK90 Input Input clock with a 90° phase difference

CLK_200 Input 200 MHz clock for Idelayctrl primitives

DCM_LOCKED Input This active-High signal indicates whether the user DCM is locked or not

sysReset_n Input Active-Low reset to the RLDRAM II controller

PASS_FAIL[2:0] Output This signal bus indicates the status the comparison between the read data 
compared with the corresponding write data.

001: INITIALIZATION STATE
010: PASS
100: FAIL

Init_done Output This signal is asserted when the design initialization and calibration is 
complete
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Table 6-10 describes the RLDRAM II user interface signals.

Table 6-10: RLDRAM II User Interface Signals (without a Testbench)

Signal Name Direction Description

rlWdfFull Output Almost full status signal for the Write Data FIFO. When this signal is asserted, 
the user can write three more data words into the FIFO. 

rlafFull Output Almost full status signal for the Address FIFO. When this signal is asserted, the 
user can write two more data words into the FIFO.

rlafEmpty Output Empty status signal for the Address FIFO

rlRdfEmpty Output Empty status signal for the Read Data FIFO

rlWdfEmpty Output Empty status signal for the Write Data FIFO

apAddr[25:0] Input Address FIFO data input. This bus consists of the user-defined bank address, the 
address, the WRITE/READ command, and the user-defined REFRESH 
command.

apValid Input Address FIFO write-enable signal

apWriteDValid Input Write Data FIFO write-enable signal

apConfA[3:0] Input Address bus for the Configuration registers

apConfWrD[7:0] Input Write data for the Configuration registers 

apConfRd Input Read enable for the Configuration registers

apConfRdD[7:0] Output Read data for the Configuration registers

apConfWr Input Write data valid for the Configuration registers 

apRdfRdEn Input Read enable for the Read Data FIFO

BurstLength[1:0] Output Indicates the number of bursts that can be written to or read from the memory:

00: Burst length = 2
01: Burst length = 4
10: Burst length = 8

rldReadData[(2*n)-1:0] Output Read data from the memory, where n is the data width of the design. This read 
data is stored in the Read Data FIFOs and can be read from the FIFOs depending 
upon the status of the FIFOs.

apWriteData[(2*n)-1:0] Input Write data to be written into the memory, where n is the data width of the design. 
This data is stored in the Write Data FIFO and is written into the memory 
depending upon the controller status (write command).

apWriteDM[m-1:0] Input Data mask of the write data, where m is the number of data mask bits associated 
with the write data width.

clkGlob_tb Output clkGlob clock input. All the corresponding signals must be synchronized with 
clkGlob_tb.

rstHard_tb Output Active-Low system reset for the user interface, synchronous with clkGlob_tb.

Init_Done_tb Output When asserted, this signal indicates that memory initialization is complete.

issueMRS_tb Input A pulse on this input makes the controller program the Mode Register into the 
memory. This signal is synchronous with clkGlob. (At power-up, MRS is done as 
part of the initialization.)

Notes: 
1. All user interface signal names are prepended with a controller number, for example, cntrl0_apWriteData. RLDRAM II devices 

currently support only one controller.
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Table 6-11 describes the RLDRAM II memory interface signals.

User Command Interface
The current implementation supports commands that come in successive clocks with one 
extra clock latency.

User Interface Accesses
The user backend logic communicates with the memory controller through a FIFO-based 
user interface. This interface consists of three related buses: 

• A Command/Address FIFO bus accepts write/read commands as well as the 
corresponding memory address from the user

• A Write Data FIFO bus accepts the corresponding write data when the user issues a 
write command on the command/address bus

• A Read bus on which the corresponding read data for an issued read command is 
returned

The user interface has the following timing and signaling restrictions:

• Commands and write data cannot be written by the user until calibration is complete 
(as indicated by init_done). In addition, the apvalid and app_wdf_wren interface 
signals need to be held Low until calibration is complete.

Table 6-11: RLDRAM II Memory Interface Signals

Signal Name Direction Description

RLD2_DQ (CIO) Input/
Output

Data input/outputs. During READ commands, the data is captured using 
the FPGA clock. During WRITE commands, the data is sampled on both 
edges of DK.

RLD2_D (SIO) Output Write data

RLD2_Q (SIO) Input Read data

RLD2_A Output Row and column addresses for READ and WRITE operations. During a 
MODE REGISTER SET command, the address inputs define the register 
settings.

RLD2_BA Output These bank addresses select the internal bank to which to apply 
commands.

RLD2_WE_N Output Write-enable command

RLD2_REF_N Output REFRESH command

RLD2_CS_N Output Chip-select command

RLD2_DM Output Data mask signals for the write data

RLD2_QVLD Input Data valid signals transmitted by the RLDRAM II devices. They indicate 
valid read data.

RLD2_QK, RLD2_QK_N Input Differential read data clocks. These clocks are transmitted by the RLDRAM 
II devices and are edge-aligned with the read data.

RLD2_DK, RLD2_DK_N Output Differential write data clocks.

RLD2_CK, RLD2_CK_N Output Master differential clocks for addresses and commands.
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• When issuing a write command, the first write data word must be written to the Write 
Data FIFO either prior to or on the same clock cycle as the write command is issued. 
In addition, the write data must be written by the user over consecutive clock cycles; 
there cannot be a break between words. These restrictions arise from the fact that the 
controller assumes write data is available when it receives the write command from 
the user.

Write Interface
Figure 6-8 shows the user interface block diagram for write operations. 

The following steps describe the architecture of the Address and Write Data FIFOs and 
show how to perform a write burst operation to RLDRAM II from the user interface.

1. The user interface consists of an Address FIFO and a Write Data FIFO. These FIFOs are 
constructed using the CORE Generator™ FIFO generator module. Address FIFO is a 
distributed RAM with 16 x 26 configuration. Data FIFO is a block RAM, with a depth 
of 16 locations and width equal to two times the Data width and Data Mask width 
together. 

2. The Common Address FIFO is used for both write and read commands, and comprises 
a command part and an address part. Command bits discriminate between write and 
read commands. 

3. User interface data width apwritedata is twice that of the memory data width. For 
every memory component there is a mask bit. For 9-bit memory width, the user 
interface is 20 bits consisting of rising-edge data, falling-edge data, rising-edge mask 
bit, and falling-edge mask bit.

4. For a 9-bit memory component with 72-bit data, the user interface data width 
apwritedata is 144 bits, and the mask data apwritedm is 8 bits.

5. The user can initiate a write to memory by writing to the Address FIFO and the Write 
Data FIFO when the FIFO Full flags are deasserted and after the init_done signal is 

Figure 6-8: User Interface Block Diagram for Write Operations
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asserted. Status signal rlaffull is asserted when Address FIFO is full, and similarly 
rlwdffull is asserted when Write Data FIFO is full.

6. Both the Address FIFO and Write Data FIFO Full flags are deasserted with power-on.

7. The user should assert the Address FIFO write-enable signal apvalid along with 
address apaddr to store the write address and write command into the Address FIFO.

8. The user should assert the Data FIFO write-enable signal apwritedvalid along with 
write data apwritedata and mask data apwritedm to store the write data and mask 
data into the Write Data FIFO. The user should provide both rise and fall data together 
for each write to the Data FIFO.

9. The controller reads the Address FIFO by issuing the ctlafrden signal. The controller 
reads the Write Data FIFO by issuing the ctlwdfrden signal after the Address FIFO is 
read. It decodes the command part after the Address FIFO is read.

10. The write command timing diagram in Figure 6-9 is derived from the MIG-generated 
test bench. As shown (burst length of 4), each write to the Address FIFO must be 
coupled with two writes to the Data FIFO. Similarly, for a burst length of 8, every write 
to the Address FIFO must be coupled with four writes to the Data FIFO. Failure to 
follow this rule can cause unpredictable behavior.

Note: The user can start filling the Write Data FIFO two clocks after the Address FIFO is 
written, because there is a two-clock latency between the command fetch and reading the Data 
FIFO. Using the terms shown in Figure 6-9, therefore, the user can assert the A0 address two 
clocks before D0D1.

11. The write command timing diagram in Figure 6-10, page 233 is derived from the MIG-
generated test bench. As shown (burst length of 8), each write to the Address FIFO 
must be coupled with four writes to the Data FIFO. Because the controller first reads 
the address and command together, the address need not coincide with the last data. 
After the command is analyzed (nearly two clocks later for a worst-case timing 
scenario), the controller sequentially reads the data in four clocks. Thus, there are six 
clocks from the time the address is read to the time the last data is read.

Figure 6-9: RLDRAM II Write Burst Timing Diagram (BL = 4), Four Bursts
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Read Interface
Figure 6-11 shows a block diagram of the read interface.

The following steps describe the architecture of the Read Data FIFOs and show how to 
perform a burst read operation from RLDRAM II from the user interface. 

1. The read user interface consists of an Address FIFO and a Read Data FIFO. The 
Address FIFO is common to both read and write operations. The Read Data FIFOs are 
constructed using the CORE Generator FIFO generator module. The Read Data FIFO is 
a Distributed RAM with depth of 16 locations and width equal to two times the 

Figure 6-10: RLDRAM II Write Burst Timing Diagram (BL = 8), Two Bursts
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Figure 6-11: User Interface Block Diagram for Read Operations
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memory device width, consisting of rising-edge data and falling-edge data. For 
example, for a 9-bit memory component, the Read Data FIFO configuration is 16 x 18. 
MIG instantiates a number of Read Data FIFO modules depending on the QK signal 
width of the design. For example, for 9-bit memory component and 72-bit data width 
designs, MIG instantiates a total of nine Read Data FIFO modules.

2. The user can initiate a read to memory by writing to the Address FIFO when the FIFO 
Full flag rlaffull is deasserted and after init_done is asserted. 

3. To write the read address and read command into the Address FIFO, the user should 
issue the Address FIFO write-enable signal apvalid along with read address apaddr.

4. The controller reads the Address FIFO containing the address and command. After 
decoding the command, the controller generates the appropriate control signals to 
memory.

5. Prior to the actual read and write commands, the design calibrates the latency (number 
of clock cycles) from the time the read command is issued to the time data is received. 
Using this pre-calibrated delay information, the controller generates the write-enable 
signals to the Read Data FIFOs.

6. The rlrdfempty signal is deasserted when data is available in the Read Data FIFOs.

7. The user can read the read data from the Read Data FIFOs by asserting aprdfrden to 
High.

8. Figure 6-12 shows the user interface timing diagram for a burst length of 8. The read 
latency is calculated from the point when the read command is given by the user to the 
point when the rlrdfempty signal is deasserted. The minimum latency in this case is 
21 clocks. Where no auto-refresh request is pending, the user commands are issued 
after initialization is completed, and the first command issued is a Read command. 
The controller executes the commands only after initialization is done, as indicated by 
the init_done signal.

9. After the address and command are loaded into the Address FIFO, it takes 21 clock 
cycles minimum for the controller to deassert the rlrdfempty signal.

10. Read data is available only when the rlrdfempty signal is deasserted. The user can 
access the read data by asserting the aprdfrden signal, a read enable signal to the Read 
Data FIFOs, to High.

Note: The RLDRAM controller does not check the status of the Read Data FIFO, and can issue 
read commands even when the Read Data FIFO is full. The user must make this determination and 
ensure that read commands are not issued by the controller when the Read Data FIFO is full.

Figure 6-12: RLDRAM II Read Burst Timing Diagram (BL = 8), Two Bursts
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In general, read latency varies based on the following parameters:

• Configuration

• The number of commands already in the FIFO pipeline before the read command is 
issued

• Whether commands are interrupted when the periodic AUTO REFRESH command is 
issued

• Whether the user issues the commands before initialization is complete (if so, the 
latency cannot be determined)

• Board-level and chip-level propagation delays for both memory and FPGA

Refresh Commands 
The confCycRef bit controls the auto refresh functionality. The user can update or read this 
bit through the configuration read/write access port. If the confCycRef bit is set to one, 
auto refresh is ON, making the controller send AREF commands to the memories at the 
required intervals. To turn auto refresh OFF, the user clears the confCycRef bit. In this case, 
the user is responsible for issuing refresh commands.

MIG shows the check boxes listed in Table 6-13 when a bank is selected for an RLDRAM II 
design.

Table 6-12: Read Command Latency

Parameter
Number of 

Clocks
Description

User command to deassertion 
of the Address FIFO empty flag 1

When the read command is given to an 
empty FIFO, it takes one clock time to 
deassert the empty flag

Controller command reading 
and decoding time 3

The FIFO outputs the data one clock after 
the read command. Two clocks for 
decoding the command.

Command from the controller 
to the controller IOB’s output 3 Three-stage pipeline

RLDRAM II command to read 
data latency (max) 8 RLDRAM II worst-case latency

Read data from the IOB to 
dq_iob 2 Two-stage pipeline from IOB to dq_iob

dq_iob output to Read Data 
FIFO input 2 Two-stage pipeline

Read Data FIFO input to Read 
Data FIFO output 2 One clock for deassertion of empty signal, 

and one clock for outputting the data

Total Latency 21 Total of all latencies
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When the Address box is checked in a particular bank, the bank address, the address, the 
WE_N, the REF_N, and the CS_N bits are assigned to that particular bank.

When the Data box is checked in a particular bank for a CIO design, the memory data, the 
memory data mask, the memory data valid (QVLD), the memory read clock, the memory 
write clock, the memory address, and the command clock bits are assigned to that 
particular bank.

When the Data_Write box is checked in a particular bank for an SIO design, the memory 
data write, the memory data mask, and the memory write clock bits are assigned to that 
particular bank.

When the Data_Read box is checked in a particular bank for an SIO design, the memory 
data read, the memory data valid (QVLD), the memory read clock, the memory address, 
and the command clock bits are assigned to that particular bank.

When the System Control box is checked in a particular bank, the sysReset_n, the 
PASS_FAIL, and the Init_done bits are assigned to that particular bank.

When the System_Clock box is checked in a particular bank, the sysClk_p, sysClk_n, 
CLK200_p, and CLK200_n bits are assigned to that particular bank.

For special cases, such as without a testbench and without a DCM, the corresponding 
input and output ports are not assigned to any FPGA pins in the design UCF because the 
user can connect these ports to the FPGA pins or can connect to some logic internal to the 
same FPGA.

Simulating the RLDRAM II Design
After generating the design, MIG creates a sim folder in the specified path. This folder 
contains simulation files for a particular design. The sim folder contains the external 
testbench, memory model, .do file, and the executable file to simulate the generated 
design. The memory model files are currently generated in Verilog only. To learn more 
details about the files in the sim folder and to simulate the design, see 
simulation_help.chm in the sim folder.

Table 6-13: RLDRAM II Signal Allocation

Bank Selected by 
Check Box

Signals Allocated in the Group 

Address Memory address and memory control

Data (CIO) Memory data, memory data mask, and memory clocks

Data_Write (SIO) Memory write data, memory data mask, and memory write clocks

Data_Read (SIO) Memory read data, memory QVLD, and memory read clocks

System Control System reset from the user interface and status signals

System_Clock System clocks from the user interface
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Hardware Tested Configurations
The frequencies shown in Table 6-14 were achieved on the Virtex-4 FPGA ML461 Memory 
Interfaces Development Board under nominal conditions. This frequency should not be 
used to determine the maximum design frequency. The maximum design frequency 
supported in the MIG wizard is based on a combination of the TRCE results for fabric 
timing on multiple device/package combinations and I/O timing analysis using FPGA 
and memory timing parameters for a 72-bit wide interface.

Table 6-14: Hardware Tested Configurations

FPGA Device XC4VLX25-FF668-11

Memory Component MT49H16M18XX-25

Data Bus Options CIO

Data Width 36

Configuration 1, 2, 3

Burst Length 2, 4, 8

Addressing Mode Multiplexing and Non-Multiplexing Addressing mode

Frequency 120 MHz to 330 MHz

Flow Vendors Synplicity and XST

Design Entry VHDL and Verilog
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Section III:  Spartan-3/3E/3A/3AN/3A DSP FPGA 
to Memory Interfaces

Chapter 7, “Implementing DDR SDRAM Controllers”

Chapter 8, “Implementing DDR2 SDRAM Controllers”
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Chapter 7

Implementing DDR SDRAM Controllers

This chapter describes how to implement DDR SDRAM interfaces for Spartan™-3, 
Spartan-3E, Spartan-3A, Spartan-3AN, and Spartan-3A DSP FPGAs. The designs are based 
on XAPP768c [Ref 23].

Feature Summary
The DDR SDRAM controller design supports the following:

• Burst lengths of two, four, and eight

• CAS latencies of 2, 2.5, and 3

• Sequential and interleaved burst types

• Auto refresh

• Spartan-3 FPGA maximum frequency:

♦ 133 MHz with a -4 speed grade device

♦ 166 MHz with a -5 speed grade device

• Spartan-3E FPGA maximum frequency:

♦ 133 MHz with a -4 speed grade device

♦ 166 MHz with a -5 speed grade device

• Spartan-3A, Spartan-3AN, and Spartan-3A DSP FPGA maximum frequency:

♦ 133 MHz with a -4 speed grade device

♦ 166 MHz with a -5 speed grade device

• Components, unbuffered DIMMs, registered DIMMs, and SODIMMs

• With and without a testbench

• With or without a DCM

• All Spartan-3, Spartan-3E, Spartan-3A, Spartan-3AN, and Spartan-3A DSP FPGAs

• Verilog and VHDL

• XST and Synplicity synthesis tools
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Design Frequency Ranges

Controller Architecture

DDR SDRAM Interface
High-speed memory interfaces are source-synchronous and double data rate. They 
transfer data on both edges of the clock cycle. A memory interface can be modularly 
represented as shown in Figure 7-1. Creating a modular interface has many advantages. It 
allows designs to be ported easily, and it also makes sharing parts of the design across 
different types of memory interfaces possible.

Table 7-1: Design Frequency Range in MHz

FPGA Family Memory

FPGA Speed Grade

-4 -5

Min Max Min Max

Spartan-3
Component 77 133 77 166(1)

DIMM 77 133 77 133

Spartan-3A/3AN/3A DSP
Component 77 133 77 166

DIMM 77 133 77 166

Spartan-3E
Component 77 133 77 166

DIMM (Not supported)

Notes: 
1. Spartan-3 devices support 133 MHz for data widths greater than 32 bits.

Figure 7-1: Modular Memory Interface Representation
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Hierarchy
Figure 7-2 shows the hierarchical structure of the DDR SDRAM design generated by MIG 
with a testbench and a DCM. In the figure, the physical and control layers are clearly 
separated. MIG generates the entire controller, as shown in this hierarchy, including the 
testbench. The user can replace the testbench with a design that makes use of the DDR 
SDRAM interface.

The modules are classified as follows: 

• Design modules

• Testbench modules

• Clocks, reset generation, and calibration modules

There is a parameter file generated with the design that has all the user input and design 
parameters selected from MIG. 

MIG can generate four different DDR SDRAM designs:

• With a testbench and a DCM 

• Without a testbench and with a DCM 

• With a testbench and without a DCM 

• Without a testbench and without a DCM

Figure 7-2: Hierarchical Structure of the DDR SDRAM Design with a Testbench
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For designs generated without a testbench, the testbench modules in Figure 7-2 are not 
present in the design. In this case, the user interface signals appear in the <top_module> 
module. The list of user interface signals is in Table 7-4.

The infrastructure_top module has the clock and the reset generation module of the 
design. It instantiates a DCM in the module when selected by MIG. The differential design 
clock is an input to this module. A user reset is also input to this module. Using the input 
clocks and reset signals, system clocks and system reset are generated in this module 
which is used in the design. Infrastructure_top also consists of calibration logic.

The DCM primitive is not instantiated in the infrastructure_top module if the Use DCM 
option is unchecked. Therefore, the system operates on the user-provided clocks. The 
system reset is generated in the infrastructure module using the DCM_LOCK input signal.

Figure 7-3 shows a block diagram representation of the top-level module of a DDR 
SDRAM design with a DCM and a testbench. SYS_CLK and SYS_CLKb are differential 
input system clocks. The DCM clock is instantiated in the infrastructure module that 
generates the required design clocks. reset_in_n is the active-Low system reset signal. All 
design resets are gated by the dcm_lock signal.

The cntrl0_led_error_output1 output signal indicates whether the test passes or fails. 
When set, this signal indicates that the test has failed. The testbench module does writes 
and reads, and also compares the read data with the written data. The 
cntrl0_data_valid_out signal indicates whether the read data is valid or not.

Figure 7-3: MIG Output of the DDR SDRAM Controller Design with a DCM and a Testbench
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Figure 7-4 shows a block diagram representation of the top-level module for a DDR 
SDRAM design with a DCM but without a testbench. SYS_CLK and SYS_CLKb are 
differential input system clocks. The DCM clock is instantiated in the infrastructure 
module that generates the required design clocks. reset_in_n is the active-Low system reset 
signal. All design resets are gated by the dcm_lock signal.

The user interface signals are listed in Figure 7-4. The design provides the clk_tb, clk90_tb, 
sys_rst_tb, sys_rst90_tb, and sys_rst180_tb signals to the user in order to synchronize with 
the design.

Figure 7-4: MIG Output of the DDR SDRAM Controller Design with a DCM but without a Testbench
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Figure 7-5 shows a block diagram representation of the top-level module for a DDR 
SDRAM design without a DCM or a testbench. The user should provide all the clocks and 
the dcm_lock signal. These clocks should be single-ended. reset_in_n is the active-Low 
system reset signal. All design resets are gated by the dcm_lock signal.

The user interface signals are listed in Figure 7-5. The design provides the clk_tb, clk90_tb, 
sys_rst_tb, sys_rst90_tb, and sys_rst180_tb signals to the user in order to synchronize with 
the design.

Figure 7-5: MIG Output of the DDR SDRAM Controller Design without a DCM or a Testbench
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Figure 7-6 shows a block diagram representation of the top-level module of a DDR 
SDRAM design without a DCM but with a testbench. The user should provide all the 
clocks and the dcm_lock signal. These clocks should be single-ended. reset_in_n is the 
active-Low system reset signal. All design resets are gated by the dcm_lock signal.

The cntrl0_led_error_output1 output signal indicates whether the test passes or fails. The 
testbench module does writes and reads, and also compares the read data with the written 
data. The cntrl0_led_error_output1 signal is driven High on data mismatches. The 
cntrl0_data_valid_out signal indicates whether the read data is valid or not.

All the memory device interface signals shown in Figure 7-3 through Figure 7-6 might not 
necessarily appear for all designs generated from MIG. For example, the 
cntrl0_DDR_RESET_N port appears in the port list for Registered DIMM designs only. 
Similarly, cntrl0_ddr_dm appears only for parts that have data mask signals. A few 
RDIMMs do not have data mask, and cntrl0_DDR_DM does not appear in the port list for 
these parts.

Figure 7-6: MIG Output of the DDR SDRAM Controller Design without a DCM but with a Testbench
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Figure 7-7 shows a detailed block diagram of the DDR SDRAM controller. All four blocks 
shown are sub-blocks of the ddr1_top module. The functionalities of these blocks are 
explained in following sections.

Controller
The controller module accepts and decodes user commands and generates read, write, and 
memory initialization commands. The controller also generates signals for other modules.

The memory is initialized and powered up using a defined process. The controller state 
machine handles the initialization process upon receiving an initialization command.

Datapath
This module transmits and receives data to and from the memories. Major functions 
include storing the read data and transferring write data and write enable to the IOBS 
module. The data_read, data_write, data_path_IOBs, and data_read_controller modules 
perform the actual read and write functions. For more information, refer to XAPP768c 
[Ref 23].

Data Read Controller
This module generates all control signals that are used for data_read.

Data Read
The data_read module contains the read datapaths for the DDR SDRAM interface. Details 
for this module are described in XAPP768c [Ref 23].

Data Write
This module contains the write datapath for the DDR SDRAM interface. The write data 
and write enable signals are forwarded together to the DDR SDRAM through IOB flip-
flops. The IOBs are implemented in the data_path_iobs module. 

Figure 7-7: Memory Controller Block Diagram
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Infrastructure_top
The infrastructure_top module generates the FPGA clock and reset signals. A DCM 
generates the clock and its inverted version. The calibration circuit is also implemented in 
this module. If there is no DCM, the clocks are driven from the user interface.

IOBs
All input and output signals of the FPGA are implemented in the IOB registers.

Interface Signals
Table 7-2 lists the DDR SDRAM interface signals, directions, and descriptions to and from 
DDR SDRAM controller. The signal direction is with respect to the DDR SDRAM 
controller. Active-Low polarity is indicated with _N appended to the signal name. 
Table 7-2 is common for designs with and without testbenches. The signal 
cntrl0_DDR_RESET_N is present only for registered DIMMs.

Table 7-3 lists the DDR SDRAM clock, reset, and status signals for designs with and 
without testbenches. Except for the contrl0_led_error_ouput1 signal, all other signals in 
Table 7-3 are present in designs either with or without testbenches. The 
contrl0_led_error_ouput1 signal is present only in designs with a testbench.

Table 7-2: DDR SDRAM Interface Signal Descriptions

Signal Name Signal Direction Description

cntrl0_DDR_A Output Address

cntrl0_DDR_DQ Input/Output Data

cntrl0_DDR_DQS Input/Output Data Strobe

cntrl0_DDR_RAS_N Output Command

cntrl0_DDR_CAS_N Output Command

 cntrl0_DDR_WE_N Output Command

 cntrl0_DDR_BA Output Bank Address

 cntrl0_DDR_CK Output Clock

cntrl0_DDR_CK_N Output Inverted Clock

cntrl0_DDR_CS_N Output Chip Select

cntrl0_DDR_CKE Output Clock Enable

cntrl0_DDR_DM Output Data Mask

cntrl0_DDR_RESET_N Output Reset
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Table 7-4 describes the DDR SDRAM controller user interface signals used between the 
ddr1_top (design top-level module) and user application modules in designs without a 
testbench. These signals are buried one level down the hierarchy from memory interface 
top for with testbench design. 

Table 7-3: DDR SDRAM Clock, Reset, and Status Signals

Signal Name Direction Description

SYS_CLK and SYS_CLKb Input These signals are the system clock differential signals. They are 
driven from the user application for designs with DCMs. These two 
signals are given to a differential buffer, and the output of the 
differential buffer is connected to a clock’s DCM. The DCM 
generates the required clocks to the design modules. These signals 
are not present when the design is generated without a DCM. When 
there is no DCM, the user application should drive the required 
clocks to the design.

clk_int and clk90_int Input These signals are the design clocks used in all modules. These clocks 
are to be driven from the user application only when the DDR 
SDRAM controller is generated without a DCM. These two clocks 
should be generated from the same source (DCM output) with a 90° 
phase shift. 

reset_in_n Input This signal is the system reset signal. By default, this signal is active 
Low. The parameter file contains a parameter called 
RESET_ACTIVE_LOW. An active-High reset input can be selected 
by changing this parameter to 0. 

cntrl0_led_error_ouput1 Output This signal is asserted when there is a read data mismatch with the 
write data. This signal is usually used to connect the LED on the 
hardware to indicate a data error.

cntrl0_data_valid_out Output This signal is asserted when there is valid read data in the read FIFO. 
The signal LED error output is generated when this signal is High 
and there is a data mismatch. This signal can be driven to a status 
LED on the hardware. 

cntrl0_rst_dqs_div_in Input This loopback signal is connected to the contrl0_rst_dqs_div_out 
signal on the board. Refer to XAPP768c [Ref 23] for the functionality 
of this signal.

cntrl0_rst_dqs_div_out Output This loopback signal is connected to the cntrl0_rst_dqs_div_in signal 
on the board. 

dcm_lock Input This signal is present only in designs without a DCM. 

cntrl0_init_done Output The DDR SDRAM controller asserts this signal to indicate that the 
DDR SDRAM initialization is complete.
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Table 7-4: DDR SDRAM Controller User Interface Signals (without a Testbench)

Signal Names Direction(1) Description

cntrl0_user_input_data[(2n–1):0] Input

This bus is the write data to the DDR SDRAM from the user 
interface, where n is the width of the DDR SDRAM data bus. 
The DDR SDRAM controller converts single data rate to double 
data rate on the physical layer side. The data is valid on the 
DDR SDRAM write command. In 2n, the MSB is rising-edge 
data and the LSB is falling-edge data.

cntrl0_user_data_mask[(2m–1):0] Input

This bus is the data mask for write data. Like user_input_data, 
it is twice the size of the data mask bus at memory, where m is 
the size of the data mask at the memory interface. In 2m, the 
MSB applies to rising-edge data and the LSB applies to falling-
edge data.

cntrl0_user_input_address
[(ROW_ADDRESS + 
COLUMN_ADDRESS + 
BANK_ADDRESS –1):0]

Input

This bus is the DDR SDRAM row, column, and bank address. 
This bus is the combination of row, column, and bank addresses 
for DDR SDRAM writes and reads. For example, for a given 
memory if row_address = 13, column_address = 11, 
bank_address = 2, and the user_input_address = 26, then:

• Bank Address from the user interface = A[1:0]
• Column Address from the user interface = A[12:2]
• Row Address part from the user interface = A[25:13]

cntrl0_user_command_register
[2:0] Input

Supported user commands for the DDR SDRAM controller:

cntrl0_burst_done Input

This signal is used to terminate a read or write command. This 
signal must be asserted after the last address for one clock for 
BL=2, two clocks for BL=4, and four clocks for BL =8. The DDR 
SDRAM controller supports write burst or read burst capability 
for a single row. The user must terminate the transfer on a 
column boundary and must re-initialize the controller for the 
next row of transactions on a column boundary. 

cntrl0_user_output_data
[(2n–1):0] Output

This is the read data from the DDR SDRAM. The DDR SDRAM 
controller converts the DDR data from the DDR SDRAM to 
SDR data. As the DDR data is converted to SDR data, the width 
of this bus is 2n, where n is data width of the DDR SDRAM data 
bus.

cntrl0_user_data_valid Output When asserted, this signal indicates 
cntrl0_user_output_data[(2n–1):0] is valid. 

user_command[2:0]  User Command Description

000 NOP

010 Memory (DDR SDRAM) initialization

100 Write

110 Read 

Others Reserved
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cntrl0_user_cmd_ack Output

This is the acknowledgement signal for a user read or write 
command. It is asserted by the DDR SDRAM controller during 
a write or read to/from the DDR SDRAM. The user should not 
issue any new commands to the controller until this signal is 
deasserted.

cntrl0_init_done Output The DDR SDRAM controller asserts this signal to indicate that 
the DDR SDRAM initialization is complete. 

cntrl0_auto_ref_req Output

This signal is asserted on every 7.7 µs. It is asserted until the 
controller issues an auto-refresh command to the memory. 
Upon seeing this signal, the user should terminate any ongoing 
command after completion of the current burst cycle by 
asserting the cntrl0_burst_done signal. To ensure reliable 
operation, users should terminate the current command within 
15 to 20 clock cycles after cntrl0_auto_ref_req is asserted. The 
frequency with which this signal is asserted is determined by 
the MAX_REF_CNT value in the parameter file. The 
MAX_REF_CNT value is set in the parameter file based on the 
frequency selected from the tool. 

cntrl0_ar_done Output

This indicates that the auto-refresh command was completed to 
DDR SDRAM. The DDR SDRAM controller asserts this signal 
for one clock after giving an auto-refresh command to the DDR 
SDRAM and completion of TRFC time. The TRFC time is 
determined by the rfc_count_value in the parameter file. TRFC 
is the minimum time required for the DDR SDRAM to 
complete the refresh command. The Refresh command is 
completed only after the assertion of the cntrl0_ar_done signal. 
The user can assert the next command any time after the 
assertion of the cntrl0_ar_done signal.

Notes: 
1. All of the signal directions are with respect to the DDR SDRAM controller.

Table 7-4: DDR SDRAM Controller User Interface Signals (without a Testbench) (Continued)

Signal Names Direction(1) Description
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Resource Utilization
A local inversion clocking technique is used in this design. The DCM generates only clk0 
and clk90. One DCM and two BUFGMUXs are used. The Spartan designs operate at 
166 MHz and below. 

DDR SDRAM Initialization
Before issuing the memory read and write commands, the controller initializes the DDR 
SDRAM using the memory initialization command. The user can give the initialization 
command only after all reset signals are deactivated. The controller is in the reset state for 
200 µs after power up. For design optimization, a 200 µs timer is generated from the refresh 
counter. The refresh timer is a function of frequency. Therefore, at lower frequencies, the 
200 µs timer waits more than 200 µs. Because wait200 happens only during the power-up 
sequence, design performance is not degraded. All resets are asserted for 200 µs because 
DDR SDRAM requires a 200 µs delay prior to applying an executable command after all 
power supply and reference voltages are stable. The controller asserts the clock enable to 
memory after 200 µs. 

All the load mode register parameters are taken from the Mode Register values in the 
parameter file. The user has to enter the load mode parameters from the GUI while 
generating the design from MIG. When the Init command is received from the user 
interface, the controller starts DDR SDRAM initialization. The controller then writes this 
data into the Load Mode Register. Once the DDR SDRAM is initialized, the DDR SDRAM 
controller asserts the init_done signal. 

Figure 7-8 shows the timing for the memory initialization command.

1. The user places the initialization command on user_command_register[2:0] on a 
falling edge of clk0 for one clock cycle. This starts the initialization sequence. 

2. The DDR SDRAM controller indicates that the initialization is complete by asserting 
the init_done signal on a falling edge of clk0. The init_done signal is asserted 
throughout the period. 

3. After init_done is asserted, the user can pass the next command at any time.

DDR SDRAM Write and Read Operations
In Spartan designs, prior to issuing a read or write operation, the user must assert the first 
address and command simultaneously and wait for a command acknowledge signal. The 
assertion time of the command acknowledge varies depending on the controller status. 
After the command acknowledge is asserted, the user waits for three clock cycles before 
sending the next address. This three clock cycle time is the Active to Command (tRCD) 
delay for a read or write command as defined in the memory specification. Subsequent 
addresses are sent once every two clock cycles for a burst length of four.

I

Figure 7-8: DDR SDRAM Initialization
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Write

Figure 7-9 shows the timing diagram for a write to DDR SDRAM with a burst length of 
four. The user initiates the write command by sending a Write command to the DDR 
SDRAM controller. To terminate a write burst, the user asserts the burst_done signal for 
two clocks after the last user_input_address. For a burst length of two, the burst_done 
signal should be asserted for one clock. For a burst length of four, the burst_done signal 
should be asserted for two clocks. For a burst length of eight, the burst_done signal should 
be asserted for four clock cycles.

The write command is asserted on the falling edge of clk0. In response to a write 
command, the DDR SDRAM controller acknowledges with the usr_cmd_ack signal on a 
falling edge of clk0. The usr_cmd_ack signal is generated in the next clock after the write 
command is asserted, if the controller is not busy. If there is an ongoing refresh command, 
the usr_cmd_ack signal is asserted after completion of the refresh command. The user 
asserts the first address (row + column + bank address) with the write command and 
keeps it asserted for three clocks after usr_cmd_ack assertion. Any subsequent write 
addresses are asserted on an alternate falling edge of clk0 after deasserting the first 
memory address. For a burst length of two, subsequent addresses are asserted on each 
clock cycle, and for a burst length of eight, subsequent addresses are asserted once every 
four clock cycles. The first user data is asserted on a rising edge of clk90 after usr_cmd_ack 
is asserted. As the SDR data is converted to DDR data, the width of this bus is 2n, where n 
is data width of DDR SDRAM data bus. 

For a burst length of four, only two data words (each of 2n) are given to the DDR SDRAM 
controller for each user address. For a burst length of two, one data word is passed for each 
burst. For a burst length of eight, four data words are passed for each burst. Internally, for 
Burst Length = 4, the DDR SDRAM controller converts into four data words, each of n bits. 
To terminate the write burst, the user asserts burst_done on a falling edge of clk0 for two 
clocks. The burst_done signal is asserted after the last memory address. Any further 
commands to the DDR SDRAM controller are given only after the usr_cmd_ack signal is 
deasserted. After burst_done is asserted, the controller terminates the burst and issues a 
precharge to the memory. The usr_cmd_ack signal is deasserted after completion of the 
precharge.

1. A memory write is initiated by issuing a write command to the DDR SDRAM 
controller. The write command must be asserted on a falling edge of clk0. 

Figure 7-9: DDR SDRAM Write Burst, Burst Lengths of Four and Two Bursts
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2. The DDR SDRAM controller acknowledges the write command by asserting the 
user_cmd_ack signal on a falling edge of clk0. The earliest this signal is asserted is one 
clock after the command. The maximum number of clock cycles it takes to assert 
cmd_ack signal depends on the refresh period.

3. The first user_input_address must be placed along with the command. The input data 
is asserted with the clk90 signal after the user_cmd_ack signal is asserted. 

4. The user asserts the first address (row + column + bank address) with the write 
command and keeps it asserted for three clocks after usr_cmd_ack assertion. The 
user_input_address signal is asserted on a falling edge of clk0. All subsequent 
addresses are asserted on alternate falling edges of clk0 for burst lengths of four, on 
each clock for burst lengths of two, and once in four clocks for burst lengths of eight.

5. To terminate the write burst, burst_done is asserted after the last user_input_address. 
The burst_done signal is asserted for two clock cycles with respect to the falling edge 
of clk0 for burst lengths of four. 

6. The user command is deasserted after burst_done is asserted.

7. The controller deasserts the user_cmd_ack signal after completion of precharge to the 
memory. The next command must be given only after user_cmd_ack is deasserted. 
Back-to-back write operations are supported only within the same bank and row.

Read

The user initiates a memory read with a read command to the DDR SDRAM controller. 
Figure 7-10 shows the memory read timing diagram for a burst length of four. 

The user provides the first memory address with the read command, and subsequent 
memory addresses upon receiving the usr_cmd_ack signal. Data is available on the user 
data bus with the user_data_valid signal. To terminate read burst, the user asserts the 
burst_done signal on a falling edge of clk0 for two clocks with the deassertion of the last 
user_input_address. The burst_done signal is asserted for one clock for burst lengths of 
two, two clocks for burst lengths of four, and four clocks for burst lengths of eight.

The read command flow is similar to the write command flow. 

1. A memory read is initiated by issuing a read command to the DDR SDRAM controller. 
The read command is accepted on a falling edge of clk0. 

Figure 7-10: DDR SDRAM Read, Burst Lengths of Four and Two Bursts
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2. The first read address must be placed along with the read command. In response to the 
read command, the DDR SDRAM controller asserts the user_cmd_ack signal on a 
falling edge of clk0. The usr_cmd_ack signal is asserted a minimum of one clock cycle 
after the read command is asserted. This signal is delayed if there is an ongoing refresh 
cycle, in which case it is asserted after the current refresh command completes.

3. The user asserts the first address (row + column + bank address) with the read 
command and keeps it asserted for three clocks after usr_cmd_ack is asserted. The 
user_input_address signal is then accepted on the falling edge of clk0. All subsequent 
memory read addresses are asserted on alternate falling edges of clk0 for burst lengths 
of four. The subsequent addresses are changed on every clock for burst lengths of two, 
on alternate clocks for burst lengths of four, and once in four clocks for burst lengths of 
eight.

4. The data on user_output_data is valid only when the user_data_valid signal is 
asserted. 

5. The data read from the DDR SDRAM is available on user_output_data, which is 
asserted with clk90. Because the DDR SDRAM data is converted to SDR data, the 
width of this bus is 2n, where n is the data width of the DDR SDRAMs. For a read burst 
length of four, the DDR SDRAM controller outputs only two data words with each 
user address. For a burst length of two, the controller outputs one data word, and for 
a burst length of eight, the controller outputs four data words.

6. To terminate the read burst, burst_done is asserted for two clocks on the falling edge of 
clk0. The burst_done signal is asserted after the last memory address.

7. The user command is deasserted after burst_done is asserted.

8. The controller deasserts the user_cmd_ack signal after completion of precharge to the 
memory. Any further commands to the DDR SDRAM controller should be given after 
user_cmd_ack is deasserted. Back-to-back read operations are supported only within 
the same bank and row. Approximately 17 clock cycles pass between the time a read 
command is asserted on the user interface and the time data becomes available on the 
user interface.

Auto Refresh
The DDR SDRAM controller does a memory refresh periodically. Every 7.7 µs, the 
controller raises an auto-refresh request. The user must terminate any ongoing commands 
within 15 to 20 clock cycles, when auto_ref_req flag is asserted. The user must assert the 
burst_done signal at the end of the current burst transaction when sensing the auto_ref_req 
flag for terminating the current transaction. The auto_ref_req flag is asserted until the 
controller issues a refresh command to the memory. The user must wait for completion of 
the auto-refresh command before giving any commands to the controller when 
auto_ref_req is asserted. 

The ar_done signal is asserted by the controller on completion of the auto-refresh 
command—i.e., after TRFC time. The ar_done signal is asserted with clk180 for one clock 
cycle.

The controller sets the MAX_REF_CNT value in the parameter file according to the 
frequency selected for a refresh interval (7.7 µs). The rfc_count_value value in the 
parameter file defines TRFC, the time between the refresh command to Active or another 
refresh command. 

After completion of the auto-refresh command, the next command can be given any time 
after ar_done is asserted.
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Changing the Refresh Rate
Change the global ̀ define (for Verilog) or constant (for VHDL) variable MAX_REF_CNT in 
mymodule_parameters_0.v (or .vhd) so that MAX_REF_CNT = (refresh interval in 
clock periods) = (refresh interval) / (clock period). For example, for a refresh rate of 7.7 µs 
with a memory bus running at 133 MHz:

MAX_REF_CNT = 7.7 µs / (clock period) = 7.7 µs / 7.5 ns = 1026 (decimal) = 0x402 

If the above value exceeds 2MAX_REF_WIDTH – 1, the value of MAX_REF_WIDTH must be 
increased accordingly in parameters_0.v (or .vhd) to increase the width of the counter 
used to track the refresh interval. 

Load Mode
MIG does not support the user LOAD MODE command. The mode register values from 
the parameter file are loaded into the Load Mode register during initialization. 

UCF Constraints
Some constraints are required to successfully create the design. The following examples 
explain the different constraints in the UCF.

Calibration Circuit Constraints

All LUTs in the matched delay circuits are constrained to specific locations in the device.

For example:

INST "infrastructure_top0/cal_top0/tap_dly0/l0" RLOC=X0Y6;
INST "infrastructure_top0/cal_top0/tap_dly0/l0" U_SET = 

delay_calibration_chain;
INST "infrastructure_top0/cal_top0/tap_dly0/gen_tap1[0].r" RLOC=X0Y6;
INST "infrastructure_top0/cal_top0/tap_dly0/gen_tap1[0].r" U_SET =

delay_calibration_chain;
INST "infrastructure_top0/cal_top0/tap_dly0/gen_tap1[1].r" RLOC=X0Y6;
INST "infrastructure_top0/cal_top0/tap_dly0/gen_tap1[1].r" U_SET =

delay_calibration_chain;

Data and Data Strobe Constraints

Data and data strobe signals are assigned to specific pins in the device; placement 
constraints related to the dqs_delay circuit and the FIFOs used for the data_read module 
are specified.

Example:

NET "cntrl0_DDR_DQS[0]" LOC = Y6;
INST "ddr1_top0/data_path0/data_read_controller0/gen_delay[0].dqs_delay_col0/one" 
LOC = SLICE_X0Y110;
INST "ddr1_top0/data_path0/data_read_controller0/gen_delay[0].dqs_delay_col0/one" 
BEL = F;
NET "cntrl0_DDR_DQ[0]" LOC = Y4;
INST "ddr1_top0/data_path0/data_read0/gen_strobe[0].strobe/fifo0_bit0" LOC = 
SLICE_X2Y111;

The I/O standards for all the memory interface signals are required to be specified.
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MAXDELAY Constraints

The MAXDELAY constraints define the maximum allowable delay on the net. Following 
are the list of MAXDELAY constraints used in Spartan FPGA designs in the UCF on 
different nets. The values provided here vary depending on FPGA family and the device 
type. Some values are dependent on frequency. The constraints shown here are from 
example_design. The hierarchy paths of the nets are different between 
example_design and user_design.

NET "infrastructure_top0/cal_top0/tap_dly0/tap[7]"  MAXDELAY =  350ps;
NET "infrastructure_top0/cal_top0/tap_dly0/tap[15]" MAXDELAY =  350ps;
NET "infrastructure_top0/cal_top0/tap_dly0/tap[23]" MAXDELAY =  350ps;

These constraints are used to minimize the tap delay inverter connection wire length. This 
delay should be minimized to calibrate the delay of a tap (LUT element) accurately. These 
values are independent of frequency and vary from family to family and device to device. 
Without these constraints, the tool might synthesize longer routes between the tap 
connections. Inappropriate delays in this circuit could cause the design to fail in hardware.

NET "main_00/top0/dqs_int_delay_in*" MAXDELAY = 675ps;

This constraint is used for the DQS nets from the I/O pad to the input of the LUT delay 
chain. Without this constraint, the nets take unpredictable delays that affect the Data Valid 
window. In Spartan designs, data is latched using the DQS signal. In order to latch the 
correct data, DQS is delayed using LUT delay elements to center-align with respect to the 
input read data. Incorrect data could be latched if the delays on this net are unpredictable. 
Unpredictable delays might also cause the design to have intermittent failures, which are 
difficult to debug in hardware.

NET "main_00/top0/dqs_div_rst" MAXDELAY = 460ps;

The net dqs_div_rst is the loopback signal. This signal is used as an enable for read data 
FIFOs and FIFO write pointers after it is delayed using the LUT delay elements. The 
overall delay on this net should be comparable with the delay on the DQS signal. This net 
is constrained to control the overall delay. Both the dqs_div_rst and DQS signals take 
similar paths. If the delay on the dqs_div_rst signal is higher, the first read data from 
memory might be missed.

NET 
"main_00/top0/data_path0/data_read_controller0/gen_delay*dqs_delay_col
*/delay*" MAXDELAY = 140ps;
NET 
"main_00/top0/data_path0/data_read_controller0/rst_dqs_div_delayed/
delay*"  MAXDELAY = 140 ps;

These constraints are required to minimize the wire delays between the LUT elements of a 
LUT delay chain that is used to delay the DQS and rst_dqs_div loopback signal. Higher 
wire delays between LUT delay elements can shift the data valid window, which in turn 
can cause incorrect data to be latched. Therefore, the MAXDELAY constraint is required for 
these nets.

