
R

Xilinx Memory
Interface Generator
(MIG) User Guide
DDR SDRAM, DDRII SRAM,
DDR2 SDRAM, QDRII SRAM,
and RLDRAM II Interfaces

UG086 (v2.2) March 3, 2008

MIG User Guide www.xilinx.com UG086 (v2.2) March 3, 2008

Xilinx is disclosing this Document and Intellectual Property (hereinafter “the Design”) to you for use in the development of designs to operate
on, or interface with Xilinx FPGAs. Except as stated herein, none of the Design may be copied, reproduced, distributed, republished,
downloaded, displayed, posted, or transmitted in any form or by any means including, but not limited to, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written consent of Xilinx. Any unauthorized use of the Design may violate copyright
laws, trademark laws, the laws of privacy and publicity, and communications regulations and statutes.

Xilinx does not assume any liability arising out of the application or use of the Design; nor does Xilinx convey any license under its patents,
copyrights, or any rights of others. You are responsible for obtaining any rights you may require for your use or implementation of the Design.
Xilinx reserves the right to make changes, at any time, to the Design as deemed desirable in the sole discretion of Xilinx. Xilinx assumes no
obligation to correct any errors contained herein or to advise you of any correction if such be made. Xilinx will not assume any liability for the
accuracy or correctness of any engineering or technical support or assistance provided to you in connection with the Design.

THE DESIGN IS PROVIDED “AS IS” WITH ALL FAULTS, AND THE ENTIRE RISK AS TO ITS FUNCTION AND IMPLEMENTATION IS
WITH YOU. YOU ACKNOWLEDGE AND AGREE THAT YOU HAVE NOT RELIED ON ANY ORAL OR WRITTEN INFORMATION OR
ADVICE, WHETHER GIVEN BY XILINX, OR ITS AGENTS OR EMPLOYEES. XILINX MAKES NO OTHER WARRANTIES, WHETHER
EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DESIGN, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, TITLE, AND NONINFRINGEMENT OF THIRD-PARTY RIGHTS.

IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES,
INCLUDING ANY LOST DATA AND LOST PROFITS, ARISING FROM OR RELATING TO YOUR USE OF THE DESIGN, EVEN IF YOU
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THE TOTAL CUMULATIVE LIABILITY OF XILINX IN CONNECTION
WITH YOUR USE OF THE DESIGN, WHETHER IN CONTRACT OR TORT OR OTHERWISE, WILL IN NO EVENT EXCEED THE
AMOUNT OF FEES PAID BY YOU TO XILINX HEREUNDER FOR USE OF THE DESIGN. YOU ACKNOWLEDGE THAT THE FEES, IF
ANY, REFLECT THE ALLOCATION OF RISK SET FORTH IN THIS AGREEMENT AND THAT XILINX WOULD NOT MAKE AVAILABLE
THE DESIGN TO YOU WITHOUT THESE LIMITATIONS OF LIABILITY.

The Design is not designed or intended for use in the development of on-line control equipment in hazardous environments requiring fail-
safe controls, such as in the operation of nuclear facilities, aircraft navigation or communications systems, air traffic control, life support, or
weapons systems (“High-Risk Applications”). Xilinx specifically disclaims any express or implied warranties of fitness for such High-Risk
Applications. You represent that use of the Design in such High-Risk Applications is fully at your risk.

© 2004-2008 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx,
Inc. PowerPC is a trademark of IBM Corp. and is licensed for use. All other trademarks are the property of their respective owners.

Revision History
The following table shows the revision history for this document.

R

Date Version Revision

10/01/04 1.0 Initial MIG 1.0 release.

01/01/05 1.1 MIG 1.1 release.

05/01/05 1.2 MIG 1.2 release.

08/18/05 1.3 MIG 1.3 release.

11/04/05 1.4 MIG 1.4 release.

02/15/06 1.5 MIG 1.5 release.

03/28/06 1.5.1 Updated Table 3-7 and added Table 3-8.

07/28/06 1.6 MIG 1.6 release.

03/21/07 1.7 MIG 1.7 release.

http://www.xilinx.com

UG086 (v2.2) March 3, 2008 www.xilinx.com MIG User Guide

04/30/07 1.7.2 MIG 1.72 release. Added support for Spartan-3AN FPGAs.