NET "main_00/top0/data_path0/data_read_controller0/rst_dqs_div"  
MAXDELAY = 3383 ps;
NET "main_00/top0/data_path0/data_read0/fifo*_wr_en*"             
MAXDELAY = 3007ps;

These constraints are required because these paths are not constrained otherwise. The total 
delay on the rst_dqs_div and fifo_wr_en nets must not exceed the clock period. The total 
delay on both the nets is set to 85% of the clock period, leaving 15% as margin. These 
delays vary with frequency. 
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NET "main_00/top0/data_path0/data_read0/fifo*_wr_addr[*]"       
MAXDELAY =  5610ps;

The MAXDELAY constraint is required on FIFO write address because this path is not 
constrained otherwise. This is a single clock cycle path. It is set to 80% of the clock period, 
leaving 20% as margin because this net generally meets the required constraint.

I/O Banking Rules
There are I/O banking rules to be followed for I/O pin allocations, stating that the I/O 
signals allocated in a bank should adhere to compatible I/O standards. Refer to the “Rules 
Concerning Banks” section for additional information regarding I/O banking rules in 
DS099 [Ref 27] and DS312 [Ref 28].

Design Notes

Spartan-3/3E/3A/3AN/3A DSP Pin Allocation Rules
The pin allocation rules are different for top/bottom and left/right banks because of the 
local clock structure of Spartan FPGAs.

Pin Allocation Rules for Left/Right Banks

1. When a DQS is allocated, its associated DQ bits should be allocated within five tiles 
above and six tiles below the DQS tile.

2. The DQ bits should not be allocated in the DQS tile.

3. The rst_dqs_div signal should be placed in the center of the data bank.

Pin Allocation Rules for Top/Bottom Banks

1. All DQ bits corresponding to DQS are required to be placed to the right of its DQS tile.

2. All DQ bits corresponding to the DQS should be within five I/O tiles of the DQS tile.

3. A DQ bit should not be allocated in the same I/O tile where DQS is allocated.

Top/Bottom Bank Support

MIG does not support top/bottom banks for Spartan 3E/3A/3AN/3A DSP devices. For 
some I/O pads, the fabric slices are not located next to the IOBs. These I/O pads cannot be 
used for pin allocation. By excluding these I/O pins, there are not enough pins to allocate 
DQ and DQS signals according to the pin allocation rules. 
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Supported Devices
This section provides tables for the memory components supported by Spartan-3, 
Spartan-3A, Spartan-3AN, Spartan-3A DSP, and Spartan-3E devices.

The design generated out of MIG is independent of memory speed grade, hence the 
package part of the memory component is replaced with X, where X indicates a don't care 
condition. 

The tables below list the components (Table 7-5) and DIMMs (Table 7-6 through Table 7-8) 
supported by the tool for Spartan-3 FPGA DDR local clocking designs.

Table 7-5: Supported Components for DDR SDRAM Local Clocking 
(Spartan-3 FPGAs)

Components Packages (XX) Components Packages (XX)

MT46V32M4XX-5B - MT46V32M4XX-75 P,TG

MT46V64M4XX-5B BG,FG,P,TG MT46V64M4XX-75 FG,P,TG

MT46V128M4XX-5B BN,FN,P,TG MT46V128M4XX-75 BN,FN,P,TG

MT46V256M4XX-5B P,TG MT46V256M4XX-75 P,TG

MT46V16M8XX-5B TG,P MT46V16M8XX-75 P,TG

MT46V32M8XX-5B BG,FG,P,TG MT46V32M8XX-75 FG,P,TG

MT46V64M8XX-5B BN,FN,P,TG MT46V64M8XX-75 BN,FN,P,TG

MT46V128M8XX-5B - MT46V128M8XX-75 P,TG

MT46V8M16XX-5B TG,P MT46V8M16XX-75 P,TG

MT46V16M16XX-5B BG,FG,P,TG MT46V16M16XX-75 BG,FG,P,TG

MT46V32M16XX-5B BN,FN,P,TG MT46V32M16XX-75 -

MT46V64M16XX-5B - MT46V64M16XX-75 P,TG

Table 7-6: Supported Unbuffered DIMMs for DDR SDRAM Local Clocking 
(Spartan-3 FPGAs)

Unbuffered DIMMs Packages (X) Unbuffered DIMMs Packages (X)

MT4VDDT1664AX-40B G,Y MT8VDDT3264AX-40B G,Y

MT4VDDT3264AX-40B G,Y MT9VDDT3272AX-40B Y

Table 7-7: Supported Registered DIMMs for DDR SDRAM Local Clocking 
(Spartan-3 FPGAs)

Registered DIMMs Packages (X) Registered DIMMs Packages (X)

MT9VDDF3272X-40B G,Y MT18VDDF3272X-40B D,G,Y

MT9VDDF3272X-40B G,Y MT18VDDF12872X-40B DY,G,Y
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The tables below list the components (Table 7-9) and DIMMs (Table 7-10 through 
Table 7-12) supported by the tool for Spartan-3A/AN DDR local clocking designs.

Table 7-8: Supported SODIMMs for DDR SDRAM Local Clocking (Spartan-3 FPGAs)

SODIMMs Packages (X) SODIMMs Packages (X)

MT4VDDT3264HX-40B G,Y MT9VDDT3272HX-40B

MT4VDDT1664HX-40B Y MT9VDDT6472HX-40B G,Y

MT8VDDT3264HX-40B - MT9VDDT12872HX-40B -

MT8VDDT6464HX-40B DG,DY,G,Y

Table 7-9: Supported Components for DDR SDRAM Local Clocking (Spartan-3A/AN 
FPGAs)

Components Packages (XX) Components Packages (XX)

MT46V32M4XX-5B - MT46V32M4XX-75 P,TG

MT46V64M4XX-5B BG,FG,P,TG MT46V64M4XX-75 FG,P,TG

MT46V128M4XX-5B BN,FN,P,TG MT46V128M4XX-75 BN,FN,P,TG

MT46V256M4XX-5B P,TG MT46V256M4XX-75 P,TG

MT46V16M8XX-5B TG,P MT46V16M8XX-75 P,TG

MT46V32M8XX-5B BG,FG,P,TG MT46V32M8XX-75 FG,P,TG

MT46V64M8XX-5B BN,FN,P,TG MT46V64M8XX-75 BN,FN,P,TG

MT46V128M8XX-5B - MT46V128M8XX-75 P,TG

MT46V8M16XX-5B TG,P MT46V8M16XX-75 P,TG

MT46V16M16XX-5B BG,FG,P,TG MT46V16M16XX-75 BG,FG,P,TG

MT46V32M16XX-5B BN,FN,P,TG MT46V32M16XX-75 -

MT46V64M16XX-5B - MT46V64M16XX-75 P,TG

Table 7-10: Supported Unbuffered DIMMs for DDR SDRAM Local Clocking
(Spartan-3A/AN FPGAs)

Unbuffered DIMMs Packages (X) Unbuffered DIMMs Packages (X)

MT4VDDT1664AX-40B G,Y MT8VDDT3264AX-40B G,Y

MT4VDDT3264AX-40B G,Y

Table 7-11: Supported Registered DIMMs for DDR SDRAM Local Clocking 
(Spartan-3A/AN FPGAs)

Registered DIMMs Packages (X) Registered DIMMs Packages (X)

MT9VDDF3272X-40B G,Y MT9VDDF3272X-40B G,Y

Table 7-12: Supported SODIMMs for DDR SDRAM Local Clocking 
(Spartan-3A/AN FPGAs)

SODIMMs Packages (X) SODIMMs Packages (X)

MT4VDDT3264HX-40B G,Y MT8VDDT3264HX-40B -

MT4VDDT1664HX-40B Y MT8VDDT6464HX-40B DG,DY,G,Y
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The tables below list the components (Table 7-13) and DIMMs (Table 7-14 and Table 7-15) 
supported by the tool for Spartan-3A DSP DDR local clocking designs.

Table 7-13: Supported Components for DDR SDRAM Local Clocking 
(Spartan-3A DSP FPGAs)

Components Packages (XX) Components Packages (XX)

MT46V32M4XX-5B - MT46V32M4XX-75 P,TG

MT46V64M4XX-5B BG,FG,P,TG MT46V64M4XX-75 FG,P,TG

MT46V128M4XX-5B BN,FN,P,TG MT46V128M4XX-75 BN,FN,P,TG

MT46V256M4XX-5B P,TG MT46V256M4XX-75 P,TG

MT46V16M8XX-5B TG,P MT46V16M8XX-75 P,TG

MT46V32M8XX-5B BG,FG,P,TG MT46V32M8XX-75 FG,P,TG

MT46V64M8XX-5B BN,FN,P,TG MT46V64M8XX-75 BN,FN,P,TG

MT46V128M8XX-5B - MT46V128M8XX-75 P,TG

MT46V8M16XX-5B TG,P MT46V8M16XX-75 P,TG

MT46V16M16XX-5B BG,FG,P,TG MT46V16M16XX-75 BG,FG,P,TG

MT46V32M16XX-5B BN,FN,P,TG MT46V32M16XX-75 -

MT46V64M16XX-5B - MT46V64M16XX-75 P,TG

Table 7-14: Supported Unbuffered DIMMs for DDR SDRAM Local Clocking 
(Spartan-3A DSP FPGAs)

Unbuffered DIMMs Packages (X) Unbuffered DIMMs Packages (X)

MT4VDDT1664AX-40B G,Y MT8VDDT3264AX-40B G,Y

MT4VDDT3264AX-40B G,Y

Table 7-15: Supported SODIMMs for DDR SDRAM Local Clocking 
(Spartan-3A DSP FPGAs)

SODIMMs Packages (X) SODIMMs Packages (X)

MT4VDDT3264HX-40B G,Y MT8VDDT3264HX-40B -

MT4VDDT1664HX-40B Y MT8VDDT6464HX-40B DG,DY,G,Y
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Table 7-16 lists the components supported by the tool for Spartan-3E FPGA DDR local 
clocking designs.

Simulating the Spartan-3/3E/3A/3AN/3A DSP FPGA Design
After generating the design, MIG creates a sim folder in the specified path. This folder 
contains simulation files for the generated design. The sim folder contains the external 
testbench, memory model, .do file, and the executable file to simulate the generated 
design. The memory model files are currently generated in Verilog only. To learn more 
details about the files in the sim folder and to simulate the design, see 
simulation_help.chm in the sim folder.

Table 7-16: Supported Components for DDR SDRAM Local Clocking 
(Spartan-3E FPGAs)

Components Packages (XX) Components Packages (XX)

MT46V32M4XX-5B - MT46V32M4XX-75 P,TG

MT46V64M4XX-5B BG,FG,P,TG MT46V64M4XX-75 FG,P,TG

MT46V128M4XX-5B BN,FN,P,TG MT46V128M4XX-75 BN,FN,P,TG

MT46V256M4XX-5B P,TG MT46V256M4XX-75 P,TG

MT46V16M8XX-5B TG,P MT46V16M8XX-75 P,TG

MT46V32M8XX-5B BG,FG,P,TG MT46V32M8XX-75 FG,P,TG

MT46V64M8XX-5B BN,FN,P,TG MT46V64M8XX-75 BN,FN,P,TG

MT46V128M8XX-5B - MT46V128M8XX-75 P,TG

MT46V8M16XX-5B TG,P MT46V8M16XX-75 P,TG

MT46V16M16XX-5B BG,FG,P,TG MT46V16M16XX-75 BG,FG,P,TG

MT46V32M16XX-5B BN,FN,P,TG MT46V32M16XX-75 -

MT46V64M16XX-5B - MT46V64M16XX-75 P,TG
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Hardware Tested Configurations
The frequencies shown in Table 7-17 and Table 7-18 were achieved on the Spartan-3 FPGA 
Memory Interface Board and Spartan-3E FPGA Starter Kit, respectively, under nominal 
conditions. This frequency should not be used to determine the maximum design 
frequency. The maximum design frequency supported in the MIG wizard is based on a 
combination of the TRCE results for fabric timing on multiple device/package 
combinations and I/O timing analysis using FPGA and memory timing parameters for a 
64-bit wide interface.
 

Table 7-17: Hardware Tested Configurations for Spartan-3 FPGA DDR SDRAM 
Designs

Synthesis Tools XST 

HDL Verilog and VHDL

FPGA Device XC3S1500FG676-5

Burst Lengths 2 and 8

CAS Latency (CL) 2 and 2.5

64-bit Design Tested on 16-bit Component “MT46V16M16XX-75” 

64-bit DIMM “MT4VDDT3264AX”

Frequency Range 67 MHz to 170 MHz for CL = 2

40 MHz to 190 MHz for CL = 2.5

Table 7-18: Hardware Tested Configurations for Spartan-3E FPGA DDR SDRAM 
Designs

Synthesis Tools XST 

HDL Verilog and VHDL

FPGA Device XC3S500EFG320-4

Burst Lengths 2 and 4

CAS Latency (CL) 2 and 2.5

16-bit Design Tested on 16-bit Component “MT46V32M16XX-6T”

Frequency Range 80 MHz to 170 MHz for CL = 2

80 MHz to 170 MHz for CL = 2.5
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Chapter 8

Implementing DDR2 SDRAM Controllers

This chapter describes how to implement DDR2 SDRAM interfaces for Spartan™-3, 
Spartan-3E, Spartan-3A, Spartan-3AN, and Spartan-3A DSP FPGAs generated by MIG. 
This design is based on XAPP768c [Ref 23].

Feature Summary
The DDR2 SDRAM controller design supports:

• Burst lengths of four and eight

• Sequential and interleaved burst types

• CAS latency of 3

• Auto refresh

• Spartan-3 maximum frequency:

♦ 133 MHz with a -4 speed grade device

♦ 166 MHz with a -5 speed grade device

• Spartan-3E maximum frequency:

♦ 133 MHz with a -4 speed grade device

♦ 166 MHz with a -5 speed grade device

• Spartan-3A, Spartan-3AN, and Spartan-3A DSP maximum frequency:

♦ 133 MHz with a -4 speed grade device

♦ 166 MHz with a -5 speed grade device

• Components, unbuffered DIMMs, and registered DIMMs

• Verilog and VHDL

• XST and Synplicity synthesis tools

• With and without a testbench

• With or without a DCM
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Design Frequency Ranges

Controller Architecture

DDR2 SDRAM Interface
High-speed memory interfaces are source-synchronous and double data rate. They 
transfer data on both edges of the clock cycle. A memory interface can be modularly 
represented as shown in Figure 8-1. Creating a modular interface has many advantages. It 
allows designs to be ported easily, and it also makes sharing parts of the design across 
different types of memory interfaces possible.

Table 8-1: Design Frequency Range in MHz

FPGA Family Memory

FPGA Speed Grade

-4 -5

Min Max Min Max

Spartan-3
Component 125 133 125 166(1)

DIMM 125 133 125 133

Spartan-3E
Component 125 133 125 166

DIMM Not supported

Spartan-3A/3AN/3A DSP
Component 125 133 125 166

DIMM 125 133 125 166

Notes: 
1. Spartan-3 devices support 133 MHz for data widths greater than 32 bits.

Figure 8-1: Modular Memory Interface Representation
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Hierarchy
Figure 8-2 shows the hierarchical structure of the DDR2 SDRAM design generated by MIG 
with a testbench and a DCM. In the figure, the physical and control layers are clearly 
separated. MIG generates the entire controller, as shown in this hierarchy, including the 
testbench. The user can replace the testbench with a design that makes use of the DDR2 
SDRAM interface.

The modules are classified as follows: 

• Design modules

• Testbench modules

• Clocks, reset generation, and calibration modules

There is a parameter file generated with the design that has all the user input and design 
parameters selected from MIG. 

MIG can generate four different DDR2 SDRAM designs:

• With a testbench and a DCM 

• Without a testbench and with a DCM 

• With a testbench and without a DCM 

• Without a testbench and without a DCM

Figure 8-2: Hierarchical Structure of the Design
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For a design without a testbench (user_design), the shaded modules in Figure 8-2 are not 
present in the design. The <top_module> module has the user interface signals for designs 
without a testbench. The list of user interface signals is provided in Table 8-4.

The infrastructure_top module comprises the clock and the reset generation module of the 
design. It instantiates a DCM in the module when selected by MIG. The differential design 
clock is an input to this module. A user reset is also input to this module. Using the input 
clocks and reset signals, system clocks and system reset are generated in this module 
which is used in the design. Infrastructure_top also consists of calibration logic.

The DCM primitive is not instantiated in this module if the Use DCM option is unchecked. 
Therefore, the system operates on the user-provided clocks. The system reset is generated 
in the infrastructure module using the DCM_LOCK input signal.

Figure 8-3 shows a block diagram representation of the top-level module for a DDR2 
SDRAM design with a DCM and a testbench. SYS_CLK and SYS_CLKb are differential 
input system clocks. The DCM clock is instantiated in the infrastructure module that 
generates the required design clocks. reset_in_n is the active-Low system reset signal. All 
design resets are gated by the dcm_lock signal.

The cntrl0_led_error_output1 output signal indicates whether the case passes or fails. The 
testbench module does writes and reads, and also compares the read data with written 
data. The cntrl0_led_error_output1 signal is driven High on data mismatches. The 
cntrl0_data_valid_out signal indicates whether the read data is valid or not.

Figure 8-3: MIG Output of the DDR2 SDRAM Controller Design with a DCM and a Testbench
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Figure 8-4 shows a block diagram representation of the top-level module for a DDR2 
SDRAM design with a DCM but without a testbench. SYS_CLK and SYS_CLKb are 
differential input system clocks. The DCM clock is instantiated in the infrastructure 
module that generates the required design clocks. reset_in_n is the active-Low system reset 
signal. All design resets are gated by the dcm_lock signal.

The user interface signals are listed in Figure 8-4. The design provides the clk_tb, clk90_tb, 
sys_rst_tb, sys_rst90_tb, and sys_rst180_tb signals to the user in order to synchronize with 
the design.

Figure 8-4: MIG Output of the DDR2 SDRAM Controller Design with a DCM but without a Testbench
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Figure 8-5 shows a block diagram representation of the top-level module for a DDR2 
SDRAM design without a DCM or a testbench. The user should provide all the clocks and 
the dcm_lock signal. These clocks should be single-ended. reset_in_n is the active-Low 
system reset signal. All design resets are gated by the dcm_lock signal.

The user interface signals are listed in Figure 8-5. The design provides the clk_tb, clk90_tb, 
sys_rst_tb, sys_rst90_tb, and sys_rst180_tb signals to the user in order to synchronize with 
the design.

Figure 8-5: MIG Output of the DDR2 SDRAM Controller Design without a DCM or a Testbench
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Figure 8-6 shows a block diagram representation of the top-level module for a DDR2 
SDRAM design without a DCM but with a testbench. The user should provide all the 
clocks and the dcm_lock signal. These clocks should be single-ended. reset_in_n is the 
active-Low system reset signal. All design resets are gated by the dcm_lock signal.

The cntrl0_led_error_output1 output signal indicates whether the case passes or fails. The 
testbench module does writes and reads, and also compares the read data with the written 
data. The cntrl0_led_error_output1 signal is driven High on data mismatches. The 
cntrl0_data_valid_out signal indicates whether the read data is valid or not.

All the Memory Device interface signals that are shown in Figure 8-3 through Figure 8-6 
do not necessarily appear for all designs that are generated from MIG. For example, port 
cntrl0_ddr2_RESET_N appears in the port list only for Registered DIMM designs. 
Similarly, cntrl0_ddr2_DQS_N does not appear for single-ended DQS designs. Port 
cntrl0_ddr2_dm appears only for the parts that contain a data mask. A few RDIMMs do 
not have a data mask, and cntrl0_ddr2_dm does not appear in the port list for these parts.

Figure 8-6: MIG Output of the DDR2 SDRAM Controller Design without a DCM but with a Testbench
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Figure 8-7 shows a detailed block diagram of the DDR2 SDRAM controller. All four blocks 
shown are sub-blocks of the ddr2_top module. The functionality of these blocks is 
explained in following sections.

Controller
The controller module accepts and decodes user commands and generates read, write, 
memory initialization, and load mode commands. The controller also generates signals for 
other modules.

The memory is initialized and powered up using a defined process. The controller state 
machine handles the initialization process upon receiving an initialization command.

Datapath
This module transmits and receives data to and from the memories. Major functions 
include storing the read data and transferring write data and write enable to the IOBS 
module. The data_read, data_write, data_path_IOBs, and data_read_controller modules 
perform the actual read and write functions. For more information, refer to XAPP768c 
[Ref 23].

Data Read Controller
This module generates all control signals that are used for the data_read module.

Data Read
The data_read module contains the read datapaths for the DDR2 SDRAM interface. Details 
for this module are described in XAPP768c [Ref 23].

Data Write
This module contains the write datapath for the DDR2 SDRAM interface. The write data 
and write enable signals are forwarded together to the DDR2 SDRAM through IOB flip-
flops. The IOBs are implemented in the datapath_IOBs module. 

Figure 8-7: Memory Controller Block Diagram
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Infrastructure_top
The infrastructure_top module generates the FPGA clock and reset signals. A DCM 
generates the clock and its inverted version. The calibration circuit is also implemented in 
this module.

IOBs
All input and output signals of the FPGA are implemented in the IOBs.

Interface Signals
Table 8-2 shows the DDR2 SDRAM interface signals, directions, and descriptions. The 
signal direction is with respect to the DDR2 SDRAM controller. The cntrl0_ddr2_reset_n 
signal is present only for registered DIMMs, and the cntrl0_ddr2_dqs_n signal is present 
when DQS# Enable is selected in the Extended Mode register.

Table 8-2: DDR2 SDRAM Interface Signal Descriptions

Signal Name Signal Direction Description

cntrl0_DDR2_A Output Address

cntrl0_DDR2_DQ Input/Output Data

cntrl0_DDR2_DQS Input/Output Data Strobe

cntrl0_DDR2_DQS_N Input/Output Data Strobe

cntrl0_DDR2_RAS_N Output Command

cntrl0_DDR2_CAS_N Output Command

 cntrl0_DDR2_WE_N Output Command

 cntrl0_DDR2_BA Output Bank Address

 cntrl0_DDR2_CK Output Clock

cntrl0_DDR2_CK_N Output Inverted Clock

cntrl0_DDR2_CS_N Output Chip Select

cntrl0_DDR2_CKE Output Clock Enable

cntrl0_DDR2_DM Output Data Mask

cntrl0_DDR2_ODT Output On-Die Termination

cntrl0_DDR2_RESET_N Output Reset
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Table 8-3 describes the DDR2 SDRAM controller system interface signals. Except for the 
cntlr0_led_error_ouput1 signal, all other signals in Table 8-3 are present in designs either 
with or without testbenches. The cntrl0_led_error_ouput1 signal is present only in designs 
with a testbench.

Table 8-3: DDR2 SDRAM Controller System Interface Signals

Signal Names Direction Description

SYS_CLK and SYS_CLKb Input

These signals are the system clock differential 
signals. They are driven from the user 
application for designs with DCMs. These two 
signals are given to a differential buffer, and the 
output of the differential buffer is connected to 
a clock’s DCM. The DCM generates the required 
clocks to the design modules. These signals are 
not present when the design is generated 
without a DCM. When there is no DCM, the 
user application should drive the required 
clocks to the design.

reset_in_n Input

This is the system reset signal. By default, this 
signal is active Low. The parameter file contains 
a parameter called RESET_ACTIVE_LOW. An 
active-High reset input can be selected by 
changing this parameter to 0. 

cntrl0_led_error_ouput1 Output This signal is asserted when there is a read data 
mismatch with the write data. This signal is 
usually used to connect the LED on the 
hardware to indicate a data error.

cntrl0_data_valid_out Output This signal is asserted when there is valid read 
data in the read FIFO. The signal LED error 
output is generated when this signal is High 
and there is a data mismatch. This signal can be 
driven to a status LED on the hardware. 

cntrl0_rst_dqs_div_in Input This loopback signal is connected to the 
contrl0_rst_dqs_div_out signal on the board. 
Refer to XAPP768c [Ref 23] for the functionality 
of this signal.

cntrl0_rst_dqs_div_out Output This loopback signal is connected to the 
cntrl0_rst_dqs_div_in signal on the board. 

dcm_lock Input This signal is present only in designs without a 
DCM. 

cntrl0_init_done Output The DDR2 SDRAM controller asserts this signal 
to indicate that the DDR2 SDRAM initialization 
is complete.
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Table 8-4 describes the DDR2 SDRAM controller system interface signals in designs 
without a testbench.

Table 8-4: DDR2 SDRAM Controller User Interface Signals (without a Testbench)

Signal Names Direction(1) Description

cntrl0_user_input_data[(2n–1):0] Input

This bus is the write data to the DDR2 SDRAM from the user 
interface, where n is the width of the DDR2 SDRAM data bus. 
The DDR2 SDRAM controller converts single data rate to 
double data rate on the physical layer side. The data is valid 
on the DDR2 SDRAM write command. In 2n, the MSB is 
rising-edge data and the LSB is falling-edge data.

cntrl0_user_data_mask[(2m–1):0] Input

This bus is the data mask for write data. Like user_input_data, 
it is twice the size of the data mask bus at memory, where m is 
the size of the data mask at the memory interface. In 2m, the 
MSB applies to rising-edge data and the LSB applies to falling-
edge data.

cntrl0_user_input_address
[(ROW_ADDRESS + 
COLUMN_ADDRESS + 
BANK_ADDRESS – 1):0](2)

Input

This bus consists of the row address, the column address, and 
the bank address for DDR2 SDRAM writes and reads. The 
address sequence starting from the LSB is bank address, 
column address, and row address. 

cntrl0_user_command_register[2:0] Input

Supported user commands for the DDR2 SDRAM controller:

cntrl0_burst_done Input

This signal is used to terminate read or write command. This 
signal must be asserted after the last address for two clocks for 
BL=4 and for four clocks for BL =8. The DDR2 SDRAM 
controller supports write burst or read burst capability for a 
single row. The user must terminate the transfer on a column 
boundary and must re-initialize the controller for the next row 
of transactions on a column boundary. 

cntrl0_user_output_data[(2n–1):0] Output

This is the read data from the DDR2 SDRAM. The DDR2 
SDRAM controller converts the DDR data from the DDR2 
SDRAM to SDR data. As the DDR data is converted to SDR 
data, the width of this bus is 2n, where n is data width of the 
DDR2 SDRAM data bus.

cntrl0_user_data_valid Output When asserted, this signal indicates user_output_data[(2n–
1):0] is valid. 

user_command[2:0]  User Command Description

000 NOP

010 Initialize memory

100 Write Request

110 Read Request

Others Reserved
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cntrl0_user_cmd_ack Output

This is the acknowledgement signal for a user read or write 
command. It is asserted by the DDR2 SDRAM controller 
during a write or read to/from the DDR2 SDRAM. The user 
should not issue any new commands to the controller until 
this signal is deasserted.

cntrl0_init_done Output The DDR2 SDRAM controller asserts this signal to indicate 
that the DDR2 SDRAM initialization is complete. 

cntrl0_auto_ref_req Output

This signal is asserted on every 7.7 µs. It is asserted until the 
controller issues an auto-refresh command to the memory. 
Upon seeing this signal, the user should terminate any 
ongoing command after the current burst transaction by 
asserting the cntrl0_burst_done signal. The frequency with 
which this signal is asserted is determined by the 
MAX_REF_CNT value in parameter file. cntrl0_auto_ref_req 
indicates the refresh request to the memory, and 
cntrl0_ar_done indicates completion of the auto-refresh 
command.

cntrl0_ar_done Output

This indicates that the auto-refresh command was completed 
to DDR2 SDRAM. The DDR2 SDRAM controller asserts this 
signal for one clock after giving an auto-refresh command to 
the DDR2 SDRAM and completion of TRFC time. The TRFC 
time is determined by the rfc_count_value value in the 
parameter file. The user can assert the next command any time 
after the assertion of the cntrl0_ar_done signal.

Notes: 
1. All of the signal directions are with respect to the DDR2 SDRAM controller.

Table 8-4: DDR2 SDRAM Controller User Interface Signals (without a Testbench) (Continued)

Signal Names Direction(1) Description
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Resource Utilization
A local inversion clocking technique is used in this design. The DCM generates only clk0 
and clk90. One DCM and two BUFGMUXs are used. The Spartan designs operate at 
166 MHz and below. 

DDR2 SDRAM Initialization
Before issuing the memory read and write commands, the controller initializes the DDR2 
SDRAM using the memory initialization command. The user can give the initialization 
command only after all reset signals are deactivated. The controller is in the reset state for 
200 µs after power up. For design optimization, a 200 µs timer is generated from the refresh 
counter. The refresh timer is a function of frequency. Therefore, at lower frequencies, the 
200 µs timer waits more than 200 µs. Because wait200 happens only during the power-up 
sequence, design performance is not degraded. All resets are asserted for 200 µs because 
DDR2 SDRAM requires a 200 µs delay prior to applying an executable command after all 
power supply and reference voltages are stable. The controller asserts clock-enable to 
memory after 200 µs. 

Load mode parameters are to be selected from the GUI while generating the design. These 
parameters are updated by MIG in the parameter file. When the INIT command is 
executed, the DDR2 SDRAM controller passes these values to the Memory Load Mode 
register. When the DDR2 SDRAM is initialized, the DDR2 SDRAM controller asserts the 
init_done signal. 

Figure 8-8 shows the timing for the memory initialization command.

1. The user places the initialization command on user_command_register[2:0] on a 
falling edge of clk0 for one clock cycle. This starts the initialization sequence. 

2. The DDR2 SDRAM controller indicates that the initialization is complete by asserting 
the init_done signal on a falling edge of clk0. The init_done signal is asserted 
throughout the period. 

3. After init_done is asserted, the user can pass the next command at any time.

I

Figure 8-8: DDR2 SDRAM Initialization
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Write
Figure 8-9 shows the timing diagram for a write to DDR2 SDRAM for a burst length of 
four. The user initiates the write command by sending a Write instruction to the DDR2 
SDRAM controller. To terminate a write burst, the user asserts the burst_done signal for 
two clocks after the last user_input_address. The burst_done signal should be asserted for 
two clocks for burst lengths of four and four clocks for burst lengths of eight.

The write command is asserted on the falling edge of clk0. In response to a write 
command, the DDR2 SDRAM controller acknowledges with the usr_cmd_ack signal on a 
falling edge of clk0. If the controller is busy with a refresh, the usr_cmd_ack signal is not 
asserted until after the refresh command cycle completes. The user asserts the first address 
(row + column + bank address) with the write command and keeps it asserted for three 
clocks after usr_cmd_ack assertion. Any subsequent write addresses are asserted on 
alternate falling edges of clk0 after deasserting the first memory address for a burst length 
of four, and it is asserted once in four clocks for a burst length of eight. The first user data 
is asserted on a rising edge of clk90 after usr_cmd_ack is asserted. As the SDR data is 
converted to DDR data, the width of this bus is 2n, where n is data width of DDR2 SDRAM 
data bus. 

For a burst length of four, only two data words (each of 2n) are given to the DDR2 SDRAM 
controller for each user address, and four data words are given for a burst length of eight. 
Internally, the DDR2 SDRAM controller converts into four data words for a burst length of 
four and eight data words for a burst length of eight, each of n bits. To terminate the write 
burst, the user asserts burst_done on a rising edge of clk180 for two clocks for a burst 
length of four and four clocks for a burst length of eight. The burst_done signal is asserted 
after the last memory address. Any further commands to the DDR2 SDRAM controller are 
given only after the usr_cmd_ack signal is deasserted. After burst_done is asserted, the 
controller terminates the burst and issues a precharge to the memory. The usr_cmd_ack 
signal is deasserted after completion of the precharge.

1. A memory write is initiated by issuing a write command to the DDR2 SDRAM 
controller. The write command must be asserted on a falling edge of clk0. 

2. The DDR2 SDRAM controller acknowledges the write command by asserting the 
user_cmd_ack signal on a falling edge of clk0. The user_cmd_ack signal is asserted a 
minimum of one clock cycle after the write command is asserted. If the controller is 

Figure 8-9: DDR2 SDRAM Write Burst, Burst Lengths of Four and Two Bursts
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busy with a refresh, the usr_cmd_ack signal is not asserted until after the refresh 
command cycle completes.

3. The first user_input_address must be placed along with the command. The input data 
is asserted with the clk90 signal after the user_cmd_ack signal is asserted. 

4. The user asserts the first address (row + column +bank address) with the write 
command and keeps it asserted for three clocks after usr_cmd_ack assertion. The 
user_input_address signal is asserted on a falling edge of clk0. All subsequent 
addresses are asserted on alternate falling edges of clk0. 

5. To terminate the write burst, burst_done is asserted after the last user_input_address. 
The burst_done signal is asserted for two clock cycles.

6. The user command is deasserted after burst_done is asserted.

7. The controller deasserts the user_cmd_ack signal after completion of precharge to the 
memory. The next command must be given only after user_cmd_ack is deasserted. 
Back-to-back write operations are supported only within the same bank and row.

Read
The user initiates a memory read with a read command to the DDR2 SDRAM controller. 
Figure 8-10 shows the memory read timing diagram for a burst length of four. 

The user provides the first memory address with the read command, and subsequent 
memory addresses upon receiving the usr_cmd_ack signal. Data is available on the user 
data bus with the user_data_valid signal. To terminate read burst, the user asserts the 
burst_done signal on a falling edge of clk0 for two clocks with the deassertion of the last 
user_input_address. All subsequent addresses are asserted on alternate clocks for burst 
lengths of four, and subsequent addresses are asserted once every four clock cycles for 
burst lengths of eight.

For burst lengths of four, the burst_done signal is asserted for two clocks after the last 
address and for four clocks for burst lengths of eight.

The read command flow is similar to the write command flow. 

Figure 8-10: DDR2 SDRAM Read, Burst Lengths of Four and Two Bursts
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1. A memory read is initiated by issuing a read command to the DDR2 SDRAM 
controller. The read command is accepted on a falling edge of clk0. 

2. The first read address must be placed along with the read command. In response to the 
read command, the DDR2 SDRAM controller asserts the user_cmd_ack signal on a 
falling edge of clk0. The user_cmd_ack signal is asserted a minimum of one clock cycle 
after the read command is asserted. If the controller is busy with a refresh, the 
usr_cmd_ack signal is not asserted until after the refresh command cycle completes.

3. The user asserts the first address (row + column + bank address) with the read 
command and keeps it asserted for three clocks after usr_cmd_ack is asserted. The 
user_input_address signal is then accepted on the falling edge of clk0. All subsequent 
memory read addresses are asserted on alternate falling edges of clk0.

4. The data on user_output_data is valid only when the user_data_valid signal is 
asserted. 

5. The data read from the DDR2 SDRAM is available on user_output_data, which is 
asserted with clk90. Because the DDR2 SDRAM data is converted to SDR data, the 
width of this bus is 2n, where n is the data width of the DDR2 SDRAMs. For a read 
burst length of four, the DDR2 SDRAM controller outputs only two data words with 
each user address.

6. To terminate the read burst, burst_done is asserted for two clocks on the falling edge of 
clk0. The burst_done signal is asserted after the last memory address.

7. The user command is deasserted after burst_done is asserted.

8. The controller deasserts the user_cmd_ack signal after completion of precharge to the 
memory. Any further commands to the DDR2 SDRAM controller should be given after 
user_cmd_ack is deasserted. Back-to-back read operations are supported only within 
the same bank and row. Approximately 17 clock cycles pass between the time a read 
command is asserted on the user interface and the time data becomes available on the 
user interface.

Auto Refresh
The DDR2 SDRAM controller does a memory refresh periodically. Every 7.7 µs, the 
controller raises an auto-refresh request. The user must terminate any ongoing commands 
when auto_ref_req flag is asserted after the current burst transaction by asserting the 
burst_done signal. The auto_ref_req flag is asserted until the controller issues a refresh 
command to the memory. The user must wait for completion of the auto-refresh command 
before giving any commands to the controller when auto_ref_req is asserted. 

The ar_done signal is asserted by the DDR2 SDRAM controller upon completion of the 
auto-refresh command—i.e., after TRFC time. The ar_done signal is asserted on the falling 
edge of clk0 for one clock cycle.

The controller sets the MAX_REF_CNT value in the parameter file according to the 
frequency and selected memory component for a refresh interval (7.7 µs). The 
rfc_count_value setting in the parameter file defines TRFC, the time between the refresh 
command to Active or another refresh command.

After completion of the auto-refresh command, the next command can be given any time 
after ar_done is asserted.

Changing the Refresh Rate

Change the global ̀ define (for Verilog) or constant (for VHDL) variable MAX_REF_CNT in 
mymodule_parameters_0.v (or .vhd) so that MAX_REF_CNT = (refresh interval in 
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clock periods) = (refresh interval) / (clock period). For example, for a refresh rate of 7.7 µs 
with a memory bus running at 133 MHz:

MAX_REF_CNT = 7.7 µs / (clock period) = 7.7 µs / 7.5 ns = 1026 (decimal) = 0x402 

If the above value exceeds 2MAX_REF_WIDTH – 1, the value of MAX_REF_WIDTH must be 
increased accordingly in parameters_0.v (or .vhd) to increase the width of the counter 
used to track the refresh interval. 

Load Mode
MIG does not support the LOAD MODE command.

UCF Constraints
Some constraints are required to successfully create the design. The following examples 
explain the different constraints in the UCF for XST.

Calibration Circuit Constraints

All LUTs in the matched delay circuits are constrained to specific locations in the device.

Example:

INST "infrastructure_top0/cal_top0/tap_dly0/l0" RLOC=X0Y6;
INST "infrastructure_top0/cal_top0/tap_dly0/l0" U_SET =
delay_calibration_chain;

INST "infrastructure_top0/cal_top0/tap_dly0/gen_tap1[0].r" RLOC=X0Y6;
INST "infrastructure_top0/cal_top0/tap_dly0/gen_tap1[0].r" U_SET =
delay_calibration_chain;

INST "infrastructure_top0/cal_top0/tap_dly0/gen_tap1[1].r" RLOC=X0Y6;
INST "infrastructure_top0/cal_top0/tap_dly0/gen_tap1[1].r" U_SET =
delay_calibration_chain;

Data and Data Strobe Constraints

Data and data strobe signals are assigned to specific pins in the device; placement 
constraints related to the dqs_delay circuit and the FIFOs used for the data_read module 
are specified.

Example:

NET "cntrl0_DDR2_DQS[0]" LOC = Y6;
INST "ddr2_top0/data_path0/data_read_controller0/gen_delay[0].dqs_delay_col0/
one" LOC = SLICE_X0Y110;
INST "ddr2_top0/data_path0/data_read_controller0/gen_delay[0].dqs_delay_col0/
one" BEL = F;
NET "cntrl0_DDR2_DQ[0]" LOC = Y5;
INST "ddr2_top0/data_path0/data_read0/gen_strobe[0].strobe/fifo0_bit0" LOC = 
SLICE_X2Y111;

MAXDELAY Constraints

The MAXDELAY constraints define the maximum allowable delay on the net. Following 
are the list of MAXDELAY constraints used in Spartan FPGA designs in the UCF on 
different nets. The values provided here vary depending on FPGA family and the device 
type. Some values are dependent on frequency. The constraints shown here are from 
example_design. The hierarchy paths of the nets are different between 
example_design and user_design.
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NET "infrastructure_top0/cal_top0/tap_dly0/tap[7]"  MAXDELAY =  350ps;
NET "infrastructure_top0/cal_top0/tap_dly0/tap[15]" MAXDELAY =  350ps;
NET "infrastructure_top0/cal_top0/tap_dly0/tap[23]" MAXDELAY =  350ps;

These constraints are used to minimize the tap delay inverter connection wire length. This 
delay should be minimized to calibrate the delay of a tap (LUT element) accurately. These 
values are independent of frequency and vary from family to family and device to device. 
Without these constraints, the tool might synthesize longer routes between the tap 
connections. Inappropriate delays in this circuit could cause the design to fail in hardware.

NET "main_00/top0/dqs_int_delay_in*" MAXDELAY = 675ps;

This constraint is used for the DQS nets from the I/O pad to the input of the LUT delay 
chain. Without this constraint, the nets take unpredictable delays that affect the Data Valid 
window. In Spartan designs, data is latched using the DQS signal. In order to latch the 
correct data, DQS is delayed using LUT delay elements to center-align with respect to the 
input read data. Incorrect data could be latched if the delays on this net are unpredictable. 
Unpredictable delays might also cause the design to have intermittent failures, which are 
difficult to debug in hardware.

NET "main_00/top0/dqs_div_rst" MAXDELAY = 460ps;

The net dqs_div_rst is the loopback signal. This signal is used as an enable for read data 
FIFOs and FIFO write pointers after it is delayed using the LUT delay elements. The 
overall delay on this net should be comparable with the delay on the DQS signal. This net 
is constrained to control the overall delay. Both the dqs_div_rst and DQS signals take 
similar paths. If the delay on the dqs_div_rst signal is higher, the first read data from 
memory might be missed.

NET 
"main_00/top0/data_path0/data_read_controller0/gen_delay*dqs_delay_col
*/delay*" MAXDELAY = 140ps;
NET 
"main_00/top0/data_path0/data_read_controller0/rst_dqs_div_delayed/
delay*"  MAXDELAY = 140 ps;

These constraints are required to minimize the wire delays between the LUT elements of a 
LUT delay chain that is used to delay the DQS and rst_dqs_div loopback signal. Higher 
wire delays between LUT delay elements can shift the data valid window, which in turn 
can cause incorrect data to be latched. Therefore, the MAXDELAY constraint is required for 
these nets.

NET "main_00/top0/data_path0/data_read_controller0/rst_dqs_div"  
MAXDELAY = 3383 ps;
NET "main_00/top0/data_path0/data_read0/fifo*_wr_en*"             
MAXDELAY = 3007ps;

These constraints are required because these paths are not constrained otherwise. The total 
delay on the rst_dqs_div and fifo_wr_en nets must not exceed the clock period. The total 
delay on both the nets is set to 85% of the clock period, leaving 15% as margin. These 
delays vary with frequency. 

NET "main_00/top0/data_path0/data_read0/fifo*_wr_addr[*]"       
MAXDELAY =  5610ps;

The MAXDELAY constraint is required on FIFO write address because this path is not 
constrained otherwise. This is a single clock cycle path. It is set to 80% of the clock period, 
leaving 20% as margin because this net generally meets the required constraint.
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I/O Banking Rules
There are I/O banking rules to be followed for I/O pin allocations, stating that the I/O 
signals allocated in a bank should adhere to compatible I/O standards. Refer to the “Rules 
Concerning Banks” section for additional information regarding I/O banking rules in 
DS099 [Ref 27].

Design Notes
The DDR2 SDRAM design is not validated on hardware. The MAXDELAY constraints in 
the UCF are set based on the selected frequency. 

Calibration circuit details and data capture techniques are covered in XAPP768c [Ref 23].

Tool Output
When the design is generated from the tool, it outputs docs, example_design, and 
user_design folders. The example_design consists of the design with test_bench, 
and user_design consists of the design without test_bench. Each folder contains 
rtl, par, synth, and sim folders. The sim folder contains simulation files for the 
generated design. The sim folder contains the external testbench, memory model, .do file, 
and the executable file to simulate the generated design. The memory model files are 
currently generated in Verilog only. To learn more details about the files in the sim folder 
and to simulate the design, see simulation_help.chm in the sim folder.

Supported Devices
The design generated out of MIG is independent of memory speed grade, hence the 
package part of the memory component is replaced with X, where X indicates a don't care 
condition.

The tables below list the components (Table 8-5) and DIMMs (Table 8-6 through Table 8-8) 
supported by the tool for Spartan-3 DDR2 local clocking designs.

Table 8-5: Supported Components for DDR2 SDRAM Local Clocking 
(Spartan-3 FPGAs)

Components Packages (XX) Components Packages (XX)

MT47H64M4XX-3 BP MT47H128M8XX-3 BT,HQ

MT47H64M4XX-37E BP MT47H128M8XX-37E BT,HQ

MT47H64M4XX-5E BP MT47H128M8XX-5E BT,HQ

MT47H128M4XX-3 B6,CB,GB MT47H256M8XX-3 HG

MT47H128M4XX-37E B6,CB,GB MT47H256M8XX-37E HG

MT47H128M4XX-5E B6,CB,GB MT47H256M8XX-5E HG

MT47H256M4XX-3 BT,HQ MT47H16M16XX-3 BG

MT47H256M4XX-37E BT,HQ MT47H16M16XX-37E BG

MT47H256M4XX-5E BT,HQ MT47H16M16XX-5E BG

MT47H512M4XX-3 HG MT47H32M16XX-3 BN,CC,FN,GC

MT47H512M4XX-37E HG MT47H32M16XX-37E BN,CC,FN,GC

MT47H512M4XX-5E HG MT47H32M16XX-5E BN,CC,FN,GC
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MT47H32M8XX-3 BP MT47H64M16XX-3 BT,HR

MT47H32M8XX-37E BP MT47H64M16XX-37E BT,HR

MT47H32M8XX-5E BP MT47H64M16XX-5E BT,HR

MT47H64M8XX-3 B6,CB,F6,GB MT47H128M16XX-3 HG

MT47H64M8XX-37E B6,CB,F6,GB MT47H128M16XX-37E HG

MT47H64M8XX-5E B6,CB,F6,GB MT47H128M16XX-5E  --

Table 8-6: Supported Unbuffered DIMMs for DDR2 
SDRAM Local Clocking (Spartan-3 FPGAs)

Unbuffered DIMMs

MT4HTF1664AY-667 MT8HTF6464AY-53E

MT4HTF1664AY-40E MT8HTF6464AY-40E

MT4HTF3264AY-667 MT8HTF12864AY-667

MT4HTF3264AY-40E MT8HTF12864AY-40E

MT4HTF6464AY-667 MT9HTF3272AY-667

MT4HTF6464AY-40E MT9HTF3272AY-40E

MT8HTF6464AY-667 MT9HTF6472AY-667

Table 8-7: Supported Registered DIMMs for DDR2 SDRAM Local Clocking 
(Spartan-3 FPGAs)

Registered DIMMs Packages (X) Registered DIMMs Packages (X)

MT9HTF3272XX-53E Y MT18HTF6472XX-53E DY,Y

MT9HTF3272XX-40E Y MT18HTF6472XX-40E DY,Y

MT9HTF6472XX-53E Y MT18HTF12872XX-53E DY,MY,NDY,
NY,PY,Y

MT9HTF6472XX-40E Y MT18HTF12872XX-40E DY,PY,Y

MT9HTF12872XX-53E PY,Y MT18HTF25672XX-53E PDY,PY,Y

MT9HTF12872XX-40E Y MT18HTF25672XX-40E DY,PDY,Y

Table 8-8: Supported SODIMMs for DDR2 SDRAM 
Local Clocking (Spartan-3 FPGAs)

SODIMMs

MT4HTF1664HY-667 MT8HTF3264HY-667

MT4HTF1664HY-53E MT8HTF3264HY-53E

MT4HTF1664HY-40E MT8HTF3264HY-40E

MT4HTF3264HY-667 MT8HTF6464HY-667

MT4HTF3264HY-53E MT8HTF6464HY-53E

MT4HTF3264HY-40E MT8HTF6464HY-40E

Table 8-5: Supported Components for DDR2 SDRAM Local Clocking 
(Spartan-3 FPGAs) (Continued)

Components Packages (XX) Components Packages (XX)
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The tables below list the components (Table 8-9) and DIMMs (Table 8-10 through 
Table 8-12) supported by the tool for Spartan-3A/AN DDR2 local clocking designs.

Table 8-9: Supported Components for DDR2 SDRAM Local Clocking 
(Spartan-3A/AN FPGAs)

Components Packages (XX) Components Packages (XX)

MT47H64M4XX-3 BP MT47H128M8XX-3 BT,HQ

MT47H64M4XX-37E BP MT47H128M8XX-37E BT,HQ

MT47H64M4XX-5E BP MT47H128M8XX-5E BT,HQ

MT47H128M4XX-3 B6,CB,GB MT47H256M8XX-3 HG

MT47H128M4XX-37E B6,CB,GB MT47H256M8XX-37E HG

MT47H128M4XX-5E B6,CB,GB MT47H256M8XX-5E HG

MT47H256M4XX-3 BT,HQ MT47H16M16XX-3 BG

MT47H256M4XX-37E BT,HQ MT47H16M16XX-37E BG

MT47H256M4XX-5E BT,HQ MT47H16M16XX-5E BG

MT47H512M4XX-3 HG MT47H32M16XX-3 BN,CC,FN,GC

MT47H512M4XX-37E HG MT47H32M16XX-37E BN,CC,FN,GC

MT47H512M4XX-5E HG MT47H32M16XX-5E BN,CC,FN,GC

MT47H32M8XX-3 BP MT47H64M16XX-3 BT,HR

MT47H32M8XX-37E BP MT47H64M16XX-37E BT,HR

MT47H32M8XX-5E BP MT47H64M16XX-5E BT,HR

MT47H64M8XX-3 B6,CB,F6,GB MT47H128M16XX-3 HG

MT47H64M8XX-37E B6,CB,F6,GB MT47H128M16XX-37E HG

MT47H64M8XX-5E B6,CB,F6,GB MT47H128M16XX-5E  --

Table 8-10: Supported Unbuffered DIMMs for DDR2 
SDRAM Local Clocking (Spartan-3A/AN FPGAs)

Unbuffered DIMMs

MT4HTF1664AY-667 MT8HTF6464AY-667

MT4HTF1664AY-40E MT8HTF6464AY-53E

MT4HTF3264AY-667 MT8HTF6464AY-40E

MT4HTF3264AY-40E MT8HTF12864AY-667

MT4HTF6464AY-667 MT8HTF12864AY-40E

MT4HTF6464AY-40E

Table 8-11: Supported Registered DIMMs for DDR2 SDRAM Local Clocking 
(Spartan-3A/AN FPGAs)

Registered DIMMs Packages (X) Registered DIMMs Packages (X)

MT9HTF3272XX-53E Y MT9HTF6472XX-40E Y

MT9HTF3272XX-40E Y MT9HTF12872XX-53E PY,Y

MT9HTF6472XX-53E Y MT9HTF12872XX-40E Y
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The tables below list the components (Table 8-13 and Table 8-16) and DIMMs (Table 8-14 
through Table 8-15) supported by the tool for Spartan-3A DSP and Spartan-3E FPGA 
DDR2 local clocking designs.

Table 8-12: Supported SODIMMs for DDR2 SDRAM 
Local Clocking (Spartan-3A/AN FPGAs)

SODIMMs

MT4HTF1664HY-667 MT8HTF3264HY-667

MT4HTF1664HY-53E MT8HTF3264HY-53E

MT4HTF1664HY-40E MT8HTF3264HY-40E

MT4HTF3264HY-667 MT8HTF6464HY-667

MT4HTF3264HY-53E MT8HTF6464HY-53E

MT4HTF3264HY-40E MT8HTF6464HY-40E

Table 8-13: Supported Components for DDR2 SDRAM Local Clocking 
(Spartan-3A DSP FPGAs)

Components Packages (XX) Components Packages (XX)

MT47H64M4XX-3 BP MT47H128M8XX-3 BT,HQ

MT47H64M4XX-37E BP MT47H128M8XX-37E BT,HQ

MT47H64M4XX-5E BP MT47H128M8XX-5E BT,HQ

MT47H128M4XX-3 B6,CB,GB MT47H256M8XX-3 HG

MT47H128M4XX-37E B6,CB,GB MT47H256M8XX-37E HG

MT47H128M4XX-5E B6,CB,GB MT47H256M8XX-5E HG

MT47H256M4XX-3 BT,HQ MT47H16M16XX-3 BG

MT47H256M4XX-37E BT,HQ MT47H16M16XX-37E BG

MT47H256M4XX-5E BT,HQ MT47H16M16XX-5E BG

MT47H512M4XX-3 HG MT47H32M16XX-3 BN,CC,FN,GC

MT47H512M4XX-37E HG MT47H32M16XX-37E BN,CC,FN,GC

MT47H512M4XX-5E HG MT47H32M16XX-5E BN,CC,FN,GC

MT47H32M8XX-3 BP MT47H64M16XX-3 BT,HR

MT47H32M8XX-37E BP MT47H64M16XX-37E BT,HR

MT47H32M8XX-5E BP MT47H64M16XX-5E BT,HR

MT47H64M8XX-3 B6,CB,F6,GB MT47H128M16XX-3 HG

MT47H64M8XX-37E B6,CB,F6,GB MT47H128M16XX-37E HG

MT47H64M8XX-5E B6,CB,F6,GB MT47H128M16XX-5E  --
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Table 8-14: Supported Unbuffered DIMMs for DDR2 
SDRAM Local Clocking (Spartan-3A DSP FPGAs)

Unbuffered DIMMs

MT4HTF1664AY-667 MT8HTF6464AY-667

MT4HTF1664AY-40E MT8HTF6464AY-53E

MT4HTF3264AY-667 MT8HTF6464AY-40E

MT4HTF3264AY-40E MT8HTF12864AY-667

MT4HTF6464AY-667 MT8HTF12864AY-40E

MT4HTF6464AY-40E

Table 8-15: Supported SODIMMs for DDR2 SDRAM 
Local Clocking (Spartan-3A DSP FPGAs)

SODIMMs

MT4HTF1664HY-667 MT8HTF3264HY-667

MT4HTF1664HY-53E MT8HTF3264HY-53E

MT4HTF1664HY-40E MT8HTF3264HY-40E

MT4HTF3264HY-667 MT8HTF6464HY-667

MT4HTF3264HY-53E MT8HTF6464HY-53E

MT4HTF3264HY-40E MT8HTF6464HY-40E

Table 8-16: Supported Components for DDR2 SDRAM Local Clocking 
(Spartan-3E FPGAs)

Components Packages (XX) Components Packages (XX)

MT47H64M4XX-3 BP MT47H128M8XX-3 BT,HQ

MT47H64M4XX-37E BP MT47H128M8XX-37E BT,HQ

MT47H64M4XX-5E BP MT47H128M8XX-5E BT,HQ

MT47H128M4XX-3 B6,CB,GB MT47H256M8XX-3 HG

MT47H128M4XX-37E B6,CB,GB MT47H256M8XX-37E HG

MT47H128M4XX-5E B6,CB,GB MT47H256M8XX-5E HG

MT47H256M4XX-3 BT,HQ MT47H16M16XX-3 BG

MT47H256M4XX-37E BT,HQ MT47H16M16XX-37E BG

MT47H256M4XX-5E BT,HQ MT47H16M16XX-5E BG

MT47H512M4XX-3 HG MT47H32M16XX-3 BN,CC,FN,GC

MT47H512M4XX-37E HG MT47H32M16XX-37E BN,CC,FN,GC

MT47H512M4XX-5E HG MT47H32M16XX-5E BN,CC,FN,GC

MT47H32M8XX-3 BP MT47H64M16XX-3 BT,HR

MT47H32M8XX-37E BP MT47H64M16XX-37E BT,HR

MT47H32M8XX-5E BP MT47H64M16XX-5E BT,HR

MT47H64M8XX-3 B6,CB,F6,GB MT47H128M16XX-3 HG

MT47H64M8XX-37E B6,CB,F6,GB MT47H128M16XX-37E HG

MT47H64M8XX-5E B6,CB,F6,GB MT47H128M16XX-5E --
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Maximum Data Widths
Table 8-17 provides the maximum data widths for Spartan-3 FPGAs. Table 8-18 provides 
the maximum data widths for Spartan-3E FPGAs. Table 8-21 provides the maximum data 
widths for Spartan-3A single-ended DQS FPGAs (differential DQS is disabled). Table 8-22 
provides the maximum data widths for Spartan-3A differential DQS FPGAs (differential 
DQS is enabled). Table 8-23 provides the maximum data widths for Spartan-3AN 
differential DQS FPGAs (single/differential DQS is enabled). Table 8-24 provides the 
maximum data widths for Spartan-3A DSP differential DQS FPGAs (single/differential 
DQS is enabled). All the supported data width tables have the Mask Enable option 
enabled.
 

Table 8-17: Spartan-3 FPGA Maximum Data Width for DDR and DDR2 Memories

Serial 
Number

FPGA

Maximum Data Width when Data, Address, and Control are Allocated in...

...Different Banks ...the Same Bank

Bank 
2

Bank 
3

Bank 
6

Bank 
7

Left Right
Bank 

2
Bank 

3
Banks 

6/7
Left Right

1 XC3S50CP132 0 0 0 0 8 8 0 0 0 0 0

2 XC3S50PQ208 0 0 0 0 8 8 0 0 0 0 0

3 XC3S50TQ144 0 0 0 0 8 8 0 0 0 0 0

4 XC3S200FT256 8 8 8 8 16 16 0 0 0 8 8

5 XC3S200PQ208 0 8 0 0 16 16 0 0 0 0 0

6 XC3S200TQ144 0 0 0 0 8 8 0 0 0 0 0

7 XC3S400FG320 8 8 8 8 24 24 0 0 0 16 16

8 XC3S400FG456 16 8 16 8 32 24 0 0 0 16 16

9 XC3S400FT256 8 8 8 8 16 16 0 0 0 8 8

10 XC3S400PQ208 0 0 0 0 8 8 0 0 0 0 0

11 XC3S400TQ144 0 0 0 0 8 8 0 0 0 0 0

12 XC3S1000FG320 8 8 8 8 24 24 0 0 0 16 16

13 XC3S1000FG456 16 16 16 16 48 48 8 8 8 32 32

14 XC3S1000FG676 24 24 24 24 48 48 8 8 8 32 32

15 XC3S1000FT256 8 8 8 8 16 16 0 0 0 8 8

16 XC3S1500FG320 8 8 8 8 24 24 0 0 0 16 16

17 XC3S1500FG456 16 16 16 16 48 48 8 8 8 40 40

18 XC3S1500FG676 32 32 32 32 72 72 16 16 16 48 48

19 XC3S2000FG456 16 16 16 16 48 48 8 8 8 32 32

20 XC3S2000FG676 32 32 32 32 72 72 16 16 16 56 56

21 XC3S2000FG900 32 32 32 40 72 72 24 24 24 64 64

22 XC3S4000FG676 24 32 32 32 72 72 16 16 16 56 48

23 XC3S4000FG900 40 40 40 40 72 72 32 32 32 72 72

24 XC3S4000FG1156 48 48 48 48 72 72 32 32 32 72 72

25 XC3S5000FG676 24 24 24 32 64 64 16 16 16 48 48
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26 XC3S5000FGG676 24 24 24 32 64 64 16 16 16 48 48

27 XC3S5000FG900 40 40 40 40 72 72 32 32 32 72 72

28 XC3S5000FG1156 56 56 48 56 72 72 40 40 40 72 72

Table 8-17: Spartan-3 FPGA Maximum Data Width for DDR and DDR2 Memories (Continued)

Serial 
Number

FPGA

Maximum Data Width when Data, Address, and Control are Allocated in...

...Different Banks ...the Same Bank

Bank 
2

Bank 
3

Bank 
6

Bank 
7

Left Right
Bank 

2
Bank 

3
Banks 

6/7
Left Right

Table 8-18: Spartan-3E FPGA Maximum Data Width for DDR SDRAMs

Serial 
Number

FPGA

Maximum Data Width when Data, Address, and 
Control are Allocated in... 

...Different Banks ...the Same Bank

Left Right Left/Right

1 XC3S100ECP132 8 8 0

2 XC3S100ETQ144 8 8 0

3 XC3S250ECP132 8 0 0

4 XC3S250EFT256 16 16 0

5 XC3S250EPQ208 16 16 0

6 XC3S250ETQ144 8 8 0

7 XC3S500ECP132 8 0 0

8 XC3S500EFG320 24 24 8

9 XC3S500EFT256 16 16 8

10 XC3S500EPQ208 8 8 0

11 XC3S1200EFG320 16 16 16

12 XC3S1200EFG400 32 32 16

13 XC3S1200EFT256 16 8 8

14 XC3S1600EFG320 16 16 8

15 XC3S1600EFG400 24 32 16

16 XC3S1600EFG484 48 40 32
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Table 8-19: Spartan-3E FPGA Differential DQS Maximum Data Width for DDR 
SDRAMs (Differential DQS Enabled)

Serial 
Number

FPGA

Maximum Data Width When Data, Address, and 
Control are Allocated in Different Banks

Left Right

1 XC3S100ECP132 0 0

2 XC3S100ETQ144 0 0

3 XC3S250ECP132 0 0

4 XC3S250ETQ144 0 0

5 XC3S250EPQ208 8 16

6 XC3S250EFT256 8 16

7 XC3S500ECP132 0 0

8 XC3S500EPQ208 0 8

9 XC3S500EFT256 0 8

10 XC3S500EFG320 8 16

11 XC3S1200EFT256 0 8

12 XC3S1200EFG320 8 16

13 XC3S1200EFG400 32 32

14 XC3S1600EFG320 8 16

15 XC3S1600EFG400 16 16

16 XC3S1600EFG484 40 40

Table 8-20: Spartan-3E FPGA Single-Ended DQS Maximum Data Width for DDR 
SDRAMs (Differential DQS Disabled)

Serial 
Number

FPGA

Maximum Data Width When Data, Address, and 
Control are Allocated in Different Banks

Left Right

1 XC3S100ECP132 8 8

2 XC3S100ETQ144 8 8

3 XC3S250ECP132 8 0

4 XC3S250ETQ144 8 8

5 XC3S250EPQ208 16 16

6 XC3S250EFT256 16 16

7 XC3S500ECP132 8 0

8 XC3S500EPQ208 8 8

9 XC3S500EFT256 16 16
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10 XC3S500EFG320 24 24

11 XC3S1200EFT256 8 16

12 XC3S1200EFG320 16 16

13 XC3S1200EFG400 32 32

14 XC3S1600EFG320 16 16

15 XC3S1600EFG400 32 24

16 XC3S1600EFG484 40 48

Table 8-21: Spartan-3A FPGA Single-Ended DQS Maximum Data Width 
(Differential DQS Disabled)

Serial 
Number

FPGA

Maximum Data Width when Data, Address, and 
Control are Allocated in...

...Different Banks ...the Same Bank

Left/Right Left Right

1 XC3S50ATQ144 8 0 0

2 XC3S50AFT256 8 0 0

3 XC3S200AFT256 16/24 8 8

4 XC3S400AFT256 16 8 8

5 XC3S200AFG320 16 8 16

6 XC3S400AFG320 24 8 16

7 XC3S400AFG400 32 16 16

8 XC3S700AFG400 32 16 16

9 XC3S700AFG484 40 24 32

10 XC3S1400AFG484 40 24 32

11 XC3S1400AFG676 72 48 48

Table 8-20: Spartan-3E FPGA Single-Ended DQS Maximum Data Width for DDR 
SDRAMs (Differential DQS Disabled) (Continued)

Serial 
Number

FPGA

Maximum Data Width When Data, Address, and 
Control are Allocated in Different Banks

Left Right
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Table 8-22: Spartan-3A FPGA Differential DQS Maximum Data Width 
(Differential DQS Enabled)

Serial 
Number

FPGA

Maximum Data Width when Data, Address, and 
Control are Allocated in...

...Different Banks ...the Same Bank

Left Right Left Right

1 XC3S50ATQ144 8 8 0 0

2 XC3S200AFG320 24 24 8 16

3 XC3S200AFT256 16 24 8 8

4 XC3S400AFG320 24 24 8 16

5 XC3S400AFG400 32 32 16 16

6 XC3S400AFT256 16 16 8 8

7 XC3S700AFG400 24 32 16 16

8 XC3S700AFG484 40 40 24 32

9 XC3S1400AFG484 40 40 24 32

10 XC3S1400AFG676 64 64 48 48

11 XC3S50AFT256 8 8 0 0

Table 8-23: Spartan-3AN FPGA DQS Maximum Data Width 
(Single/Differential DQS Enabled)

Serial 
Number

FPGA

Maximum Data Width when Data, Address, and 
Control are Allocated in...

...Different Banks ...the Same Bank

Left Right Left Right

1 XC3S50ANTQG144 8 8 0 0

2 XC3S50ANFTG256 8 8 0 0

3 XC3S200ANFTG256 16 24 8 8

4 XC3S400ANFGG400 32 32 16 16

5 XC3S700ANFGG484 40 40 24 32

6 XC3S1400ANFGG676(1) 64 64 48 48

Notes: 
1. For the XC3S1400ANFGG676 part, MIG can generate 72-bit single-ended DQS RDIMM with address 

and data on different banks.
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DIMM Support for Spartan-3 Generation Devices

Table 8-24: Spartan-3A DSP FPGA DQS Maximum Data Width (Single/Differential 
DQS Enabled)

Serial 
Number

FPGA

Maximum Data Width when Data, Address, and 
Control are Allocated in...

...Different Banks ...the Same Bank

Left Right Left Right

1 XC3SD1800A-CS484 32 32 16 16

2 XC3SD3400A-CS484 32 32 16 16

3 XC3SD1800A-FG676 64 64 48 48

4 XC3SD3400A-FG676 64 64 48 48

Table 8-25: DIMM Support for Spartan-3 Devices

Serial 
Number

FPGA
64-bit DIMM 72-bit DIMM

x4 x8 x16 x4 x8 x16

1 XC3S1500FG676 No Yes Yes No Yes Yes

2 XC3S2000FG676 No Yes Yes No Yes Yes

3 XC3S4000FG676 No Yes Yes No Yes Yes

4 XC3S5000FG676 No Yes Yes No No No

5 XC3S2000FG900 Yes Yes Yes Yes Yes Yes

6 XC3S4000FG900 Yes Yes Yes Yes Yes Yes

7 XC3S5000FG900 Yes Yes Yes Yes Yes Yes

8 XC3S4000FG1156 Yes Yes Yes Yes Yes Yes

9 XC3S5000FG1156 Yes Yes Yes Yes Yes Yes

10 XC3S1500LFG676 No Yes Yes No Yes Yes

11 XC3S4000LFG900 Yes Yes Yes Yes Yes Yes

Table 8-26: DIMM Support for Spartan-3A and Spartan-3AN Devices

Serial 
Number

FPGA
64-bit DIMM 72-bit RDIMM

x4 x8 x16 x4 x8 x16

1 XC3S1400AFG676 No Yes Yes No Yes Yes

2 XC3S1400ANFGG676 No Yes Yes No Yes Yes
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Note: Spartan-3E devices do not support 64-bit or 72-bit DIMMs.

Design Frequency Range in MHz for Spartan-3 Generation Devices

Note: NS = Not Supported.

Table 8-27: DIMM Support for Spartan-3A DSP Devices

Serial 
Number

FPGA
64-bit DIMM 72-bit RDIMM

x4 x8 x16 x4 x8 x16

1 XC3SD1800AFG676 No Yes Yes No No No

2 XC3SD3400AFG676 No Yes Yes No No No

Table 8-28: Spartan-3 Generation Component Controllers

FPGA Family
DDR SDRAM DDR2 SDRAM

≤ 32-bit > 32-bit ≤ 32-bit > 32-bit

Spartan-3A/3AN/3A DSP 166 166 166 166

Spartan-3E 166 166 166 166

Spartan-3 166 133 166 133

Table 8-29: Spartan-3 Generation DIMM Controllers

FPGA Family DDR SDRAM DDR2 SDRAM

Spartan-3A/3AN/3A DSP 166 166 166 166

Spartan-3E NS NS NS NS

Spartan-3 133 133 133 133

http://www.xilinx.com


MIG User Guide www.xilinx.com 295
UG086 (v2.2) March 3, 2008

Hardware Tested Configurations
R

Hardware Tested Configurations
The frequencies shown in Table 8-30 were achieved on the Spartan-3A FPGA Starter Kit 
under nominal conditions. This frequency should not be used to determine the maximum 
design frequency. The maximum design frequency supported in the MIG wizard is based 
on a combination of the TRCE results for fabric timing on multiple device/package 
combinations and I/O timing analysis using FPGA and memory timing parameters for a 
64-bit interface.

The frequency shown in Table 8-31 was achieved on the Spartan-3A DSP 3400A 
Development Board under nominal conditions. This frequency should not be used to 
determine the design frequency. The maximum design frequency supported in the MIG 
wizard is based a combination of the TRCE results for fabric timing on multiple 
device/package combinations and I/O timing analysis using FPGA and memory timing 
parameters for a 64-bit interface.

Table 8-30: Hardware Tested Configurations for Spartan-3A FPGA DDR2 SDRAM 
Designs

Synthesis Tools XST 

HDL Verilog and VHDL

FPGA Device XC3S700AFG484-4

Burst Lengths 4 and 8

CAS Latency (CL) 3

16-bit Design Tested on 16-bit Component “MT47H32M16XX-5E”

Frequency Range 25 MHz to 225 MHz

Table 8-31: Hardware Tested Configurations for Spartan-3A DSP FPGA DDR2 SDRAM 
Designs

Synthesis Tools XST 

HDL Verilog and VHDL

FPGA Device XC3SD3400AFG676-4

Burst Lengths 4 and 8

CAS Latency (CL) 3

32-bit Design Tested on 64-bit SO DIMM “MT4HTF6464HY-667”

Frequency 133 MHz
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Section IV:  Virtex-5 FPGA to Memory Interfaces

Chapter 9, “Implementing DDR2 SDRAM Controllers”

Chapter 10, “Implementing QDRII SRAM Controllers”

Chapter 11, “Implementing DDR SDRAM Controllers”
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Chapter 9

Implementing DDR2 SDRAM Controllers

This chapter describes how to implement DDR2 SDRAM interfaces for Virtex™-5 FPGAs 
generated by MIG. The DDR2 SDRAM design supports frequencies up to 333 MHz. This 
design is based on XAPP858 [Ref 26]. 

Interface Model 
DDR2 SDRAM interfaces are source-synchronous and double data rate. They transfer data 
on both edges of the clock cycle. A memory interface can be modularly represented as 
shown in Figure 9-1. A modular interface has many advantages. It allows designs to be 
ported easily and also makes it possible to share parts of the design across different types 
of memory interfaces.

Figure 9-1: Modular Memory Interface Representation

Application Interface Layer

Xilinx FPGA

Physical Layer

Control Layer
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Feature Summary
This section summarizes the supported and unsupported features of the DDR2 SDRAM 
controller design.

Supported Features
The DDR2 SDRAM controller design supports:

• Burst lengths of four and eight
• Sequential and interleaved burst types
• CAS latencies of 3, 4, and 5
• Additive latencies of 0, 1, 2, 3, and 4
• Differential DQS
• ODT
• Verilog and VHDL
• Byte wise data masking
• Precharge and auto refresh
• Bank management
• Linear addressing
• ECC
• Different memories (density/speed)
• Memory components, registered DIMMs, unbuffered DIMMs, and SODIMMs
• With and without a testbench
• With and without a DCM

The supported features are described in more detail in “Architecture.”

Design Frequency Ranges

Unsupported Features
The DDR2 SDRAM controller design does not support:

• Dual-rank DIMMs
• Single-ended DQS

Table 9-1: Design Frequency Range in MHz

Memory

FPGA Speed Grade

-1 -2 -3

Min Max Min Max Min Max

Component 125 266 125 300 125 333

RDIMM 125 266 125 300 125 333

UDIMM or SODIMM(1) 125 266 125 266 125 266

Notes: 
1. It is possible to go faster than 266 MHz, but it requires care and IBIS simulations and possibly using 

the parameter to send the CS out earlier depending on the load. For more details, see XAPP858 
[Ref 26].
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• Redundant DQS (RDQS)
• Deep memories
• Multicontrollers

Architecture

Implemented Features
This section provides details on the supported features of the DDR2 SDRAM controller.

Burst Length

The DDR2 SDRAM controller supports burst lengths of four and eight. Through the “Set 
mode register(s)” option, the burst length can be selected. For a design without a testbench 
(user_design), the user has to provide bursts of the input data based on the chosen burst 
length. Bits M2:M0 of the Mode Register define the burst length, and bit M3 indicates the 
burst type (see the Micron data sheet). Read and write accesses to the DDR2 SDRAM are 
burst-oriented. It determines the maximum number of column locations accessed for a 
given READ or WRITE command.

CAS Latency

The DDR2 SDRAM controller supports CAS latencies of 3, 4, and 5. The CAS latency (CL) 
can be selected in the “Set mode register(s)” option. CL is implemented in the phy_write 
module. During data write operations, the generation of the dqs_oe_n and dqs_rst_n 
signals varies according to the CL in the phy_write module. During read data operations, 
the generation of the ctrl_rden signal varies according to the CL in the ctrl module. Bits 
M4:M6 of the Mode Register define the CL (see the Micron data sheet). CL is the delay in 
clock cycles between the registration of a READ command and the availability of the first 
bit of output data. 

Additive Latency

DDR2 SDRAM devices support a feature called posted CAS additive latency (AL). The 
DDR2 SDRAM supports ALs of 0, 1, 2, 3, and 4. AL can be selected in the “Set mode 
register(s)” option. AL is implemented in the DDR2 SDRAM ctrl module. The ctrl module 
issues READ/WRITE commands prior to tRCD (minimum) depending on the user-selected 
AL value in the Extended Mode Register. This feature allows the READ command to be 
issued prior to tRCD (minimum) by delaying the internal command to the DDR2 SDRAM 
by AL clocks. Posted CAS AL makes the command and data bus efficient for sustainable 
bandwidths in DDR2 SDRAM. Bits E3:E5 of the Extended Mode Register define the value 
of AL (see the Micron data sheet).

Data Masking

DDR2 SDRAM design supports data masking per byte. Masking per nibble is not 
supported due to the limitation of the internal block RAM based FIFOs. So, the masking of 
data can be done on per byte basis. The mask data is stored in the Data FIFO along with the 
actual data.
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Precharge

The PRECHARGE command is used to close the open row in a bank if there is a command 
to be issued in the same bank. The DDR2 Virtex-5 controller issues a PRECHARGE 
command only if there is already an open row in the particular bank where a read or write 
command is to be issued, thus increasing the efficiency of the design. The auto precharge 
function is not supported in this design. The design ties the A10 bit Low during normal 
reads and writes.

Auto Refresh

The auto refresh command is issued to the memory at specified intervals of time. The 
memory issues an auto refresh command to refresh the charge to retain the data.

Bank Management

A Virtex-5 DDR2 SDRAM controller design supports bank management that increases the 
efficiency of the design. The controller keeps track of whether the bank being accessed 
already has an open row or not and also decides whether a PRECHARGE command 
should be issued or not to that bank. When bank management is enabled via the 
MULTI_BANK_EN parameter, a maximum of four banks/rows can open at any one time. 
A least recently used (LRU) algorithm is employed to keep the three most recently used 
banks and to close the least recently used bank when a new bank/row location needs to be 
accessed. The bank management feature can also be disabled by clearing 
MULTI_BANK_EN.

Linear Addressing

The DDR2 SDRAM controller supports linear addressing. Linear addressing refers to the 
way the user provides the address of the memory to be accessed. For Virtex-5 DDR2 
SDRAM controllers, the user provides the address information through the app_af_addr 
signal. As the densities of the memory devices vary, the number of column address bits 
and row address bits also change. In any case, the row address bits in the app_af_addr 
signal always start from the next higher bit, where the column address ends. This feature 
increases the number of devices that can be supported with the design.

Different Memories (Density/Speed)

The DDR2 SDRAM controller supports different densities. For DDR2 components shown 
in MIG, densities vary from 256 Mb to 2 Gb, and the DIMM densities vary from 256 Mb to 
2 Gb. The user can select the various configurations from the “Create new memory part” 
option. The supported maximum column address is 13, the maximum row address is 15, 
and the maximum bank address is 3. The design can decode write and read addresses from 
the user in the DDR2 SDRAM ctrl module. The user address consists of column, row, and 
bank addresses.

On-Die Termination

The DDR2 SDRAM controller supports on-die termination (ODT). Through the “Set mode 
register(s)” option from the GUI, the user can disable ODT or can choose 75, 150, or 50. 
ODT can turn the termination on and off as needed to improves signal integrity in the 
system. 

ODT is only enabled on writes to DDR2 memory. It is disabled on read operations.
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Note: The Virtex-5 DDR2 interface requires that if parallel termination is used at the memory 
end, it must be ODT rather than external termination resistor(s). This is a requirement of the read 
capture scheme used.

Generic Parameters
The DDR2 SDRAM design is a generic design that works for most of the features 
mentioned above. User input parameters are defined as parameters for Verilog and 
generics in VHDL in the design modules and are passed down the hierarchy. For example, 
if the user selects a burst length of 4, then it is defined as follows in the <top_module> 
module:

parameter BURST_LEN = 4,       // burst length (in doublewords)

The user can change this parameter in <top_module> for various burst lengths to get the 
desired output. Same concept holds for all the other parameters listed in the 
<top_module> module. Table 9-2 lists the details of all parameters.
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Table 9-2: Parameterization of DDR2 SDRAM Virtex-5 Design

Category Parameter Name Description Other Notes Value Restrictions

Memory
Width

BANK_WIDTH Number of memory bank address 
bits

CKE_WIDTH Number of memory clock enable 
outputs

CLK_WIDTH Number of differential clock outputs
Determined by the number of 
components/modules (one pair per 
component)

COL_WIDTH Number of memory column bits

CS_BITS log2(CS_NUM)
Used for chip-select related address 
decode. See notes for CS_NUM and 
CS_WIDTH.

CS_NUM Number of separate chip selects

Different from CS_WIDTH. For 
example, for a 32-bit data bus 
consisting of 2 x16 parts, CS_NUM = 
1, but CS_WIDTH = 2 (that is, a 
single chip select drives two 
separate outputs, one for each 
component)

CS_WIDTH / 
CS_NUM = integer

CS_WIDTH Number of memory chip selects
Determined by the number of 
components/modules (one per 
component)

CS_WIDTH / 
CS_NUM = integer

DM_WIDTH Number of data mask bits
Can be different value than 
DQS_WIDTH if x4 components are 
used

(DQS_WIDTH * 
DQ_PER_DQS)/8

DQ_BITS log2(DQS_WIDTH*DQ_PER_DQS) Used for data bus calibration decode (DQ_WIDTH)/
Number of data bits

DQ_WIDTH Number of data bits

Must set to DQS_WIDTH * 
DQ_PER_DQS. Equal to total 
number of data bits, including ECC 
bits.

DQS_WIDTH * 
DQ_PER_DQS

DQ_PER_DQS Number of memory DQ data bits per 
strobe

DQS_BITS log2(DQS_WIDTH)

DQS_WIDTH Number of memory DQS strobes

ODT_WIDTH Number of ODT control outputs
Determined by the number of 
components/modules (one per 
component)

ROW_WIDTH Number of memory address bits

APPDATA_WIDTH Number of data bits at user backend 
interface

If ECC Disabled:
2*(DQ_WIDTH)
If ECC Enabled:
2*(DQ_WIDTH – 
8*(DQ_WIDTH/72))
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Memory
Options

ADDITIVE_LAT Additive latency (0,1,2,3,4)

BURST_LEN Burst length (4,8) for DDR2,
(2,4,8) for DDR

BURST_TYPE burst type (0: sequential, 1: 
interleaved) (0,1)

CAS_LAT CAS latency (equal to 6 for CL = 2.5) (3,4,5) for DDR2,
(2,3,6) for DDR

ECC_ENABLE Enable ECC Set to 0

MULTI_BANK_EN Bank management enable
If enabled, up to 4 banks are kept 
open; otherwise, one bank is kept 
open

(0,1)

ODT_TYPE ODT termination value

0: ODT disabled
1: 75 Ω
2: 150 Ω
3: 50 Ω)

(0,1,2,3)

REDUCE_DRV
Reduced strength memory I/O 
enable. Set (1) for reduced I/O drive 
strength.

Not supported for all DDR/DDR2 
widths (0,1)

REG_ENABLE Set for registered memory module
Accounts for an extra clock cycle 
delay on address/control for 
registered module

(0,1)

TWO_T_TIME_EN Enable “2T” timing for 
control/address signals

0: Disable 2T timing
1: Enable 2T timing (0,1)

Memory
Timing

TREFI_NS Auto refresh interval (in ns) Take directly from memory 
datasheet

TRAS Active to precharge delay (in ps) Take directly from memory 
datasheet

TRCD Active to read/write delay (in ps) Take directly from memory 
datasheet

TRFC
Refresh to refresh, refresh to active 
delay (in ps)

Take directly from memory 
datasheet

TRP Precharge to command delay (in ps) Take directly from memory 
datasheet

TRTP Read to precharge delay (in ps) Take directly from memory 
datasheet

TWR
Used to determine write to 
precharge (in ps)

Take directly from memory 
datasheet

TWTR Write to read (in ps) Take directly from memory 
datasheet

Table 9-2: Parameterization of DDR2 SDRAM Virtex-5 Design (Continued)

Category Parameter Name Description Other Notes Value Restrictions
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Hierarchy
Figure 9-2 shows the hierarchical structure of the DDR2 SDRAM design generated by MIG 
with a testbench and a DCM. 

Miscellan-
eous

CLK_PERIOD Memory clock period (in ps) Used for PHY calibration and DCM 
(if applicable) setting

DLL_FREQ_MODE DCM Frequency Mode
Determined by CLK_PERIOD. 
Needed only if the DCM option is 
selected.

(“LOW”, “HIGH”)

DDR2_TYPE Select either DDR or DDR2 interface

0: DDR
1: DDR2
Provided from the mem_if_top level 
and below

(0,1)

SIM_ONLY

Enable to bypass initial 200 μs 
power-on delay. Abbreviated 
calibration sequence (only one bit for 
Stage 1, one strobe for Stages 2–4).

(0,1)

RST_ACT_LOW Indicates the polarity of input reset 
signal (sys_rst_n)

1: Reset is active Low. 
0: Reset is active High. (0,1)

DQS_IO_COL
Placement parameter specifying I/O 
column locations for each DQS in 
interface

For each DQS, set to: 
00: Left
01: Center
10: Right

Array size = 2 * 
DQS_WIDTH. Each 
array element must 
be = (00, 01, 10) 

DQ_IO_MS
Placement parameter specifying 
master/slave I/O placement for 
each DQ in interface

For each DQ, set to:
0: Slave I/O used
1: Master I/O used

Array size = 
DQ_WIDTH. Each 
array element must 
be = (0, 1)

DEBUG_EN Enable Calibration Debug Port See Appendix D for details (0,1)

Table 9-2: Parameterization of DDR2 SDRAM Virtex-5 Design (Continued)

Category Parameter Name Description Other Notes Value Restrictions

Figure 9-2: Hierarchical Structure of the Virtex-5 DDR2 Design
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The modules are classified as follows: 

• Design modules

• Testbench modules

• Clocks and reset generation modules

MIG can generate four different DDR2 SDRAM designs:

• With a testbench and a DCM 

• Without a testbench and with a DCM 

• With a testbench and without a DCM 

• Without a testbench and without a DCM

For a design without a testbench (user_design), the shaded modules in Figure 9-2 are not 
present in the design. The <top_module> module has the user interface signals for designs 
without a testbench. The list of user interface signals is provided in Table 9-5.

Design clocks and resets are generated in the infrastructure module. The DCM is 
instantiated in infrastructure module when selected by MIG. The inputs to this module are 
the differential design clock and a 200 MHz differential clock for the IDELAYCTRL 
module. A user reset is also input to this module. Using the input clocks and reset signals, 
system clocks and system reset are generated in this module which is used in the design.

The DCM primitive is not instantiated in this module if the No DCM option is selected. So, 
the system operates on the user-provided clocks. The system reset is generated in the 
infrastructure module using the dcm_lock input signal.

Constraints
The Virtex-5 FPGA DDR2 design uses a combination of the IOB flop (IDDR) and fabric-
based flops for read data capture. This requires the use of pinout-dependent directed-
routing and location constraints. For more details, see Appendix B, “Required UCF and 
HDL Modifications for Pinout Changes.”
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MIG Tool Design Options
MIG provides various options to generate the design with or without a testbench or with 
or without a DCM. This section provides detailed descriptions of the type of design 
generated by the user using various options.

Figure 9-3 shows a top-level block diagram of a DDR2 SDRAM design with a DCM and a 
testbench. sys_clk_p and sys_clk_n are differential input system clocks. The DCM is 
instantiated in the infrastructure module that generates the required design clocks. 
clk200_p and clk200_n are used for the idelay_ctrl element. sys_rst_n is an active-Low 
system reset signal. All design resets are generated using it. The error output signal 
indicates whether the case passes or fails. The testbench module does writes and reads, 
and also compares the read data with written data. The error signal is driven High on data 
mismatches. The phy_init_done signal indicates the completion of initialization and 
calibration of the design.

Figure 9-3: Top-Level Block Diagram of the DDR2 SDRAM Design with a DCM and a Testbench
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Figure 9-4 shows a top-level block diagram of a DDR2 SDRAM design with a DCM but 
without a testbench. The sys_clk_p and sys_clk_n signals are differential input system 
clocks. The DCM is instantiated in the infrastructure module that generates the required 
design clocks. The clk200_p and clk200_n signals are used for the idelay_ctrl element. The 
sys_rst_n signal is the active-Low system reset signal. All design resets are gated by the 
dcm_lock signal. The user has to drive the user application signals. The design provides 
the clk_tb and reset_tb signals to the user in order to synchronize with the design. The 
phy_init_done signal indicates the completion of initialization and calibration of the 
design.

Figure 9-4: Top-Level Block Diagram of the DDR2 SDRAM Design with a DCM but without a Testbench
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Figure 9-5 shows a top-level block diagram of a DDR2 SDRAM design without a DCM or 
a testbench. The user should provide all the clocks and the dcm_lock signal. These clocks 
should be single-ended. The sys_rst_n signal is the active-Low system reset signal. All 
design resets are gated by the dcm_lock signal. The user application must have a DCM 
primitive instantiated in the design, and all user clocks should be driven through BUFGs. 
The user has to drive the user application signals. The design provides the clk_tb and 
reset_tb signals to the user in order to synchronize with the design. The phy_init_done 
signal indicates the completion of initialization and calibration of the design. 

Figure 9-5: Top-Level Block Diagram of the DDR2 SDRAM Design without a DCM or a Testbench
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Figure 9-6 shows a top-level block diagram of a DDR2 SDRAM design without a DCM but 
with a testbench. The user should provide all the clocks and the dcm_lock signal. These 
clocks should be single-ended. sys_rst_n is the active-Low system reset signal. All design 
resets are gated by the dcm_lock signal. The user application must have a DCM primitive 
instantiated in the design, and all user clocks should be driven through BUFGs. The error 
output signal indicates whether the case passes or fails. The testbench module does writes 
and reads, and also compares the read data with the written data. The error signal is driven 
High on data mismatches. The phy_init_done signal indicates the completion of 
initialization and calibration of the design.

Figure 9-6: Top-Level Block Diagram of the DDR2 SDRAM Design without a DCM but with a Testbench
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DDR2 Controller Submodules
Figure 9-7 is a detailed block diagram of the DDR2 SDRAM controller. The design top 
module is expanded to show various internal blocks. The functions of these blocks are 
explained in the subsections following the figure.

Infrastructure

The infrastructure module generates the clock and reset signals for the design. The user 
clocks and user reset are input to this module. In designs generated with a DCM, the input 
clocks are differential. There are clocks for design use and also a 200 MHz clock for the 
idelayctrl primitive. These differential clocks are first passed through the buffers, and the 
single-ended output of the buffers is used. The single-ended output of sys_clk_p and 
sys_clk_n is then given to the DCM input. The clock outputs of the DCM are clk0 and 
clk90. After the DCM is locked, the design is in the reset state for at least 25 clocks.

For designs without a DCM, the user application must have a DCM primitive instantiated 
in the design, and all user clocks should be driven through BUFGs.

Figure 9-7: DDR2 Memory Controller Block Diagram
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Idelay_ctrl

This module instantiates the IDELAYCTRL primitive of the Virtex-5 FPGA. The 
IDELAYCTRL primitive is used to continuously calibrate the individual delay elements in 
its region to reduce the effect of process, temperature, and voltage variations. A 200 MHz 
clock has to be fed to this primitive. 

Ctrl

The ctrl module is the main controller of the Virtex-5 DDR2 SDRAM controller design. It 
generates all the control signals required for the DDR2 memory interface and the user 
interface. During the normal operation, this module toggles the memory address and 
control signals. 

The ctrl module decodes the user command and issues the specified command to the 
memory. The app_af_cmd signal is decoded as a write command when it equals 3’b000, 
and app_af_cmd is decoded as a read command when it equals 3’b001. The commands and 
control signals are generated based on the input burst length and CAS latency. The 
controller state machine issues the commands in the correct sequence while determining 
the timing requirements of the memory.

In the multi-bank mode (MULTIBANK_EN = 1), the controller has the ability to keep four 
banks open at a time. The banks are opened in the order of the commands that are 
presented to the controller. In the event that four banks are already opened and an access 
arrives to the fifth bank, the least recently used bank is closed and the new bank is opened. 
All the banks are closed during auto refresh and are opened as commands are presented to 
the controller. Depending on the traffic pattern, the multi-bank enable mode can increase 
the efficiency of the design.

In the single-bank mode (MULTIBANK_EN = 0), the controller keeps one bank open at a 
time. When there is an access to a different bank or to a different row in the current bank, 
the controller closes the current row and bank and opens the new row and bank. 

phy_top

The phy_top module is the top level of the physical interface of the design. The physical 
layer includes the input/output blocks (IOBs) and other primitives used to read and write 
the double data rate signals to and from the memory, such as IDDR and ODDR. This 
module also includes the IODELAY elements of the Virtex-5 FPGA. These IODELAY 
elements are used to delay the data signals to capture the valid data into the Read Data 
FIFO. 

The memory control signals, such as RAS_N, CAS_N, and WE_N, are driven from the 
buffers in the IOBs. All the input and output signals to and from the memory are 
referenced from the IOB to compensate for the routing delays inside the FPGA. 

The phy_init module, which is instantiated in the phy_top module, is used to initialize the 
DDR2 memory in a predefined sequence according to the JEDEC standard for DDR2 
SDRAM.

The phy_calib module calibrates the design to align the strobe signal such that it always 
captures the valid data in the FIFO. This calibration is needed to compensate for the trace 
delays between the memory and the FPGA devices.

The phy_write module splits the user data into rise data and fall data to be sent to the 
memory as a double data rate signal using ODDR. Similarly, while reading the data from 
memory, the data from IDDR is combined to get a single vector that is written into the read 
FIFO.
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usr_top

The usr_top module is the user interface block of the design. It receives and stores the user 
data, command, and address information in respective FIFOs. The ctrl module generates 
the required control signals for this module. During a write operation, the data stored in 
the usr_wr_fifo is read and given to the physical layer to output to the memory. Similarly, 
during a read operation, the data from the memory is read via IDDR and written into the 
FIFOs. This data is given to the user with a valid signal (rd_data_valid), which indicates 
valid data on the rd_data_fifo_out signal. Table 9-3 lists the user interface signals.

DDR2 SDRAM Initialization 
DDR2 memory is initialized through a specified sequence as per both Micron and JEDEC 
specifications. Initialization logic is implemented in the physical layer.

DDR2 SDRAM Design Calibration
Before issuing user read and write commands, the read data path is calibrated to ensure 
that correct data is captured into the CLK0 domain of the FPGA. Calibration logic is 
implemented in the physical layer of the design. Figure 9-8 shows overall calibration 
sequence.

Figure 9-8: Overall Design Calibration Sequence
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The first calibration stage is used to position the DQS in the DQ valid window. This 
synchronizes the capture of DQ using DQS in the IDDR flop. A training pattern of 1 for rise 
and 0 for fall data is written into the memory and is continuously read back. The DQ and 
IDELAYs are adjusted depending upon the DQ to DQS relationship. Per-bit deskew is 
performed on the DQ bits.

The second calibration stage is between the DQS and the FPGA clock. This synchronizes 
the transfer of data between the IDDR flop and flip-flops located in the FPGA fabric. The 
DQ and DQS IDELAY taps are incremented together to align to the FPGA clock domain.

The third calibration stage is the read-enable calibration, which is used to generate a read 
valid signal. The memory devices do not provide a signal indicating when the read data is 
valid. The read data is delayed by CAS latency, additive latency, the PCB trace, and the I/O 
buffer delays. The read-enable calibration is used to determine the delay between issuing 
a read command and the arrival of the read data. 

The fourth calibration stage is used to align the DQS Gate signal from the controller to the 
falling edge of DQS. The DQS Gate controls the clock enable to the DQ IDDRs. It is used to 
prevent clocking of invalid data into the IDDR after the read postamble. This can happen 
because the DQS is 3-stated by the memory at the end of a read. The DQS can then go into 
an indeterminate value, causing false clocking of the IDDR. 

After initialization and calibration is done, the controller is signaled to start normal 
operation of the design. Now, the controller can start issuing user write and read 
commands to the memory.

DDR2 SDRAM System and User Interface Signals
Table 9-3 and Table 9-4 describe the system interface signals for designs generated with 
and without a DCM, respectively.

Table 9-3: DDR2 SDRAM Controller System Interface Signals (with a DCM)

Signal Name Direction Description

sys_clk_p, sys_clk_n Input Differential input clock to the DCM. The DDR2 controller and 
memory operate at this frequency.

clk200_p, clk200_n Input 200 MHz input differential clock for the IDELAYCTRL primitive 
of Virtex-5 FPGAs.

sys_rst_n Input Active-Low reset to the DDR2 controller.