07/05/07 1.7.3 MIG 1.73 release. Added support for Spartan-3A DSP FPGAs. Corrected minor
typographical errors.

09/18/07 2.0 MAJOR REVISION. MIG Wizard guide added to Chapter 1. Design Frequency
Range and Hardware Tested Configuration tables added in most chapters. Diagram
and table updates throughout.

01/09/08 2.1 MIG 2.1 release. Revisions and added material throughout, including new Chapter
12, Appendix B, and Appendix D.

03/03/08 2.2 MIG 2.2 release. Added Qimonda support. Updated screen captures in Chapter 1.
Added Spartan-3E FPGA support to Chapters 7 and 8. Added footnote to Table 9-1,
page 300. Added “Timing Analysis” in Appendix A. Added information on loading
of address, command, and control signals to “Pin Assignments” in Appendix A.
Replaced Appendix D.

Date Version Revision

http://www.xilinx.com

MIG User Guide www.xilinx.com UG086 (v2.2) March 3, 2008

http://www.xilinx.com

MIG User Guide www.xilinx.com 5
UG086 (v2.2) March 3, 2008

Revision History . 2

Preface: About This Guide
Guide Contents . 17
References . 18
Additional Resources . 19
Typographical Conventions . 19
Type Case of Port and Signal Names . 20

SECTION I: INTRODUCTION

Chapter 1: Using MIG
MIG 2.2 Changes from MIG 2.1. 23
MIG 2.1 Changes from MIG 2.0. 24
MIG 2.0 Changes from MIG 1.73 . 25
MIG 1.73 Changes from MIG 1.72 . 25
MIG 1.72 Changes from MIG 1.7 . 26
MIG 1.7 Changes from MIG 1.6. 26
MIG 1.6 Changes from MIG 1.5. 26
MIG 1.5 Changes from MIG 1.4. 27
Tool Features . 29
Design Tools . 31
Installation . 31
Getting Started. 31
MIG User Interface. 32

Getting Help . 32
Version Information . 32
CORE Generator Options . 33
MIG Output Options . 33

Create Design . 35
Output Files . 59
Create Design for Xilinx Reference Boards . 60
Verify UCF/Update Design . 64
Create Preset Configuration . 72

Spartan-3A FPGA DDR2 SDRAM 200 MHz Design . 73
Using MIG in Batch Mode . 74

XCO File . 74
MIG.prj File . 74
Running in Batch Mode . 77

Table of Contents

http://www.xilinx.com

6 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

R

SECTION II: VIRTEX-4 FPGA TO MEMORY INTERFACES

Chapter 2: Implementing DDR SDRAM Controllers
Feature Summary . 81

Supported Features . 81
Design Frequency Ranges . 81
Unsupported Features . 82

Architecture. 82
Interface Model. 82
Implemented Features . 82

Burst Length . 83
CAS Latency . 83
Registered DIMMs . 83
Unbuffered DIMMs and SODIMMs . 84
Precharge . 84
Auto Refresh . 84
Linear Addressing . 84
Different Memories (Density/Speed) . 84

Hierarchy . 86
Controller . 92
Datapath . 92
User Interface . 92
Infrastructure . 92
IOBS Module. 92

DDR SDRAM Initialization and Calibration. 92
DDR SDRAM System and User Interface Signals . 94

User Interface Accesses . 96
Write Interface . 96
Correlation between the Address and Data FIFOs . 98
Read Interface . 99

Simulating the DDR SDRAM Design . 101
Changing the Refresh Rate . 101

Supported Devices . 102
Hardware Tested Configurations . 103

Chapter 3: Implementing DDR2 SDRAM Controllers
Interface Model . 105
Direct Clocking Interface . 106

Feature Summary . 106
Supported Features. 106
Design Frequency Ranges. 106
Unsupported Features . 107

Architecture . 107
Implemented Features . 107
Hierarchy . 111
DDR2 Controller Submodules . 117

DDR2 SDRAM Initialization and Calibration . 118
DDR2 SDRAM System and User Interface Signals . 118

User Interface Accesses. 120
Write Interface . 121

http://www.xilinx.com

MIG User Guide www.xilinx.com 7
UG086 (v2.2) March 3, 2008

R

Correlation between the Address and Data FIFOs . 123
Read Interface . 124
User to Controller Interface . 126
Dynamic Command Request . 127
Controller to Physical Layer Interface. 128

Deep Memory Configurations . 130
Components . 130
DIMMs . 133

Simulating the DDR2 SDRAM Design . 136
Changing the Refresh Rate . 136

Supported Devices . 136
Hardware Tested Configurations . 138

SerDes Clocking Interface . 139
Feature Summary . 139

Supported Features. 139
Design Frequency Ranges. 140
Unsupported Features . 140

Architecture . 140
Implemented Features . 140
Hierarchy . 144
DDR2 Controller Submodules . 147

DDR2 SDRAM Initialization and Calibration . 149
DDR2 SDRAM System and User Interface Signals . 150

User Interface Accesses. 151
Write Interface . 152
Correlation between the Address and Data FIFOs . 154
Read Interface . 155
User to Controller Interface . 158
Dynamic Command Request . 160
Controller to Physical Layer Interface. 161

Simulating the DDR2 SDRAM Design . 162
Changing the Refresh Rate . 162

Supported Devices . 163
Hardware Tested Configurations . 165

Chapter 4: Implementing QDRII SRAM Controllers
Feature Summary . 167

Design Frequency Range . 167
Limitations . 167

Architecture. 168
Interface Model. 168
Hierarchy . 169
QDRII Memory Controller Modules . 175

Controller . 176
Datapath . 177
Infrastructure . 178
IOBS . 178

QDRII SRAM Initialization and Calibration . 179
QDRII Controller System and User Interface Signals . 180

Write Interface . 183
Read Interface . 186
Supported Devices . 189

http://www.xilinx.com

8 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

R

Simulating the QDRII SRAM Design . 190
Hardware Tested Configurations . 191

Chapter 5: Implementing DDRII SRAM Controllers
Feature Summary . 193

Supported Features . 193
Design Frequency Range . 193
Unsupported Features . 193

Architecture. 194
Interface Model. 194
Hierarchy . 195
DDRII SRAM Controller Modules . 201

Controller . 202
Datapath . 202
Infrastructure . 202
IOBS . 202

DDRII SRAM Initialization and Calibration . 203
User Interface . 204
DDRII SRAM Controller Interface Signals . 204

Write Interface . 207
Read Interface . 210
Supported Devices . 213

Simulating the DDRII SRAM Design . 214
Hardware Tested Configurations . 214

Chapter 6: Implementing RLDRAM II Controllers
Feature Summary . 215

Supported Features . 215
Design Frequency Range . 216
Unsupported Features . 216
Supported RLDRAM II Devices . 216

Architecture. 217
Implemented Features . 223

Address Multiplexing . 223
CIO/SIO . 223
Data Capture Using the Direct Clocking Technique . 224
Memory Initialization . 224

Block Diagram Description. 225
User Interface . 225
Address FIFO . 225
Write Data FIFO . 226
Read Data FIFO. 226
Configuration Registers . 226
Clock Generator . 227
Reset Generator. 227
Control Logic . 227
RLDRAM II Control Signal Physical Layer. 228

RLDRAM II Interface Signals . 228
User Command Interface . 230

http://www.xilinx.com

MIG User Guide www.xilinx.com 9
UG086 (v2.2) March 3, 2008

R

User Interface Accesses . 230
Write Interface . 231
Read Interface . 233
Refresh Commands . 235

Simulating the RLDRAM II Design . 236
Hardware Tested Configurations . 237

SECTION III: SPARTAN-3/3E/3A/3AN/3A DSP FPGA TO MEMORY
INTERFACES

Chapter 7: Implementing DDR SDRAM Controllers
Feature Summary . 241

Design Frequency Ranges . 242
Controller Architecture . 242

DDR SDRAM Interface . 242
Hierarchy . 243
Controller . 248
Datapath . 248
Data Read Controller . 248
Data Read . 248
Data Write . 248
Infrastructure_top . 249
IOBs . 249

Interface Signals . 249
Resource Utilization. 253

DDR SDRAM Initialization . 253
DDR SDRAM Write and Read Operations . 253

Write . 254
Read . 255

Auto Refresh . 256
Changing the Refresh Rate . 257
Load Mode . 257
UCF Constraints . 257

Calibration Circuit Constraints . 257
Data and Data Strobe Constraints. 257
MAXDELAY Constraints . 258