Table 9-4: DDR2 SDRAM Controller System Interface Signals (without a DCM)

Signal Direction Description
clk0 Input The DDR2 SDRAM controller and memory operate on this clock.

clk90 Input 90° phase-shifted clock with the same frequency as clk0.

clk200 Input 200 MHz input differential clock for the IDELAYCTRL primitive 
of Virtex-5 FPGAs.

sys_rst_n Input Active-Low reset to the DDR2 SDRAM controller. This signal is 
used to generate the synchronous system reset.

dcm_lock Input The status signal indicating whether the DCM is locked or not. 
This signal is used to generate the synchronous system reset.
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Table 9-5 describes the user interface signals.

Table 9-5: DDR2 SDRAM Controller User Interface Signals

Signal Direction(1) Description

app_af_cmd[2:0] Input 3-bit command to the Virtex-5 DDR2 SDRAM design. 

app_af_cmd = 3’b000 for write command
app_af_cmd = 3’b001 for read command

Other combinations are invalid. Functionality of the controller is 
unpredictable for unimplemented commands.

app_af_addr[30:0](2) Input Gives information about the address of the memory location to be 
accessed. This bus contains the bank address, the row address, and 
the column address.

Column address = app_af_addr[COL_WIDTH-1: 0]

Row address = app_af_addr[ROW_WIDTH+COL_WIDTH–1: 
COL_WIDTH]

Bank address = 
app_af_addr[BANK_WIDTH+ROW_WIDTH+COL_WIDTH–1: 
ROW_WIDTH+COL_WIDTH]

app_af_wren Input Write enable to the User Address FIFO. This signal should be 
synchronized with the app_af_addr and app_af_cmd signals.

app_wdf_data[2*DQ_WIDTH–1:0] Input User input data. It should contain the fall data and the rise data.

Rise data = app_wdf_data[DQ_WIDTH–1: 0]
Fall data = app_wdf_data[2*DQ_WIDTH–1: DQ_WIDTH]

app_wdf_mask_data[2*DM_WIDTH–1: 0] Input User mask data. It should contain the masking information for both 
rise and fall data.

Rise mask data = app_wdf_mask_data[DM_WIDTH–1: 0]
Fall mask data = app_wdf_mask_data[2*DM_WIDTH–1: 
DM_WIDTH]

app_wdf_wren Input Write enable for the User Write FIFO. This signal should be 
synchronized with the app_wdf_data and app_wdf_mask_data 
signals.

app_af_afull Output Almost Full status of the Address FIFO. When this signal is asserted, 
the user can write 12 more locations into the FIFO.

app_wdf_afull Output Almost Full status of the User Write FIFO. When this signal is 
asserted, the user can write 12 more locations into the FIFO.

rd_data_valid Output Status signal indicating read data is valid on the read data bus.

rd_data_fifo_out[2*DQ_WIDTH–1: 0] Output Read data from the memory.

phy_init_done Output Indicates the completion of initialization and calibration of the 
design.

clk0_tb Output Clock output to the user. All user interface signals must be 
synchronized with this clock.

rst0_tb Output Active-High reset for the user interface. 

Notes: 
1. Direction indicated in the table is referenced from the design perspective. For example, input here indicates that the signal is input to the 

design.
2. Addressing in Virtex-5 is linear addressing i.e. the row address immediately follows the column address bits, and the bank address follows 

the row address bits, thus supporting more devices.
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User Interface Accesses
The user backend logic communicates with the memory controller through a FIFO-based 
user interface. This interface consists of three related buses: (1) a command/address FIFO 
bus accepts write/read commands as well as the corresponding memory address from the 
user, (2) a write data FIFO bus accepts the corresponding write data when the user issues 
a write command on the command/address bus, and (3) a read bus on which the 
corresponding read data for an issued read command is returned. 

The user interface has the following timing and signaling restrictions:

1. When issuing a write command, the first write data word must be written to the Write 
Data FIFO either prior to or on the same clock cycle as the when the write command is 
issued. In addition, the write data must be written by the user over consecutive clock 
cycles; there cannot be a break between words. These restrictions arise from the fact 
that the controller assumes write data is available when it receives the write command 
from the user. 

Write Interface
Figure 9-9 shows the user interface block diagram for write operations.

The following steps describe the architecture of the Address and Write Data FIFOs and 
show how to perform a write burst operation to DDR2 SDRAM from the user interface.

1. The user interface consists of an Address FIFO and a Write Data FIFO. The Write Data 
FIFO is constructed using the Virtex-5 FIFO36_72 primitive with a 512 x 72 
configuration. The 72-bit architecture comprises one 64-bit port and one 8-bit port. For 
Write Data FIFOs, the 64-bit port is used for data bits and the 8-bit port is used for 
mask bits for ECC-disabled designs. Mask bits are available only when supported by 
the memory part and when Data Mask is enabled in the MIG GUI. Some memory 
parts, such as Registered DIMMs of x4 parts, do not support mask bits. 

Figure 9-9: User Interface Block Diagram for Write Operation
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2. In ECC-enabled designs, the 64-bit port is used for data bits and the 8-bit port is used 
for ECC data. The attributes passed to the Virtex-5 FIFO36_72 primitive are different 
for ECC-enabled designs; attribute EN_ECC_WRITE is set to TRUE for ECC-enabled 
designs to enable the generation of ECC data.

3. The Address FIFO is constructed using the Virtex-5 FIFO36 primitive with a 1024 x 36 
configuration. The 36-bit architecture comprises one 32-bit port and one 4-bit port. The 
32-bit port is used for the address (app_af_addr) and the 4-bit port is used for the 
command (app_af_cmd).

4. The Address FIFO is common for both Write and Read commands. It comprises an 
address part and a command part. Command bits discriminate between write and 
read commands.

5. User interface data width app_wdf_data is twice that of the memory data width. For 
an 8-bit memory width, the user interface is 16 bits consisting of rising-edge data and 
falling-edge data. There is a mask bit for every 8 bits of data. For 72-bit memory data, 
the user interface data width app_wdf_data is 144 bits, and the mask data 
app_wdf_mask_data is 18 bits.

6. The minimum configuration of the Write Data FIFO is 512 x 72 for a memory data 
width of 8 bits. For an 8-bit memory data width, the least-significant 16 bits of the data 
port are used for write data and the least-significant two bits of the 8-bit port are used 
for mask bits. The controller internally pads all zeros for the most-significant 48 bits of 
the 64-bit port and the most-significant 6 bits of the 8-bit port. 

7. Depending on the memory data width, MIG instantiates multiple FIFO36_72s to gain 
the required width. For designs using 8-bit to 32-bit data width, one FIFO36_72 is 
instantiated; for 72-bit data width, a total of three FIFO36_72s are instantiated. The bit 
architecture comprises 32 bits of rising-edge data, 4 bits of rising-edge mask, 32 bits of 
falling-edge data, and 4 bits of falling-edge mask, which are all stored in a FIFO36_72. 
MIG routes app_wdf_data and app_wdf_mask_data to FIFO36_72s accordingly.

8. The user can initiate a write to memory by writing to the Address FIFO and the Write 
Data FIFO when the FIFO full flags are deasserted. Status signal app_af_afull is 
asserted when the Address FIFO is full; similarly, app_wdf_afull is asserted when the 
Write Data FIFO is full. 

9. At power on, both the Address FIFO and Write Data FIFO full flags are deasserted.

10. The user should assert Address FIFO write-enable signal app_af_wren along with 
address app_af_addr and command app_af_cmd to store the address and command 
into Address FIFO. 

11. The user data should be synchronized to the clk_tb clock. The user should assert the 
Data FIFO write-enable signal app_wdf_wren along with write data app_wdf_data 
and mask data app_wdf_mask_data to store the write data and mask data into the 
Write Data FIFOs. The user should provide both rising-edge and falling-edge data 
together for each write to the Data FIFO. The Virtex-5 DDR2 SDRAM controller design 
supports byte-wise masking of data only. 

12. The write command should be given by keeping app_af_cmd = 3'b000 and asserting 
app_af_wren. Address information is given on the app_af_addr signal. Address and 
command information is written into the User Address FIFO.

13. After the completion of the initialization and calibration process and when the User 
Address FIFO empty signal is deasserted, the controller reads the Command and 
Address FIFO and issues a write command to the DDR2 SDRAM.

14. The write timing diagram in Figure 9-10 is derived from the MIG-generated test bench 
for a burst length of 4. As shown, each write to the Address FIFO should have two 
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writes to the Data FIFO. The phy_init_done signal indicates memory initialization and 
calibration completion.

Figure 9-10: DDR2 SDRAM Write Burst for Four Bursts (BL = 4)
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Read Interface
Figure 9-11 shows the block diagram of the read interface. 

The following steps describe the architecture of the Read Data FIFO and show how to 
perform a read burst operation from DDR2 SDRAM from user interface. 

1. The Read Data FIFOs are constructed using the Virtex-5 FIFO36_72 primitive with a 
512 x 72 configuration for ECC-enabled designs. For non-ECC designs, read data is 
latched using the flops.

2. In ECC-enabled designs, the 64-bit port is used for data bits and the 8-bit port is used 
for ECC data. The Virtex-5 FIFO36_72 performs ECC comparison when the attribute 
EN_ECC_READ is set during read operation. MIG instantiates the FIFOs 
appropriately for ECC or non-ECC designs.

3. The user can initiate a read to memory by writing to the Address FIFO when the FIFO 
full flag app_af_afull is deasserted.

4. To write the read address and read command into the Address FIFO, the user should 
issue the Address FIFO write-enable signal app_af_wren along with read address 
app_af_addr and app_af_cmd is the command (set to 001 for a read command). 

5. The controller reads the Address FIFO and generates the appropriate control signals to 
memory. After decoding app_af_cmd, the controller issues a read command to the 
memory at the specified address.

6. Prior to the actual read and write commands, the design calibrates the latency in 
number of clock cycles from the time the read command is issued to the time the data 
is received. Using this precalibrated delay information, the controller stores the read 
data in the Read Data FIFOs.

7. The read_data_valid signal is asserted when data is available in the Read Data FIFOs.

8. When the calibration is completed, the controller generates the control signals to 
capture the read data from the FIFO according to the CAS latency selected by the user. 

Figure 9-11: User Interface Block Diagram for Read Operation
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The rd_data_valid signal is asserted when the read data is available to the user, and 
rd_data_fifo_out is the read data from the memory to the user.

9. Figure 9-12 shows the user interface timing diagram for burst length of four. 

Read latency is defined as the time between when the read command is written to the user 
interface bus until when the corresponding first piece of data is available on the user 
interface bus (see Figure 9-12).

When benchmarking read latencies, it is important to specify the exact conditions under 
which the measurement occurs.

Read latency varies based on the following parameters:

• Number of commands already in the FIFO pipeline before the read command is 
issued

• Whether an ACTIVATE command needs to be issued to open the new bank/row

• Whether a PRECHARGE command needs to be issued to close a previously opened 
bank

• Specific timing parameters for the memory, such as TRAS and TRCD in conjunction 
with the bus clock frequency

• Commands can be interrupted, and banks/rows can forcibly be closed when the 
periodic AUTO REFRESH command is issued

• CAS latency

• Board-level and chip-level (for both memory and FPGA) propagation delays

Table 9-6 and Table 9-7 show read latencies for the Virtex-5 DDR2 interface for two 
different conditions. Table 9-6 shows the case where a row activate is not required prior to 
issuing a read command on the DDR bus. This situation is possible, for example, when 
bank management is enabled, and the read targets an already opened bank. Table 9-7 
shows the case when a read results in a bank/row conflict. In this case, a precharge of the 
previous row must be followed by an activation of the new row, which increases read 
latency. Other specific conditions are noted in the footnotes for each table. 

Figure 9-12: DDR2 SDRAM Read Burst (BL = 4) for Four Bursts
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Simulating the DDR2 SDRAM Design
After generating the design, MIG creates a sim folder in the specified path. This folder 
contains simulation files for a particular design. The sim folder contains the external 
testbench, memory model, .do file, and the executable file to simulate the generated 
design. The memory model files are currently generated in Verilog only. To learn more 
details about the files in the sim folder and to simulate the design, see 
simulation_help.chm in the sim folder.

Supported Devices
The design generated out of MIG is independent of memory package, hence the package 
part of the memory component is replaced with XX or XXX, where XX or XXX indicates a 
don't care condition. The tables below list the components (Table 9-8) and DIMMs 

Table 9-6: Read Latency without Precharge and Activate

Parameter Number of Clocks

User READ command to empty signal deassertion (using FIFO36)  1 clock

Empty signal to READ command on DDR2 bus  8.5 clocks

READ command to read valid assertion 8.5 clocks

Total 18 clocks

Notes: 
1. Test conditions: Clock frequency = 333 MHz, CAS latency = 5, DDR2 -3E speed grade device.
2. Access conditions: Read to an already open bank/row is issued to an empty control/address FIFO.
3. Some entries have fractional clock cycles because the inverted version of CLK0 is used to drive the 

DDR2 memory.
4. The Virtex-5 FPGA DDR2 interface uses a FIFO36 for the address/control FIFO. It is possible to 

shorten the READ command to empty signal deassertion latency by implementing the FIFO as a 
distributed RAM FIFO or removing the FIFO altogether, as the application requires. 

Table 9-7: Read Latency with Precharge and Activate

Parameter Number of Clocks

User READ command to empty signal deassertion (using FIFO36)  1 clock

Empty signal to PRECHARGE command on DDR2 bus  8.5 clocks

PRECHARGE to ACTIVE command to DDR2 memory 4 clocks

ACTIVE to READ command to DDR2 memory 4 clocks

READ command to read valid assertion 8.5 clocks

Total 26 clocks

Notes: 
1. Test conditions: Clock frequency = 333 MHz, CAS latency = 5, DDR2 -3E speed grade device.
2. Access conditions: Read that results in a bank/row conflict is issued to an empty control/address 

FIFO. This requires that the previous bank/row be closed first.
3. Some entries have fractional clock cycles because the inverted version of CLK0 is used to drive the 

DDR2 memory.
4. The Virtex-5 FPGA DDR2 interface uses a FIFO36 for the address/control FIFO. It is possible to 

shorten the READ command to empty signal deassertion latency by implementing the FIFO as a 
distributed RAM FIFO or removing the FIFO altogether, as the application requires. 
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(Table 9-9) supported by the tool for the DDR2 design. In supported devices, X in the 
components column denotes a single alphanumeric character. For example, 
MT47H128M4XX-3 can be either MT47H128M4BP-3 or MT47H128M4B6-3. XX for 
Registered DIMMs denotes a single or two alphanumeric characters. For example, 
MT9HTF3272XX-667 can be either MT9HTF3272Y-667 or MT9HTF3272DY-667.

Table 9-8: Supported Components for DDR2 SDRAM (Virtex-5 FPGAs)

Components Packages (XX) Components Packages (XX)

MT47H64M4XX-3 BP MT47H128M8XX-3 BT,HQ

MT47H64M4XX-37E BP MT47H128M8XX-37E BT,HQ

MT47H64M4XX-5E BP MT47H128M8XX-5E BT,HQ

MT47H128M4XX-3 B6,CB,GB MT47H256M8XX-3 HG

MT47H128M4XX-37E B6,CB,GB MT47H256M8XX-37E HG

MT47H128M4XX-5E B6,CB,GB MT47H256M8XX-5E HG

MT47H256M4XX-3 BT,HQ MT47H16M16XX-3 BG

MT47H256M4XX-37E BT,HQ MT47H16M16XX-37E BG

MT47H256M4XX-5E BT,HQ MT47H16M16XX-5E BG

MT47H512M4XX-3 HG MT47H32M16XX-3 BN,CC,FN,GC

MT47H512M4XX-37E HG MT47H32M16XX-37E BN,CC,FN,GC

MT47H512M4XX-5E HG MT47H32M16XX-5E BN,CC,FN,GC

MT47H32M8XX-3 BP MT47H64M16XX-3 BT,HR

MT47H32M8XX-37E BP MT47H64M16XX-37E BT,HR

MT47H32M8XX-5E BP MT47H64M16XX-5E BT,HR

MT47H64M8XX-3 B6,CB,F6,GB MT47H128M16XX-3 HG

MT47H64M8XX-37E B6,CB,F6,GB MT47H128M16XX-37E HG

MT47H64M8XX-5E B6,CB,F6,GB MT47H128M16XX-5E  --

Table 9-9: Supported Registered DIMMs for DDR2 SDRAM (Virtex-5 FPGAs)

Registered DIMMs Packages (X) Registered DIMMs Packages (X)

MT9HTF3272XX-667  -- MT18HTF6472XX-667  --

MT9HTF3272XX-53E Y MT18HTF6472XX-53E DY,Y

MT9HTF3272XX-40E Y MT18HTF6472XX-40E DY,Y

MT9HTF6472XX-667 PY,Y MT18HTF12872XX-667 DY,PDY,PY,Y

MT9HTF6472XX-53E Y MT18HTF12872XX-53E DY,MY,NDY,
NY,PY,Y

MT9HTF6472XX-40E Y MT18HTF12872XX-40E DY,PY,Y

MT9HTF12872XX-667 PY MT18HTF25672XX-667 PDY,PY,Y

MT9HTF12872XX-53E PY,Y MT18HTF25672XX-53E PDY,PY,Y

MT9HTF12872XX-40E Y MT18HTF25672XX-40E DY,PDY,Y

MT18HTF6472G-53E  --  --  --

http://www.xilinx.com


324 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 9: Implementing DDR2 SDRAM Controllers
R

Hardware Tested Configurations
The frequencies shown in Table 9-12 were achieved on the Virtex-5 FPGA ML561 Memory 
Interfaces Development Board under nominal conditions. These frequencies should not be 
used to determine the maximum design frequency. The maximum design frequency 
supported in the MIG wizard is based on a combination of the TRCE results for fabric 
timing on multiple device/package combinations and I/O timing analysis using FPGA 
and memory timing parameters for a 72-bit wide interface.

Table 9-10: Supported UDIMMs for DDR2 SDRAM (Virtex-5 FPGAs)

MT4HTF1664AY-667 MT8HTF6464AY-53E

MT4HTF1664AY-40E MT8HTF6464AY-40E

MT4HTF3264AY-667 MT8HTF12864AY-667

MT4HTF3264AY-40E MT8HTF12864AY-40E

MT4HTF6464AY-667 MT9HTF3272AY-667

MT4HTF6464AY-40E MT9HTF3272AY-40E

MT8HTF6464AY-667 MT9HTF6472AY-667

Table 9-11: Supported SODIMMs for DDR2 SDRAM (Virtex-5 FPGAs)

MT4HTF1664HY-667 MT8HTF3264HY-667

MT4HTF1664HY-53E MT8HTF3264HY-53E

MT4HTF1664HY-40E MT8HTF3264HY-40E

MT4HTF3264HY-667 MT8HTF6464HY-667

MT4HTF3264HY-53E MT8HTF6464HY-53E

MT4HTF3264HY-40E MT8HTF6464HY-40E

Table 9-12: Hardware Tested Configurations

Synthesis Tools XST and Synplicity

HDL Verilog and VHDL

FPGA Device XC5VLX50T-FF1136-2

Burst Lengths 4, 8

CAS Latency (CL) 3, 4, 5

Additive Latency 0, 1, 2, 3, 4

32-bit Design Tested on 16-bit Component MT47H32M16XX-3

72-bit RDIMM Design Tested on 72-bit DIMM MT9HTF6472XX-667

72-bit UDIMM Design Tested on 72-bit DIMM MT9HTF6472AY-667

ECC verified 72-bit RDIMM and UDIMM design

Component, CL=3, 4, 5 100 MHz to 400 MHz

DIMM, CL=3 100 MHz to 280 MHz

DIMM, CL=4, 5 100 MHz to 400 MHz
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Chapter 10

Implementing QDRII SRAM Controllers

This chapter describes how to implement QDRII SRAM interfaces for Virtex™-5 FPGAs 
generated by MIG. This design is based on XAPP853 [Ref 25].

Feature Summary
This section summarizes the supported and unsupported features of the QDRII controller 
design.

Supported Features
The QDRII controller design supports the following:

• A maximum frequency of 300 MHz

• 18-bit, 36-bit, and 72-bit data widths

• Burst lengths of four and two

• Implementation using different Virtex-5 devices

• Support for DCI Cascading

• Operation with 18-bit and 36-bit memory components

• Verilog and VHDL

• With and without a testbench

• With and without a DCM

Design Frequency Ranges

Unsupported Features
The QDRII controller design does not support:

• 9-bit data widths

• 9-bit memory components

Table 10-1: Design Frequency Range in MHz

Memory

FPGA Speed Grade

-1 -2 -3

Min Max Min Max Min Max

Component 120 250 120 300 120 300
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Architecture
Figure 10-1 shows a top-level block diagram of the QDRII memory controller. One side of 
the QDRII memory controller connects to the user interface denoted as User Interface. The 
other side of the controller interfaces to QDRII memory. The memory interface data width 
is selectable from MIG. 

The QDR operation can support double data rated read and write operations through 
separate data output and input ports with the same cycle. Memory bandwidth is 
maximized because data can be transferred into SRAM on every edge of the clock and 
transferred out of SRAM on every edge of the read clock. Independent read and write ports 
eliminate the need for high-speed bus turnaround.

Read and write addresses are latched on positive edges of the input clock K. A common 
address bus is used to access the addresses for both read and write operations. The key 
advantage to QDRII devices is they have separate data buses for reads and writes to 
SRAM. 

Interface Model
The QDRII memory interface is layered to simplify the design and make the design 
modular. Figure 10-2 shows the layered memory interface in the QDRII memory controller. 
The two layers are the application layer and the implementation and physical layer.

The application layer creates the user interface, which initiates memory writes and reads 
by writing data and memory addresses to the User Interface FIFOs. 

The implementation and physical layer comprises:

Figure 10-1: QDRII Memory Controller
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Figure 10-2: Interface Layering Model
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• Clocks and reset generation logic

• Datapath logic

• Control logic

Clocks and reset generation logic constitute a DCM primitive, which derives different 
phase-shifted versions of the user-supplied differential clocks (sys_clk_p and sys_clk_n). 
These phase-shifted versions of clocks run throughout the controller design. A 200 MHz 
user-supplied differential clock is used for the idelay control elements. Reset signals are 
generated for different clock domains using the user-supplied reset signal (sys_rst_n), the 
dcm_lock signal, and idelay control elements ready signal.

The Datapath logic consists of the memory write clocks, the read clocks, the data write 
generation logic, and the read data capturing logic.

The Control logic constitutes read/write command generation logic, depending on the 
status signals of the User Interface FIFO.

The above mentioned logic interfaces with memory through IDDRs, ODDRs, OFLOPs, 
ISERDES elements, etc., which are associated with the physical layer.

Hierarchy
Figure 10-3 shows the hierarchical structure of the QDRII SRAM design generated by MIG 
with a testbench and a DCM. 

Figure 10-3: Hierarchical Structure of the Virtex-5 QDRII SRAM Design
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The modules are classified as follows: 

• Design modules

• Testbench modules

• Clocks and reset generation modules

MIG can generate four different QDRII SRAM designs:

• With a testbench and a DCM 

• Without a testbench and with a DCM 

• With a testbench and without a DCM 

• Without a testbench and without a DCM

For designs without a testbench (user_design), testbench modules are not present in the 
design. The <top_module> (top level) module has the user interface signals for designs 
without a testbench. The list of user interface signals is provided in Table 10-4.

Design clocks and resets are generated in the infrastructure module. The DCM clock is 
instantiated in the infrastructure module for designs with a DCM. The inputs to this 
module are the differential design clock and a 200 MHz differential clock for the 
IDELAYCTRL module. A user reset is also input to this module. Using the input clocks and 
reset signal, system clocks and system reset signals are generated in this module, which are 
used in the design.

The DCM primitive is not instantiated in this module if the “No DCM” option is selected. 
So, the system operates on the user-provided clocks. The system reset signals are generated 
in the infrastructure module using the dcm_lock input signal, the input reset signal, and 
the idelay control element’s ready signal.

The QDRII design is generated in two configurations with and without a testbench 
(example_design and user_design respectively). The top-level module with testbench 
(example_design) has the design top, testbench, IDELAY control, and clock and reset 
modules. Without a testbench (user_design), the mem_test_bench module is removed 
from the top-level module. By default, MIG outputs both designs (example_design and 
user_design) in two separate RTL folders, and the user can choose the appropriate design.
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Figure 10-4 shows a top-level block diagram of a QDRII SRAM design with a DCM and a 
testbench. sys_clk_p and sys_clk_n are differential input system clocks. The DCM is 
instantiated in the infrastructure module that generates the required design clocks. 
dly_clk_200_p and dly_clk_200_n are used for the idelay_ctrl element. sys_rst_n is an 
active-Low system reset signal. All design resets are generated using the sys_rst_n signal, 
the dcm_locked signal, and the dly_ready signal of the IDELAYCTRL element. The 
compare_error output signal indicates whether the design passes or fails. The testbench 
module called “tb_top” generates the user interface data, address, and command signals. 
The user data bits and address bits are stored in the corresponding User Interface FIFOs. 
The compare_error signal is driven High on data mismatches. The cal_done signal 
indicates the completion of initialization and calibration of the design.

Figure 10-4: Top-Level Block Diagram of the QDRII SRAM Design with a DCM and a Testbench
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Figure 10-5 shows a top-level block diagram of a QDRII SRAM design without a DCM but 
with a testbench. The user should provide all the clocks and the dcm_locked signal. These 
clocks should be single-ended. sys_rst_n is the active-Low system reset signal. All design 
resets are generated using the sys_rst_n signal, the dcm_locked signal, and the dly_ready 
signal of the IDELAYCTRL element. The user application must have a DCM primitive 
instantiated in the design, and all user clocks should be driven through BUFGs. The 
compare_error output signal indicates whether the case passes or fails. The testbench 
module called “tb_top” generates the user interface data, address, and command signals. 
The user data bits and address bits are stored in the corresponding User Interface FIFOs 
The compare_error signal is driven High on data mismatches. The cal_done signal 
indicates the completion of initialization and calibration of the design.

Figure 10-5: Top-Level Block Diagram of the QDRII SRAM Design without a DCM but with a Testbench 
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Figure 10-6 shows a top-level block diagram of a QDRII SRAM design with a DCM but 
without a testbench. sys_clk_p and sys_clk_n are differential input system clocks. The 
DCM is instantiated in the infrastructure module that generates the required design clocks. 
dly_clk_200_p and dly_clk_200_n are used for the idelay_ctrl element. sys_rst_n is an 
active-Low system reset signal, and all design resets are generated using the sys_rst_n 
signal, the dcm_locked signal, and the dly_ready signal of the IDELAYCTRL element. The 
user has to drive the user application signals. The design provides the clk0_tb and 
user_rst_0_tb signals to the user in order to synchronize the user application signals with 
the design. The cal_done signal indicates the completion of initialization and calibration of 
the design.

Figure 10-6: Top-Level Block Diagram of the QDRII SRAM Design with a DCM but without a Testbench 
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Figure 10-7 shows a top-level block diagram of a QDRII SRAM design without a DCM or 
a testbench. The user should provide all the clocks and the dcm_locked signal. These 
clocks should be single-ended. sys_rst_n is the active-Low system reset signal. All design 
resets are generated using the sys_rst_n signal, the dcm_locked signal, and the dly_ready 
signal of the IDELAYCTRL element. The user application must have a DCM primitive 
instantiated in the design, and all user clocks should be driven through BUFGs. The user 
has to drive the user application signals. The design provides the clk0_tb and user_rst_0_tb 
signals to the user in order to synchronize the user application signals with the design. The 
cal_done signal indicates the completion of initialization and calibration of the design.

Figure 10-7: Top-Level Block Diagram of the QDRII SRAM Design without a DCM or a Testbench
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QDRII Memory Controller Modules
Figure 10-8 shows a detailed block diagram of the QDRII memory controller. 

Controller

The QDRII memory controller initiates alternate WRITE and READ commands to the 
memory as long as the User Write Address FIFO and the User Read Address FIFO are not 
empty.

The user writes the write data, its corresponding byte write enable, and the Write Address 
bits into the User Write Data FIFOs, the User Byte Write FIFO, and the User Write Address 
FIFOs, respectively. When the User Write Address FIFO is not empty, the QDRII controller 
generates a write-enable signal to the memory. When the write enable is asserted, the write 
data, the byte write enable, and the write address bits are transferred to memory from the 
User Write Data FIFOs, the User Byte Write FIFO, and the User Write Address FIFO, 
respectively. 

The read address from where the data is to be read from the memory is stored by the user 
in the User Read Address FIFO. The QDRII memory controller generates a read-enable 
signal to the memory when the User Read Address FIFO is not empty. When the read 
enable is asserted, the read address from the Read Address FIFO is transferred to memory. 
When the read data from the memory corresponding to the read address is captured 
correctly, a valid user_qr_valid signal is asserted High. The user can access the read data 
corresponding to the read address only when the data valid signal user_qr_valid is 
asserted High.

Figure 10-8: QDRII Memory Controller Modules
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Figure 10-9 shows a state machine of the QDRII memory controller for burst lengths of 
four. When calibration is complete (that is, when the cal_done signal is asserted), the state 
machine is in the IDLE state. When the User Write Address FIFO is not empty (that is, 
when the user has written the write data, the byte write enable, and the write address bits 
into their corresponding FIFOs, respectively), the state machine goes to the WRITE state, 
initiating a memory write of one burst. 

When the User Read Address FIFO is not empty (that is, the user has written read address 
bits into the User Read Address FIFO), the state machine goes to the READ state, initiating 
a memory read of one burst.

From the IDLE state, the QDRII memory controller can go to either the WRITE or the 
READ state depending on the status of the User FIFOs. Writes are given priority. In the 
WRITE state, a memory write is initiated, and the User Read Address Not Empty status is 
checked in order to transfer into the READ state. When the User Read Address FIFO is 
empty, the state machine goes to the IDLE state.

In the READ state, a memory read is initiated, and the User Write Address FIFO Not 
Empty status is checked before going to the WRITE state. If the User Address FIFO is 
empty, the state machine goes to the IDLE state.

Figure 10-10 shows a state machine of the QDR II memory controller for burst lengths of 
two. When calibration is complete, the state machine is in the IDLE state. When the User 

Figure 10-9: QDRII Memory Controller State Machine with Burst Lengths of 4

Figure 10-10: QDRII Memory Controller State Machine with Burst Lengths of 2
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Write Address FIFO is not empty (that is, when the user has written the write data, the byte 
write enable, and the write address bits into their corresponding FIFOs), the state machine 
goes to the WRITE_READ state, initiating a memory write of one complete burst. When 
the User Read Address FIFO is not empty (that is, the user has written read address bits 
into the User Read Address FIFO), the state machine goes to the READ_WRITE state, 
initiating a memory read of one complete burst.

From the IDLE state, the QDR II memory controller goes to WRITE_READ state if either:

• the User Write Address FIFO is not empty, or

• the User Read Address FIFO is not empty.

In the WRITE_READ state, the User Read Address Not Empty status is checked to initiate 
a memory read. To initiate a memory write in the WRITE_READ state, the User Write 
Address FIFO not empty status is checked. If both the User Write Address FIFO and the 
User Read Address FIFO are empty, the state machine goes to the IDLE state. If either the 
User Write Address FIFO or the User Read Address FIFO is not empty, the state machine 
remains in the WRITE_READ state to issue memory writes or reads.

Refer to XAPP853 [Ref 25] for data capture techniques and timing analysis of the QDRII 
memory controller module. 

Infrastructure

The Infrastructure (infrastructure_top) module comprises the reset generation logic and 
instantiates a DCM primitive for clock signal generation. Inputs to the infrastructure_top 
module are sys_clk_p and sys_clk_n (the differential clock pair from which the design 
clocks are generated), dly_clk_200_p and dly_clk_200_n (the differential clock pair for the 
IDELAYCTRL elements), and sys_rst_n (the user reset signal). sys_clk_p and sys_clk_n are 
used by the DCM primitive to generate the clock, the 180° phase-shifted version of the 
clock, and the 270° phase-shifted version of the clock. The QDRII controller works using 
these clocks. This module even generates reset signals using the sys_rst_n signal, the 
dcm_lock signal, and the ready signal from the idelay control element for different clock 
domains that are used by the controller design.

top_phy

This module is the interface between the controller and the memory. It consists of the 
following:

• Control logic that generates READ/WRITE commands and address signals to the 
memory.

• Write Data logic that associates the write data, the byte enable, and the write address 
with the WRITE commands and the read address with the READ commands. It also 
generates the write data pattern for calibration purposes.

• Read Data logic that comprises the read data capturing scheme and calibration logic.

DCI Cascading

In Virtex-5 family devices, I/O banks that need DCI reference voltage can be cascaded with 
other DCI I/O banks. One set of VRN/VRP pins can be used to provide reference voltage 
to several I/O banks. With DCI cascading, one bank (the master bank) must have its 
VRN/VRP pins connected to external reference resistors. Other banks in the same column 
(slave banks) can use DCI standards with the same impedance as the master bank, without 
connecting the VRN/VRP pins on these banks to external resistors. DCI impedance control 
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in cascaded banks is received from the master bank. This results in more usable pins and in 
reduced power usage because fewer VR pins and DCI controllers are used. 

The syntax for representing the DCI Cascading in the UCF is:

CONFIG DCI_CASCADE = "<master> <slave1> <slave2> ...";

There are certain rules that need to be followed in order to use DCI Cascade option:

1. The master and slave banks must all reside on the same column (left, center, or right) 
on the device.

2. Master and slave banks must have the same VCCO and VREF (if applicable) voltages.

This feature enables placing all 36 bits of read data, as well as the CQ and CQ# clocks, in the 
same bank when interfacing with 36-bit QDRII components. 

MIG supports DCI Cascading. Following are the possibilities for generating the designs 
with DCI support using the DCI Cascade option.

• For x36 component designs, the DCI Cascade option is always enabled. This feature 
cannot be disabled if DCI support is needed.

• For x18 component designs, DCI Cascade is optional. DCI support for these designs 
can be selected with or without the DCI Cascade selection.

• For x18 component with 18-bit data width designs, the DCI Cascade option is 
disabled and cannot be utilized.

When DCI Cascade option is selected, MIG displays the master bank selection box for each 
column of the FPGA in the bank selection page.

• If an FPGA has no banks or has only non-DCI banks in a particular column, the 
master bank selection box for that column is not displayed.

• All the data read banks are treated as slave banks.

• When a data read bank is selected in a particular column, the master bank selection 
box for that particular column is activated and the rest of the master bank selection 
boxes for other columns are deactivated.

• In a particular column, when a data read bank is selected and there are no DCI banks 
left in that column for master banks selection, then the design cannot be generated. 
The data read banks must be moved to the other columns in order to select the master 
banks.

• The master bank selection box shows all the bank numbers in that particular column 
other than the data read banks and non-DCI banks in that column.

• There can be only one master bank selected for each column of banks.

• MIG utilizes VRN/VRP pins in the slave banks for pin allocation.

• For each master bank, VRN/VRP pins are reserved, and a dummy input pin 
masterbank_sel_pin is allocated and assigned the HSTL_I_DCI_18 I/O standard. This 
helps to enable the DCI standard for the read data banks. The number of dummy 
input pins is equal to the number of master banks allocated by MIG. 

• The dummy input pin is required to satisfy the requirement of the master bank. Any 
master bank should have at least one input pin to program the DCI option. 

• When all the banks in a particular column are allocated with data read pins, MIG 
chooses only the required banks for data read pins depending upon the design data 
width and leaves rest of the banks for master bank selection.

The center column banks of all the FPGAs are divided into two sections, top-column banks 
and bottom-column banks. Top-column banks are the banks available above the 0th bank, 
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and the bottom column banks are the banks available below 0th bank. Therefore, there are 
two master bank selection boxes for the center column.

The VRN/VRP pins for a master bank do not need to be reserved in the reserve pins page.

Once the design is ready with the valid master and slave bank selection, the same master 
and slave bank information (along with the DCI Cascading syntax) is provided in the UCF 
when the design is generated.

For more information about DCI Cascade, refer to DCI Cascading in the Virtex-5 FPGA 
User Guide and the Xilinx Constraints Guide.

CQ/CQ_n Implementation

Controller uses CQ and CQ_n for capturing read data of a 36-bit component. CQ and CQ_n 
are placed on the P pins of the clock-capable I/Os. For a 36-bit component, CQ is used to 
capture the first 18 bits of the read data, and CQ_n is used to capture the second 18 bits of 
the read data. For an 18-bit component, only CQ is used for capturing the read data. CQ_n 
is not used, and it is connected to a dummy logic. This dummy logic is used just to retain 
CQ_n pin during PAR. Users can use the CQ_n pin if needed.

Pinout Considerations

It is recommended to select banks within the same column in MIG. This helps to avoid the 
clock tree skew that the design would incur while crossing from one column to another.

When the Data Read, Data Write, Address, and System Control pins are allocated to 
individual banks in a column, then the System Control pins must be allocated in a bank 
that is central to the rest of banks allocated. This helps reduce data path and clock path 
skew.

For larger FPGAs (for example, FF1738, FF1760, and similar), it is recommended to place 
Data Read, Data Write, Address, and System Control pins in the same column to reduce 
data path and clock path skew.

User Interface

The user interface has two interfaces: a Read user interface and a Write user interface.

The Read user interface consists of the Read Address interface modules. The Read Address 
interface consists of the Read Address FIFO. The user has to write the read address bits of 
the memory into this FIFO. 

The Write User interface consists of the Write Data interface and the Write Address 
interface. The Write Address interface consists of the Write Address FIFO. The user has to 
write the write address bits of the memory into this FIFO.

The Write Data interface consists of the Write Data FIFO and the Byte Write FIFO. The 
width of the Write Data FIFO depends upon the data width of the controller design. There 
are two Write Data FIFOs for every controller: the LSB Write Data FIFO and the MSB Write 
Data FIFO. The outputs of these FIFOs are SDR and are later converted to DDR at the 
ODDR primitive before transferring to memory.

The Byte Write enable signals are stored in the Byte Write FIFO by the user.

The controller monitors the status signals of these User FIFOs and issues the 
READ/WRITE commands to the memory.

The user must wait until the cal_done signal is asserted by the controller, which indicates 
completion of calibration prior to writing the user data to the Write Data FIFOs.
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Refer to the timing diagrams in “QDRII Controller Interface Signals” for how the user can 
access these FIFOs.

QDRII SRAM Initialization and Calibration
QDRII memory is initialized through a specified sequence. Following initialization, the 
relationship between the data and the FPGA clock is calculated using the TAP logic. The 
calibration logic is explained briefly as follows.

Calibration is done in three stages:

1. The read strobe CQ is edge-aligned with the read data Q from the memory. The read 
strobe is a free-running clock from the memory. In the first stage of calibration, the read 
strobe CQ is passed through the BUFIO, which delays the strobe by the amount of 
delay in the BUFIO. Now the read strobe CQ is out of synchronization with the read 
data Q. 

A pattern of four bursts of data (with a value of '1' for rise data and '0' for fall data) is 
written into a particular location in memory. Continuous read commands are issued to 
the same location of the memory and the read data Q is delayed in the ISERDES, until 
it is center-aligned with respect to the delayed read strobe CQ.

The q_init_delay_done signal in the phy_read module indicates the status of the first 
stage calibration. When q_init_delay_done is asserted High, it indicates the 
completion of first-stage calibration. Now the CQ clocks are centered with respect to 
the Read Data Q at the input of the ISERDES.

2. In the second stage of calibration, the read data window is center-aligned with respect 
to the FPGA clock. Here another pattern of four bursts of data is written into a 
particular memory location. It is read back continuously from the same memory 
location, and the read data and the delay clock, CQ, are delayed until the registered 
read data is center-aligned with the FPGA clock.

When the registered read data is center-aligned with the FPGA clock, the alignment of 
the read data Q with respect to the FPGA clock is complete. The dly_cal_done signal in 
the phy_read module indicates the status of second-stage calibration. 

3. In the third stage of calibration, the controller issues non-consecutive read commands 
to the memory. The internal read command signal generated by the controller is then 
delayed through a shift register until the delayed read command signal is aligned with 
the ISERDES read data output. Then another level of calibration is done to ensure 
alignment between the ISERDES data outputs from all the banks used in the interface. 

This finishes the calibration of the read data Q, and the cal_done signal is asserted 
High.

XAPP853 [Ref 25] provides more information about the calibration architecture.

The user must strictly follow the pattern data and not modify it. The timing diagrams in 
“QDRII Controller Interface Signals” explain the user interface commands until the 
calibration is finished.

QDRII Controller Interface Signals
Table 10-2 through Table 10-3 describe the QDRII controller system interface signals with 
and without a DCM, respectively. Table 10-4 describes the QDRII user interface signals. 
Table 10-5 describes the QDRII memory interface signals. In these tables, all signal 
directions are with respect to the QDRII memory controller. 
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Table 10-2: QDRII SRAM System Interface Signals (with a DCM)

Signal Name Direction Description

sys_clk_p, sys_clk_n Input System clock input made up of differential clock pairs. This clock 
pair goes to a differential input buffer. The differential buffer output 
goes to the DCM input. The DCM generates the required clocks for 
the design.

When the Without DCM option is selected, this clock pair is not 
present.

dly_clk_200_p, dly_clk_200_n Input 200 MHz differential clock used in the idelay_ctrl logic.

sys_rst_n Input Reset to the QDRII memory controller.

compare_error Output This signal represents the status of comparison of read data when 
compared to the corresponding write data.

cal_done Output This signal is asserted when the design initialization and calibration 
is complete.

Table 10-3: QDRII SRAM System Interface Signals (without a DCM)

Signal Name Direction Description

clk0 Input Input clock

clk180 Input Input clock with a 180° phase difference

clk270 Input Input clock with a 270° phase difference

clk200 Input 200 MHz clock for Idelayctrl primitives

dcm_locked Input This active-High signal indicates whether the user DCM is locked or 
not.

sys_rst_n Input Reset to the QDRII memory controller

compare_error Output This signal represents the status of the comparison between the read 
data with the corresponding write data.

cal_done Output This signal is asserted when the design initialization and calibration is 
complete.

Table 10-4: QDRII SRAM User Interface Signals (without a Testbench [user_design])

Signal Name Direction Description

user_wr_full Output This signal indicates the User Write FIFO status. It is asserted 
when either the User Write Address FIFO or the User Write 
Data FIFO is full. When this signal is asserted, any writes to the 
User Write Address FIFO and the User Write Data FIFO are 
invalid, possibly leading to controller malfunction.

user_rd_full Output This signal indicates the User Read Address FIFO status. It is 
asserted when the User Read Address FIFO is full. When this 
signal is asserted, any writes to the User Read Address FIFO 
are ignored.
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user_qr_valid Output This status signal indicates that data read from the memory is 
available to the user.

clk0_tb Output All user interface signals are to be synchronized to this clock.

user_rst_0_tb Output This reset is active until the DCM is not locked.

user_dwl [(DATA_WIDTH-1):0] Input Positive-edge data for memory writes. This data bus is valid 
when user_d_w_n is asserted.

user_dwh [(DATA_WIDTH-1):0] Input Negative-edge data for memory writes. This data bus is valid 
when user_d_w_n is asserted.

user_qrl [(DATA_WIDTH-1):0] Output Positive-edge data read from memory. This data is output 
when user_qen_n is asserted.

user_qrh [(DATA_WIDTH-1):0] Output Negative-edge data read from memory. This data is output 
when user_qen_n is asserted.

user_bwl_n [(BW_WIDTH-1):0] Input Byte enables for QDRII memory positive-edge write data. The 
byte enables are valid when user_d_w_n is asserted.

user_bwh_n [(BW_WIDTH-1):0] Input Byte enables for QDRII memory negative-edge write data. The 
byte enables are valid when user_d_w_n is asserted.

user_ad_wr [(ADDR_WIDTH-1):0] Input QDRII memory address for write data. This address is valid 
when user_ad_w_n is asserted.

user_ad_rd [(ADDR_WIDTH-1):0] Input QDRII memory address for read data. This address is valid 
when user_r_n is asserted.

user_ad_w_n Input This active-Low signal is the write enable for the User Write 
Address FIFO.

user_d_w_n Input This active-Low signal is the write enable for the User Write 
Data FIFO and Byte Write FIFOs.

user_r_n Input This active-Low signal is the write enable for the User Read 
Address FIFO.

Notes: 
1. All user interface signal names are prepended with a controller number, for example, cntrl0_qdr_q. QDRII SRAM devices currently 

support only one controller.

Table 10-4: QDRII SRAM User Interface Signals (without a Testbench [user_design]) (Continued)

Signal Name Direction Description

Table 10-5: QDRII SRAM Interface Signals

Signal Name Direction Description

qdr_d Output During WRITE commands, the data is sampled on both edges of K.

qdr_q Input During READ commands, the data is sampled on both edges of FPGA 
clk.

qdr_bw_n Output Byte enables for QDRII memory write data. These enable signals are 
sampled on both edges of the K clock.

qdr_sa Output Address for READ and WRITE operations

qdr_w_n Output This signal represents the WRITE command.
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User Interface Accesses

The user backend logic communicates with the memory controller through a FIFO-based 
user interface. This interface consists of four related buses: 

• A Write Address FIFO bus accepts memory write address from the user

• A Write Data FIFO bus accepts the write data corresponding to the memory write 
address

• A Read Address FIFO bus accepts the memory read address from the user

The user interface has the following timing and signaling restrictions:

• The Write/Read Address and Write Data FIFOs cannot be written by the user until 
calibration is complete (as indicated by cal_done). In addition, the user_ad_w_n, 
user_d_w_n, and user_r_n interface signals need to be held High until calibration is 
complete. 

• For issuing a write command, the memory write address must be written into the 
Read Address FIFO. The first write data word must be written to the Write Data FIFO 
on the same clock cycle as the when the write address is written. In addition, the write 
data burst must be written over consecutive clock cycles; there cannot be a break 
between bursts of data. These restrictions arise from the fact that the controller 
assumes write data is available when it receives the write command from the user.

qdr_r_n Output This signal represents the READ command.

qdr_cq, qdr_cq_n Input These signals are the read clocks transmitted by the QDRII SRAM. 
Both CQ and CQ_n are used for data capture in this design.

qdr_k, qdr_k_n Output Differential write data clocks

qdr_c, qdr_c_n Output Input clock to memory for the output data

qdr_dll_off_n Output Memory DLL disable when Low

Table 10-5: QDRII SRAM Interface Signals

Signal Name Direction Description
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Write Interface

Figure 10-11 illustrates the user interface block diagram for write operations. 

The following steps describe the architecture of Address and Write Data FIFOs and how to 
perform a write burst operation to QDRII memory from user interface.

1. The user interface consists of an Address FIFO, Data FIFOs, and a Byte Write FIFO. 
These FIFOs are built out of Virtex-5 FIFO primitives. The Address FIFO is a FIFO36 
primitive with 1K x 36 configuration. The Data FIFO is a FIFO36_72 primitive with 
512 x 72 configuration.