I/O Banking Rules . 259
Design Notes . 259

Spartan-3/3E/3A/3AN/3A DSP Pin Allocation Rules . 259
Pin Allocation Rules for Left/Right Banks . 259
Pin Allocation Rules for Top/Bottom Banks. 259

Supported Devices . 260
Simulating the Spartan-3/3E/3A/3AN/3A DSP FPGA Design 263
Hardware Tested Configurations . 264

Chapter 8: Implementing DDR2 SDRAM Controllers
Feature Summary . 265

http://www.xilinx.com

10 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

R

Design Frequency Ranges . 266
Controller Architecture . 266

DDR2 SDRAM Interface . 266
Hierarchy . 267
Controller . 272
Datapath . 272
Data Read Controller . 272
Data Read . 272
Data Write . 272
Infrastructure_top . 273
IOBs . 273

Interface Signals . 273
Resource Utilization. 277

DDR2 SDRAM Initialization . 277
Write . 278
Read . 279
Auto Refresh . 280

Changing the Refresh Rate . 280
Load Mode . 281
UCF Constraints . 281

Calibration Circuit Constraints . 281
Data and Data Strobe Constraints. 281
MAXDELAY Constraints . 281

I/O Banking Rules . 283
Design Notes . 283
Tool Output. 283
Supported Devices . 283

Maximum Data Widths . 288
DIMM Support for Spartan-3 Generation Devices . 293
Design Frequency Range in MHz for Spartan-3 Generation Devices 294

Hardware Tested Configurations . 295

SECTION IV: VIRTEX-5 FPGA TO MEMORY INTERFACES

Chapter 9: Implementing DDR2 SDRAM Controllers
Interface Model . 299
Feature Summary . 300

Supported Features . 300
Design Frequency Ranges . 300
Unsupported Features . 300

Architecture. 301
Implemented Features . 301

Burst Length . 301
CAS Latency . 301
Additive Latency . 301
Data Masking . 301
Precharge . 302
Auto Refresh . 302

http://www.xilinx.com

MIG User Guide www.xilinx.com 11
UG086 (v2.2) March 3, 2008

R

Bank Management . 302
Linear Addressing . 302
Different Memories (Density/Speed) . 302
On-Die Termination . 302

Generic Parameters . 303
Hierarchy . 306
Constraints . 307
MIG Tool Design Options . 308
DDR2 Controller Submodules . 312

Infrastructure . 312
Idelay_ctrl . 313
Ctrl . 313
phy_top. 313
usr_top . 314

DDR2 SDRAM Initialization . 314
DDR2 SDRAM Design Calibration . 314
DDR2 SDRAM System and User Interface Signals. 315

User Interface Accesses . 317
Write Interface . 317
Read Interface . 320
Simulating the DDR2 SDRAM Design . 322
Supported Devices . 322

Hardware Tested Configurations . 324

Chapter 10: Implementing QDRII SRAM Controllers
Feature Summary . 325

Supported Features . 325
Design Frequency Ranges . 325
Unsupported Features . 325

Architecture. 326
Interface Model. 326
Hierarchy . 327
QDRII Memory Controller Modules . 333

Controller . 333
Infrastructure . 335
top_phy. 335
DCI Cascading . 335
CQ/CQ_n Implementation. 337
Pinout Considerations . 337
User Interface . 337

QDRII SRAM Initialization and Calibration . 338
QDRII Controller Interface Signals . 338

User Interface Accesses. 341
Write Interface . 342
Read Interface . 344

Supported Devices . 347
Simulating the QDRII SRAM Design . 348
Hardware Tested Configurations . 348

http://www.xilinx.com

12 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

R

Chapter 11: Implementing DDR SDRAM Controllers
Interface Model . 349
Feature Summary . 350

Supported Features . 350
Design Frequency Ranges . 350
Unsupported Features . 350

Architecture. 350
Implemented Features . 350

Burst Length . 352
CAS Latency . 352
Precharge . 352
Data Masking . 353
Auto Refresh . 353
Bank Management . 353
Linear Addressing . 353
Different Memories (Density/Speed) . 353

Hierarchy . 353
MIG Design Options . 355

Infrastructure . 359
idelay_ctrl . 360
ctrl. 360
phy_top. 360
usr_top . 361
System Interface Signals . 362

DDR SDRAM Initialization . 363
DDR SDRAM Design Calibration . 364
User Interface Accesses. 365
Write Interface . 366
Read Interface . 369
Supported Devices . 372
Simulating a DDR SDRAM Design . 373
Hardware Tested Configurations . 373

SECTION V: DDR2 DEBUG GUIDE

Chapter 12: Debugging MIG DDR2 Designs
Introduction . 377
Verifying Board Layout . 378

Introduction . 378
Memory Implementation Guidelines . 378
Calculate WASSO. 378
Run SI Simulation Using IBIS. 379

Verifying Design Implementation . 379
Introduction . 379
Behavioral Simulation . 379
Verify Modifications to MIG Output . 380

http://www.xilinx.com

MIG User Guide www.xilinx.com 13
UG086 (v2.2) March 3, 2008

R

Changing the Pinout Provided in the Output UCF. 380
Changing Design Parameters . 380
Migrating MIG Output into ISE Project . 381

Verify Successful Placement and Routing . 381
Verify IDELAYCTRL Instantiation for Virtex-4 and Virtex-5 FPGA Designs 381
Verify TRACE Timing . 382

Debugging the Spartan-3 FPGA Design . 382
Introduction . 382
Read Data Capture . 382
Verify Placement and Routing . 383

DQ Routing. 383
DQS Routing. 385

Debugging Physical Layer in Hardware . 386
Loopback Timing . 387
Incorrect DQS Delay . 387

Proceed to General Board-Level Debug . 387
Debugging the Virtex-4 FPGA Direct Clocking Design . 388

Introduction . 388
Read Data Capture Timing Calibration . 388
Signals of Interest . 389
Proceed to General Board-Level Debug . 390

Debugging the Virtex-4 FPGA SerDes Design . 390
Introduction . 390
Read Data Capture Timing Calibration . 390
Signals of Interest . 391
Proceed to General Board-Level Debug . 392

Debugging the Virtex-5 FPGA Design . 392
Introduction . 392
Verify Placement and Routing . 392
Signals of Interest . 392
Physical Layer Debug Port . 393
Proceed to General Board-Level Debug . 393

General Board-Level Debug . 393
Overall Flow . 393
Isolating Bit Errors . 394
Board Measurements . 395
Supply Voltage Measurements . 395
Clocking . 395
Synthesizable Testbench . 395
Varying Read Capture Timing . 396

SECTION VI: APPENDICES

Appendix A: Memory Implementation Guidelines
Generic Memory Interface Guidelines . 399

Timing Analysis . 400
Pin Assignments . 400

Spartan-3/3E/3A/3A DSP FPGA Memory Implementation Guidelines for
DDR/DDR2 SDRAM Interfaces . 400

http://www.xilinx.com

14 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

R

XIL_ROUTE_ENABLE_DATA_CAPTURE . 402
Virtex-4 FPGA Direct Clocking Pins . 402
Virtex-4 FPGA SerDes Clocking and Virtex-5 FPGA Pins . 403

Termination. 403
I/O Standards. 404

Trace Lengths . 405
Memory-Specific Guidelines . 405

DDR/DDR2 SDRAM. 405
Pin Assignments . 405
Termination . 406
Trace Lengths . 406

QDRII SRAM . 407
Pin Assignments . 407
Termination . 407
I/O Standards. 407
Trace Lengths . 407

RLDRAM II . 408
Pin Assignments . 408
Termination . 408
I/O Standards. 408
Trace Lengths . 408

Appendix B: Required UCF and HDL Modifications for Pinout Changes
Introduction . 409
UCF / HDL Constraint Generation Procedure . 410
Read Data Capture Block Diagram . 413
UCF / HDL Changes Overview . 414
Setting HDL Code Top-Level Placement Parameters . 414
Setting UCF Constraints . 416

Determining FPGA Element Site Locations . 416
Setting DQS Gate Circuit Location Constraints. 417
Setting RLOC_ORIGIN Constraints . 418

Verifying UCF/HDL Modifications . 421

Appendix C: WASSO Limit Implementation Guidelines

Appendix D: Debug Port
Overview . 425
Enabling the Debug Port . 425
Signal Descriptions . 426