2. The Address FIFO is used to store the memory address where the data is to be written 
from the user interface. A single instantiation of a FIFO36 constitutes the Address 
FIFO.

3. Two separate sets of Data FIFOs are used for storing the rising-edge and falling-edge 
data to be written to QDRII memory from the user interface. For 9-bit, 18-bit, and 36-bit 
configurations, the controller pads the extra bits of the Data FIFO with 0s.

4. The Byte Write FIFO is used to store the Byte Write signals to QDRII memory from the 
user interface. Extra bits are padded with zeros.

5. The user can initiate a write command to memory by writing to the Write Address 
FIFO, Write Data FIFO, and Byte Write FIFOs when the FIFO full flags are deasserted 
and after the calibration done signal cal_done is asserted. The user should not access 
any of these FIFOs until cal_done is asserted. During the calibration process, the 

Figure 10-11: Write User Interface Block Diagram
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controller writes pattern data into the Data FIFOs. The cal_done signal assures that the 
clocks are stable, the reset process is completed, and the controller is ready to accept 
commands. Status signal user_wr_full is asserted when the Address FIFO, Data FIFOs, 
or Byte Write FIFOs are full. 

6. When signal user_ad_w_n is asserted, user_ad_wr is stored in the Address FIFO. 
When signal user_d_w_n signal is asserted, user_dwl and user_dwh are stored into 
the Data FIFO, and user_bwl and user_bwh are stored into the Byte Write FIFOs. For 
proper controller functionality, user_ad_w_n and user_d_w_n must be asserted and 
deasserted simultaneously.

7. The controller reads the Address, Data, and Byte Write FIFOs when they are not empty 
by issuing the wr_init_n signal. The QDRII memory write command is generated from 
the wr_init_n signal by properly timing it.

8. Figure 10-12 shows the timing diagram for a write command with a burst length of 
four. The address should be asserted for one clock cycle as shown. For BL = 4, each 
write to the Address FIFO has two writes to the Data FIFO consisting of two rising-
edge and two falling-edge data.

9. Figure 10-13 shows the timing diagram for a write command with a burst length of 
two. For BL = 2, each write to the Address FIFO has one write to Data FIFO, consisting 
of one rising-edge and one falling-edge data. Commands can be given in every clock 
when BL = 2.

Figure 10-12: Write User Interface Timing Diagram for BL = 4
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Read Interface

Figure 10-14 shows a block diagram for the read interface.

Figure 10-13: Write User Interface Timing Diagram for BL = 2
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Figure 10-14: Read User Interface Block Diagram
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The following steps describe the architecture of the read user interface and how to perform 
a QDRII SRAM burst read operation.

1. The read user interface consists of an Address FIFO built out of a Virtex-5 FIFO36 of 
configuration 1K x 16. 

2. To initiate a QDRII read command, the user writes the Address FIFO when the FIFO 
full flag user_rd_full is deasserted and the calibration done signal cal_done is asserted. 
Writing to the Address FIFO is an indication to the controller that it is a Read 
command. The cal_done signal assures that the controller clocks are stable, the internal 
reset process is completed, and the controller is ready to accept commands.

3. The user should issue the Address FIFO write-enable signal user_r_n along with read 
address user_ad_rd to write the read address to the Address FIFO. 

4. The controller reads the Address FIFO when status signal fifo_rd_empty is deasserted 
and generates the appropriate control signals to QDRII memory required for a read 
command. 

5. Prior to the actual read and write commands, the design calibrates the latency in 
number of clock cycles from the time the read command is issued to the time the data 
is received. Using this precalibrated delay information, the controller generates the 
user valid signal user_qr_valid.

6. The High state of the user_qr_valid signal indicates that read data is available.

7. The user must access the read data as soon as user_qr_valid is asserted High.

8. Figure 10-15 and Figure 10-16 show the user interface timing diagrams for BL = 4 and 
BL = 2. 

9. After the read address is loaded into the Read Address FIFO, it can take a minimum of 
14 clock cycles, worst case, for the controller to assert user_qr_valid High.

Figure 10-15: Read User Interface Timing diagram for BL = 4
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Table 10-6 shows the read latency of the controller.

Table 10-7 shows the list of signals for a QDRII SRAM design allocated in a group from 
bank selection check boxes in MIG. 

Figure 10-16: Read User Interface Timing diagram for BL = 2

Table 10-6: Maximum Read Latency

Parameter
Number of 

Clock Cycles
Description

User read command to Read 
Address FIFO empty flag

6 • 2 clock cycles for register stages
• 4 clock cycles for empty flag 

deassertion in the FWFT mode

Read empty flag to command to 
the memory

2.5 • 1 clock cycle to generate the read 
command in the controller state 
machine

• 1.5 cycles to transfer the 
command to the memory

Memory read command to valid 
data available

5.5 • 1.5 clock cycles of memory read 
latency

• 3 clock cycles to capture and 
transfer read data to the FPGA 
clock domain

• 1 clock cycle for aligning all the 
read data captured

Total Latency 14 
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MIG shows check boxes for Address, Data_Write, Data_Read, System Control, and 
System_Clock when a bank is selected for a QDRII SRAM design.

When the Address box is checked in a bank, the address, qdr_w_n, qdr_r_n, and 
qdr_dll_off_n bits are assigned to that particular bank.

When the Data_Write box is checked in a bank, the memory data write, memory byte write 
bits, the memory write clocks, and the memory input clock for the output data are assigned 
to that particular bank.

When the Data_Read box is checked in a bank, the memory data read and memory read 
clocks are assigned to that particular bank.

When the System Control box is checked in a bank, the sys_rst_n, compare_error, and 
cal_done bits are assigned to that particular bank.

When the System_Clock box is checked in a bank, the sys_clk_p, sys_clk_n, dly_clk_200_p, 
and dly_clk_200_n bits are assigned to that particular bank.

For special cases, such as without a testbench and without a DCM, the corresponding 
input and output ports are not assigned to any FPGA pins in the design UCF because the 
user can connect these ports to the FPGA pins or can connect to some logic internal to the 
same FPGA.

Supported Devices
The design generated out of MIG is independent of the memory package, hence the 
package part of the memory component is replaced with X, where X indicates any package. 
Table 10-8 shows the list of components supported by MIG.

Table 10-7: QDRII Signal Allocations

Bank Selected Signals Allocated in the Group

Address Memory address and memory control 

Data_Write Memory write data, memory byte write, and K and C clocks

Data_Read Memory read data and memory CQ

System Control System reset from the user interface and status signals

System_Clock System clocks from the user interface

Table 10-8: Supported Devices for QDRII SRAM

Virtex-5 FPGA (Verilog and VHDL)

Components Make Configuration

CY7C1314BV18-167BZXC Cypress x36

CY7C1315BV18-250BZC Cypress x36

CY7C1515V18-250BZC Cypress x36

K7R161882B-FC25 Samsung x18

K7R161884B-FC25 Samsung x18

K7R161884B-FC30 Samsung x18

K7R163682B-FC25 Samsung x36
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Simulating the QDRII SRAM Design
After generating the design, MIG creates a sim folder in the specified path. This folder 
contains simulation files for a particular design. The sim folder contains the external 
testbench, memory model, .do file, and the executable file to simulate the generated 
design. The memory model files are currently generated in Verilog only. To learn more 
details about the files in the sim folder and to simulate the design, see 
simulation_help.chm in the sim folder.

Hardware Tested Configurations
The frequencies shown in Table 10-9 were achieved on the Virtex-5 FPGA ML561 Memory 
Interface Development Board under nominal conditions. This frequency should not be 
used to determine the maximum design frequency. The maximum design frequency 
supported in MIG wizard is based on combination of the TRCE results for fabric timing on 
multiple device/package combinations and I/O timing analysis using FPGA and memory 
timing parameter for a 72-bit wide interface.

K7R163684B-FC25 Samsung x36

K7R321884M-FC25 Samsung x18

K7R321884C-FC25 Samsung x18

K7R323682C-FC30 Samsung x36

K7R323684M-FC25 Samsung x36

K7R323684C-FC25 Samsung x36

K7R641882M-FC25 Samsung x18

K7R641884M-FC25 Samsung x18

K7R641884M-FC30 Samsung x18

K7R643682M-FC25 Samsung x36

K7R643684M-FC30 Samsung x36

Table 10-8: Supported Devices for QDRII SRAM (Continued)

Virtex-5 FPGA (Verilog and VHDL)

Components Make Configuration

Table 10-9: Hardware Tested Configurations

FPGA Device XC5VLX50TFF1136-2

Memory Component K7R643684M-FC30

Data width 72

Burst Length 4

Frequency 100 MHz to 360 MHz

Flow Vendors Synplicity and XST

Design Entry VHDL and Verilog
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Chapter 11

Implementing DDR SDRAM Controllers

This chapter describes how to implement DDR SDRAM interfaces for Virtex™-5 FPGAs 
generated by MIG. This design is based on XAPP851 [Ref 24].

Interface Model
DDR SDRAM interfaces are source-synchronous and double data rate. They transfer data 
on both edges of the clock cycle. A memory interface can be modularly represented as 
shown in Figure 11-1. A modular interface has many advantages. It allows designs to be 
ported easily and also makes it possible to share parts of the design across different types 
of memory interfaces.

Figure 11-1: Modular Memory Interface Representation
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Feature Summary
This section summarizes the supported and unsupported features of DDR SDRAM 
controller design.

Supported Features
The DDR SDRAM controller design supports the following:

• Burst lengths of two, four, and eight

• Sequential and interleaved burst types

• DDR SDRAM components and DIMMs

• CAS latencies of 2, 2.5, and 3

• Verilog and VHDL

• With and without a testbench

• Bank management

• Bytewise data masking

• Linear addressing

• With and without a DCM

• Registered DIMMs, Unbuffered DIMMs and SO-DIMMs.

The supported features are described in more detail in “Architecture.”

Design Frequency Ranges

Unsupported Features
The DDR SDRAM controller design does not support:

• Deep memories/dual rank DIMMs

• Multicontrollers

Architecture

Implemented Features
This section provides details on the supported features of the DDR SDRAM controller. The 
Virtex-5 FPGA DDR SDRAM design is a generic design that works for most of the features 
mentioned above. User input parameters are defined as parameters for Verilog and 
generics in VHDL in the design modules and are passed down the hierarchy. For example, 

Table 11-1: Design Frequency Range in MHz

Memory

FPGA Speed Grade

-1 -2 -3

Min Max Min Max Min Max

Component 100 200 100 200 100 200

DIMM 100 200 100 200 100 200
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if the user selects a burst length of 4, then it is defined as follows in the <top_module> 
module:

   parameter BURST_LEN = 4,       // burst length (in doublewords)

The user can change this parameter for various burst lengths to get the desired output. The 
same concept holds for all the other parameters listed in the <top_module> module. 
Table 11-2 lists the details of all parameters.

Table 11-2: Parameterization of DDR SDRAM Virtex-5 FPGA Design

Category Parameter Name Description Other Notes Value Restrictions

Memory
Width

BANK_WIDTH Number of memory bank address bits

CKE_WIDTH Number of memory clock enable outputs

CLK_WIDTH Number of differential clock outputs
Determined by the number 
of components/modules 
(one pair per component)

COL_WIDTH Number of memory column bits

CS_BITS log2(CS_NUM)

Used for chip-select related 
address decode. See notes 
for CS_NUM and 
CS_WIDTH.

CS_NUM Number of separate chip selects

Different from CS_WIDTH. 
For example, for a 32-bit 
data bus with 2 x16 parts, 
CS_NUM = 1, but 
CS_WIDTH = 2 (that is, a 
single chip select drives two 
separate outputs, one for 
each component)

CS_WIDTH / 
CS_NUM = integer

CS_WIDTH Number of memory chip selects
Determined by the number 
of components/modules 
(one per component)

CS_WIDTH / 
CS_NUM = integer

DM_WIDTH Number of data mask bits
Can be a different value 
from DQS_WIDTH if x4 
components are used

(DQ_WIDTH)/8

DQ_BITS log2(DQS_WIDTH*DQ_PER_DQS) Used for data bus 
calibration decode

(DQ_WIDTH)/
Number of data bits

DQ_WIDTH Number of data bits

DQ_PER_DQS Number of memory DQ data bits per strobe

DQS_BITS log2(DQS_WIDTH)

DQS_WIDTH Number of memory DQS strobes

ROW_WIDTH Number of memory address bits

Memory
Options

BURST_LEN Burst length (2,4,8)

BURST_TYPE Burst type (0: sequential, 1: interleaved) (0,1)

CAS_LAT CAS latency (equal to 25 for CL = 2.5) (2,25,3)

MULTI_BANK_EN Bank management enable 
If enabled, up to four banks 
are kept open; otherwise, 
one bank is kept open

(0,1)

REDUCE_DRV Reduced strength memory I/O enable. Set 
(1) for reduced I/O drive strength.

Not supported for all 
DDR/DDR2 widths (0,1)

REG_ENABLE Set (1) for registered memory module

Accounts for an extra clock 
cycle delay on address/ 
control for a registered 
module

(0,1)
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Burst Length

Bits M0:M3 of the Mode Register define the burst length and burst type. Read and write 
accesses to the DDR SDRAM are burst-oriented. The burst length is programmable to 
either 2, 4, or 8 through the GUI. The burst length determines the maximum number of 
column locations accessed for a given READ or WRITE command. The DDR SDRAM ctrl 
module implements a burst length that is programmed.

CAS Latency

Bits M4:M6 of the Mode Register define the CAS latency (CL). CL is the delay in clock 
cycles between the registration of a READ command and the availability of the first bit of 
output data. CL can be set to 2, 2.5, or 3 clocks through the GUI. CAS latency is 
implemented in the ctrl module. For CL = 2.5, the input value is read as “25” in the design. 
During read data operations, the generation of the read_en signal varies according to the 
CL in the ctrl module.

Precharge

The PRECHARGE command is used to close the open row in a bank if there is a command 
to be issued in the same bank. The Virtex-5 DDR controller issues a PRECHARGE 
command only if there is already an open row in the particular bank where a read or write 
command is to be issued, thus increasing the efficiency of the design. The auto-precharge 
function is not supported in this design. This design ties the A10 bit Low during normal 
reads and writes.

Memory
Timing

TREFI_NS Auto refresh interval (in ns) Take directly from memory 
data sheet

TRAS Active to precharge delay (in ps) Take directly from memory 
data sheet

TRCD Active to read/write delay (in ps) Take directly from memory 
data sheet

TRFC
Refresh to refresh, refresh to active delay (in 
ps)

Take directly from memory 
data sheet

TRP Precharge to command delay (in ps) Take directly from memory 
data sheet

TWR Used to determine write to precharge (in ps) Take directly from memory 
data sheet

TWTR Write to read (in ps) Take directly from memory 
data sheet

Miscellaneous

CLK_PERIOD Memory clock period (in ps)
Used for PHY calibration 
and DCM (if applicable) 
setting

DLL_FREQ_MODE DCM Frequency Mode

Determined by 
CLK_PERIOD. Needed 
only if the DCM option is 
selected.

("LOW", "HIGH")

DDR2_ENABLE Select either DDR or DDR2 interface (equal 
to 1 for DDR2)

Provided from the 
mem_if_top level and 
below

(0,1)

SIM_ONLY Enable bypass of 200 μs power-on delay (0,1)

RST_ACT_LOW Indicates the polarity of the input reset 
signal (sys_rst_n)

1: Reset is active Low. 
0: Reset is active High. (0,1)

Table 11-2: Parameterization of DDR SDRAM Virtex-5 FPGA Design (Continued)

Category Parameter Name Description Other Notes Value Restrictions
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Data Masking

Virtex-5 DDR SDRAM controllers support bytewise data masking of the data bits during a 
write operation. For x4 components, data masking cannot be done on a per nibble basis 
due to an internal block RAM based FIFO limitation. The mask data is stored into the 
FIFOs along with the write data.

Auto Refresh

An AUTO REFRESH command is issued to the DDR memory at specified intervals of time 
to refresh the charge to retain the data.

Bank Management

Bank management is done by the Virtex-5 DDR SDRAM controller design to increase the 
efficiency of the design. The controller keeps track of whether the bank being accessed 
already has an open row or not, and also decides whether a PRECHARGE command 
should be issued or not to that bank. When bank management is enabled via the 
MULTI_BANK_EN parameter, a maximum of four banks/rows can open at any one time. 
A least-recently-used (LRU) algorithm is employed to keep the three banks most recently 
used. It closes the bank least recently used when a new bank/row location needs to be 
accessed. The bank management feature can also be disabled by clearing 
MULTI_BANK_EN. In this case, only one bank is kept open at any one time.

Linear Addressing

Linear addressing refers to the way the user provides the address of the memory to be 
accessed. For Virtex-5 DDR SDRAM controllers, the user provides the address information 
through the app_af_addr signal. As the densities of the memory devices vary, the number 
of column address bits and row address bits also change. In any case, the row address bits 
in the app_af_addr signal always start from the next higher bit where the column address 
ends. This feature increases the coverage of more devices that can be supported with the 
design.

Different Memories (Density/Speed)

The DDR SDRAM controller supports different densities. For DDR components shown in 
MIG, densities can vary from 128 Mb to 1 Gb. The user can select the various 
configurations from the “Create custom part” option; the supported maximum column 
address is 13, the maximum row address is 15, and the maximum bank address is 2. The 
design can decode write and read addresses from the user in the DDR SDRAM ctrl 
module. The user address consists of column, row, and bank addresses.

Hierarchy
Figure 11-2 shows the hierarchical structure of the design generated by MIG with a DCM 
and a testbench. 
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The modules are classified in three types: 

• Design modules

• Testbench modules

• Clock and reset generation modules

For designs without a testbench, the correspondingly shaded modules are not present. In 
this case, the user interface signals appear in the <top_module> module. Table 11-3, 
page 361 provides a list of these signals. 

The infrastructure module generates the clock and reset signals for the design. It 
instantiates a DCM when MIG generates a design with a DCM. The inputs to this module 
are the differential design clock and a 200 MHz differential clock for the IDELAYCTRL 
module. A user reset is also input to this module. Using the input clocks and reset signals, 
the system clocks and the system reset are generated in this module, which is used in the 
design.

If the design has no DCM, the DCM primitive is not instantiated in the module. Instead, 
the system operates on the user-provided clocks. A system reset is also generated in the 
infrastructure module using the input DCM_LOCK signal.

Figure 11-2: Hierarchical Structure of Virtex-5 DDR SDRAM Design
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MIG Design Options
MIG provides various options to generate the design with or without a testbench or with 
or without a DCM. This section provides detailed descriptions of the different types of 
designs the user can generate using the MIG options.

Figure 11-3 shows a block diagram representation of the top-level module for a design 
with a DCM and a testbench. The inputs consist of differential clocks for the design and 
Idelayctrl modules and the user reset.  The error output signal indicates whether the case 
passes or fails.  The phy_init_done signal indicates the completion of initialization and 
calibration of the design. Because the DCM is instantiated in the infrastructure module, it 
generates the required clocks and reset signals for the design.

Figure 11-4 shows a block diagram representation of the top-level module for a design 
with a testbench but without a DCM. The inputs consist of user clocks for the design and 
Idelayctrl modules and the user reset. The design uses the user input clocks. These clocks 
should be single-ended. The infrastructure module uses the input reset and dcm_lock 
signals to reset the design. The user application must have a DCM primitive instantiated in 
the design. The error output signal indicates whether the case passes or fails. The 
phy_init_done signal indicates the completion of initialization and calibration of the 
design.

Figure 11-3: Top-Level Block Diagram of the DDR SDRAM Design with a DCM and a Testbench
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Figure 11-4: Top-Level Block Diagram of the DDR SDRAM Design with a Testbench but without a DCM
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Figure 11-5 shows a block diagram representation of the top-level module for a design 
with a DCM but without a testbench. The phy_init_done signal indicates the completion of 
initialization and calibration of the design. The user interface signals are also listed in the 
<top_module> module. The design provides the clk_tb and reset_tb signals to the user to 
synchronize with the design. Because the DCM is instantiated in the infrastructure 
module, it generates the required clock and reset signals for the design.

Figure 11-5: Top-Level Block Diagram of the DDR SDRAM Design with a DCM but without a Testbench
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Figure 11-6 shows a block diagram representation of the top-level module for designs 
without a DCM or a testbench. The inputs consist of user clocks for the design and 
Idelayctrl modules and the user reset. The design uses the user input clocks. These clocks 
should be single-ended. To reset the design, the signals are generated using the input reset 
and the dcm_lock signals in the infrastructure module. The user application must have a 
DCM primitive instantiated in the design. The phy_init_done signal indicates the 
completion of initialization and calibration of the design. The user interface signals are also 
listed in the <top_module> module. The design provides the clk_tb and reset_tb signals to 
the user to synchronize with the design.

Figure 11-6: Top-Level Block Diagram of the DDR SDRAM Design without a DCM or a Testbench
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Figure 11-7 shows an expanded block diagram of the design. The design’s top module is 
expanded to show various internal blocks. The functions of these blocks are explained in 
following subsections.

Infrastructure

The infrastructure module generates the clock and reset signals for the design. The user 
clocks and user reset are input to this module. In designs generated with a DCM, the input 
clocks are differential. There are clocks for design use and also a 200 MHz clock for the 
idelayctrl primitive. These differential clocks are first passed through the buffers, and the 
single-ended output of the buffers is used. The single-ended output of sys_clk_p and 
sys_clk_n is then given to the DCM input. The clock outputs of the DCM are clk0 and 
clk90. The dcm_lock signal and user reset input are used to generate the synchronous 
system resets for the design. After the DCM is locked, the design is in the reset state for at 
least 25 clocks.

When the user chooses the no DCM option in the GUI, the design does not use any DCM 
primitives. Instead it works on the clocks provided by the user. The input clocks in this 

Figure 11-7: Detailed Block Diagram of the DDR SDRAM Design with a DCM but without a Testbench
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case have to be single-ended. The dcm_lock status and user input reset signals are the 
inputs to the module when there is no DCM. These signals are used to generate the 
synchronous system resets for the design.

idelay_ctrl

This module instantiates the IDELAYCTRL primitive of the Virtex-5 FPGA. The 
IDELAYCTRL primitive is used to continuously calibrate the individual delay elements in 
its region to reduce the effect of process, temperature, and voltage variations. A 200 MHz 
clock has to be fed to this primitive. 

ctrl

The ctrl module is the main controller of the Virtex-5 DDR SDRAM controller design. It 
generates all the control signals required for the DDR memory interface and the user 
interface. This module signals the FIFOs instantiated in the user interface to output the fed 
data in it and also signals the physical layer to output the data on the IOBs during a write 
operation. During a read operation, the data read from the memory is taken from the 
physical layer and written into the user interface FIFOs using the control signals generated 
by the ctrl module. 

The ctrl module decodes the user command and issues the specified command to the 
memory. The app_af_cmd signal is decoded as a write command when it equals 3’b000, 
and app_af_cmd is decoded as a read command when it equals 3’b001. The commands 
and control signals are generated based on the input burst length and CAS latency. If the 
multi-bank option is enabled, the ctrl module also takes care of bank management, so as to 
increase the efficiency of the design. At a given point of time, a maximum of four banks can 
be open. The controller issues a PRECHARGE command to the bank only if there is already 
an open row in that bank and the next command is to be issued to a different row. An 
ACTIVE command is generated to open the row in that particular bank. Thus the efficiency 
is increased.

phy_top

The phy_top module is the top level of the physical interface of the design. The physical 
layer includes the input/output blocks (IOBs) and other primitives used to read and write 
the double data rate signals to and from the memory, such as IDDR and ODDR. This 
module also includes the IODELAY elements of the Virtex-5 FPGA. These IODELAY 
elements are used to delay the input strobe and data signals to capture the valid data into 
the Read Data FIFO. 

The memory control signals, such as RAS_N, CAS_N, and WE_N, are driven from the 
buffers in the IOBs. All the input and output signals to and from the memory are 
referenced from the IOB to compensate for the routing delays inside the FPGA. 

The phy_init module, which is instantiated in the phy_top module, is used to initialize the 
DDR memory in a predefined sequence according to the JEDEC standard for DDR 
SDRAM.

The phy_calib module calibrates the design to align the strobe signal such that it always 
captures the valid data in the FIFO. This calibration is needed to compensate for the trace 
delays between the memory and the FPGA devices.

The phy_write module splits the user data into rise data and fall data to be sent to the 
memory as a double data rate signal using ODDR. Similarly, while reading the data from 
memory, the data from IDDR is combined to get a single vector that is written into the read 
FIFO.
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usr_top

The usr_top module is the user interface block of the design. It receives and stores the user 
data, command, and address information in respective FIFOs. The ctrl module generates 
the required control signals for this module. During a write operation, the data stored in 
the usr_wr_fifo is read and given to the physical layer to output to the memory. Similarly, 
during a read operation, the data from the memory is read via IDDR and written into the 
FIFOs. This data is given to the user with a valid signal (rd_data_valid), which indicates 
valid data on the rd_data_fifo_out signal. See “User Interface Accesses,” page 365 for 
required timing requirements and restrictions for user interface signals.

Table 11-3 lists the user interface signals.

Table 11-3: User Interface Signals

Signal Direction (1) Description

app_af_cmd[2:0](2) Input 3-bit command to the Virtex-5 DDR SDRAM design. 
app_af_cmd = 3’b000 for write commands
app_af_cmd = 3’b001 for read commands

Operation is not guaranteed if the user gives values other than the specified 
ones.

app_af_addr[30:0](2, 3) Input Provides the address, row address, and column address of the memory 
location to be accessed. 

Column address = app_af_addr[COL_WIDTH-1: 0]
Row address = app_af_addr[ROW_WIDTH+COL_WIDTH -1: 
COL_WIDTH]
Bank address = 
app_af_addr[BANK_WIDTH+ROW_WIDTH+COL_WIDTH-1: 
ROW_WIDTH+COL_WIDTH]

app_af_wren(2) Input Write enable to the user address FIFO. This signal should be synchronized 
with the app_af_addr and app_af_cmd signals.

app_wdf_data[2*DQ_WIDTH-1:0](2) Input User input data. It should have the fall data and the rise data.
Rise data = app_wdf_data[DQ_WIDTH-1: 0]
Fall data = app_wdf_data[2*DQ_WIDTH-1: DQ_WIDTH]

app_wdf_wren(2) Input Write enable for the user write FIFO. This signal should be synchronized 
with the app_wdf_data and app_wdf_mask_data signals.

app_wdf_mask_data[2*DM_WIDTH-1: 0](2) Input User mask data. It should contain the masking information for both rise and 
fall data.

Rise mask data = app_wdf_mask_data[DM_WIDTH-1: 0]
Fall mask data = app_wdf_mask_data[2*DM_WIDTH-1: DM_WIDTH]

app_af_afull(2) Output Almost Full status of the address FIFO. The user can write 12 more locations 
into the FIFO after app_af_afull is asserted.

app_wdf_afull(2) Output Almost Full status of the user write FIFO. The user can write 12 more 
locations into the FIFO after app_wdf_afull is asserted.

rd_data_fifo_out[2*DQ_WIDTH-1: 0](2) Output Read data from the memory. Read data is stored in the user write FIFO. 

rd_data_valid(2) Output Status signal indicating that data read from the memory is available to the 
user. 

clk0_tb Output Clock output to the user. All the user input data and commands must be 
synchronized with this clock.

rst0_tb Output Active-High reset for the user interface. 

Notes: 
1. The direction indicated in this table is referenced from the design perspective. For example, input indicates that the signal is input to the 

design and output for the user.
2. See “User Interface Accesses,” page 365 for required timing requirements and restrictions for the user interface signals.
3. Addressing in the Virtex-5 FPGA is linear. That is, the row address bits immediately follow the column address bits, and the bank address 

bits follow the row address bits, thus supporting more devices.
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System Interface Signals

Table 11-5 and Table 11-6 shows the system interface signals for designs with and without 
a DCM, respectively.

Table 11-4: Design Status Signals

Signal Direction Description

phy_init_done Output Indicates the completion of initialization and calibration of the design.

Table 11-5: System Interface Signals with a DCM 

Signal Direction Description

sys_clk_p, sys_clk_n Input Differential input clocks to the DCM. The DDR 
SDRAM controller and memory operate on this 
clock.

sys_rst_n Input Active-Low reset to the DDR SDRAM controller.

clk200_p, clk200_n Input 200 MHz input differential clock for the 
IDELAYCTRL primitive of Virtex-5 FPGA.

Table 11-6: System Interface Signals without a DCM

Signal Direction Description

clk0 Input The DDR SDRAM controller and memory 
operate on this clock.

sys_rst_n Input Active-Low reset to the DDR SDRAM controller. 
This signal is used to generate a synchronous 
system reset.

clk90 Input 90° phase-shifted clock with the same frequency 
as clk0.

clk200 Input 200 MHz input differential clock for the 
IDELAYCTRL primitive of the Virtex-5 FPGA.

dcm_lock Input The status signal indicating whether the DCM is 
locked or not. This signal is used to generate a 
synchronous system reset.

http://www.xilinx.com


MIG User Guide www.xilinx.com 363
UG086 (v2.2) March 3, 2008

DDR SDRAM Initialization
R

DDR SDRAM Initialization
DDR memory is initialized through a specified sequence as shown in Figure 11-8. This 
initialization sequence is in accordance with JEDEC specifications for DDR SDRAMs. The 
initialization logic is implemented in the physical layer. 

Figure 11-8: DDR SDRAM Initialization
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DDR SDRAM Design Calibration
Before issuing user read and write commands, the design is calibrated to ensure that 
correct data is captured in the ISERDES primitives of Virtex-5 FPGAs. Calibration logic is 
implemented in the physical layer of the design. Figure 11-9 shows the overall calibration 
sequence. For more details on the calibration algorithm for the Virtex-5 DDR interface, see 
XAPP851 [Ref 24].

The first calibration stage sets the IDELAY value for each DQ (IDELAY for DQS remains at 
0 during this time), and is performed even before a phase relationship between DQS and 
FPGA_CLK has been established. A training pattern of “10” (1 = rising, 0 = falling) is used 
to calibrate DQ.

The second calibration stage includes calibration between the DQS and the FPGA clock.

Figure 11-9: Overall Design Calibration Sequence
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The third calibration stage is read-enable calibration, which compensates for the round-
trip delay between when the read command is issued by the controller, and the captured 
read data is valid at the outputs of the ISERDES. 

The fourth stage includes calibration of a squelch circuit that gates the input DQS to avoid 
the glitch that propagates to the second rank of flops in the ISERDES. The glitch occurs 
when DQS goes from the Low state to the 3-state level after the last edge of the DQS, which 
might cause a “false” rising and/or falling edge on the DQS input to the FPGA. Unless the 
DQS glitch is gated after the last DQS falling edge of a read burst, the data registered in the 
ISERDES might change prematurely. During calibration, an auto-refresh command is 
issued to memory at intervals depending on the stage of calibration.

After initialization and calibration is done, the controller is signaled to start normal 
operation of the design. Now, the controller can start issuing user write and read 
commands to the memory.

User Interface Accesses
The user backend logic communicates with the memory controller through a synchronous 
FIFO-based user interface. This interface consists of three related buses:

• a command/address FIFO bus accepts write/read commands as well as the 
corresponding memory address from the user

• a Write Data FIFO bus that accepts the corresponding write data when the user issues 
a write command on the command/address bus

• a read bus on which the corresponding read data for an issued read command is 
returned

The user interface has the following timing and signaling restrictions:

1. Commands and write data cannot be written by the user until calibration is complete 
(as indicated by phy_init_done). In addition, the following interface signals need to be 
held Low until calibration is complete: app_af_wren, app_wdf_wren, app_wdf_data[]. 
app_wdf_mask_data[]. Failure to hold these signals Low causes errors during 
calibration. This restriction arises from the fact that the Write Data FIFO is also used 
during calibration to hold the training patterns for the various stages of calibration. 

2. When issuing a write command, the first write data word must be written to the Write 
Data FIFO either prior to, or on the same clock cycle as the when the write command 
is issued. In addition, the write data must be written by the user over consecutively 
clock cycles, there cannot be a break in between words. These restrictions arise from 
the fact that the controller assumes write data is available when it receives the write 
command from the user. 

3. The output of the Read Data FIFO (specifically, the rd_data_fifo_out and 
rd_data_valid signals) are synchronous to clk90, and not to clk0. The user might need 
to insert an extra pipeline stage to resynchronize the data to clk0 if place-and-route 
timing cannot be met on these 3/4 cycle paths. 
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Write Interface
Figure 11-10 shows the user interface block diagram for write operations. 

The following steps describe the architecture of the Address and Write Data FIFOs and 
show how to perform a write burst operation to DDR SDRAM from the user interface.

1. The user interface consists of an Address FIFO and a Write Data FIFO. The Write Data 
FIFO is constructed using Virtex-5 FIFO36_72 primitive with a 512 x 72 configuration. 
The 72-bit architecture comprises one 64-bit port and one 8-bit port. For Write Data 
FIFOs, the 64-bit port is used for data bits and the 8-bit port is used for mask bits. Mask 
bits are available only when supported by the memory part and when the Data Mask 
is enabled in the MIG GUI. Some memory parts, such as Registered DIMMs of x4 parts, 
do not support mask bits.

2. The Address FIFO is constructed using Virtex-5 FIFO36 primitive with a 1024 x 36 
configuration. The 36-bit architecture comprises one 32-bit port and one 4-bit port. The 
32-bit port is used for addresses (app_af_addr), and the 4-bit port is used for 
commands (app_af_cmd).

3. The Address FIFO is common for both Write and Read commands. It comprises an 
address part and the command part. Command bits discriminate between write and 
read commands. 

4. The user interface data width app_wdf_data is twice that of the memory data width. 
For an 8-bit memory width, the user interface is 16 bits consisting of rising edge data 
and falling edge data. For every 8 bits of data, there is a mask bit. For 72-bit memory 
data, the user interface data width app_wdf_data is 144 bits, and the mask data 
app_wdf_mask_data is 18 bits.

5. The minimum configuration of the Write Data FIFO is 512 x 72 for a memory data 
width of 8 bits. For an 8-bit memory data width, the least-significant 16 bits of the data 
port are used for write data and the least-significant two bits of the 8-bit port are used 

Figure 11-10: User Interface Block Diagram for Write Operations
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for mask bits. The controller internally pads all zeros for the most-significant 48 bits of 
the 64-bit port and the most-significant six bits of the 8-bit port. 

6. Depending on the memory data width, MIG instantiates multiple FIFO36_72s to gain 
the required width. For designs using 8-bit to 32-bit data width, one FIFO36_72 is 
instantiated; for 72-bit data width, a total of three FIFO36_72s are instantiated. The bit 
architecture comprises 32 bits of rising-edge data, 4 bits of rising-edge mask, 32 bits of 
falling-edge data, and 4 bits of falling-edge mask, which are all stored in a FIFO36_72. 
MIG routes the app_wdf_data and app_wdf_mask_data to FIFO36_72s accordingly.

7. The user can initiate a write to memory by writing to the Address FIFO and the Write 
Data FIFO when FIFO full flags are deasserted. Status signal app_af_afull is asserted 
when the Address FIFO is full; similarly, app_wdf_afull is asserted when Write Data 
FIFO is full. 

8. At power-on, both Address FIFO and Write Data FIFO full flags are deasserted. 

9. The user should assert Address FIFO write enable signal app_af_wren along with 
address app_af_addr and command app_af_cmd to store the address and command 
into Address FIFO. 

10. The user data should be synchronized to the clk_tb clock. Data FIFO write-enable 
signal app_wdf_wren should be asserted to store write data app_wdf_data and mask 
data app_wdf_mask_data into the Write Data FIFOs. Rising-edge and falling-edge 
data should be provided together for each write to the Data FIFO. The Virtex-5 DDR 
SDRAM controller design supports byte-wise masking of data only. 

11. The write command should be given by keeping app_af_cmd = 3'b000 and asserting 
app_af_wren. Address information is given on the app_af_addr signal. Address and 
command information is written into the User Address FIFO.

12. After the completion of the initialization and calibration process and when the User 
Address FIFO empty signal is deasserted, the controller reads the command and 
address FIFO and issues a write command to the DDR SDRAM. 
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13. The write timing diagram in Figure 11-11 is derived from the MIG-generated test 
bench for a burst length of four (BL = 4). As shown, each write to Address FIFO should 
have two writes to the Data FIFO. The phy_init_done signal indicates memory 
initialization and calibration completion. 

Figure 11-11: DDR SDRAM Write Burst for Four Bursts (BL = 4)
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Read Interface
Figure 11-12 shows the block diagram of the read interface. 

The following steps describe the architecture of the Read Data FIFO and show how to 
perform a read burst operation from DDR SDRAM from the user interface. 

1. The read user interface consists of an Address FIFO and a Read Data FIFO. The 
Address FIFO is common between reads and writes. The Read Data FIFO is built out of 
Distributed RAMs of 16 x 1 configuration. MIG instantiates the number of RAM16Ds 
depending on the data width. For example, for 8-bit data width, MIG instantiates a 
total of 16 RAM16X1Ds, 8 for rising-edge data and 8 for falling-edge data. Similarly, for 
72-bit data width, MIG instantiates a total of 144 RAM16Ds, 72 for rising-edge data 
and 72 for falling-edge data.

2. The user can initiate a read to memory by writing to the Address FIFO when the FIFO 
full flag app_af_afull is deasserted.

3. To write the read address and read command into the Address FIFO, the Address FIFO 
write enable signal app_af_wren should be issued, along with the memory read 
address app_af_addr and app_af_cmd commands (set to 001 for a read command). 

4. The controller reads the Address FIFO and generates the appropriate control signals to 
memory. After decoding app_af_cmd, the controller issues a read command to the 
memory at the specified address. 

5. Prior to the actual read and write commands, the design calibrates the latency in 
number of clock cycles from the time the read command is issued to the time the data 
is received. Using this precalibrated delay information, the controller stores the read 
data in Read Data FIFOs. 

6. The read_data_valid signal is asserted when data is available in the Read Data FIFOs.

7. When calibration is completed, the controller generates the control signals to capture 
the read data from the FIFO according to the CAS latency selected by the user. The 

Figure 11-12: User Interface Block Diagram for Read Operation
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rd_data_valid signal is asserted when the read data is available to the user, and 
rd_data_fifo_out is the read data from the memory to the user.

8. Figure 11-13 shows the user interface timing diagram for a read command, burst 
length of four.

Read latency is defined as the time between when the read command is written to the user 
interface bus until when the corresponding first piece of data is available on the user 
interface bus (see Figure 11-13). 

When benchmarking read latencies, it is important to specify the exact conditions under 
which the measurement occurs. 

Read latency varies based on the following parameters:

• Number of commands already in the FIFO pipeline before the read command is 
issued

• Whether an ACTIVATE command needs to be issued to open the new bank/row

• Whether a PRECHARGE command needs to be issued to close a previously opened 
bank

• Specific timing parameters for the memory, such as TRAS and TRCD in conjunction 
with the bus clock frequency

• Commands can be interrupted, and banks/rows can forcibly be closed when the 
periodic AUTO REFRESH command is issued

• CAS latency

• Board-level and chip-level (for both memory and FPGA) propagation delays

Table 11-7 and Table 11-8 show read latencies for the Virtex-5 FPGA DDR interface for two 
different conditions. Table 11-7 shows the case where a row activate is not required prior to 
issuing a read command on the DDR bus. This situation is possible, for example, when 
bank management is enabled, and the read targets an already opened bank. Table 11-8 
shows the case when a read results in a bank/row conflict. In this case, a precharge of the 
previous row must be followed by an activation of the new row, which increases read 
latency. Other specific conditions are noted in the footnotes for each table.

Figure 11-13: DDR SDRAM Read Burst for Four Bursts (BL = 4)
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Table 11-7: Read Latency without Precharge and Activate

Parameter
Number of Clock 

Cycles

User READ command to empty signal deassertion (using FIFO36) 5 clocks

Empty signal to READ command on DDR bus 4.5 clocks

READ command to read valid assertion 11.5 clocks

Total 21 clocks

Notes: 
1. Test conditions: Clock frequency = 200 MHz, CAS latency = 3, DDR -5 speed grade device.
2. Access conditions: Read to an already open bank/row is issued to an empty control/address FIFO.
3. Some entries have fractional clock cycles because the inverted version of CLK0 is used to drive the 

DDR memory.
4. The Virtex-5 DDR interface uses a FIFO36 for the address/control FIFO. It is possible to shorten the 

READ command to empty signal deassertion latency by implementing the FIFO as a distributed RAM 
FIFO or removing the FIFO altogether, as the application requires. 

Table 11-8: Read Latency with Precharge and Activate

Parameter
Number of Clock 

Cycles

User READ command to empty signal deassertion (using FIFO36) 5 clocks

Empty signal to PRECHARGE command on DDR bus 4.5 clocks

PRECHARGE to ACTIVE command to DDR memory 3 clocks

ACTIVE to READ command to DDR memory 4 clocks

READ command to read valid assertion 11.5 clocks

Total 28 clocks

Notes: 
1. Test conditions: Clock frequency = 200 MHz, CAS latency = 3, DDR -5 speed grade device.
2. Access conditions: Read that results in a bank/row conflict is issued to an empty control/address 

FIFO. This requires that the previous bank/row be closed first.
3. Some entries have fractional clock cycles because the inverted version of CLK0 is used to drive the 

DDR memory.
4. The Virtex-5 DDR interface uses a FIFO36 for the address/control FIFO. It is possible to shorten the 

READ command to empty signal deassertion latency by implementing the FIFO as a distributed RAM 
FIFO or removing the FIFO altogether, as the application requires. 
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Supported Devices
The design generated by MIG is independent of the memory package; therefore, the 
package part of the memory component is replaced with XX, where XX indicates a “don't 
care” condition. The tables below list the components (Table 11-9) and DIMMs (Table 11-10 
through Table 11-12) supported by MIG for DDR SDRAM.

Table 11-9: Supported Components for DDR SDRAM (Virtex-5 FPGAs)

Components Packages (XX) Components Packages (XX)

MT46V32M4XX-75 P,TG MT46V32M4XX-5B -

MT46V64M4XX-75 FG,P,TG MT46V64M4XX-5B BG,FG,P,TG 

MT46V128M4XX-75 BN,FN,P,TG MT46V128M4XX-5B BN,FN,P,TG 

MT46V256M4XX-75 P,TG MT46V256M4XX-5B P,TG 

MT46V16M8XX-75 P,TG MT46V16M8XX-5B TG,P 

MT46V32M8XX-75 FG,P,TG MT46V32M8XX-5B BG,FG,P,TG 

MT46V64M8XX-75 BN,FN,P,TG MT46V64M8XX-5B BN,FN,P,TG

MT46V128M8XX-75 P,TG MT46V128M8XX-5B -

MT46V8M16XX-75 P,TG MT46V8M16XX-5B TG,P

MT46V16M16XX-75 BG,FG,P,TG MT46V16M16XX-5B BG,FG,P,TG

MT46V32M16XX-75 - MT46V32M16XX-5B BN,FN,P,TG

MT46V64M16XX-75 P,TG MT46V64M16XX-5B -

Table 11-10: Supported Unbuffered DIMMs for DDR SDRAM (Virtex-5 FPGAs)

Unbuffered DIMMs Packages (X) Unbuffered DIMMs Packages (X)

MT4VDDT1664AX-40B G,Y MT8VDDT3264AX-40B G,Y

MT4VDDT3264AX-40B G,Y MT9VDDT3272AX-40B Y

Table 11-11: Supported Registered DIMMs for DDR SDRAM (Virtex-5 FPGAs)

Registered DIMMs Packages (X) Registered DIMMs Packages (X)

MT9VDDF3272X-40B G,Y MT18VDDF6472X-40B D,G,Y

MT9VDDF6472X-40B G,Y MT18VDDF12872X-40B DY,G,Y

Table 11-12: Supported SODIMMs for DDR SDRAM (Virtex-5 FPGAs)

SODIMMs Packages (X) SODIMMs Packages (X)

MT4VDDT3264HX-40B G,Y MT9VDDT3272HX-40B -

MT4VDDT1664HX-40B Y MT9VDDT6472HX-40B G,Y

MT8VDDT3264HX-40B - MT9VDDT12872HX-40B -

MT8VDDT6464HX-40B DG,DY,G,Y
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Simulating a DDR SDRAM Design
After generating the design, MIG creates a sim folder in the specified path. This folder 
contains simulation files for a particular design. The sim folder contains the external 
testbench, memory model, .do file, and the executable file to simulate the generated 
design. The memory model files are currently generated in Verilog only. To learn more 
details about the files in sim folder and to simulate the design, refer to 
simulation_help.chm in the sim folder.

Hardware Tested Configurations
The frequencies shown in Table 11-13 were achieved on the Virtex-5 FPGA ML561 Memory 
Interfaces Development Board under nominal conditions. This frequency should not be 
used to determine the maximum design frequency. The maximum design frequency 
supported in the MIG wizard is based a combination of the TRCE results for fabric timing 
on multiple device/package combinations and I/O timing analysis using FPGA and 
memory timing parameters for a 64-bit wide interface.

Table 11-13: Hardware Tested Configurations

Synthesis Tools XST and Synplicity

HDL Verilog and VHDL

FPGA Device XC5VLX50T-FF1136-2

Burst Lengths 2, 4, 8

CAS Latency (CL) 2, 2.5, 3

32-bit Design Tested on 16-bit Component “MT46V32M16XX-5B”

Component, CL=2 110 MHz to 170 MHz

Component, CL=2.5 110 MHz to 210 MHz

Component, CL=3 110 MHz to 250 MHz
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Section V:  DDR2 Debug Guide

Chapter 12, “Debugging MIG DDR2 Designs”
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Chapter 12

Debugging MIG DDR2 Designs

Introduction
Debugging problems encountered during hardware testing of MIG-generated memory 
interfaces can be challenging. Because of the complexity involved in designing with 
memory interfaces, it is necessary to have a debugging process to narrow down to the root 
cause of the problem to then be able to focus on the required resolution.

This chapter provides a step-by-step process for debugging designs that use MIG-
generated memory interfaces. It provides details on board layout verification, design 
implementation verification, usage of the physical layer of MIG controllers to debug 
board-level issues, and general board-level debug techniques. The information in this 
chapter is specific to DDR2 SDRAM designs. However, the techniques covered can be 
applied to other memory interfaces. The overall flow for debugging problems encountered 
in hardware for MIG-based memory interface designs is shown in Figure 12-1:

The following sections go into detail on each of these important debugging steps to aid in 
providing resolution to calibration failures and data corruptions or errors.

Figure 12-1: MIG Debug Flowchart
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Verifying Board Layout

Introduction
There are three main steps in verifying the board layout for a memory interface, as shown 
in Figure 12-2. 