Virtex-5 FPGA: DDR2 SDRAM . 426
Virtex-5 FPGA: DDR SDRAM . 429
Virtex-5 FPGA: QDRII SRAM . 431
Virtex-4 FPGA: DDR SDRAM . 435
Virtex-4 FPGA: DDRII SRAM . 437
Virtex-4 FPGA: QDRII SRAM . 439
Virtex-4 FPGA: RLDRAM II . 441
Spartan-3 FPGA: DDR/DDR2 SDRAMs . 443

Adjusting the Tap Delays . 444

http://www.xilinx.com

MIG User Guide www.xilinx.com 15
UG086 (v2.2) March 3, 2008

R

Virtex FPGA Designs . 444
Spartan-3 FPGA Designs. 445

Sample Control/Monitoring of the Debug Port. 446

http://www.xilinx.com

16 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

R

http://www.xilinx.com

MIG User Guide www.xilinx.com 17
UG086 (v2.2) March 3, 2008

R

Preface

About This Guide

The Memory Interface Generator (MIG) generates DDRII SRAM, DDR SDRAM, DDR2
SDRAM, QDRII SRAM, and RLDRAM II interfaces for Virtex™-4 FPGAs and generates
DDR SDRAM, DDR2 SDRAM, and QDRII SRAM interfaces for Virtex-5 FPGAs. It also
generates DDR and DDR2 SDRAM interfaces for Spartan™-3, Spartan-3A, Spartan-3E,
and Spartan-3A DSP FPGAs. The tool takes inputs such as the memory interface type,
FPGA family, FPGA devices, frequencies, data width, memory mode register values, and
so forth, from the user through a graphical user interface (GUI). The tool generates RTL,
SDC, UCF, and document files as output. RTL or EDIF (EDIF is created after running a
script file, where the script file is a tool output) files can be integrated with other design
files.

Guide Contents
This manual contains the following chapters:

• Section I: “Introduction”

♦ Chapter 1, “Using MIG,” shows how to install and use the MIG design tool.

• Section II: “Virtex-4 FPGA to Memory Interfaces”

♦ Chapter 2, “Implementing DDR SDRAM Controllers,” describes how to
implement DDR SDRAM interfaces that MIG creates for Virtex-4 FPGAs.

♦ Chapter 3, “Implementing DDR2 SDRAM Controllers,” describes how to
implement DDR2 SDRAM interfaces that MIG creates for Virtex-4 FPGAs.

♦ Chapter 4, “Implementing QDRII SRAM Controllers,” describes how to
implement QDRII SRAM interfaces that MIG creates for Virtex-4 FPGAs.

♦ Chapter 5, “Implementing DDRII SRAM Controllers,” describes how to
implement DDRII SRAM interfaces that MIG creates for Virtex-4 FPGAs.

♦ Chapter 6, “Implementing RLDRAM II Controllers,” describes how to implement
RLDRAM II interfaces that MIG creates for Virtex-4 FPGAs.

• Section III: “Spartan-3/3E/3A/3AN/3A DSP FPGA to Memory Interfaces”

♦ Chapter 7, “Implementing DDR SDRAM Controllers,” describes how to
implement DDR SDRAM interfaces that MIG creates for Spartan-3 FPGAs.

♦ Chapter 8, “Implementing DDR2 SDRAM Controllers,” describes how to
implement DDR2 SDRAM interfaces that MIG creates for Spartan-3 FPGAs.

• Section IV: “Virtex-5 FPGA to Memory Interfaces”

♦ Chapter 9, “Implementing DDR2 SDRAM Controllers,” describes how to
implement DDR2 SDRAM interfaces that MIG creates for Virtex-5 FPGAs.

http://www.xilinx.com

18 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Preface: About This Guide
R

♦ Chapter 10, “Implementing QDRII SRAM Controllers,” describes how to
implement QDRII SRAM interfaces that MIG creates for Virtex-5 FPGAs.

♦ Chapter 11, “Implementing DDR SDRAM Controllers,” describes how to
implement DDR SDRAM interfaces that MIG creates for Virtex-5 FPGAs.

• Section V: “DDR2 Debug Guide”

♦ Chapter 12, “Debugging MIG DDR2 Designs,” provides a step-by-step process for
debugging designs that use MIG-generated memory interfaces.