Memory Implementation Guidelines
See Appendix A, “Memory Implementation Guidelines” for specifications on pinout 
guidelines, termination, I/O standards, trace matching, and loading. The guidelines 
provided are specific to both memory technologies as well as MIG output designs. It is 
very important to verify that these guidelines have been read and considered during 
board-layout. Failure to follow these guidelines can result in problematic behavior in 
hardware, which is detailed throughout this chapter.

Calculate WASSO
It is important to take into consideration Weighted Average Simultaneously Switching Output 
(WASSO) limits when generating a MIG pinout. The FPGA data sheets define the SSO 
limits for each bank. WASSO calculations take this into account along with design-specific 
parameters, such as board-level inductance, input logic-low threshold, input undershoot 
voltage, and output loading capacitance. WASSO ensures even distribution of fast/strong 
drivers across the package, that the number of simultaneously switching outputs does not 
exceed the per-bank limit and that the chip does not generate excessive ground bounce. 

WASSO Calculators for Virtex™-4 devices [Ref 30] or Virtex-5 devices [Ref 31] should be 
used to find WASSO limits based on board-specific parameters. 

These calculations should be run during both pre-board layout and post-board layout. The 
results found can then be entered in the Bank Selection page of the MIG GUI. (Refer to 
“Bank Selection,” page 47.) MIG follows these WASSO Limits when generating the pinout. 
Please see Appendix C, “WASSO Limit Implementation Guidelines” for further 
information.

Figure 12-2: Verify Board Layout Guidelines
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Run SI Simulation Using IBIS
The final critical step in verifying board layout guidelines have been followed is to run 
signal integrity simulations using IBIS. These simulations should always be run both pre-
board layout and post-board layout. The purpose of running these simulations is to 
confirm the signal integrity on the board. 

The ML561 Hardware-Simulation Correlation chapter of the ML561 User Guide [Ref 13] 
can be used as a guideline. This chapter provides a detailed look at signal integrity 
correlation results for the ML561 board and can be used as an example for what to look at 
and what is good to see. It also provides steps to create a design specific IBIS model to aid 
in setting up the simulations.

Verifying Design Implementation

Introduction
There are four main steps in verifying the design implementation of a MIG output as 
shown in Figure 12-3:

Behavioral Simulation
Running behavioral simulation verifies the functionality of the design. Both the 
example_design and user_design provided with the MIG DDR2 controllers include a 
complete environment which allows the user to simulate the reference design and view the 
outputs. Scripts are provided to run behavioral simulation.

• For Virtex-4 family designs, see “Simulating the DDR2 SDRAM Design” in Chapter 3.

• For Spartan™-3/3E/3A/3AN/3A DSP family designs, see “Tool Output” in Chapter 8.
• For Virtex-5 family designs, see “Simulating the DDR2 SDRAM Design” in Chapter 9.

Figure 12-3: Verify Design Implementation
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The Xilinx UNISIM libraries must be mapped into the simulator. If the UNISIM libraries 
are not set up for your environment, go to the COMPXLIB chapter of the Development 
Systems Reference Guide section for assistance compiling Xilinx simulation models and 
setting up the simulator environment. This guide can be found in the ISE™ Software 
Manuals. 

Verify Modifications to MIG Output
There are three modifications to the MIG output that are commonly made:

1. Changing the pinout in the provided output UCF

2. Changing design parameters defined in the output source code

3. Migrating the MIG output design into an ISE project

Each of these changes can cause problems with the implemented design that are not 
always visible to the user.

Changing the Pinout Provided in the Output UCF

MIG allows users to select the desired banks rather then the exact pin locations for the 
memory interface. This is because specific pin assignment guidelines must be followed. 
See Appendix A, “Memory Implementation Guidelines” for detailed pin assignment 
guidelines. 

Following these pin assignment guidelines when making changes to the output pinout 
ensures proper pin placement. However, design implementation problems can still occur. 
The Virtex-5 and Spartan-3 DDR2 designs require specific placement constraints outside of 
the pin locations. These constraint values are dependent on the pinout and so the 
constraints output with the MIG UCF are not correct if the pin locations are changed. The 
Spartan-3 and Virtex-5 architecture specific sections of this debug guide provide detailed 
information on these constraints and how changes cause problems.

It is always recommended to use the MIG pinout. If specific pins in the selected banks 
cannot be used for the memory interface, use the Reserve Pins feature of the MIG tool. 
(Refer to section “Reserve Pins” in Chapter 1.) If changes are made to the Virtex-4 or 
Virtex-5 pinout, the Verify UCF feature should always be used to test the changes against 
the pin assignment guidelines. (Refer to section “Verify UCF File” in Chapter 1.) 

Changing Design Parameters

Often users need to change specific design parameters such as address/data widths, DDR2 
memory parameters, and clock period after generating the DDR2 design. These 
modifications often require multiple changes to the MIG source code that are not always 
visible to the user. It is always recommended to re-run MIG when making any design 
parameter change.

For Spartan-3 and Virtex-4 family MIG designs, design parameters are defined through 
`defines. In some cases, changing one design parameter requires changing multiple 
`defines and/or portions of the source code. As an example, when changing the address or 
data bus widths, the source code replicates multiple instances that depend on the bus 
width. In this case, it is necessary to instantiate additional elements for new bits manually. 
Because of required modifications such as this, MIG should always be re-run when a 
design parameter change is required.
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For Virtex-5 FPGA MIG designs, design parameters are defined using top-level parameters 
and generate statements. Changes to the code are no longer necessary. However, it is still 
recommended to re-run MIG when making design parameter modifications.

Migrating MIG Output into ISE Project

Currently, MIG can only be generated through a stand-alone CORE Generator™ project. 
A batch file (ise_flow) is provided in the par directory of the output reference design to 
implement the MIG output design through the backend ISE tools. If the user needs to 
migrate the MIG reference design into an ISE project, there are two options:

1. Create a new ISE project with the MIG reference design

2. Add the MIG reference design to an existing ISE project

In order to create a new ISE project with the MIG reference design, the create_ise script 
file has been provided in the par directory of the output reference design. This script 
creates an .ise project file which includes the MIG source code, UCF, and appropriate 
synthesis and implementation project options. This script file is only available when XST is 
set as the synthesis option.

If the MIG reference design needs to be added to an existing ISE project, the source files 
must be manually added and the implementation options manually copied to the project. 
The ise_flow script file should be opened to view the necessary synthesis and 
implementation project options to copy into the ISE project.

When migrating a Spartan-3 Generation FPGA MIG design into an ISE project, the 
environment variable XIL_ROUTE_ENABLE_DATA_CAPTURE must be set. This variable 
is required to enable a needed template router and is discussed in detail in the Spartan-3 
debug section below. 

Verify Successful Placement and Routing
In order to ensure proper timing of address/control or writes to the memory, specific flip-
flops must be pushed into IOBs. These flip-flops include address, control and data 3-state 
output. To ensure proper timing, the flip-flops must be located within the IOBs. The MIG 
source code provides attributes to push these flip-flops into their respective IOBs. The 
attributes however, are specific to the synthesis tool selected in the CORE Generator 
project options. If XST is selected, the attributes are specific only to XST. Ensure the 
synthesis tool selected in the CORE Generator project options is used. 

Once the design has successfully complete Place and Route, FPGA Editor can then be used 
to verify the correct placement of these flip-flops in the IOBs. Search for the address, 
control, and data IOBs in the 'List1' window under 'All Components.' Individually open 
each of these IOB components to verify the flip-flop is properly packed in the IOB. If the 
flops are not properly packed, ensure the synthesis attributes were picked up when 
running XST or Synplify Pro.

Verify IDELAYCTRL Instantiation for Virtex-4 and Virtex-5 FPGA Designs
Virtex-4 and Virtex-5 FPGA designs require instantiation of the IDELAYCTRL module in 
the HDL in order to support the use of the IDELAY ChipSync elements for read data 
capture. 

MIG uses the “Automatic” method for IDELAYCTRL instantiation: specifically, the MIG 
HDL only instantiates a single IDELAYCTRL for the entire design. No location (LOC) 
constraints are included in the MIG-generated UCF. This method relies on the ISE tools to 
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replicate and place as many IDELAYCTRLs (for example, one per clock region that use 
IDELAYs) as needed. In addition, the tool logically ANDs the RDY signal of each of the 
replicated IDELAYCTRL blocks. 

The alternate method to instantiating IDELAYCTRLs is to manually instantiate as many as 
are needed in the design, and use LOC constraints in the UCF to fix their location. Each 
IDELAYCTRL must be individually location constrained. This method becomes necessary 
to use with a MIG design in the following cases:

• Multiple memory interfaces are used on the same device.

• The MIG design is used with other IP cores or user designs that also require the use of 
IDELAYCTRL and IDELAYs.

• Previous ISE tool releases 8.2.03i and 9.1i had an issue with IDELAYCTRL block 
replication and trimming. When using these revisions of the tool, the user must 
instantiate and constrain the location of each IDELAYCTRL individually.

See the Virtex-4 User Guide [Ref 7] and Virtex-5 FPGA User Guide [Ref 10] for more 
information on the requirements of IDELAYCTRL placement. 

Verify TRACE Timing
As a final check of proper software implementation of the MIG design, verify that all MIG 
provided timing constraints have completed successfully. There should be no failed timing 
paths in the provided MIG constraints. If the design was run in batch mode using the 
ise_flow script file, the TRACE output <design_name>.twr file can be opened. If the 
design was ran using the ISE tools, select the Analyze Post-Place and Route Static Timing 
option located under the Processes tab.

Debugging the Spartan-3 FPGA Design

Introduction
For a detailed discussion of the Spartan-3 FPGA DDR2 interface design, see application 
notes XAPP454 [Ref 14] and XAPP768c [Ref 23].

Read Data Capture
Read data capture is executed using LUT based delay circuits to delay the DQS and 
loopback signals. The delayed DQS is then used to capture data into LUT RAM based 
FIFOs with the delayed loopback used as the write enable. 

There are four main steps in debugging this data capture implementation as shown in 
Figure 12-4.
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Verify Placement and Routing
The proper implementation of the data capture algorithm requires specific pinout and 
placement constraints which include PIN, LUT, BEL, and MAXDELAY, as well as usage of 
template routes during Place and Route.

MIG creates the appropriate UCF for the banks selected and should always be used. If 
changes are made to the pinout, the remaining placement constraints are no longer correct 
because these are based on the pin locations. Information on the specific guidelines used in 
creating Spartan-3 Generation FPGA UCFs are provided in Appendix A, “Memory 
Implementation Guidelines.” If these constraints are not followed, the data capture 
algorithm is not implemented properly and the results in hardware might not be as 
expected.

When the appropriate UCF is implemented, all related components are placed properly. 
This correct placement and usage of the XIL_ROUTE_ENABLE_DATA_CAPTURE 
environment variable forces specific routing algorithms (template routes) to be used 
during implementation of the PAR tools. There are two specific routing algorithms that are 
used:

• Routing DQ bits from a PAD to a Distributed Memory component
♦ Requires the environment variable XIL_ROUTE_ENABLE_DATA_CAPTURE to 

be enabled during PAR implementation. This environment variable is set in the 
implementation script file (ise_flow.bat) provided in the /par MIG output 
directory.

• Routing delayed DQS strobe signals using Local Clocking resources
♦ The PAR tools automatically treats Local Clocks as template routes and locks 

down the routes correctly without using the environment variable.

DQ Routing

The template router set through the environment variable ensures the data bits are routed 
from a PAD to a Distributed Memory to capture the data in an Asynchronous FIFO using 
the Local Clock to write the data, and a Global Clock to read the data. These routes require 
a template to guarantee that the delay remains constant between all data bits. 

Figure 12-4: Spartan-3 FPGA Physical Layer Debug
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Once the design is implemented, load the resultant .ncd and .pcf files into FPGA Editor 
to visually verify the template routes for the data bits, as follows:

1. Open the design in FPGA Editor by selecting Start → Programs → Xilinx ISE 10.1i → 
Accessories → FPGA Editor, or load through the View/Edit Routed Design (FPGA 
Editor) option in the Processes tab of an ISE project.

2. In some cases, turning Stub Trimming off provides a better picture of the route. To do 
this, select File → Main Properties and turn off Stub Trimming in the General tab. 
When Stub Trimming is enabled, FPGA Editor does not display the entire route. If Stub 
Trimming is disabled, you can see the entire length of the routing segment. Stub 
Trimming is enabled in Figure 12-5 and Figure 12-6.

3. Search within the List1 window for *dq* under the All Nets pull-down. Select all of the 
DQ data bit nets (e.g., main_00/top0/dq(0)) within the window and highlight these 
nets by clicking the Hilite button in the right-hand column. This allows for visual 
inspection of the delay routes. Zoom into the area with the highlighted nets and verify 
that the placement looks like Figure 12-5 or Figure 12-6.

Figure 12-5: DQ Placement (Top/Bottom)

Figure 12-6: DQ Placement (Left/Right)
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4. Next, verify that the delays on the nets are consistent. Again, select all of the DQ data 
bit nets in the List1 window. This time click on the Delay button located in the right-
hand column. This lists the worst-case delay for the DQ bits. Using this delay 
information, inconsistent routing can be quickly identified. There should be less than 
75 ps of skew (ideally less then 50 ps) between the data nets. The delay values depend 
on the device speed grade and Top/Bottom versus Left/Right implementation but 
have been observed to range between 300–700 ps.

If preferred, export the delay information to view the report in an Excel spreadsheet. Select 
File → Export to export the delay information to a .csv file.

DQS Routing

The delayed strobes (dqs*_delayed_col*) need to use the local clocking resources available 
in the device for the clock routing. The local routing resources used depend on the pin 
placement specified during generation in the MIG tool. Full hex lines that have low skew 
are located throughout the device. Left and right implementations use Vertical Full Hex 
(VFULLHEX) lines for local clock routing. Top and bottom implementations use VLONG, 
VFULLHEX, and HFULLHEX lines for local clock routing. 

PAR routes from the Local Clock PAD to a series of LUTs to implement the scheme 
explained in detail in XAPP768c. From the output of the final LUT delay, the delayed 
strobe/Local Clock (dqs*_delayed_col*) routes to all of the FIFO bits.

To verify the pinout and usage of the template router, the net skew and max delay on the 
local clock (dqs*_delayed_col*) must be within spec. To verify these values, open the PAR 
report (.par file) and scroll to the Clock Report section. For most Spartan-3 families, the 
Net Skew is less than 40 ps, and the Max Delay is approximately 550 ps. For Spartan-3A 
and Spartan-3A DSP devices, the Net Skew is less then 65 ps, and the Max Delay is 
approximately 400 ps. 

The FPGA Editor can then be used to view the local clock placement. To view the template 
routes for the delayed strobes, search in the List1 window for *dqs*_delayed_col* in the All 
Nets pull-down. Select all the nets (e.g., main_00/top0/data_path0/dqs0_delayed_col0) 
and select Hilite from the right-hand column. This command highlights the nets of interest. 
Then zoom into this range of highlighted signals to view the placement. If local clocking is 
used, one of the two structures shown in Figure 12-7 and Figure 12-8 is seen.

Figure 12-7: Local Clock (Top/Bottom) for dqs*_delayed_col* LUT Delay Elements

UG086_08_122107

http://www.xilinx.com


386 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 12: Debugging MIG DDR2 Designs
R

If the skew and delays are within spec and the layout for the Local Clock and Data bits 
match the above figures, the template routes for DQS have been properly implemented.

If the DQ or delayed DQS signals do not verify properly, ensure the environment variable 
XIL_ROUTE_ENABLE_DATA_CAPTURE was set and that the UCF follows the guidelines 
specified in Appendix A.

Debugging Physical Layer in Hardware
If problems are seen in hardware after verifying the correct implementation of the 
Spartan-3 Generation FPGA design, there are two common issues that cause problems 
with the data capture algorithm:

• Incorrect Loopback timing
• Incorrect delay on DQS for read capture

Figure 12-8: Local Clock (Left/Right) for dqs*_delayed_col* LUT Delay Elements
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Loopback Timing

The timing on the loopback signal is critical to the proper implementation of the data 
capture algorithm because the delayed loopback signal generates the write enable for the 
read data FIFOs. The causes for incorrect loopback timing are:

• Incorrect route delay on the loopback signal
♦ The loopback signal must be delayed by the sum of the FPGA forward clock and 

the DQS trace length. This is most commonly implemented through a physical 
board trace.

• Changes to the MIG pinout after generation
The symptoms of incorrect loopback timing are:
• The first data in a burst is usually corrupted
• Depending on trace delays, only certain bits in the bus exhibit the problem

Incorrect DQS Delay

The appropriate delay on the DQS strobe signals is required for proper implementation of 
the Spartan-3 Generation FPGA data capture algorithm. Common causes for incorrect 
DQS delay are:

• Mismatch in trace lengths for DQ and DQS
• Changes to the MIG pinout after generation
• Frequency changes without reimplementation of the design

If the delay on DQS is incorrect, the following symptoms can be seen in hardware:

• Incorrect data is seen intermittently
• Incorrect data is always seen

To debug either incorrect Loopback timing or incorrect DQS delay, insert a ChipScope™ 
Pro Virtual Input Output (VIO) core into the MIG design. The tapfordqs1 signal located in 
the cal_ctl.v/.vhd source file should be added to the ChipScope VIO to view the 
number of taps in the delay paths. Use the VIO to increase or decrease the number of LUTs 
in the delay path while examining the resultant behavior in hardware. The number of taps 
increases/decreases for both the Loopback delay path and the DQS delay path. Once the 
appropriate number of LUT delays is found so the data corruption no longer occurs, the 
number of delays can then be changed within the source code. Changing the number of 
LUTs in the delay path can compensate for the incorrect loopback timing and incorrect 
DQS delay. See the ChipScope Pro User Guide [Ref 6] for detailed information on using 
ChipScope VIO.

Proceed to General Board-Level Debug
If the above verification of design implementation and debug of the data capture 
algorithm did not resolve the issues seen in hardware, there could be a problem on the 
board itself. Proceed to the“General Board-Level Debug” section for further guidance.
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Debugging the Virtex-4 FPGA Direct Clocking Design

Introduction
This section discusses internal signals to observe in order to assist in isolating problems 
that could occur during read data timing calibration in the Virtex-4 FPGA DDR2 Direct 
Clocking design. For more information on the calibration algorithm used in this design, 
refer to application note XAPP702. [Ref 18]

Read Data Capture Timing Calibration
Read data timing calibration is executed over two stages:

• Stage 1: Aligning output of IDDR to internal (FPGA) clock

• Stage 2: Read Data Valid Calibration 

The calibration logic is parallel, in that multiple calibration units are instantiated, one for 
each DQS group (e.g., each calibration unit handles 4 or 8 DQ bits). 

What can break during calibration? 

• Stage 2 calibration checks for a specific sequence of data back from the memory

• Data bit issues (e.g., stuck-at-bit, PCB trace open/short) causes calibration to hang 
during Stage 2

♦ Each calibration unit must be checked individually to pinpoint exactly which 
bit(s) failed and/or DQS groups failed

The overall calibration state machine flow diagram is shown in Figure 12-9. 
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Signals of Interest
The status signals shown in Table 12-1 can be used to help determine where the failure 
occurs:

Figure 12-9: Virtex-4 DDR2 Direct Clocking Overall Calibration Flowchart
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Table 12-1: Virtex-4 Direct Clocking Status Signals

Signal Description

calib_done_dqs[x:0] Asserted when individual Stage 1 calibration units have finished 
(one per DQS group)

tap_sel_done Asserted when all Stage 1 calibration units have completed

comp_done_int[x:0] Asserted when individual Stage 2 calibration units have finished 
(one per DQS group) 

init_done Asserted when all calibration stages successfully completed
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Proceed to General Board-Level Debug
If the above verification of design implementation and debug of the data capture 
algorithm does not resolve the issues seen in hardware, there could be a problem on the 
board itself. Proceed to the “General Board-Level Debug” section for further guidance.

Debugging the Virtex-4 FPGA SerDes Design 

Introduction
This section discusses internal signals to observe in order to assist in isolating problems 
that could occur during read data timing calibration in the Virtex-4 FPGA DDR2 SerDes 
design. For more information on the calibration algorithm used in this design, refer to 
application note XAPP721. [Ref 22]

Read Data Capture Timing Calibration
Read data timing calibration is executed over three stages:

• Stage 1: Aligning output of the first stage of the ISERDES to the FPGA clock

• Stage 2: Fine adjustment of Data-to-Strobe (DQ-to-DQS) capture timing into first stage 
of ISERDES

• Stage 3: Read data valid calibration

The calibration logic is parallel, in that multiple calibration units are instantiated, one for 
each DQS group (e.g., each calibration unit handles 4 or 8 DQ bits). 

What can break during calibration? 

• Calibration can hang at any of the stages. All stages look for a specific training pattern 
back from the memory. If it is not received, calibration sticks in an infinite loop 
reading back the data.

• Data bit issues (e.g., stuck-at-bit, PCB trace open/short) can cause calibration to hang

♦ Each calibration unit must be checked individually to pinpoint exactly which 
bit(s) failed and/or DQS groups failed

The overall calibration state machine flow diagram is shown in Figure 12-10. 
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Signals of Interest
The status signals shown in Table 12-2 can be used to help determine where the failure 
occurs:

Figure 12-10: Virtex-4 DDR2 SerDes Overall Calibration Flowchart

Start Calibration

Write Training Patterns
0xFF, 0x00, 0xAA, 0x55

to Memory

Stage 1: DQS
[0]-to-FPGA

Clock Calibration

All DQ/DQS Bits
Calibrated?

Stage 1: DQS
[x]-to-FPGA

Clock Calibration

Calibration Done
dp_dly_slct_done =1

UG086_10_122107

Stage 2: DQS
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Table 12-2: Virtex-4 FPGA SerDes Status Signals

Signal Description

calib_done_dqs[x:0] Asserted when individual Stage 1 calibration units have finished 
(one per DQS group)

tap_sel_done Asserted when all Stage 1 calibration units have completed

comp_done_int[x:0] Asserted when individual Stage 2 calibration units have finished 
(one per DQS group) 

init_done Asserted when all calibration stages successfully completed
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Proceed to General Board-Level Debug
If the above verification of design implementation and debug of the data capture 
algorithm did not resolve the issues seen in hardware, there could be a problem on the 
board itself. Proceed to the “General Board-Level Debug” section for further guidance.

Debugging the Virtex-5 FPGA Design

Introduction
This section discusses internal signals to observe in order to assist in isolating problems 
that could occur during read data timing calibration in the Virtex-5 FPGA DDR2 design. 
Additional UCF and other parameter requirements of this design are also discussed. For 
more information on this design, refer to application note XAPP858 [Ref 26].

Verify Placement and Routing
Historically, unlike the MIG Spartan-3 FPGA interface designs, most MIG Virtex-4 and 
Virtex-5 FPGA designs have had only pin location (LOC) and clock (PERIOD) constraints 
in the UCF. In some cases AREA_GROUP constraints were included to assist with meeting 
timing. The MIG Virtex-5 FPGA DDR design does require location and internal timing 
constraints for specific read data capture related circuits.

The MIG Virtex-5 FPGA DDR2 adds a number of additional constraints to the design. This 
design requires properly setting both top-level parameters in HDL and constraints in the 
UCF that are pinout-dependent. The additional constraints in the UCF consists of location 
constrains for certain fabric-based resources, and internal timing (MAXDELAY) 
constraints. These constraints arise from changes to the read-capture path from previous 
revisions of MIG Virtex-5 FPGA DDR2 designs.

When creating a design in MIG, MIG automatically generates the proper HDL and UCF 
constraint values. However, if it becomes necessary to make changes to the MIG-generated 
pinout, these constraints must be manually modified. The procedure for doing so is 
discussed in Appendix B, “Required UCF and HDL Modifications for Pinout Changes.”

Signals of Interest
The module PHY_CALIB_0.V/VHD contains the read capture timing calibration state 
machine. 

The status signals shown in Table 12-3 can be used to help determine where the failure 
occurs.

Table 12-3: Virtex-5 FPGA SerDes Status Signals

Signal Description

phy_init_done Asserted when both initialization of memory and read capture 
timing calibration has completed

calib_start[3:0] Pulsed for one clock cycle as each calibration stage is entered

calib_done[3:0] Driven to a static 1 as each calibration stage is finished

rd_data_rise Captured (synchronized) rising edge read data from DDR2
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Physical Layer Debug Port
The Virtex-5 DDR2 design HDL contains an optional port to allow the user to observe and 
control the IDELAY tap values for the DQ, DQS, and DQS Gate signals after read capture 
timing calibration. This is described in Appendix D.

Proceed to General Board-Level Debug
If the above verification of design implementation and debug of the data capture 
algorithm does not resolve the issues seen in hardware, there could be a problem on the 
board itself. Proceed to the “General Board-Level Debug” section for further guidance.

General Board-Level Debug

Overall Flow
The flowchart shown in Figure 12-11 documents recommended steps to try during board-
level debug. 

rd_data_fall Captured (synchronized) falling edge read data from DDR2

cal1_dq_count Binary value indicating the current DQ bit being calibrated 
during Stage 1

cal2_dq_count Binary value indicate the current DQS group being calibrated 
during Stage 2

Table 12-3: Virtex-5 FPGA SerDes Status Signals (Continued)

Signal Description

Figure 12-11: General Board-Level Debug Flowchart
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Isolating Bit Errors
In this step, the user stays in the HDL domain and tries to isolate when/where the bit 
errors are occurring. 

When are the error(s) occurring?

• Data belonging to certain DQS groups?

• On accesses to certain addresses, banks, or ranks of memory? 

♦ For example, on designs that can support multiple varieties of DIMM modules, 
make sure to support all possible address and bank bit combinations

• Only occur for certain data patterns or sequences? 

♦ This can indicate a shorted or open connection on the PCB 

♦ This can also indicate an SSO or cross-talk issue

• Does the design use multiple DIMM sockets?

♦ All MIG designs that support multiple DIMM sockets (“deep” configurations) 
calibrate only on the first DIMM socket, and the maximum frequency is reduced 
from the maximum achievable if only one rank of memory is used. This was done 
to account for both the additional loading and the fact that there are no inherent, 
process-related timing differences between the DIMM sockets. Factors that cause 
the timing to be different between the DIMMs—for example, PCB trace routing 
differences between the FPGA and each of the DIMMs—can result in read failures 
on all but the very first DIMM. 

It might also be necessary to determine whether the data corruption is due to writes or 
reads. This can be difficult to determine because, if the writes are the issue, readback of the 
data appears corrupted as well. In addition, issues with control/address timing affect both 
writes and reads. Some experiments that can be tried to isolate the issue:

• If the errors are intermittent, have the controller issue a small initial number of writes, 
followed by continuous reads from those locations. Do the reads intermittently yield 
bad data? If so, this might point to a read problem.

• Check/vary the control and address timing:

♦ For a heavily loaded control/address bus (as is the case for an unregistered or 
SO-DIMM), it might be necessary to use 2T timing to allow for more setup and 
hold time for the control/address signals. 

♦ Note that the chip select (CS_N) signal to the memory remains a 1T signal, even 
though it can also have a heavy load. In this case, it might be necessary to advance 
the assertion of CS_N by a quarter of a clock cycle. This requires changing the 
code for the CS_N output flop to use CLK90 instead of CLK0.

• Check/Vary only write timing:

♦ If on-die termination is used, check that the correct value is enabled in the DDR2 
device and that the timing on the ODT signal relative to the write burst is correct. 

♦ For Virtex-5 designs, it is possible to use ODELAY to vary the phase of DQ 
relative to DQS. In addition, a PLL (rather than a DCM) can be used to generate 
CLK0 and CLK90 used for the write output timing. The phase outputs of a PLL 
can be fine-tuned, and in this way the phase between DQ and DQS can be varied. 

• Vary only read timing:

♦ Vary the LUT or IDELAY taps after calibration for the bits that are returning bad 
data. This affects only the read capture timing. 
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♦ For Virtex-4 and Virtex-5 FPGA designs, check the IDELAY values after 
calibration. (For the Virtex-5 DDR2 design, the PHY layer debug port can be 
used.) Look for variations between IDELAY values. IDELAY values should be 
very similar for DQs in the same DQS group. 

Board Measurements
Refer to the HW-Simulation Correlation Section in the ML561 User Guide [Ref 13] as a 
guide for expected bus signal integrity.

Supply Voltage Measurements
Check the reference voltage levels:

• For I/O:

♦ 1.8V: VCCO, DDR2 VDDQ

♦ 0.9V: VREF

♦ 0.9V: VTT Termination 

• Internal:

♦ 1.8V: DDR2 VDD, DDR2 VDDL

♦ 2.5V: FPGA VCCAUX

♦ 1.0V or 1.2V: VCCINT

Make sure to check these levels when the bus is active. It is possible these levels are correct 
when the bus is idle but droop when the bus is active. 

Clocking
If the memory interface is having issues running at the target speed, try running the 
interface at a lower speed. 

• Unfortunately, not all designs can accommodate this, as it is dependent on the clock 
generation scheme used. 

• Running at a lower speed increases marginal setup time and/or hold time due to PCB 
trace mismatch, poor SI, and excessive loading.

If excessive input/system clock jitter might be an issue, the onboard PLL can be used in 
Virtex-5 FPGA designs to filter input clock jitter.

Synthesizable Testbench
MIG provides a “synthesizable testbench” containing a simple state machine. The state 
machine takes the place of the user-specific backend logic and issues a simple repeating 
write-read memory test. This can be used as an alternative to the user's backend logic to 
provide a test of the memory interface during initial hardware bring-up. The advantage of 
using the synthesizable testbench is that it rules out any issues with the user's backend 
logic interfacing with the MIG User Interface block. 

The testbench has limitations. It only checks a limited number of memory locations, and 
the data pattern is a repeating pattern. The user can change the testbench code to expand 
its capabilities. 
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Varying Read Capture Timing 
For Virtex-4 and Virtex-5 FPGA designs, the IDELAY values for DQ and DQS can be varied 
post-calibration. The user can determine the extent of the read valid window in this way. 
The customer can also use this feature for margin testing. This feature is supported in HDL 
in the Virtex-5 FPGA DDR2 design. In other designs, the user must modify the HDL to add 
the hooks to vary the IDELAY taps. 

For Spartan-3 FPGA designs, LUTs are used to delay the DQS and the loopback signal. The 
user can modify the code to use a different number of LUT delays to change the DQ-DQS 
timing. but there is a much larger granularity (approximately 250–600 ps) than with the 
IDELAY element of Virtex-4 and Virtex-5 FPGAs.
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Section VI:  Appendices

Appendix A, “Memory Implementation Guidelines”

Appendix B, “Required UCF and HDL Modifications for Pinout 
Changes”

Appendix C, “WASSO Limit Implementation Guidelines”

Appendix D, “Debug Port”
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Appendix A

Memory Implementation Guidelines

This appendix provides rules for designing reference design boards generated by the MIG 
tool. It is organized into two sections:

• “Generic Memory Interface Guidelines”

The rules in this section apply to all memory interfaces discussed in this document.

• “Memory-Specific Guidelines”

The rules in this section relate to specific memories:

♦ DDR/DDR2 SDRAM

♦ QDRII SRAM

♦ RLDRAM II 

UG079 [Ref 9] and UG199 [Ref 13] provide more detailed analysis. UG072 [Ref 8] and 
UG203 [Ref 11] provide additional information on how to obtain maximum performance 
for high-speed interfaces.

Generic Memory Interface Guidelines
This section specifies rules common to all memory interfaces. The “Memory-Specific 
Guidelines” section provides exceptions or additions to any and all guidelines in this 
section.

Figure A-1 illustrates a typical FPGA bank used to capture read data.

Figure A-1: FPGA Bank with Data, Strobes, and PCB Loopback
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Bank

I/O
PCB Loopback(1)

Strobe_P

I/O

I/O

CC I/O P
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rst_dqs_div_out

rst_dqs_div_in

Notes: 
1. Only Spartan FPGA designs require the loopback signal.
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Timing Analysis
MIG generates timing analysis spreadsheets for all designs of Virtex-5, Virtex-4, and 
Spartan families under the docs folder. Each design has different timing analysis 
spreadsheets for read_data_timing, write_data_timing, and addr_cntrl_timing. 

Evaluation of the PERIOD constraint by the static timing analyzer is not sufficient to 
determine if the memory interface is functional at a particular frequency. The PERIOD 
constraint covers the internal timing between synchronous elements. These spreadsheets 
cover the concept of timing budgets for the interface between the FPGA and memory 
device.

The spreadsheets provide information about the data valid window and the margins 
available at the selected frequency. They also provide information about different 
uncertainty parameters that are to be considered for timing analysis. 

Pin Assignments
MIG generates pin assignments for a memory interface based on certain rules depending 
on the design technique, but does not provide the best possible pin assignment for every 
board implementation. During layout it might be necessary to swap pin locations 
depending on the number of layers available and the interface topology. The best way to 
change the pin assignment is to first apply changes on a byte basis then swap bits within a 
byte. Calculate the PCB loopback length, if required, after pin swapping and trace 
matching. The following rules of thumb are provided to help designers determine how 
pins can be swapped.

Any changes to the pin assignments require modifications to the UCF provided by MIG 
and might require changes to the source code depending on the changes made.

For all MIG Virtex™ and Spartan™ FPGA designs, the address and control pins can be 
swapped with each other as needed to avoid crossing of the nets on the printed circuit 
board.

Spartan-3/3E/3A/3A DSP FPGA Memory Implementation Guidelines for 
DDR/DDR2 SDRAM Interfaces

This section outlines general pin assignment guidelines for DDR/DDR2 SDRAM 
implementation. However, additional guidelines should be followed when targeting 
Spartan-3/-3E/-3A/-3A DSP devices.

MIG generates a UCF that follows the guidelines listed below. Xilinx recommends using 
the pinout created by MIG. Follow the guidelines below if the MIG pinout is modified.

The IOBs for DQ bits must be placed five tiles above or six tiles below the IOB tile for the 
associated DQS bit. This is necessary because the MIG design uses low-skew routing 
resources to route DQS to the data capture FIFOs corresponding to that DQS. See 
XAPP768c [Ref 23] for more information on the Spartan-3 FPGA data capture technique. 
This application note can be downloaded from the web age entitled Memory Interfaces: 
Resources for Registered Users located at: 

http://www.xilinx.com/support/software/memory/protected/index.htm
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Example:

If DQS is placed in either W3 or W4 (these two IOBs share a tile) in an XC3S1500-FG676, the 
following +5 tiles can be used for DQ placement:

W1/W2
U7/V7
V4/V5
V2/V3
U5/U6

The following –6 tiles can be used for DQ placement:

W5/V6
W6/W7
Y1/Y2
AA1/AA2
Y4/Y5
AA3/AA4

Caution! Unbonded tiles (even though they cannot be used) count toward this +5/–6 guideline. 
Consequently, it is possible that a pinout that meets the above requirements for a specific bus 
width cannot be supported on a larger device in the same package (even though the package is 
“pinout compatible”). MIG can be used to generate a pinout compatible design for multiple 
devices in the same package. 

To verify the pin placement of the DQ and DQS bits, you can check the net skew and delay 
values in FPGA Editor and the “Clock Report” section of the design's PAR report (.par file). 
See the Debug section of the ug086 for steps to verify the DQ and DQS skew and delay 
values.

• The rst_dqs_div_in and rst_dqs_div_out IOBs must be placed in the center of the DQ 
bits. As an example, if the data bus is 64 bits wide, rst_dqs_div_in and 
rst_dqs_div_out should be placed between DQ[31] and DQ[32]. If this is not done, the 
data capture might not be reliable. This is necessary because the MIG design uses the 
RST_DQS_DIV feedback loop to generate a write enable to all the data capture FIFOs. 
See XAPP768c [Ref 23] for further information on the Spartan-3 FPGA design.

• Spartan-3 FPGA architectures only have two FIFOs per CLB. Because each bit of data 
requires two FIFOs (one for rising edge data and one for falling edge data), the MIG 
designs use two columns of CLBs. One CLB column is dedicated for the odd 
numbered bits and one is dedicated for the even numbered bits. Due to Spartan-3 
routing restrictions, pad0 (top) must be assigned to the first column CLBs and pad 1 
(bottom) assigned to second column of CLBs. With this routing implementation, the 
DQ lines from both pads has the same route delay.

• The CK/CK_N, address, RAS_N, CAS_N, WE_N, CS_N, and ODT must be placed 
together in banks that are on the same side of the device. This helps to avoid clock 
skew on these signals that are registered on the rising edge of CK.

For memory interfaces that do not provide a signal to indicate when the read data is valid, 
a data-valid signal must be provided on the PCB. This loopback is used as a write-enable 
signal for the Read Data FIFOs. A strobe is used to latch the data. Two pins are needed per 
design: one to output the signal and one to input the return signal. The length of the 
loopback is defined as: 

PCB loopback = CLK delay to memory + strobe delay

Spartan-3/3E/3A/3A DSP FPGA designs have specific pin placement rules that are 
followed by MIG to generate the pin assignments. A byte can be swapped with another 
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byte as long as all the necessary signals associated with that byte are changed (strobe, data, 
and data mask). Within a byte, only even-numbered bits can be swapped with other even-
numbered bits (with the same rule applying for odd-numbered bits) because two copies of 
the DQS strobe are internally generated: one copy for even-numbered bits and one for odd-
numbered bits. Each copy is delayed a specific amount relative to the placement of the 
even (or odd) Read Data FIFOs. As an example, in a byte bits 0 and 2 can be swapped but 
bits 0 and 1 cannot be swapped. The UCF provided by MIG contains LOC constraints that 
must be changed to match the swapped pin assignments.

XIL_ROUTE_ENABLE_DATA_CAPTURE

The local clocking scheme used to capture data in all MIG Spartan-3 Generation FPGA 
memory designs requires place and route (PAR) template routes to properly place the 
delayed strobe and data bits. Template routing is required to properly route the delayed 
strobe (dqs*_delayed_col*), as well as the data (dq bits) in MIG Spartan-3 Generation 
FPGA DDR and DDR2 SDRAM designs. For the data bits to be routed properly, the 
environment variable XIL_ROUTE_ENABLE_DATA_CAPTURE must be enabled when 
PAR is run. This environment variable is set in the implementation script file 
ise_flow.bat provided in the /par MIG output directory. The user must set this 
environment variable when running the design using the GUI mode from 
create_ise.bat.

Virtex-4 FPGA Direct Clocking Pins

1. For flexibility of design techniques, it is recommended that all strobe signals be placed 
on clock-capable inputs (such as DQS, CQ, and QK) with P connected to the P side and 
N connected to the N side of the pair. If only single-ended strobes are provided, the 
signal is placed on the P input of the clock-capable I/O pair.

2. Data lines used to read data from a memory are placed in the same bank as their 
associated strobe. Data is captured with an internal FPGA clock. Data is delayed 
through the IDELAY element to make it center-aligned with the FPGA clock. The 
strobe is used to find the data delay with respect to the FPGA clock.

3. Address and control signals are to be placed together in the same bank (see “Memory-
Specific Guidelines,” page 405 for exceptions) or placed in banks near each other to 
minimize the route delays for these signals inside the FPGA.

4. DDRII SRAM ONLY: For memory interfaces that do not provide a data valid signal to 
indicate when the read data is valid, a data valid signal is to be provided on the PCB. 
This loopback is used as a write-enable signal for the Read Data FIFOs. A strobe is 
used to latch the data. Two pins are needed per bank: one to output the signal and one 
to input the return signal. The length of the loopback is: 

PCB loopback = CLK delay to memory + strobe delay

Virtex-4 FPGA Direct clocking designs that place the strobe on clock-capable I/O should 
follow the pin-swapping recommendations for the Virtex-4 SerDes and Virtex-5 FPGA 
designs. If the strobe is not placed on clock-capable I/O, an entire DQS group (containing 
data, strobe, and data mask) can be swapped with any other DQS group in same bank. The 
initial pinout that MIG selects also affects the amount of calibration logic MIG generates. 
MIG generates one calibration unit for each bank that contains data bits. Therefore, a DQS 
group cannot be swapped with other byte groups on different banks without appropriate 
modification to the source code. Within a DQS group, data bits can be swapped with other 
data bits, and the data signals should be placed on pins near the associated DQS strobe.
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Virtex-4 FPGA SerDes Clocking and Virtex-5 FPGA Pins

1. All strobe signals must be placed on clock-capable inputs (such as DQS, CQ, and QK) 
with P connected to the P side and N connected to the N side of the pair. If only single-
ended strobes are provided, the signal is placed on the P input of the clock-capable I/O 
pair.

2. Data lines used to read data from a memory are placed in the same bank as their 
associated strobe. Data is captured in the ISERDES block using the strobe signal. The 
strobe is passed through the BUFIO to delay it with respect to the data input.

3. Address and control signals are to be placed together in the same bank (see “Memory-
Specific Guidelines,” page 405 for exceptions) or placed in banks near each other to 
minimize the route delays for these signals inside the FPGA.

Virtex-4 SerDes clocking and Virtex-5 FPGA designs must place the strobe on clock-
capable I/O with the data for the said strobe placed in the same bank. A byte can be 
swapped with another byte as long as all the necessary signals associated with that byte 
(strobe, data, and data mask) are located in the same bank. Within a bank, strobes can be 
swapped with other strobes while the rest of the pins in a bank can be swapped as needed.

The Virtex-5 FPGA DDR2 design uses a combination of the IOB flop (IDDR) and fabric-
based flops for read data capture. This requires the use of pinout-dependent directed-
routing and location constraints. If pinouts are changed manually, the UCF must be 
modified. Refer to Appendix B, “Required UCF and HDL Modifications for Pinout 
Changes” for details.

Termination
These rules apply to termination:

1. IBIS simulation is highly recommended for all high-speed interfaces.

2. Single-ended signals are to be terminated with a pull-up of 50Ω to VTT at the load (see 
Figure A-2). A split 100Ω termination to VCCO and 100Ω termination to GND can be 
used (see Figure A-3), but takes more power. For bidirectional signals, the termination 
is needed at both ends of the signal (DCI/ODT or external termination).

Figure A-2: 50Ω Termination to VTT
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3. Differential signals are to be terminated with a 100Ω differential termination at the load 
(see Figure A-4). For bidirectional signals, termination is needed at both ends of the 
signal (DCI/ODT or external termination).

4. All termination must be placed as close to the load as possible. The termination can be 
placed before or after the load provided that the termination is placed within one inch 
of the load pin.

5. DCI can be used at the FPGA as long as the DCI rules are followed (such as 
VRN/VRP). 

I/O Standards

These rules apply to the I/O standard selection for DDR SDRAMs:

• MIG-generated designs use the SSTL2 CLASS I I/O standard by default for memory 
address and control signals, and use the SSTL2 CLASS II I/O standard for memory 
data, data-mask, and data-strobe signals. When DCI is selected in MIG, DCI for SSTL2 
CLASS I can be applied only to memory interface signals that are inputs to the FPGA.

• The user can select CLASS II or CLASS I I/O standards from MIG. When SSTL2 
CLASS II is selected in MIG, it is applied to all the memory interface signals. 

• When DCI is selected in MIG, the DCI I/O standard is applied to all the memory 
interface signals.

These rules apply to the I/O standard selection for DDR2 SDRAMs:

• MIG-generated designs use the SSTL18 CLASS II I/O standard by default for all 
memory interface signals. When DCI is selected in MIG, DCI for SSTL18 CLASS II is 
applied on input, output, and in-out memory interface signals.

• The user can select between CLASS II or CLASS I I/O standards from MIG. When 
SSTL18 CLASS I is selected in MIG, the I/O standard for bidirectional signals remains 
SSTL18 CLASS II. 

Figure A-3: 100Ω Split Termination to VCCO and GND

Figure A-4: 100Ω Differential Termination
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• When DCI is selected in MIG for SSTL18 CLASS I, the DCI I/O standard is applied 
only to memory interface signals that are inputs or in-outs to the FPGA.

Trace Lengths
Trace length matching must also include the package delay information. The PARTGen 
utility [Ref 29] generates a .pkg file that contains the package trace length in microns for 
every pin of the device under consideration. 

For example, to obtain the package delay information for a Virtex-5 LX50T-FF1136 device 
used on an ML561 board, issue the following command within a DOS command shell:

partgen -v xc5vlx50tff1136

This generates an xc5vlx50tff1136.pkg file in the current directory with package trace 
length information for each pin (unit: micron or µm). Use the typical 6.5 fs per micron 
(6.5 ps per millimeter) conversion formula to obtain the corresponding electrical 
propagation delay. While applying specific trace-matching guidelines for each of the 
memory interfaces as described below, consider this additional package delay term for the 
overall electrical propagation delay.

Memory-Specific Guidelines
Each memory interface has three sections:

• Pin assignments

• Termination

• Trace lengths

Trace lengths given are for high-speed operation and can be relaxed depending on the 
applications target bandwidth requirements. Be sure to include the package delay when 
determining the effective trace length. These internal delays can be found through the 
PACE tool.

DDR/DDR2 SDRAM

Pin Assignments

These rules apply to pin assignments for DDR and DDR2 SDRAM:

1. The DQ and DM bits of a byte are to be placed in the same bank as the associated DQS.

The DQ bits must be kept close together for better routing.

2. Address and control signals are to be placed in the same bank or placed in banks near 
each other.

If all control signals cannot fit in one bank, CK, ODT, and CKE should be selected first 
for placement in another bank.

3. Each bank that contains DQ/DQS/DM signals needs a loopback signal.

If a bank is pin-limited and there is a need to free up a few pins, the following actions are 
to be considered: 

1. The loopback signals can be eliminated in Virtex-4 FPGA MIG designs because they 
are no longer required. Other device families require significant user modifications to 
the MIG design to eliminate the PCB loopback.
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2. The CKE signals can be tied together for multiple devices.

3. For DIMMs, non-critical features need not be implemented, such as 
PAR_IN/PAR_OUT and the SPD interface (SA, SPD, SCL).

The loading of address (A, BA), command (RAS_N, CAS_N, WE_N), and control (CS_N, 
ODT) signals depends on various factors, such as speed requirements, termination 
topology, use of unbuffered DIMMs, and multiple rank DIMMs. 

The address and command signals should be implemented with 2T clocking, i.e., asserted 
for two cycles, so these signals can handle higher loading without impacting the timing 
budget. Virtex-4 FPGA SerDes designs and Virtex-5 FPGA DDR2 designs are implemented 
with 2T clocking of address and command signals. 

The control signals (CS_N and ODT) have 1T clocking, and so their replication is 
recommended when the loading is higher. If the application is pin-limited to implement 
lighter loading on critical clock signals going to memory, it might be necessary to use an 
external PLL to generate multiple copies of the clock signals. 

For descriptions of 1T and 2T clocking, refer to Micron technical note TN-47-01[Ref 32].

Termination

These rules apply to termination for DDR/DDR2 SDRAM:

1. For DIMMs, the CK signals are to be terminated by a 5 pF capacitor between the two 
legs of the differential signal instead of the 100Ω resistor termination, because these 
signals are already terminated on each DIMM.

2. The ODT and CKE signals are not terminated. These signals are required to be pulled 
down during memory initialization with a 4.7 kΩ resistor connected to GND.

3. ODT, which terminates a signal at the memory, applies to the DQ/DQS/DM signals 
only. If ODT is used, the Mode register must be set appropriately in the RTL design.

4. The Virtex-5 DDR2 interface requires that if parallel termination is used at the memory 
end, it must be ODT rather than external termination resistor(s). This is a requirement 
of the read capture scheme used. 

To save board space, DCI at the FPGA and ODT at the memory can be used to minimize the 
number of external resistors on the board.

Trace Lengths

These rules indicate the maximum electrical delays between DDR/DDR2 SDRAM signals 
at 333 MHz:

1. ± 25 ps maximum electrical delay between any DQ and its associated DQS/DQS# 

2. ± 50 ps maximum electrical delay between any address and control signals and the 
corresponding CK/CK# 

3. ± 100 ps maximum electrical delay between any DQS/DQS# and CK/CK#

Figure A-5: 5 pF Differential Termination on Clocks

 

UG086_aA_05_020406

ZQ =
50Ω

5 pF

Load_PCK_P

ZQ =
50Ω Load_NCK_N

http://www.xilinx.com


MIG User Guide www.xilinx.com 407
UG086 (v2.2) March 3, 2008

Memory-Specific Guidelines
R

QDRII SRAM

Pin Assignments

These rules apply to pin assignments for QDRII SRAM:

1. All CQ signals are placed on clock-capable I/O pairs, if the Use CC option is selected; 
otherwise any I/O pin is used. P is connected to the P side and N is connected to the N 
side of the pair.

2. The Q bits of a byte are placed in the same bank as its associated CQ.

The Q bits must be kept close together for optimal routing.

If a bank is pin-limited and there is a need to free up a few pins, the following actions are 
to be considered: 

1. If QDRII+ memory is to be considered, either CK_P is connected or CK_P and CK_N 
are left out.

Termination

These rules apply to termination of QDRII SRAM signals:

1. No termination is used for the DLL_OFF signal because this signal is required to be 
pulled down during memory initialization. The signal should be pulled down with a 
4.7 kΩ resistor connected to GND. 

2. DCI can also be used on CK for QDRII+ support (QVLD signal from memory to 
FPGA).

To save board space, DCI is to be used at the FPGA to minimize the number of external 
resistors on the board.

I/O Standards

These rules apply to the I/O Standard selection for QDRII SRAM.

• MIG-generated designs use the HSTL CLASS I I/O standard by default for all 
memory interface signals. 

• When DCI is selected in MIG, the DCI standard for HSTL CLASS I is applied only to 
memory interface signals that are inputs to FPGA.

Trace Lengths

These rules provide the maximum electrical delays between QDRII SRAM signals:

1. ± 25 ps maximum electrical delay between data and its associated CQ.

2. ± 50 ps maximum electrical delay between address and control signals.

3. ± 100 ps maximum electrical delay between address/control and data.
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RLDRAM II 

Pin Assignments

These rules apply to pin assignments for RLDRAM II:

1. All QK signals are to be placed on Clock-Capable I/O pairs if the Use CC option is 
selected in the tool; otherwise normal I/O pins are used. P is connected to the P side 
and N is connected to the N side of the pair. 

2. The DQ bits of a byte are placed in the same bank as the associated QK.

The DQ bits must be kept as close as possible for optimal routing.

3. The loopback signal is not required because RLDRAM II provides a data valid signal 
for capturing the read data.

If the design is pin constrained, only common I/O (CIO) can use a bidirectional DQ data 
bus.

Termination

This rule applies to termination of RLDRAM II signals:

1. DCI can be used on DQ/QK at the FPGA provided that DCI rules are followed (such 
as VRN/VRP).

To save board space, use DCI at the FPGA and ODT at the memory to minimize the 
number of external resistors on the board.

I/O Standards

These rules apply to the I/O Standard selection for RLDRAM II:

• MIG-generated designs use the HSTL CLASS II I/O standard by default for all 
memory interface signals. When DCI is selected in MIG, DCI for HSTL CLASS II is 
applied on input, output, and in-out memory interface signals.

• The user can change the I/O standard to HSTL CLASS I. When DCI is selected in 
MIG, DCI for HSTL CLASS I is applied only to the memory interface signals that are 
inputs to the FPGA.

• To have HSTL CLASS I on the required pins, the user must manually edit the UCF 
constraint file for the corresponding design generated.

Trace Lengths

These rules provide the maximum electrical delays between RLDRAM II signals:

1. ± 25 ps maximum electrical delay between data and its associated QK.

2. ± 50 ps maximum electrical delay between address and control signals.

3. ± 100 ps maximum electrical delay between address/control and data.
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Appendix B

Required UCF and HDL Modifications 
for Pinout Changes

Introduction
The Virtex™-5 FPGA DDR2 design generated by MIG 2.0 (or later) requires a large number 
of UCF constraints whose values are dependent on the specific pinout of the DQ and DQS 
bits. In addition, there are two top-level HDL parameters whose values are also pinout 
dependent. These UCF constraints and HDL parameters are not present for designs 
generated with MIG 1.73 or earlier. 

MIG generates a user constraints file (UCF) and HDL code with the correct constraints and 
top-level parameters based on the pinout, and in this case, the user does not need to know 
the specific rules and procedures for generating these constraints. However, it is necessary 
for the user to manually generate these constraints if any of these three conditions exist:

• The user has a pinout based on a DDR2 design generated using an older version of 
MIG (for example, MIG 1.7), and it is desired to up-rev the design to the MIG 2.0 (or 
later) version of the DDR2 interface.

♦ The older MIG-generated pinout is compatible with the MIG 2.0 (or later) version 
of the design, but, the user must generate the additional constraints required by 
MIG 2.0.

♦ MIG 2.0 (or later) has a slightly different algorithm for selecting the DQ and DM 
(data mask) sites, choosing different pins for the DM and some of the 
corresponding DQ pins. Therefore, running MIG 2.0 or later with the same bank 
pinout selection setting used for the original pre-MIG 2.0 design could result in a 
UCF and HDL top-level file with some incorrect constraints and parameters, such 
as DQ and DM being allocated to different pins. However, the user can use the 
MIG 2.0 or later UCF as a baseline for modifications. 

• The user has generated a design using MIG 2.0 (or later), but needs to make 
modifications to the pinout (for example, swapping DQ bit locations). 

• The user has generated a pinout independent of MIG.

Caution! This is not recommended. MIG should be used to generate the pinout. If an 
independently generated pinout must be used, a UCF should be generated using MIG and used 
as a baseline for constraint modifications.

These additional constraints are required because of changes to the read data capture 
architecture used in this design: specifically, a combination of the IOB-based IDDR flop 
and flops located in the FPGA fabric is used instead of the ISERDES to capture read data. 
A circuit to gate a glitch on the DQS strobe at the end of read bursts added with the MIG 2.0 
or later design also requires additional constraints. 
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UCF / HDL Constraint Generation Procedure
The following is a step-by-step procedure required to generate the additional UCF 
constraints and HDL parameters required for the Virtex-5 MIG 2.0 or later versions of MIG 
design. The specific reasons why these changes need to be made are discussed later in this 
section.

1. Use MIG 2.0 or later versions of MIG to generate a UCF using the same parameters as 
were used to generate the original pre-MIG 2.0 DDR2 design; in particular, the clock 
frequency and data width must be the same. Substitute the location (LOC) constraints 
for the existing user pinout into this UCF. This file is used as a baseline for further 
modifications. (It is also possible to start with a pre-MIG 2.0 design and add the 
constraints.)

2. Use the Xilinx ISE utility PARTGEN to generate a package file for the specific target 
device. This is used to determine correct (pinout-specific) values for many of the UCF 
constraints:

partgen -v <part number> (e.g. partgen -v xc5vlx330tff1738)

3. UCF constraints must be modified to match the user-specific pinout:

a. Verify (no modification required for this step) in the UCF the presence of FROM-
TO constraints that define multi-cycle paths. These are generated by 2.0 or later 
versions of MIG, and their values are not pinout dependent. These constraints 
help meet internal (fabric) timing at the higher frequencies that MIG supports. At 
lower frequencies of operation, these multi-cycle path constraints might not be 
required to meet internal timing and can be removed. One of these multi-cycle 
path constraints is shown below:

NET "clk0"    TNM = FFS "TNM_CLK0";
NET "clk90"   TNM = FFS "TNM_CLK90";
# MUX Select for either rising/falling CLK0 for 2nd stage

read capture
INST "*/u_phy_calib_0/gen_rd_data_sel*.u_ff_rd_data_sel" 

TNM = "TNM_RD_DATA_SEL";
TIMESPEC "TS_MC_RD_DATA_SEL" = FROM "TNM_RD_DATA_SEL" 

TO "TNM_CLK0" "TS_SYS_CLK" * 4; 

b. Modify the UCF to set site locations for DQS Gate IDDR and IODELAY LOC 
constraints based on the user pinout. This process must be repeated for each DQS 
group:

i. In the PARTGEN package file, locate the line in which the “pin name” column 
value corresponds to the pin location of the DDR2_DQS_N[x] pin (that is, the 
“N” side of the differential strobe). 

ii. Use the XY-location in the “pad name” column on that line, and substitute this 
for the LOC = ILOGIC_xxxx and LOC = IODELAY_xxxx constraints for that 
DQS group. 

iii. For example, for a design using an XC5VLX50T-FF1136, if DDR2_DQS_N[0] is 
on pin N30, the corresponding pin name (IOB) XY-location is X0Y176. The 
correct values for the DQS Gate circuit IDDR and IODELAY LOC constraints 
are:

INST "*/gen_dqs[0].u_iob_dqs/u_iddr_dq_ce 
"LOC = "ILOGIC_X0Y176";

INST "*/gen_dqs[0].u_iob_dqs/u_iodelay_dq_ce 
LOC = "IODELAY_X0Y176";
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c. Modify UCF to set the correct site location for a fabric flop driving the DQS gate 
signal. This flop must be placed close to the corresponding DQS gate IODELAY. 
This process below must be repeated for each DQS group:

i. To determine the IDDR and IODELAY locations, locate in the PARTGEN 
package file the line in which the “pin name” column value corresponds to the 
pin location of the DDR2_DQS_N[x] pin (that is, the “N” side of the 
differential strobe). 

ii. Use the XY-coordinate in the “nearest CLB” column on that line, and 
substitute this for the LOC = SLICE_xxxx constraint for that DQS group. 

iii. For example, for a design using an XC5VLX50T-FF1136, if DDR2_DQS_N[0] is 
on pin N30, the corresponding “nearest CLB” is X0Y88. The correct value for 
the DQS Gate circuit fabric flop LOC constraint is:

INST "*/u_phy_calib_0/gen_gate[0].u_en_dqs_ff" 
LOC = SLICE_X0Y88;

d. (NOTE: No modification required for this step.) Verify the MAXDELAY constraints 
that limit the length of nets associated with the DQS Gate control signal. This 
constrains the path for all DQS groups:

NET "*/u_phy_io_0/en_dqs*" MAXDELAY = 600 ps;
NET "*/u_phy_io_0/gen_dqs*.u_iob_dqs/en_dqs_sync" 

MAXDELAY = 850 ps;

e. (NOTE: No modification required for this step.) Verify the FROM-TO constraint that 
defines the path between the DQS Gate driving IDDR and the clock enable inputs 
to each of the data (DQ) capture IDDRs in that DQS Group. Note that this value is 
frequency dependent and is automatically calculated by MIG based on the 
memory bus clock frequency. An example for 333 MHz is shown below:

INST "*/gen_dqs[*].u_iob_dqs/u_iddr_dq_ce" 
TNM = "TNM_DQ_CE_IDDR";

INST "*/gen_dq[*].u_iob_dq/gen_stg2_*.u_iddr_dq" 
TNM = "TNM_DQS_FLOPS";

TIMESPEC "TS_DQ_CE" = FROM "TNM_DQ_CE_IDDR" 
TO "TNM_DQS_FLOPS" 1.60 ns; 

f. Modify RPM origin (RLOC_ORIGIN) constraints for each DQ I/O. Part of the read 
data capture occurs in the fabric, and the relative placement of the flip-flops is 
fixed using a relationally placed macro (RPM) defined in the HDL. Each DQ has a 
read capture RPM associated with it, and each one must be placed correctly 
relative to the DQ I/O pin. This process must be repeated for each DQ data bit:

i. Locate the correct line in the package file for the DQ of interest based on its pin 
number.

ii. Note the value in the “pad name” column. The X-coordinate of this entry is 
used to determine which I/O column (left = 0, center = 1, or right = 2) the DQ 
pin is located on.

iii. Note the value in the “diff pair” column. This determines whether the DQ pin 
is located on the slave or master site of a differential I/O pair. If the value ends 
in an “S”, that site is a slave site. 

iv. If that site is a slave site, refer to the corresponding master site. This is the 
adjacent line whose “diff pair” entry has the same numeric value, but ends in 
“M” for the next step in this process (determining “nearest CLB” value). For 
example, for a design using an XC5VLX50T-FF1136, if DDR2_DQ[0] is on pin 
T6, the “diff pair” entry for this location is 67S, which indicates it is a slave 
location. For the purposes of determining the “nearest CLB” location in the 
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next step, refer to the line above it, corresponding to location R6 (“diff pair” = 
67M).

v. Refer to the “nearest CLB” value. (Again, if this is a slave site, refer to the 
“nearest CLB” value for the corresponding master site.) 

If the DQ site is on the left column, use this value directly in the 
RLOC_ORIGIN constraint. For example, on an XC5VLX50T-FF1136, for a DQ 
pin at U25, the “nearest CLB” is X0Y80. The RLOC_ORIGIN is:

INST "*/gen_dq[0].u_iob_dq/gen_stg2_*.u_ff_stg2a_rise" 
RLOC_ORIGIN = X0Y80;

If the DQ site is on the center or right column, subtract 4 from the X-coordinate 
indicated by the “nearest CLB” value, and use this as the RLOC_ORIGIN. For 
example, on an XC5VLX50T-FF1136, for a DQ located at F13, the “nearest 
CLB” is X52Y100. Subtracting 4 from the X-coordinate yields X48Y100. The 
RLOC_ORIGIN is:

INST "*/gen_dq[0].u_iob_dq/gen_stg2_*.u_ff_stg2a_rise" 
RLOC_ORIGIN = X48Y100;

4. The values of two top-level HDL parameters/generics—DQS_IO_COL and 
DQ_IO_MS—must be modified to reflect the user's specific pinout. These must be 
properly set in order for the HDL to correctly choose which RPMs and directed routing 
constraints to instantiate for each DQ read capture circuit:

a. Modify the value for DQS_IO_COL. This parameter is an array indicating the I/O 
column location of each of the DQS I/Os.

i. The length of this parameter is = 2 * (# of DQS I/Os) = 2 * DQS_WIDTH.

ii. Determine which column each DQS I/O is located on. As in previous steps, 
this can be determined from the PARTGEN package file. Locate the correct line 
in the package file for the DQS of interest based on its pin number. The 
X-coordinate of this entry is used to determine which I/O column (left = 0, 
center = 1, or right = 2). 

iii. Each element of the parameter consists of two bits which indicate the I/O 
column location of each DQS. Set the entry to 00 for the left column, 01 for the 
center column, or 10 for the right column. 11 is a reserved value and must not 
be used. The least significant two elements of the array correspond to DQS[0]. 

For example, for a 32-bit, 4-strobe design with DQS[0,1] located in the left I/O 
column, DQS[2] located in the center I/O column, and DQS[3] located in the 
right I/O column, DQS_IO_COL is 8 bits long, and must be set to 10010000.

Note: This configuration is not recommended; it is used here for illustrative purposes 
only.

b. Modify value for DQ_IO_MS. This parameter is an array indicating whether each 
DQ pin occupies a master or slave I/O location. 

i. The length of this parameter = # of DQ I/O = DQ_WIDTH

ii. Determine whether each DQ is located on a master or on a slave site. This can 
be determined from the “diff pair” column in the PARTGEN package file. 

iii. Each element of the parameter is one bit, and indicates whether the 
corresponding DQ occupies a master or slave I/O location. Set to 0 for slave, 
and to 1 for master. The least significant element of the array corresponds to 
DQ[0].
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For example, for an 8-bit, 2-strobe design with DQ[0,2,4,6,7] on master I/O 
locations and the other DQs on slave I/O locations, DQ_IO_MS is 8 bits long, 
and must be set to 11010101.

c. Modify the values assigned to DQ_IO_MS and DQS_IO_COL 
parameters/generics in the top-level MIG (VHDL or Verilog) module based on the 
results of the above steps. 

The remainder of this appendix describes the reasons why these additional constraints are 
required. 

Read Data Capture Block Diagram
The read capture path used for the MIG 2.0 or later versions of MIG Virtex-5 DDR2 
interface consists of the following sub-blocks:

• DQ is initially captured using DQS in the IOB using the IDELAY and IDDR elements

• Data is transferred to the FPGA (CLK0) clock domain using a series of flops located in 
the fabric. The location of these flops, and the routes between the IDDR and fabric 
flops, must be carefully defined. 

• For each DQS, a circuit is added to disable the clock enable (CE) pin to each of the 
corresponding DQ capture IDDRs at the end of a read burst (“DQS Gate”). 

Figure B-1 shows the read capture path architecture for the MIG 2.0 or later versions of 
Virtex-5 DDR2 design, as well as the various portions of the capture path that are affected 
by the additional UCF constraints and top-level HDL parameters. 

Figure B-1: Virtex-5 DDR2 Read Capture Path, MIG 2.0 or Later 

DQS Gate

QD

QD

Q1

Q2

D

IDDR

CE

QD

QD

QD QD

IDELAY

IDELAY

DQ

DQS
BUFIO

Read 
Data 

Transfer 
Logic

DQS Gate

Specify locations for components used for DQS Gate circuit 

FPGA Clock

Define/constrain fabric flop location using UCF RLOC_ORIGIN, 
HDL parameters, and directed routing constraints

IDELAY
DR

IDDR

F DQ

PHY 
control 
logic

UG086_aB_01_122407

http://www.xilinx.com


414 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Appendix B: Required UCF and HDL Modifications for Pinout Changes
R

UCF / HDL Changes Overview
If the user needs to modify a MIG-generated pinout, the areas where specific constraints 
and parameters need to be modified are:

• HDL code top-level parameters:

♦ The parameters DQS_IO_COL and DQ_IO_MS must be set according to the pin 
locations chosen for the DQS, and DQ IOB respectively. The rules for determining 
this value are outlined in section “Setting HDL Code Top-Level Placement 
Parameters.”

• User constraints file (UCF): 

♦ For each DQ pin, an RLOC_ORIGIN must be specified. This sets the origin of the 
RPM for the read-capture path logic immediately next to the DQ IOB. The value 
of the RLOC_ORIGIN is determined by the pin location for the corresponding DQ 
IOB. The rules for determining this value are outlined in section “Setting UCF 
Constraints,” page 416. 

♦ For each DQS pin:

- a location constraint pair for an IDELAY (input delay element) and IDDR 
(input DDR flip-flop) must be specified. These two elements are used in the 
DQS Gate circuit, of which there is one per DQS group. The value of the LOC 
constraint for the IDELAY and IDDR are determined by the pin location for 
the corresponding DQS IOB. The rules for determining this value are outlined 
in section “Setting UCF Constraints.”

- a location constraint for a single fabric flop must be specified. This locks the 
flop used to drive the DQS Gate signal close to its corresponding IDELAY. 
This is required to reduce the total net delay on this route, and therefore the 
delay fluctuations on this line due to voltage/temperature. The rules for 
determining this value are outlined in section “Setting UCF Constraints.”

Setting HDL Code Top-Level Placement Parameters
The read capture path consists of dedicated circuit elements (the IDDR flop and IDELAY) 
embedded in the IOB, along with several flip-flops in the FPGA fabric. The placement of 
these fabric flip-flops is critical to providing maximum timing margin for read data 
capture. These flip-flops must be placed in close proximity both to each other and to the 
IOB. In addition, the route delays from the IOB to these fabric flip-flops must kept as short 
as possible to reduce the absolute delay of each route, as well as to reduce the skew 
between routes from the IOB to different fabric flip-flops.

Relationally placed macros (RPMs) are defined within the Virtex-5 DDR2 interface HDL code. 
RPMs allow fixed relative placement of basic logic elements (for example, flip-flops) with 
respect to each other. In addition, directed routing constraints (also known as “DIRT 
strings”) are embedded in the code to specify the exact routing resources used for the 
routes from the IOB to the fabric flip-flops. RPMs and directed routing constraints are 
portable between different device and package combinations in the same FPGA family (for 
example, between XC5VLX50T-FF1136 and XC5VLX330-FG1760). There are several factors 
that determine RPMs and DIRT strings, which are discussed below.

There are different sets of RPM and directed routing constraints embedded in the HDL 
code because one set cannot account for all possible routing conditions across all pins of a 
device. Choosing which RPM set to enable is done on a DQ-by-DQ basis, and is 
determined by each DQ and DQS pin location.
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In particular, the following conditions determine which set of RPM and directed routing 
constraints is selected for each DQ:

• The I/O column location for the entire DQS group strobe: Each Virtex-5 device has 
its IOBs arranged into three (left, center, right) columns. Each DQS group, consisting 
of DQ, DQS, and DM pins, must be located on the same I/O bank. (This means they 
must also be located on the same I/O column.) The location of fabric slice sites near 
the IOBs differs between the three I/O columns; therefore, different RPM sets must be 
supported, depending on the I/O column used. 

Note that different DQS groups could be located on I/O banks in different I/O 
columns. Although this is allowed strictly according to I/O-placement rules, placing 
DQS groups in different I/O columns might make it harder for the tools to meet 
internal PERIOD timing. For example, internal nets need to be routed further to access 
DQ/DQS pins spread out across different columns.

• Whether the DQ pin is located on a master or slave I/O: Virtex-5 FPGA I/Os are 
arranged in pairs to allow for their possible use as differential pairs. The pin 
descriptions given in the Virtex-5 device pinout tables [Ref 12] indicate whether an 
I/O is the slave or master I/O for that pair. For example, on an LX50T-FF1136, pins 
AE22 and AD23 form an I/O pair. AE22 (IO_L5P_17) is the master I/O, and AD23 
(IO_L5N_17) is the slave I/O. The status of the IOB as either a master or a slave site 
determines which fabric slices it uses for the read capture logic. 

The following top-level parameters must be properly set in order for the code to correctly 
choose which RPMs and directed routing constraints to use for each DQ:

• DQS_IO_COL: This parameter is an array indicating the I/O column location of each 
of the DQS I/Os:

♦ Length of parameter = 2 * (# of DQS I/O) = 2 * DQS_WIDTH

♦ Each element of the parameter consists of two bits that indicate the I/O column 
location of each DQS. Set the entry to 00 for the left column, 01 for the center 
column, or 10 for the right column. The 11 setting is a reserved value and must 
not be used. Column directionality is determined by the view as seen by FPGA 
Editor. 

Note: This is the opposite of the view shown in the bank selection pane of the MIG 2.0 (or 
later) version of Wizard.

♦ The least significant element of the array corresponds to DQS[0]. 

♦ For example, for a 32-bit, 4-strobe design with DQS[0,1] located in the left I/O 
column, DQS[2] located in the center I/O column, and DQS[3] located in the right 
I/O column (a configuration that is not recommended, but is given here for 
illustrative purposes), DQS_IO_COL is 8 bits long and must be set to 10010000.

• DQ_IO_MS: This parameter is an array indicating whether each DQ pin occupies a 
master or slave I/O location. 

♦ Length of parameter = # of DQ I/O = DQ_WIDTH

♦ Each element of the parameter is one bit, and indicates whether the 
corresponding DQ occupies a master or slave I/O location. Set to 0 for slave and 
1 for master. 

♦ The least significant element of the array corresponds to DQ[0].

♦ For example, for an 8-bit, 2-strobe design, with DQ[0,2,4,6,7] on master I/O 
locations and the other DQs on slave I/O locations, DQ_IO_MS is 8 bits long and 
must be set to 11010101.
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Setting UCF Constraints
Beyond the typical constraints found in a UCF (for example, PERIOD timing constraint, 
pinout LOC and IOSTANDARD constraints for I/O), the Virtex-5 FPGA DDR2 interface 
also requires that four other classes of constraints be added to the UCF:

1. Location (LOC) constraints for the IDELAY and IDDR blocks used for every DQS 
Gate circuit. There is one DQS Gate circuit per DQS I/O. 

2. RPM origin (RLOC_ORIGIN) constraints for each DQ I/O. These constraints exactly 
locate each RPM and directed routing set (as mentioned in “Setting HDL Code Top-
Level Placement Parameters”) by the corresponding DQ IOB. 

3. MAXDELAY constraints to limit the delay timing-critical paths related to IOB timing. 
This is not required to meet any specific cycle-to-cycle timing requirement, but rather 
to limit any post-calibration voltage/temperature related changes in the net delay. 
Voltage/temperature variations on a particular net increases as the total net delay 
increases. 

It is critical to reduce the delay on the DQS gate control input. This signal is generated in the 
CLK0 clock domain and synchronized via an IDELAY to the DQS domain. The 
synchronization between the CLK0 and DQS domains on this control net is established 
once during initial calibration, which accounts for the static delay component of these 
nets. However, post-calibration changes in net delay are not accounted for, and must 
be minimized. 

4. FROM-TO constraints:

a. One FROM-TO constraint limits the DQS Gate path from the IDDR to the DQ CE 
pins to approximately one-half clock cycle. This ensures that the DQ clock enables 
are deasserted before any possible DQS glitch at the end of the read postamble can 
arrive at the input to the IDDR. This value is clock-frequency dependent:

INST "*/gen_dqs*.u_iob_dqs/u_iddr_dq_ce" 
TNM = "TNM_DQ_CE_IDDR";

INST "*/gen_dq*.u_iob_dq/gen_stg2_*.u_iddr_dq" 
TNM = "TNM_DQS_FLOPS";

TIMESPEC "TS_DQ_CE" = FROM "TNM_DQ_CE_IDDR" 
TO "TNM_DQS_FLOPS" 1.6 ns;

b. Additional FROM-TO constraints define multi-cycle paths in the design. These are 
added to help meet internal (fabric) timing at the higher supported frequencies. At 
lower frequencies of operation, these multi-cycle path constraints might not be 
required and can be removed. 

Constraint classes (1) and (2) mentioned in this section is discussed. Classes (3) and (4) is 
not discussed; their values do not need to change if the pinout is modified. 

Determining FPGA Element Site Locations
Setting the correct UCF constraints requires that the user have knowledge of the correct 
site location to use. For example, setting the correct location constraint for the IDELAY for 
a DQS Gate circuit requires that the user know the site name for the location where the 
corresponding DQS_N pin is placed. For example, on an XC5VLX50T-FF1136, if DQS_N[0] 
is located on pin C13, the user must know that the site name for this I/O is IOB_X2Y216, so 
that the correct LOC constraint can be set to:

INST “*/gen_dqs[0].u_iob_dqs/u_iodelay_dq_ce” LOC = "IODELAY_X2Y216";

There are two ways in which the correct site name can be determined:
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• Use FPGA Editor to graphically determine the correct site name.

• Use PARTGEN to generate a package file in text format. From the package file, the 
correct site name can be extracted. PARTGEN can be invoked to generate package 
files for a specific device/package combination using the following command:

partgen -v <part number> (e.g. partgen -v xc5vlx330tff1738)

Once the package file is created, the user can search the appropriate file for the site of 
interest. 

Setting DQS Gate Circuit Location Constraints
Each DQS Gate circuit requires the use of an IDELAY and IDDR flip-flop in addition to 
fabric-based slice resources. The IDELAY and IDDR for each DQS Gate circuit, as well as 
the fabric flop driving the IDELAY, must be manually located in the UCF. There are three 
constraints for every DQS in the design.

The IDELAY and IDDR must be taken from an IOB site where these resources are available, 
specifically an IOB site that is used only as an output or is totally unused. This can be one 
of the following:

• The DQS_N negative-side I/O site of the DQS differential I/O pair of the 
corresponding DQS group. A differential I/O pair does not use the input-side 
resources on the N-side leg of the pair. 

• The DM output site for the corresponding DQS group. The DM is an output-only site, 
and its input-side resources are available for use by the DQS Gate circuit. 

• Any IOB site that is either output-only, or unused. 

The best site to use is the site that is closest in proximity on the FPGA die to the four or 
eight DQ I/O sites in that DQS group. This reduces the routing delay on the clock enable 
control from the DQS Gate circuit to its corresponding DQ sites. At higher frequencies, this 
can often be the critical timing path, as there is only about half a clock cycle for this path. 
MIG always chooses to place the IDELAY and IDDR on the DQS_N site for the 
corresponding DQS group. However, depending on the particular user pinout, there might 
be a better site available. The user might have to relocate the DQS Gate location(s) to other 
sites in order to meet timing.

The IDELAY and IDDR for a given DQS Gate circuit must be placed at the same site. They 
cannot be placed on different sites.

The following are the constraints used for locating the IDELAY and IDDR:

INST "*/gen_dqs[<x>].u_iob_dqs/u_iddr_dq_ce" LOC = "ILOGIC_<SITE>";
INST "*/gen_dqs[<x>].u_iob_dqs/u_iodelay_dq_ce" LOC = "IODELAY_<SITE>";

where <x> denotes the DQS group number, and <SITE> denotes the I/O site name. 

For example, on an XC5VLX50T-FF1136, if DQS_N[0] is placed on pin K9 and this site is 
chosen to locate IDELAY and IDDR for the DQS Gate circuit for DQS[0], the constraints 
are:

INST "*/gen_dqs[0].u_iob_dqs/u_iddr_dq_ce" LOC = "ILOGIC_X2Y218";
INST "*/gen_dqs[0].u_iob_dqs/u_iodelay_dq_ce" LOC = "IODELAY_X2Y218";

The fabric flop driving the IDELAY with the DQS Gate control pulse must also be location-
constrained to be near the corresponding IDELAY/IDDR. The rules for determining this 
are:

1. Locate the IOB to where the corresponding IDELAY and IDDR are location 
constrained. 
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2. Use the appropriate package file to find the “nearest CLB” (see“Setting 
RLOC_ORIGIN Constraints”). Location-constrain this flop to this location.

For example, on an XC5VLX50T-FF1136, if DQS_N[0] is placed on pin N30, the location 
constraint for the corresponding DQS Gate fabric flop is:

INST "*/gen_dqs[0].u_iob_dqs/u_iodelay_dq_ce" LOC = "IODELAY_X2Y218";

The reason for this requirement is to minimize the net delay from the output of this flop to 
the synchronizing IDELAY. (See the discussion of why MAXDELAY constraints are used in 
this design in section “Setting UCF Constraints.”) It is possible to not constrain this flop to 
a specific location or to constrain it to a different location as long as the corresponding 
MAXDELAY for this net can be met (that is, by allowing MAP to place this flop). 

Setting RLOC_ORIGIN Constraints
The RPMs for the fabric-based portion of the read capture path defined in the HDL code 
only specify a relative placement for each of the fabric flip-flops. An absolute origin on the 
FPGA chip for each RPM must also be specified, and this is done in the UCF via an 
RLOC_ORIGIN constraint. There is one RLOC_ORIGIN constraint for every data bit in the 
design. 

Each RLOC_ORIGIN looks like:

INST "*/gen_dq[<x>].u_iob_dq/gen_stg2_*.u_ff_stg2a_fall" 
RLOC_ORIGIN = <SITE>;

where <x> denotes the DQ number and <SITE> denotes the appropriate fabric slice site as 
determined below. 

The rules for determining the correct RLOC_ORIGIN are based on the assumption that the 
user is referencing the appropriate device package file (generated from PARTGEN). 
Alternatively, the user can use a tool such as FPGA Editor to locate the correct site 
coordinates for each RLOC_ORIGIN constraint. 

The output of the package file looks like:

# PartGen J.37
# pad pin vref vcco function nearest diff  tracelength
#  name name bank bank name CLB pair     (um)
pin OPAD_X0Y3 AN4 -1 -1 MGTTXP1_122 N.A. N.A.    15397
pin IPAD_X0Y19 V17  0  0 VN_0 N.A. N.A.     3209
pin IOB_X1Y159 L21  1  1 IO_L0P_A19_1 X28Y79 0M     6760
pin IOB_X1Y158 L20  1  1 IO_L0N_A18_1 X27Y79 0S     6739
pin IOB_X1Y157 L15  1  1 IO_L1P_A17_1 X28Y78 1M     8739
pin IOB_X1Y156 L16  1  1 IO_L1N_A16_1 X27Y78 1S     6258

Each column represents one I/O site. The “pin name” column indicates the pin number for 
that site. The other column of interest is “nearest CLB”, which indicates the site 
name/coordinates for the nearest fabric slice to that IOB. This determines the correct 
RLOC_ORIGIN value.

Unfortunately, the corresponding “nearest CLB” value cannot necessarily be used directly 
as the RLOC_ORIGIN for a DQ. Instead, depending upon which I/O column (left, center, 
or right) the DQ is located in, an offset might need to be subtracted from the “nearest CLB” 
value to determine the RLOC_ORIGIN setting. 

The process is as follows: 

1. Locate the correct line in the package file for the DQ of interest based on its pin 
number.

http://www.xilinx.com


MIG User Guide www.xilinx.com 419
UG086 (v2.2) March 3, 2008

Setting UCF Constraints
R

2. Determine which I/O column (left, center, right) the DQ pin resides on. This can be 
determined from the package file (by looking at the “nearest CLB” value and noting its 
X-coordinate value), or by other means, such as FPGA Editor. 

3. Look in the “diff pair” column to see if the site is a slave or master site. If it is a slave 
site, refer to the line in the package file for the corresponding master site for its 
“nearest CLB” information. For example, in the above package file, if the DQ is placed 
on L20 (a slave site), the line above for L21 (the corresponding master site) is referred 
to. This is because the master and slave site for a given I/O pair has the same 
RLOC_ORIGIN value. 

4. Refer to the “nearest CLB” value:

a. If the DQ site is on the left column, use this value directly in the RLOC_ORIGIN 
constraint. For example, on an XC5VLX50T-FF1136, for a DQ pin located at U25, 
the “nearest CLB” is X0Y80. The RLOC_ORIGIN is:

INST "*/gen_dq[0].u_iob_dq/gen_stg2_*.u_ff_stg2a_fall" 
RLOC_ORIGIN = X0Y80;

Note that the same RLOC_ORIGIN value is used if the DQ is on T25, since T25 is 
the slave complement to the master I/O at U25. 

b. If the DQ site is on the center or right column, subtract 4 from the X-coordinate 
indicated by the “nearest CLB” value, and use this as the RLOC_ORIGIN. For 
example, on an XC5VLX50T-FF1136, for a DQ located at F13, the “nearest CLB” is 
X52Y100. Subtracting 4 from the X-coordinate yields X48Y100. 

INST "*/gen_dq[0].u_iob_dq/gen_stg2_*.u_ff_stg2a_fall" 
RLOC_ORIGIN = X48Y100;

The relationship between the “nearest CLB” as indicated by the package file, and the actual 
RPM is shown below for left, center, and right columns. Note that the RLOC_ORIGIN 
values for center and right columns are calculated in the exact same manner. 

Figure B-2, page 420 shows the spatial relationship between the IOBs and the location of 
the slices that contain the flip-flops used for read data capture. 
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Figure B-2: Calculation of RLOC_ORIGIN
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Verifying UCF/HDL Modifications
The user can verify that the modifications to the UCF and HDL top-level files are correct 
through the following:

• All timing constraints (PERIOD, MAXDELAY, FROM-TO) must be met.

• The Place and Route (PAR) report must be checked to ensure that all directed routing 
constraints (DIRT) have been successfully routed. 

♦ These directed routing constraints fix the internal net routing between the IDDR 
and fabric-based flops. These paths are not covered by timing constraints. The 
user must instead verify that these directed routing constraints have been 
successfully routed. 

♦ There are two directed routing constraints for every data bit. For example, for a 
72-bit design, there are 144 directed routing constraints that must be routed. The 
relevant PAR report section looks like:

INFO:ParHelpers:199 - All "EXACT" mode Directed Routing 
constrained nets successfully routed. The number of 
constraints found: 144, number successful: 144

♦ Failure by PAR to route certain directed routing constraints might indicate 
incorrect values for the HDL top-level parameters DQ_IO_COL and/or 
DQ_IO_MS. Another symptom of incorrect UCF or HDL values is the inadvertent 
placement of two RPMs for two different DQ capture circuits in the same SLICE 
locations (MAP error message shown below):

ERROR:Place:292 - The components 
my_design/u_ddr2_top_0/u_mem_if_top_0/stg3b_out_fall_30 and 
my_design/u_ddr2_top_0/u_mem_if_top_0/stg3b_out_fall_17 seem to 
be placed / locked to the same site SLICE_X96Y42
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Appendix C

WASSO Limit Implementation 
Guidelines

This appendix provides information about WASSO (Weighted Average Simultaneous 
Switching Output) limit implementation in the bank selection from MIG. The number of 
pins selected in a bank should not exceed the WASSO limit. It is recommended to use 
WASSO calculator before the number of pins selected in a bank. MIG implements the 
WASSO for Virtex™-4 and Virtex-5 designs.

Ground bounce must be controlled to ensure proper operation of high-performance FPGA 
devices. Particular attention must be applied to minimizing board-level inductance during 
PCB layout.

When multiple output drivers change state at the same time, power supply disturbance 
occurs. These disturbances can cause undesired transient behavior in output drivers, input 
receivers, or in internal logic. These disturbances are often referred to as Simultaneous- 
Switching Output (SSO) noise. The SSO limits govern the number and type of I/O output 
drivers that can be switched simultaneously while maintaining a safe level of SSO noise.

SSO of an individual bank is calculated by summing the SSO contributions of the 
individual I/O standards in the bank. The SSO contribution is the percentage of full 
utilization of any one I/O standard in any one bank. WASSO calculation is the done by 
combining the SSO contributions of all I/O in a bank into a single figure.

WASSO calculation differs for Virtex-4 and Virtex-5 devices:

• Virtex-4 User Guide [Ref 7] provides more information on WASSO calculation for 
Virtex-4 devices.

• Virtex-5 FPGA User Guide [Ref 10] provides more information on WASSO calculation 
for Virtex-5 devices.

A Microsoft Excel-based spreadsheet entitled “WASSO Calculator” is provided to 
automate these calculations. The WASSO calculator uses PCB geometry, such as board 
thickness, via diameter, and breakout trace width and length, to determine board 
inductance. It determines the smallest undershoot and logic-Low threshold voltage among 
all input devices, calculates the average output capacitance, and determines the SSO 
allowance by taking into account all of the board-level design parameters mentioned in 
this document. In addition, the WASSO calculator performs checks to ensure the overall 
design does not exceed the SSO allowance.

The Virtex-4 FPGA WASSO Calculator [Ref 30] and the Virtex-5 FPGA WASSO Calculator 
[Ref 31] can be downloaded from the Xilinx website.
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Appendix D

Debug Port

Overview
Starting with MIG 2.2, the memory controller interface design HDL for Virtex™-5, 
Virtex-4, and Spartan™-3 FPGAs adds ports to the top-level design file to allow debugging 
and monitoring of the physical layer read timing calibration logic and timing. This port 
consists of signals brought to the top-level HDL from the Read Calibration module (where 
the read timing calibration logic resides). These signals provide information for debugging 
hardware issues when calibration does not complete or read timing errors are observed in 
the system even after calibration completes. For Virtex FPGA designs, these signals also 
allow the user to adjust the read capture timing by adjusting the various IDELAY elements 
used for data synchronization. Whereas, for Spartan-3 FPGA designs, these signals allow 
the user to adjust the read capture timing by adjusting the delays on data_strobe and 
rst_dqs_div signals.

Specifically, the Debug port allows the user to:

• Observe calibration status signals.

• Observe current tap values for IDELAYs used for read data synchronization for Virtex 
FPGA designs.

• Observe current tap_delay values for Spartan-3 FPGA designs.

• Dynamically vary these tap values. Possible uses of this functionality include:

♦ Debug read data corruption issues

♦ Support periodic readjustment of the read data capture timing by adjusting the 
tap values

♦ Use as a tool during product margining to determine actual timing margin 
available on read data captures

Enabling the Debug Port
For Virtex-5 FPGA memory controller designs, the Debug port is enabled by setting the 
top-level HDL parameter DEBUG_EN to 1. To disable the Debug port, set DEBUG_EN to 
0. This prevents the synthesis of additional logic required to support the Debug port (e.g., 
logic to allow dynamic adjustment of the IDELAY taps).

For Virtex-4 FPGA memory controller designs, the Debug port is enabled by setting the 
Debug Signals option in MIG.
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Signal Descriptions
The tables in this section provide the Debug port signal descriptions for the various 
memory and FPGA combinations. All the signal directions are with respect to the RTL 
design.

• Table D-1, “DDR2 SDRAM Signal Descriptions (Virtex-5 FPGAs),” page 426

• Table D-2, “DDR SDRAM Signal Descriptions (Virtex-5 FPGAs),” page 429

• Table D-3, “QDRII SRAM Signal Descriptions (Virtex-5 FPGAs),” page 432

• Table D-4, “DDR SDRAM Signal Descriptions (Virtex-4 FPGAs),” page 436

• Table D-5, “DDRII SRAM Signal Descriptions (Virtex-4 FPGAs),” page 438

• Table D-6, “QDRII SRAM Signal Descriptions (Virtex-4 FPGAs),” page 440

• Table D-7, “RLDRAM II Signal Descriptions (Virtex-4 FPGAs),” page 442

• Table D-8, “DDR/DDR2 SDRAM Signal Descriptions (Spartan-3 FPGAs),” page 443

Virtex-5 FPGA: DDR2 SDRAM
All debug ports signals are clocked using the half-frequency clock (clkdiv). Increment and 
decrement control signals (e.g., dbg_idel_up_all) must be provided synchronously with 
clkdiv. IDELAY select signals, such as dbg_sel_all_idel_dqs and dbg_sel_idel_dqs can 
change asynchronous to clkdiv, but must meet setup and hold requirements on clkdiv on 
cycles when the corresponding increment/decrement control signal is asserted.

Table D-1: DDR2 SDRAM Signal Descriptions (Virtex-5 FPGAs)

Bus Name I/O Width Description

dbg_calib_done O 4 Each bit is driven to a static 1 as each stage of 
calibration is completed. dbg_calib_done[0] 
corresponds to Stage 1.

dbg_calib_dq_tap_cnt O 6*DQ_WIDTH 6-bit tap count for each DQ IDELAY. 
dbg_calib_dq_tap_cnt[5:0] corresponds to 
DQ[0].

dbg_calib_dqs_tap_cnt O 6*DQS_WIDTH 6-bit tap count for each DQS IDELAY. 
dbg_calib_dqs_tap_cnt[5:0] corresponds to 
DQS[0].

dbg_calib_gate_tap_cnt O 6*DQS_WIDTH 6-bit tap count for each DQS Gate IDELAY. 
dbg_calib_gate_tap_cnt[5:0] corresponds to 
the DQS Gate for DQS[0].

dbg_calib_rd_data_sel O DQS_WIDTH Each bit indicates which polarity of the FPGA 
clock (clk0) is used to synchronize the 
captured read data from the DQ IDDR for a 
DQS group.

1: The rising edge of clk0 synchronizes 
DDR2 rising edge data. The falling edge of 
clk0 synchronizes DDR2 falling edge data.

0: The falling edge of clk0 synchronizes 
DDR2 rising edge data. The rising edge of 
clk0 synchronizes DDR2 falling edge data.

calib_rd_data_sel[0] corresponds to DQS[0].
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dbg_calib_rden_dly O 5*DQS_WIDTH 5-bit value indicating the number of clk0 
clock cycles of delay between when a read 
command is issued by the controller and the 
synchronization of valid data in the clk0 clock 
domain. Each DQS group has its own distinct 
value. dbg_calib_rden_dly[4:0] corresponds 
to DQS[0].

dbg_calib_gate_dly O 5*DQS_WIDTH 5-bit value indicating the number of clk0 
clock cycles of delay between the end of a 
read burst and the assertion of DQS Gate. 
Each DQS group has its own distinct value. 
dbg_calib_gate_dly[4:0] corresponds to 
DQS[0].

dbg_calib_err O 2 Asserted when an error is detected during 
calibration during stages 3 and/or 4. This 
appears as a 4-bit bus in the HDL. However, 
only bits [3:2] are used. dbg_calib_err[2] 
corresponds to stage 3, and dbg_calib_err[3] 
corresponds to stage 4. Stages 1 and 2 do not 
have error signals.

dbg_idel_up_all I 1 Increments the tap value for all IDELAYs 
(DQ, DQS, and DQS Gate) used for read data 
synchronization. Tap values are incremented 
by one for every clkdiv cycle that this signal is 
held High.

dbg_idel_down_all I 1 Decrements the tap value for all DELAYs 
(DQ, DQS, and DQS Gate) used for read data 
synchronization. Tap values are decremented 
by one for every clkdiv cycle that this signal is 
held High.

dbg_sel_all_idel_dq I 1 Selects the functionality for dbg_idel_up_dq 
and dbg_idel_down_dq:

1: All DQ IDELAYs are adjusted.

0: Only the IDELAY for the DQ bit 
specified by dbg_sel_idel_dq is adjusted. 

If neither dbg_idel_up_dq nor 
dbg_idel_down_dq is active in a clkdiv cycle, 
this signal is a don’t care.

dbg_sel_idel_dq I log2(DQS_WIDTH*DQ_PER_DQS) When dbg_sel_all_idel_dq = 1, determines 
the specific DQ IDELAY to vary using 
dbg_idel_up_dq or dbg_idel_down_dq.

If neither dbg_idel_up_dq nor 
dbg_idel_down_dq is active in a clkdiv cycle, 
this signal is a don’t care.

Table D-1: DDR2 SDRAM Signal Descriptions (Virtex-5 FPGAs) (Continued)

Bus Name I/O Width Description
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dbg_idel_up_dq I 1 Increments the tap value for all DQ IDELAYs. 
The DQ IDELAY(s) affected are given by 
dbg_sel_all_idel_dq and dbg_sel_idel_dq. 
Tap value(s) are incremented by one for every 
clkdiv cycle that this signal is held High.

dbg_idel_down_dq I 1 Decrements the tap value for all DQ 
IDELAYs. The DQ IDELAY(s) affected are 
given by dbg_sel_all_idel_dq and 
dbg_sel_idel_dq. Tap value(s) are 
decremented by one for every clkdiv cycle 
that this signal is held High.

dbg_sel_all_idel_dqs I 1 Selects the functionality for dbg_idel_up_dqs 
and dbg_idel_down_dqs:

1: All DQS IDELAYs are adjusted.

0: Only the IDELAY for the DQS specified 
by dbg_sel_idel_gate is adjusted.

If neither dbg_idel_up_dqs nor 
dbg_idel_down_dqs is active in a clkdiv 
cycle, this signal is a don’t care.

dbg_sel_idel_dqs I log2(DQS_WIDTH) When dbg_sel_sll_idel_dqs = 1, determines 
the specific DQS IDELAY to vary using 
dbg_idel_up_dqs or dbg_idel_down_dqs. If 
neither dbg_idel_up_dqs nor 
dbg_idel_down_dqs is active in a clkdiv 
cycle, this signal is a don’t care.

dbg_idel_up_dqs I 1 Increments the tap value for all DQS 
IDELAYs. The DQS IDELAY(s) affected are 
given by dbg_sel_all_idel_dqs and 
dbg_sel_idel_dqs. Tap value(s) are 
incremented by one for every clkdiv cycle 
that this signal is held High.

dbg_idel_down_dqs I 1 Decrements the tap value for all DQS 
IDELAYs. The DQS IDELAY(s) affected are 
given by dbg_sel_all_idel_dqs and 
dbg_sel_idel_dqs. Tap value(s) are 
decremented by one for every clkdiv cycle 
that this signal is held High.

dbg_sel_all_idel_gate I 1 Selects the functionality for 
dbg_idel_up_gate and dbg_idel_down_gate:

1: All DQS Gate IDELAYs are adjusted.

0: Only the IDELAY for the DQS Gate 
specified by dbg_sel_idel_gate is adjusted.

dbg_sel_idel_gate I log2(DQS_WIDTH) When dbg_sel_all_idel_gate = 1, determines 
the specific DQS Gate IDELAY to vary using 
dbg_idel_up_gate or dbg_idel_down_gate.

Table D-1: DDR2 SDRAM Signal Descriptions (Virtex-5 FPGAs) (Continued)

Bus Name I/O Width Description

http://www.xilinx.com


MIG User Guide www.xilinx.com 429
UG086 (v2.2) March 3, 2008

Signal Descriptions
R

Virtex-5 FPGA: DDR SDRAM
All debug port signals are clocked using the design clock frequency (clk90). Increment and 
decrement control signals (e.g., dbg_idel_up_all) must be provided synchronously with 
clk90. IDELAY select signals, such as dbg_sel_all_idel_dqs and dbg_sel_idel_dqs, can 
change asynchronous to clk90, but must meet setup and hold requirements on clk90 on 
cycles when the corresponding increment/decrement control signal is asserted.

dbg_idel_up_gate I 1 Increments the tap value for all DQS Gate 
IDELAYs. The DQS Gate IDELAY(s) affected 
are given by dbg_sel_all_idel_gate and 
dbg_sel_idel_gate.

Tap value(s) are incremented by one for every 
clkdiv cycle that this signal is held High. If 
neither dbg_idel_up_gate nor 
dbg_idel_down_gate is active in a clkdiv 
cycle, this signal is a don’t care.

dbg_idel_down_gate I 1 Decrements the tap value for all DQS Gate 
IDELAYs. The DQS IDELAY(s) affected are 
given by dbg_sel_all_idel_gate and 
dbg_sel_idel_gate.

Tap value(s) are decremented by one for 
every clkdiv cycle that this signal is held 
High. If neither dbg_idel_up_gate nor 
dbg_idel_down_gate is active in a clkdiv 
cycle, this signal is a don’t care.

Table D-1: DDR2 SDRAM Signal Descriptions (Virtex-5 FPGAs) (Continued)

Bus Name I/O Width Description

Table D-2: DDR SDRAM Signal Descriptions (Virtex-5 FPGAs)

Bus Name I/O Width Description

dbg_calib_done O 4 Each bit is driven to a static 1 as each stage of calibration 
is completed. dbg_calib_done[0] corresponds to Stage 1.

dbg_calib_dq_tap_cnt O 6*DQ_WIDTH 6-bit tap count for each DQ IDELAY. 
dbg_calib_dq_tap_cnt[5:0] corresponds to DQ[0].

Dbg_calib_dqs_tap_cnt O 6*DQS_WIDTH 6-bit tap count for each DQS IDELAY. 
Dbg_calib_dqs_tap_cnt[5:0] corresponds to DQS[0].

Dbg_calib_gate_tap_cnt O 6*DQS_WIDTH 6-bit tap count for each DQS Gate IDELAY. 
Dbg_calib_gate_tap_cnt[5:0] corresponds to the DQS 
Gate for DQS[0].

dbg_calib_rden_dly O 5*DQS_WIDTH 5-bit value indicating the number of clk90 clock cycles of 
delay between when a read command is issued by the 
controller and the synchronization of valid data in the 
clk90 clock domain. Each DQS group has its own distinct 
value. dbg_calib_rden_dly[4:0] corresponds to DQS[0].

dbg_calib_gate_dly O 5*DQS_WIDTH 5-bit value indicating the number of clk90 clock cycles of 
delay between the end of a read burst and the assertion 
of DQS Gate. Each DQS group has its own distinct value. 
dbg_calib_gate_dly[4:0] corresponds to DQS[0].
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dbg_calib_err O 4 Asserted when an error is detected during calibration 
during stages 3 and/or 4. This appears as a 4-bit bus in 
the HDL. However, only bits [3:2] are used. 
dbg_calib_err[2] corresponds to stage 3, and 
dbg_calib_err[3] corresponds to stage 4. Stages 1 and 2 
do not have error signals.

dbg_idel_up_all I 1 Increments the tap value for all IDELAYs (DQ, DQS, and 
DQS Gate) used for read data synchronization. Tap 
values are incremented by one for every clk90 cycle that 
this signal is held High.

dbg_idel_down_all I 1 Decrements the tap value for all IDELAYs (DQ, DQS, 
and DQS Gate) used for read data synchronization. Tap 
values are decremented by one for every clk90 cycle that 
this signal is held High.

dbg_sel_all_idel_dq I 1 Selects the functionality for dbg_idel_up_dq and 
dbg_idel_down_dq:

1: All DQ IDELAYs are adjusted.

0: Only the IDELAY for the DQ bit  specified by 
dbg_sel_idel_dq is adjusted.

If neither dbg_idel_up_dq nor dbg_idel_down_dq is 
active in a clk90 cycle, this signal is a don’t care.

dbg_sel_idel_dq I log2(DQS_WIDTH*
DQ_PER_DQS)

When dbg_sel_add_idel_dq = 1, determines the specific 
DQ IDELAY to vary using dbg_idel_up_dq or 
dbg_idel_down_dq.

If neither dbg_idel_up_dq nor dbg_idel_down_dq is 
active in a clk90 cycle, this signal is a don’t care.

dbg_idel_down_dq I 1 Increments the tap value for all DQ IDELAYs. The DQ 
IDELAY(s) affected are given by dbg_sel_all_idel_dq 
and dbg_sel_idel_dq.

Tap value(s) are incremented by one for every clk90 
cycle that this signal is held High.

dbg_sel_all_idel_dqs I 1 Decrements the tap value for all DQ IDELAYs. The DQ 
IDELAY(s) affected are given by dbg_sel_all_idel_dq 
and dbg_sel_idel_dq.

Tap value(s) are decremented by one for every clk90 
cycle that this signal is held High.

dbg_sel_idel_dqs I 1 Selects the functionality for dbg_idel_up_dqs and 
dbg_idel_down_dqs:

1: All DQS IDELAYs are adjusted.

0: Only the IDELAY for the DQS specified  by 
dbg_sel_idel_gate is adjusted.

If neither dbg_idel_up_dqs nor dbg_idel_down_dqs is 
active in a clk90 cycle, this signal is a don’t care.

Table D-2: DDR SDRAM Signal Descriptions (Virtex-5 FPGAs) (Continued)

Bus Name I/O Width Description

http://www.xilinx.com


MIG User Guide www.xilinx.com 431
UG086 (v2.2) March 3, 2008

Signal Descriptions
R

Virtex-5 FPGA: QDRII SRAM
All the debug input port signals are clocked using the design clock frequency (clk0). 
Increment and decrement control signals (e.g., dbg_idel_up_all) as well as the IDELAY 
select signals must be provided synchronously with clk0.

Note:

1. All Data (Q) in a given calibration group has the same IDELAY tap value.

2. For x36 component designs, calibration group has both CQ and CQ# and their 
corresponding Data (Q) calibrated, hence the debug logic is applied to both CQ and 
CQ#. For x18 component designs, the calibration group has only CQ and its 
corresponding Data (Q) calibrated. Thus the designer must ignore the debug logic 
related to CQ# (e.g., dbg_idel_up_cq_n). The synthesis tool prunes the CQ# related 
logic anyway.

dbg_idel_up_dqs I log2(DQS_WIDTH) When dbg_sel_add_idel_dqs = 1, determines the specific 
DQS IDELAY to vary using dbg_idel_up_dqs or 
dbg_idel_down_dqs.

If neither dbg_idel_up_dqs nor dbg_idel_down_dqs is 
active in a clk90 cycle, this signal is a don’t care.

dbg_idel_down_dqs I 1 Increments the tap value for all DQS IDELAYs. The DQS 
IDELAY(s) affected are given by dbg_sel_all_idel_dqs 
and dbg_sel_idel_dqs.

Tap value(s) are incremented by one for every clk90 
cycle that this signal is held High.

dbg_sel_all_idel_gate I 1 Decrements the tap value for all DQS IDELAYs. The 
DQS IDELAY(s) affected are given by 
dbg_sel_all_idel_dqs and dbg_sel_idel_dqs.

Tap value(s) are decremented by one for every clk90 
cycle that this signal is held High.

dbg_sel_idel_gate I 1 Selects the functionality for dbg_idel_up_gate and 
dbg_idel_down_gate:

1: All DQS Gate IDELAYs are adjusted.

0: Only the IDELAY for the DQS Gate  specified by 
dbg_sel_idel_gate is adjusted.

dbg_idel_up_gate I log2(DQS_WIDTH) When dbg_sel_add_idel_gate = 1, determines the 
specific DQS Gate IDELAY to vary using 
dbg_idel_up_gate or dbg_idel_down_gate.

dbg_idel_down_gate I 1 Increments the tap value for all DQS Gate IDELAYs. The 
DQS Gate IDELAY(s) affected are given by 
dbg_sel_all_idel_gate and dbg_sel_idel_gate.

Tap value(s) are incremented by one for every clk90 
cycle that this signal is held High.

If neither dbg_idel_up_gate nor dbg_idel_down_gate is 
active in a clk90 cycle, this signal is a don’t care.

Table D-2: DDR SDRAM Signal Descriptions (Virtex-5 FPGAs) (Continued)

Bus Name I/O Width Description
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Table D-3: QDRII SRAM Signal Descriptions (Virtex-5 FPGAs)

Bus Name I/O Width Description

dbg_idel_up_all I 1 Increments the tap value for all IDELAYs (Q, CQ, 
CQ#) used for read data synchronization. Tap values 
are incremented by one for every clk0 cycle that this 
signal is held High.

dbg_idel_down_all I 1 Decrements the tap value for all IDELAYs (Q, CQ, 
CQ#) used for read data synchronization. Tap values 
are decremented by one for every clk0 cycle that this 
signal is held High.

dbg_sel_all_idel_cq I 1 Selects the functionality for dbg_idel_up_cq and 
dbg_idel_down_cq:

1: All CQ IDELAYs are adjusted.

0: Only the IDELAY for the CQ specified by 
dbg_sel_idel_cq is adjusted.

If neither dbg_idel_up_cq nor dbg_idel_down_cq is 
active in the clk0 cycle, this signal is a don’t care.

dbg_sel_idel_cq I CQ_WIDTH When any dbg_sel_idel_cq bit is set to 1, it 
determines the specific CQ IDELAY to vary using 
dbg_idel_up_cq or dbg_idel_down_cq.

If neither dbg_idel_up_cq nor dbg_idel_down_cq is 
active in the clk0 cycle, this signal is a don’t care.

dbg_idel_up_cq I 1 Increments the tap value for all CQ IDELAYs. The 
CQ IDELAY(s) affected are given by 
dbg_sel_all_idel_cq and dbg_sel_idel_cq.

Tap value(s) are incremented by one for every clk0 
cycle that this signal is held High.

dbg_idel_down_cq I 1 Decrements the tap value for all CQ IDELAYs. The 
CQ IDELAY(s) affected are given by 
dbg_sel_all_idel_cq and dbg_sel_idel_cq.

Tap value(s) are decremented by one for every clk0 
cycle that this signal is held High.

dbg_sel_all_idel_cq_n I 1 Selects the functionality for dbg_idel_up_cq_n and 
dbg_idel_down_cq_n:

1: All CQ# IDELAYs are adjusted.

0: Only the IDELAY for the CQ# specified by 
dbg_sel_idel_cq_n is adjusted.

If neither dbg_idel_up_cq_n nor 
dbg_idel_down_cq_n is active in the clk0 cycle, this 
signal is a don’t care.

dbg_sel_idel_cq_n I CQ_WIDTH When any dbg_sel_idel_cq_n bit is set to 1, it 
determines the specific CQ# IDELAY to vary using 
dbg_idel_up_cq_n or dbg_idel_down_cq_n.

If neither dbg_idel_up_cq_n nor 
dbg_idel_down_cq_n is active in the clk0 cycle, this 
signal is a don’t care.
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dbg_idel_up_cq_n I 1 Increments the tap value for all CQ# IDELAYs. The 
CQ# IDELAY(s) affected are given by 
dbg_sel_all_idel_cq_n and dbg_sel_idel_cq_n.

Tap value(s) are incremented by one for every clk0 
cycle that this signal is held High.

dbg_idel_down_cq_n I 1 Decrements the tap value for all CQ# IDELAYs. The 
CQ# IDELAY(s) affected are given by 
dbg_sel_all_idel_cq_n and dbg_sel_idel_cq_n.

Tap value(s) are decremented by one for every clk0 
cycle that this signal is held High.

dbg_sel_all_idel_q_cq I 1 Selects the functionality for dbg_idel_up_q_cq and 
dbg_idel_down_q_cq:

1: All Data (Q) IDELAYs are adjusted.

0: Only the IDELAYs for Data (Q) in the  
calibration group of CQ specified by 
dbg_sel_idel_q_cq are adjusted.

If neither dbg_idel_up_q_cq nor 
dbg_idel_down_q_cq is active in the clk0 cycle, this 
signal is a don’t care.

dbg_sel_idel_q_cq I CQ_WIDTH When any dbg_sel_idel_q_cq bit is set to 1, it 
determines all the Data (Q) IDELAYs in the 
calibration group of CQ to vary using 
dbg_idel_up_q_cq or dbg_idel_down_q_cq.

If neither dbg_idel_up_q_cq nor 
dbg_idel_down_q_cq is active in the clk0 cycle, this 
signal is a don’t care.

dbg_idel_up_q_cq I 1 Increments the tap value for all Data (Q) IDELAYs in 
the calibration group of CQ. The Data (Q) IDELAYs 
in the calibration group that is affected are given by 
dbg_sel_all_idel_q_cq and dbg_sel_idel_q_cq.

Tap value(s) are incremented by one for every clk0 
cycle that this signal is held High.

dbg_idel_down_q_cq I 1 Decrements the tap value of all Data (Q) IDELAYs in 
the calibration group of CQ. The Data (Q) IDELAYs 
in the calibration group of CQ that is affected are 
given by dbg_sel_all_idel_q_cq and 
dbg_sel_idel_q_cq.

Tap value(s) are decremented by one for every clk0 
cycle that this signal is held High.

Table D-3: QDRII SRAM Signal Descriptions (Virtex-5 FPGAs) (Continued)

Bus Name I/O Width Description
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dbg_sel_all_idel_q_cq_n I 1 Selects the functionality for dbg_idel_up_q_cq_n 
and dbg_idel_down_q_cq_n:

1: All Data (Q) IDELAYs are adjusted.

0: Only the IDELAYs of all Data (Q) in the  
calibration group of CQ# specified by 
dbg_sel_idel_q_cq_n are adjusted.

If neither dbg_idel_up_q_cq_n nor 
dbg_idel_down_q_cq_n is active in the clk0 cycle, 
this signal is a don’t care.

dbg_sel_idel_q_cq_n I CQ_WIDTH When any dbg_sel_idel_q_cq_n bit is set to 1, it 
determines all the Data (Q) IDELAYs in the 
calibration group of CQ# to vary using 
dbg_idel_up_q_cq_n or dbg_idel_down_q_cq_n.

If neither dbg_idel_up_q_cq_n nor 
dbg_idel_down_q_cq_n is active in the clk0 cycle, 
this signal is a don’t care.

dbg_idel_up_q_cq_n I 1 Increments the tap value of all Data (Q) IDELAYs in 
the calibration group of CQ#. The Data (Q) IDELAYs 
in the calibration group of CQ# that is affected are 
given by dbg_sel_all_idel_q_cq_n and 
dbg_sel_idel_q_cq_n.

Tap value(s) are incremented by one for every clk0 
cycle that this signal is held High.

dbg_idel_down_q_cq_n I 1 Decrements the tap value of all Data (Q) IDELAYs in 
the calibration group of CQ#. The Data (Q) IDELAYs 
in the calibration group of CQ# that is affected are 
given by dbg_sel_all_idel_q_cq_n and 
dbg_sel_idel_q_cq_n.

Tap value(s) are decremented by one for every clk0 
cycle that this signal is held High.

dbg_init_count_done O 1 When set to 1, indicates the completion of memory 
initialization.

dbg_q_cq_init_delay_done O CQ_WIDTH When set to 1, indicates the completion of the first 
stage calibration with respect to CQ.

dbg_q_cq_init_delay_done_tap_count O 6*CQ_WIDTH A 6-bit tap count for each group of Data (Q) bits 
IDELAY associated with CQ. 
dbg_q_cq_init_delay_done_tap_count[5:0] 
corresponds to CQ[0].

dbg_q_cq_n_init_delay_done O CQ_WIDTH When set to 1, indicates the completion of the first 
stage calibration with respect to CQ#.

dbg_q_cq_n_init_delay_done_tap_count O 6*CQ_WIDTH A 6-bit tap count for each group of Data (Q) bits 
IDELAY associated with CQ#. 
dbg_q_cq_n_init_delay_done_tap_count[5:0] 
corresponds to CQ#[0].

Table D-3: QDRII SRAM Signal Descriptions (Virtex-5 FPGAs) (Continued)

Bus Name I/O Width Description
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Virtex-4 FPGA: DDR SDRAM
All the debug input port signals are clocked using the design clock frequency (clk). 
Increment and decrement control signals (e.g., dbg_idel_up_all) as well as the IDELAY 
select signals must be provided synchronously with clk.

Note:

1. All Read Data (DQ) in a given calibration group has the same IDELAY tap value.

2. The READENABLE value is determined by the number of banks used for the 
allocation of data and strobe signals.

3. A calibration group is determined by the number of Data (DQ) and corresponding 
Strobes (DQS) together in a single bank.

dbg_cq_cal_done O CQ_WIDTH When set to 1, indicates the completion of the second 
stage calibration with respect to CQ.

dbg_cq_cal_tap_count O 6*CQ_WIDTH A 6-bit tap count for each CQ IDELAY. 
dbg_cq_cal_tap_count[5:0] corresponds to CQ[0].

dbg_cq_n_cal_done O CQ_WIDTH When set to 1, indicates the completion of the second 
stage calibration with respect to CQ#.

dbg_cq_n_cal_tap_count O 6*CQ_WIDTH A 6-bit tap count for each CQ# IDELAY. 
dbg_cq_n_cal_tap_count[5:0] corresponds to 
CQ#[0].

dbg_we_cal_done_cq O CQ_WIDTH When set to 1, indicates the completion of the read 
enable calibration of the Data (Q) in the calibration 
group of each CQ.

dbg_we_cal_done_cq_n O CQ_WIDTH When set to 1, indicates the completion of the read 
enable calibration of the Data (Q) in the calibration 
group of CQ#.

dbg_cq_q_data_valid O CQ_WIDTH When set to 1, indicates the data valid signal for the 
Data (Q) in the calibration group of each CQ.

dbg_cq_n_q_data_valid O CQ_WIDTH When set to 1, indicates the data valid signal for the 
Data (Q) in the calibration group of each CQ#.

dbg_cal_done O 1 When set to 1, indicates the completion of the Data 
(Q) calibration process.

dbg_data_valid O 1 When set to 1, indicates the data valid signal for the 
Read Data (Q) after calibration.

Table D-3: QDRII SRAM Signal Descriptions (Virtex-5 FPGAs) (Continued)

Bus Name I/O Width Description
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Table D-4: DDR SDRAM Signal Descriptions (Virtex-4 FPGAs)

Bus Name I/O Width Description

dbg_idel_up_all I 1 Increments the tap value for all Read Data (DQ) 
IDELAYs used for data synchronization. Tap values 
are incremented by one for every clk cycle that this 
signal is held High.

dbg_idel_down_all I 1 Decrements the tap value for all Read Data (DQ) 
IDELAYs used for data synchronization. Tap values 
are decremented by one for every clk cycle that this 
signal is held High.

dbg_sel_all_idel_dq I 1 Selects the functionality for dbg_idel_up_dq and 
dbg_idel_down_dq:

1: All Read Data (DQ) IDELAYs are adjusted.

0: Only the IDELAY for the Read Data  (DQ) 
specified by dbg_sel_idel_dq is  adjusted.

If neither dbg_idel_up_dq nor dbg_idel_down_dq is 
active in the clk cycle, this signal is a don’t care.

dbg_sel_idel_dq I READENABLE When any dbg_sel_idel_dq bit is set to 1, it determines 
the specific set of Read Data (DQ) IDELAYs in the 
calibration group to vary using dbg_idel_up_dq or 
dbg_idel_down_dq.

If neither dbg_idel_up_dq nor dbg_idel_down_dq is 
active in the clk cycle, this signal is a don’t care.

dbg_idel_up_dq I 1 Increments the tap value for all Read Data (DQ) 
IDELAYs in the calibration group. The Read Data 
(DQ) IDELAYs in the calibration group, which are 
affected, are given by dbg_sel_all_idel_dq and 
dbg_sel_idel_dq.

Tap value(s) are incremented by one for every clk 
cycle that this signal is held High.

dbg_idel_down_dq I 1 Decrements the tap value for all Read Data (DQ) 
IDELAYs in the calibration group. The Read Data 
(DQ) IDELAYs in the calibration group, which are 
affected, are given by dbg_sel_all_idel_dq and 
dbg_sel_idel_dq.

Tap value(s) are decremented by one for every clk 
cycle that this signal is held High.

dbg_dqs_first_edge_detect O READENABLE When set to 1, indicates the detection of the first edge 
of DQS in each calibration group.

dbg_dqs_first_edge_tap_count O 6*READENABLE A 6-bit tap count for each DQS IDELAY in each 
calibration group. This value determines the number 
of IDELAY taps incremented for first edge detection of 
DQS.

dbg_dqs_second_edge_detect O READENABLE When set to 1, indicates the detection of the second 
edge of DQS in each calibration group.
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Virtex-4 FPGA: DDRII SRAM
All the debug input port signals are clocked using the design clock frequency (clk_0). 
Increment and decrement control signals (e.g., dbg_idel_up_all) as well as the IDELAY 
select signals must be provided synchronously with clk_0.

Note:

1. All Data (DQ) in a given calibration group has the same IDELAY tap value.

2. A calibration group is determined by the number of Data (DQ) associated with each 
CQ.

dbg_dqs_second_edge_tap_count O 6*READENABLE A 6-bit tap count for each DQS IDELAY in each 
calibration group. This value determines the number 
of IDELAY taps incremented for second edge 
detection.

dbg_dqs_tap_sel_done O READENABLE When set to 1, indicates that the calibration process of 
the center-aligning DQS with respect to clk in each 
calibration group is complete.

dbg_dqs_tap_count O 6*READENABLE A 6-bit tap count for DQS IDELAY in each calibration 
group. This value determines the number of IDELAY 
taps incremented. The maximum counter value 
cannot be more than 64, since the maximum taps that 
an IDELAY element can be incremented is only 64 
taps.

dbg_data_tap_count O 6*READENABLE A 6-bit tap count for each group of Read Data (DQ) 
IDELAYs in each calibration group. The counter value 
indicates the number of tap delays that are to be 
applied on group of Read Data (DQ) IDELAYs.

dbg_data_tap_sel_done O READENABLE When set to 1, indicates the completion of delaying the 
group of Read Data (DQ) IDELAYs in each calibration 
group. The number of taps that are to be delayed is 
determined by dbg_data_tap_count.

dbg_first_rising O READENABLE 1: The first edge detected is rising edge.

0: The first edge detected is falling edge.

dbg_ctrl_dummyread_start O 1 When set to 1, indicates that the read data calibration 
is in progress.

Table D-4: DDR SDRAM Signal Descriptions (Virtex-4 FPGAs) (Continued)

Bus Name I/O Width Description
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Table D-5: DDRII SRAM Signal Descriptions (Virtex-4 FPGAs)

Bus Name I/O Width Description

dbg_idel_up_all I 1 Increments the tap value for all Read Data (DQ) 
IDELAYs used for data synchronization. Tap values are 
incremented by one for every clk_0 cycle that this signal 
is held High.

dbg_idel_down_all I 1 Decrements the tap value for all Read Data (DQ) 
IDELAYs used for data synchronization. Tap values are 
decremented by one for every clk_0 cycle that this signal 
is held High.

dbg_sel_all_idel_data_cq I 1 Selects the functionality for dbg_idel_up_data_cq and 
dbg_idel_down_data_cq:

1: All DQ IDELAYs are adjusted.

0: Only the IDELAY for all the DQ IDELAYs  in the 
calibration group specified by dbg_sel_idel_data_cq 
is adjusted.

If neither dbg_idel_up_data_cq nor 
dbg_idel_down_data_cq is active in the clk_0 cycle, this 
signal is a don’t care.

dbg_sel_idel_data_cq I CQ_WIDTH When any dbg_sel_idel_data_cq bit is set to 1, it 
determines all the Read Data (DQ) IDELAYs in a 
calibration group to vary using dbg_idel_up_data_cq or 
dbg_idel_down_data_cq.

If neither dbg_idel_up_data_cq nor 
dbg_idel_down_data_cq is active in the clk_0 cycle, this 
signal is a don’t care.

dbg_idel_up_data_cq I 1 Increments the tap value for all Read Data (DQ) 
IDELAYs in a calibration group. The Read Data (DQ) 
IDELAYs in a calibration group which are affected are 
given by dbg_sel_all_idel_data_cq and 
dbg_sel_idel_data_cq.

Tap value(s) are incremented by one for every clk_0 
cycle, this signal is held High.

dbg_idel_down_data_cq I 1 Decrements the tap value for all Read Data (DQ) 
IDELAYs in a calibration group. The Read Data (DQ) 
IDELAYs in a calibration group, which are affected, are 
given by dbg_sel_all_idel_data_cq and 
dbg_sel_idel_data_cq.

Tap value(s) are decremented by one for every clk_0 
cycle, this signal is held High.

dbg_cq_first_edge_detect O CQ_WIDTH When set to 1, indicates the detection of the first edge of 
CQ in each calibration group.

dbg_cq_first_edge_tap_count O 6*CQ_WIDTH A 6-bit tap count for CQ IDELAY in each calibration 
group. This value determines the number of IDELAY 
taps incremented for first edge detection. 
dbg_cq_first_edge_tap_count[5:0] corresponds to CQ[0]

dbg_cq_second_edge_detect O CQ_WIDTH When set to 1, indicates the detection of the second edge 
of CQ in each calibration group.

http://www.xilinx.com


MIG User Guide www.xilinx.com 439
UG086 (v2.2) March 3, 2008

Signal Descriptions
R

Virtex-4 FPGA: QDRII SRAM
All the debug input port signals are clocked using the design clock frequency (clk_0). 
Increment and decrement control signals (e.g., dbg_idel_up_all) as well as the IDELAY 
select signals must be provided synchronously with clk_0.

Note:

1. All Data (Q) in a given calibration group has the same IDELAY tap value.

2. A calibration group is determined by the number of Data (Q) associated with each CQ.

dbg_cq_second_edge_tap_count O 6*CQ_WIDTH A 6-bit tap count for CQ IDELAY in each calibration 
group. This value determines the number of IDELAY 
taps incremented for second edge detection. 
dbg_cq_second_edge_tap_count[5:0] corresponds to 
CQ[0].

dbg_cq_tap_sel_done O CQ_WIDTH When set to 1, indicates that the calibration process of 
the center-aligning CQ with respect to clk_0 in each 
calibration group is completed.

dbg_cq_tap_count O 6*CQ_WIDTH A 6-bit tap count for CQ IDELAY in each calibration 
group. This value determines the number of IDELAY 
taps incremented. The maximum counter value cannot 
be more than 64, since the maximum taps that an 
IDELAY element can be incremented is only 64 taps.

dbg_data_tap_count O 6*CQ_WIDTH A 6-bit tap count for all Read Data (DQ) IDELAYs in 
each calibration group. The counter value indicates the 
number of tap delays that are to be applied on all Read 
Data (DQ) IDELAYs in each calibration group.

dbg_data_tap_sel_done O CQ_WIDTH When set to 1, indicates the completion of delaying all 
the Read Data (DQ) IDELAYs in each calibration group. 
The number of taps that are to be delayed is determined 
by dbg_data_tap_count.

dbg_first_rising O CQ_WIDTH 1: The first edge detected is rising edge. 

0: The first edge detected is falling edge.

dbg_rdcmd2valid_cnt O 5*CQ_WIDTH A 5-bit counter to calculate number of clocks from 
controller read command to data valid for group of Read 
Data (DQ) associated with specific CQ.

dbg_dly_cal_done O 1 When set to 1, indicates the completion of the Read Data 
(DQ) calibration process.

Table D-5: DDRII SRAM Signal Descriptions (Virtex-4 FPGAs) (Continued)

Bus Name I/O Width Description
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Table D-6: QDRII SRAM Signal Descriptions (Virtex-4 FPGAs)

Bus Name I/O Width Description

dbg_idel_up_all I 1 Increments the tap value for all Data (Q) IDELAYs used 
for data synchronization. Tap values are incremented by 
one for every clk_0 cycle that this signal is held High.

dbg_idel_down_all I 1 Decrements the tap value for all Data (Q) IDELAYs used 
for data synchronization. Tap values are decremented by 
one for every clk_0 cycle that this signal is held High.

dbg_sel_all_idel_data_cq I 1 Selects the functionality for dbg_idel_up_data_cq and 
dbg_idel_down_data_cq:

1: All Q IDELAYs are adjusted.

0: Only the IDELAY for all Data (Q) in the calibration 
specified by dbg_sel_idel_data_cq is adjusted.

If neither dbg_idel_up_data_cq nor 
dbg_idel_down_data_cq is active in the clk_0 cycle, this 
signal is a don’t care.

dbg_sel_idel_data_cq I CQ_WIDTH When any dbg_sel_idel_data_cq bit is set to 1, it 
determines all the Data (Q) IDELAYs in the calibration 
group to vary using dbg_idel_up_data_cq or 
dbg_idel_down_data_cq.

If neither dbg_idel_up_data_cq nor 
dbg_idel_down_data_cq is active in the clk_0 cycle, this 
signal is a don’t care.

dbg_idel_up_data_cq I 1 Increments the tap value for all Data (Q) IDELAYs in the 
calibration group. The Data (Q) IDELAYs in the 
calibration group which are affected are given by 
dbg_sel_all_idel_data_cq and dbg_sel_idel_data_cq.

Tap value(s) are incremented by one for every clk_0 cycle 
that this signal is held High.

dbg_idel_down_data_cq I 1 Decrements the tap value for all Data (Q) IDELAYs in the 
calibration group The Data (Q) IDELAYs in the 
calibration group, which are affected, are given by 
dbg_sel_all_idel_data_cq and dbg_sel_idel_data_cq.

Tap value(s) are decremented by one for every clk_0 cycle 
that this signal is held High.

dbg_cq_first_edge_detect O CQ_WIDTH When set to 1, indicates the detection of the first edge of 
CQ in each calibration group.

dbg_cq_first_edge_tap_count O 6*CQ_WIDTH A 6-bit tap count for CQ IDELAY in each calibration 
group. This value determines the number of IDELAY taps 
incremented for first edge detection. 
dbg_cq_first_edge_tap_count[5:0] corresponds to CQ[0].

dbg_cq_second_edge_detect O CQ_WIDTH When set to 1, indicates the detection of the second edge 
of CQ in each calibration group.
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Virtex-4 FPGA: RLDRAM II
All the debug input port signals are clocked using the design clock frequency (clkglob). 
Increment and decrement control signals (e.g., dbg_idel_up_all) as well as the IDELAY 
select signals must be provided synchronously with clkglob.

Note:

1. All Read Data (DQ) in a given calibration group has the same IDELAY tap value.

2. A calibration group is determined by the number of Read Data (DQ) associated with 
each QK.

dbg_cq_second_edge_tap_count O 6*CQ_WIDTH A 6-bit tap count for CQ IDELAY in each calibration 
group. This value determines the number of IDELAY taps 
incremented for second edge detection. 
dbg_cq_second_edge_tap_count[5:0] corresponds to 
CQ[0].

dbg_cq_tap_sel_done O CQ_WIDTH When set to 1, indicates that the calibration process of the 
center-aligning CQ with respect to clk_0 in each 
calibration group.

dbg_cq_tap_count O 6*CQ_WIDTH A 6-bit tap count for CQ IDELAY in each calibration 
group. This value determines the number of IDELAY taps 
incremented. The maximum counter value cannot be 
more than 64; since the maximum taps that an IDELAY 
element can be incremented is only 64 taps.

dbg_data_tap_count O 6*CQ_WIDTH A 6-bit tap count for all Data (Q) IDELAYs in each 
calibration group. The counter value indicates the 
number of tap delays that are to be applied on all Data (Q) 
IDELAYs in each calibration group.

dbg_data_tap_sel_done O CQ_WIDTH When set to 1, indicates the completion of delaying all the 
Data (Q) IDELAYs in the calibration group. The number 
of taps that are to be delayed is determined by 
dbg_data_tap_count.

dbg_first_rising O CQ_WIDTH 1: The first edge detected is rising edge. 

0: The first edge detected is falling edge.

dbg_rdcmd2valid_cnt O 5*CQ_WIDTH A 5-bit counter to calculate number of clocks from 
controller read command to data valid for group of Data 
(Q) associated with specific CQ.

dbg_dly_cal_done O 1 When set to 1, indicates the completion of the Data (Q) 
calibration process.

Table D-6: QDRII SRAM Signal Descriptions (Virtex-4 FPGAs) (Continued)

Bus Name I/O Width Description
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Table D-7: RLDRAM II Signal Descriptions (Virtex-4 FPGAs)

Bus Name I/O Width Description

dbg_idel_up_all I 1 Increments the tap value for all Read Data (DQ) IDELAYs 
used for read data synchronization. Tap values are 
incremented by one for every clkglob cycle that this 
signal is held High.

dbg_idel_down_all I 1 Decrements the tap value for all Read Data (DQ) 
IDELAYs used for read data synchronization. Tap values 
are decremented by one for every clkglob cycle that this 
signal is held High.

dbg_sel_all_idel_data_qk I 1 Selects the functionality for dbg_idel_up_data_qk and 
dbg_idel_down_data_qk:

1: All Read Data (DQ) IDELAYs are adjusted.

0: Only the IDELAYs for all the Read  Data (DQ) in a 
calibration group specified by dbg_sel_idel_data_qk  
is adjusted.

If neither dbg_idel_up_data_qk nor 
dbg_idel_down_data_qk is active in the clkglob cycle, 
this signal is a don’t care.

dbg_sel_idel_data_qk I QK_WIDTH When any dbg_sel_idel_data_qk bit is set to 1, it 
determines all the Data (DQ) IDELAYs in a calibration 
group to vary using dbg_idel_up_data_qk or 
dbg_idel_down_data_qk.

If neither dbg_idel_up_data_qk nor 
dbg_idel_down_data_qk is active in the clkglob cycle, 
this signal is a don’t care.

dbg_idel_up_data_qk I 1 Increments the tap value for all Data (DQ) IDELAYs in a 
calibration group. The Data (DQ) IDELAYs in a 
calibration group, which are affected, are given by 
dbg_sel_all_idel_data_qk and dbg_sel_idel_data_qk.

Tap value(s) are incremented by one for every clkglob 
cycle that this signal is held High.

dbg_idel_down_data_qk I 1 Decrements the tap value for all Data (DQ) IDELAYs in a 
calibration group. The Data (DQ) IDELAYs in a 
calibration group, which are affected, are given by 
dbg_sel_all_idel_data_qk and dbg_sel_idel_data_qk.

Tap value(s) are decremented by one for every clkglob 
cycle that this signal is held High.

dbg_qk_first_edge O QK_WIDTH When set to 1, indicates the detection of the first edge of 
QK in a calibration group.

dbg_qk_first_edge_tap_count O 6*QK_WIDTH A 6-bit tap count for QK IDELAY in each calibration 
group. This value determines the number of IDELAY 
taps incremented for first edge detection. 
dbg_qk_first_edge_tap_count[5:0] corresponds to QK[0].

dbg_qk_second_edge O QK_WIDTH When set to 1, indicates the detection of the second edge 
of QK in a calibration group.
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Spartan-3 FPGA: DDR/DDR2 SDRAMs

dbg_qk_second_edge_tap_count O 6*QK_WIDTH A 6-bit tap count for QK IDELAY in each calibration 
group. This value determines the number of IDELAY 
taps incremented for second edge detection. 
dbg_qk_second_edge_tap_count[5:0] corresponds to 
QK[0].

dbg_qk_tap_count O 6*QK_WIDTH A 6-bit counter for QK IDELAY in each calibration group. 
This value determines the number of IDELAY taps 
incremented. The maximum counter value cannot be 
more than 64, since the maximum taps that an IDELAY 
element can be incremented is only 64 taps.

dbg_first_rising O QK_WIDTH 1: Indicates that the first edge detected is rising edge.

0: Indicates that the first edge detected is falling edge.

dbg_qk_tap_sel_done O QK_WIDTH When set to 1, indicates that the calibration process of the 
center-aligning clkglob with respect to that particular QK 
is complete.

dbg_data_tap_count O 6*QK_WIDTH A 6-bit tap count for all the Read Data (DQ) IDELAYs in 
a calibration group. The counter value indicates the 
number of tap delays that are to be applied on group of 
Read Data (DQ) IDELAYs.

dbg_data_tap_sel_done O QK_WIDTH When set to 1, indicates the completion of delaying the all 
the Read Data (DQ) IDELAYs in a calibration group. The 
number of taps that are to be delayed is determined by 
dbg_data_tap_count.

Table D-7: RLDRAM II Signal Descriptions (Virtex-4 FPGAs) (Continued)

Bus Name I/O Width Description

Table D-8: DDR/DDR2 SDRAM Signal Descriptions (Spartan-3 FPGAs)

Signal Name I/O Width Description

dbg_delay_sel O 5 Tap value from the calibration logic used to delay the strobe and rst_dqs_div.

dbg_rst_calib O 1 Used to stop new tap_values from calibration logic to strobe and rst_dqs_div 
during memory read operations. 

dbg_phase_cnt O 5 Phase count gives the number of LUTs in the clock phase.

dbg_cnt O 6 Counter used in the calibration logic.

dbg_trans_onedtct O 1 Asserted when the first transition is detected.

dbg_trans_twodtct O 1 Asserted when the second transition is detected.

dbg_enb_trans_two_dtct O 1 Enable signal for dbg_trans_twodtct.

vio_out_dqs_en I 1 Enable signal for strobe tap selection.

vio_out_dqs I 5 Used to change the tap values for strobes.

vio_out_rst_dqs_div_en I 1 Enable signal for rst_dqs_div tap selection.

vio_out_rst_dqs_div I 5 Used to change the tap values for rst_dqs_div.
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Adjusting the Tap Delays
The Debug port can be used for dynamic adjustment of tap delays. This can be initiated 
either through a Xilinx Virtual I/O (VIO) module or through other custom control logic. 

Virtex FPGA Designs
This section describes the procedure for adjusting the IDELAY taps for the DDR2 SDRAM 
Virtex-5 FPGA design. This tap adjusting procedure is applicable for DDR2 SDRAM and 
DDR SDRAM Virtex-5 FPGA designs only. 

1. If all IDELAY taps used in the DDR2 interface (for all DQ, DQS, and DQS Gate) must 
be adjusted at once:

a. Assert either dbg_sel_idel_up_all or dbg_sel_idel_down_all. For every clkdiv 
cycle where one or the other of these two signals is asserted, the IDELAY taps are 
incremented or decremented by 1.

b. To exactly control the amount of adjustment when using VIO to control these 
signals, the user should make sure these control signals are set to generate a single 
pulse one clock cycle wide when selected.

2. If all DQ IDELAYs must be adjusted at once:

a. Set dbg_sel_all_idel_gate = 1.

b. Use dbg_idel_up_dq or dbg_idel_down_dq to either increment or decrement all 
DQ IDELAYs at once. As is the case with dbg_sel_idel_up_all, these control signals 
increment or decrement the IDELAY tap count by 1 for every clkdiv cycle they are 
asserted.

3. If only a specific DQ IDELAY must be adjusted:

a. Set dbg_sel_all_idel_dq = 0.

b. Set dbg_sel_idel_dq to indicate the specific DQ IDELAY to be adjusted. For 
example, for a 32-bit DDR2 interface where DQ[10] must be adjusted, the user sets 
dbg_sel_idel_dq[4:0] = 01010.

c. Use dbg_idel_up_dq or dbg_idel_down_dq to either increment or decrement the 
specified DQ IDELAY.

4. The procedure for adjusting all or individual DQS or DQS Gate IDELAY tap values is 
the same as outlined in step 2 and step 3, except that separate ports are provided for 
DQS and DQS Gate IDELAY adjustment.

This next procedure is for the QDRII SRAM Virtex-5 FPGA design:

1. If all IDELAY taps used in the QDRII interface (for all Read Data (Q) and Strobes (CQ, 
CQ#)) must be adjusted at once:

a. Assert either dbg_sel_idel_up_all or dbg_sel_idel_down_all. For every clk0 cycle 
where one or the other of these two signals is asserted, the IDELAY taps are 
incremented or decremented by 1.

b. To exactly control the amount of adjustment when using VIO to control these 
signals, the user should make sure these control signals are set to generate a single 
pulse one clock cycle wide when selected.

2. If all CQ or CQ# IDELAYs must be adjusted at once:

a. Use dbg_idel_up_cq or dbg_idel_down_cq to either increment or decrement all 
CQ IDELAYs at once, when dbg_sel_all_idel_cq is set to 1.
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b. Use dbg_idel_up_cq_n or dbg_idel_down_cq_n to either increment or decrement 
all CQ# IDELAYs at once, when dbg_sel_all_idel_cq_n is set to 1.

As is the case with dbg_sel_idel_up_all or dbg_sel_idel_down_all, these control 
signals increment or decrement the IDELAY tap count by 1 for every clk0 cycle 
they are asserted.

3. If only a specific CQ or CQ# IDELAY must be adjusted:

a. Set dbg_sel_all_idel_cq = 0 and set dbg_sel_idel_cq to indicate the specific CQ 
IDELAY to be adjusted. For example, for a x36 QDRII component interface with a 
72-bit data width where CQ[1] must be adjusted, the user sets 
dbg_sel_idel_cq[1:0] = 10.

b. Set dbg_sel_all_idel_cq_n = 0 and set dbg_sel_idel_cq_n to indicate the specific 
CQ# IDELAY to be adjusted. For example, for a x36 QDRII component interface 
with a 72-bit data width where CQ#[1] must be adjusted, the user sets 
dbg_sel_idel_cq_n[1:0]= 10.

c. Use dbg_idel_up_cq or dbg_idel_down_cq to either increment or decrement the 
specified CQ IDELAY.

4. The procedure for adjusting all or calibration group Read Data (Q) IDELAY tap values 
is the same as outlined in step 2 and step 3, except that separate ports are provided for 
Read Data (Q) IDELAY adjustment.

The above mentioned tap adjustment procedure is applicable for QDRII SRAM Virtex-5 
FPGA designs and DDR SDRAM, DDRII SRAM, RLDRAM II, QDRII SRAM Virtex-4 
FPGA designs.

Spartan-3 FPGA Designs
The procedure for adjusting the tap delay values is as follows:

1. Adjust the tap delay values for all the strobes (DQS):

a. Set vio_out_dqs_en = 1.

b. Use vio_out_dqs[4:0] to change the tap values (see Table D-9).

2. Adjust the tap delay values for rst_dqs_div (loopback signal):

a. Set vio_out_rst_dqs_div_en = 1.

b. Use vio_out_rst_dqs_div[4:0] to change the tap values (see Table D-10).

Table D-9: Tap Values for Strobes

vio_out_dqs[4:0] Tap Value

01111 (0x0F) Tap 1

10111 (0x17) Tap 2

11011 (0x1B) Tap 3

11101 (0x1D) Tap 4

11110 (0x1E) Tap 5

11111 (0x1F) Tap 6
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3. Adjust the tap delay values for all the strobes (DQS) and rst_dqs_div:

a. Set vio_out_dqs_en = 1.

b. Set vio_out_rst_dqs_div_en = 1.

c. Set the tap values for rst_dqs_div and all the strobes from Table D-9 and 
Table D-10 by changing vio_out_dqs[4:0] and vio_out_rst_dqs_div[4:0].

Sample Control/Monitoring of the Debug Port
HDL code for the Spartan-3, Virtex-4, and Virtex-5 FPGA Debug ports can be generated 
from MIG by selecting the Debug Signals option. Spartan-3 FPGA designs use VIO, ILA, 
and ICON cores generated using the ChipScope™ Pro tool to monitor the calibration 
signals and tap values, as well as allow dynamic adjustment of the tap delay values. 
Virtex-4 and Virtex-5 FPGA designs use VIO cores generated using the ChipScope Pro tool 
to monitor both calibration status and IDELAY tap values, as well as allow dynamic 
adjustment of the IDELAY tap values.

Table D-10: Tap Values for Loopback Signal

vio_out_rst_dqs_div[4:0] Tap Value

01111 (0x0F) Tap 1

10111 (0x17) Tap 2

11011 (0x1B) Tap 3

11101 (0x1D) Tap 4

11110 (0x1E) Tap 5

11111 (0x1F) Tap 6
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