• Section VI: “Appendices”

♦ Appendix A, “Memory Implementation Guidelines,” provides helpful rules for
reference designs.

♦ Appendix B, “Required UCF and HDL Modifications for Pinout Changes,”
provides detailed information about modifying pinout-dependent UCF
constraints and top-level parameters when required by various design
circumstances.

♦ Appendix C, “WASSO Limit Implementation Guidelines,” gives references to
data and tools necessary for ensuring compliance with Simultaneous Switching
Output (SSO) limitations.

♦ Appendix D, “Debug Port,” provides information on the Debug port added to all
memory interface designs for MIG 2.2 and later.

References
The following documents provide supplementary material useful with this user guide:

1. Samsung Data Sheet k7i321884m_R04
http://www.samsung.com/Products/Semiconductor/SRAM/SyncSRAM/DDRII_CIO_SIO/
36Mbit/K7I321884M/K7I321884M.htm

2. Micron Data Sheet MT47H16M16FG-37E
http://www.micron.com/products/dram/ddr2sdram/partlist.aspx

3. Samsung Data Sheet k7r323684m
http://www.samsung.com/Products/Semiconductor/common/product_list.aspx?family_cd
=SRM020302

4. Micron Data Sheet MT49H16M18FM-25
http://www.micron.com/products/dram/rldram/part.aspx?part=MT49H16M18FM-25

5. Micron Data Sheet MT46V16M16FG-5B
http://www.micron.com/products/dram/ddrsdram/partlist.aspx

6. Xilinx ChipScope™ Pro documentation
http://www.xilinx.com/literature/literature-chipscope.htm

7. UG070, Virtex-4 User Guide

8. UG072, Virtex-4 PCB Designer’s Guide

9. UG079, Virtex-4 ML461 Memory Interfaces Development Board User Guide

10. UG190, Virtex-5 FPGA User Guide

11. UG203, Virtex-5 PCB Designer's Guide

12. UG195, Virtex-5 FPGA Packaging and Pinout Specification

13. UG199, Virtex-5 ML561 Memory Interfaces Development Board User Guide

14. XAPP454, DDR2 SDRAM Memory Interface for Spartan-3 FPGAs

15. XAPP458, Implementing DDR2-400 Memory Interfaces in Spartan-3A FPGAs

http://www.xilinx.com
http://www.samsung.com/Products/Semiconductor/SRAM/SyncSRAM/DDRII_CIO_SIO/36Mbit/K7I321884M/K7I321884M.htm
http://www.samsung.com/Products/Semiconductor/SRAM/SyncSRAM/DDRII_CIO_SIO/36Mbit/K7I321884M/K7I321884M.htm
http://www.micron.com/products/dram/ddr2sdram/partlist.aspx
http://www.samsung.com/Products/Semiconductor/common/product_list.aspx?family_cd=SRM020302
http://www.samsung.com/Products/Semiconductor/common/product_list.aspx?family_cd=SRM020302
http://www.micron.com/products/dram/rldram/part.aspx?part=MT49H16M18FM-25
http://www.micron.com/products/dram/ddrsdram/partlist.aspx
http://www.xilinx.com/literature/literature-chipscope.htm
http://www.xilinx.com/support/documentation/user_guides/ug070.pdf
http://www.xilinx.com/support/documentation/user_guides/ug072.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug079.pdf
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf
http://www.xilinx.com/support/documentation/user_guides/ug203.pdf
http://www.xilinx.com/support/documentation/user_guides/ug195.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug199.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp454.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp458.pdf

MIG User Guide www.xilinx.com 19
UG086 (v2.2) March 3, 2008

Additional Resources
R

16. XAPP645, Single Error Correction and Double Error Detection

17. XAPP701, Memory Interfaces Data Capture Using Direct Clocking Technique

18. XAPP702, DDR-2 Controller Using Virtex-4 Devices

19. XAPP703, QDR II SRAM Interface

20. XAPP709, DDR SDRAM Controller Using Virtex-4 FPGA Devices

21. XAPP710, Synthesizable CIO DDR RLDRAM II Controller for Virtex-4 FPGAs

22. XAPP721, High-Performance DDR2 SDRAM Memory Interface Data Capture Using
ISERDES and OSERDES

23. XAPP768c, Interfacing Spartan-3 Devices With 166 MHz or 333 Mb/s DDR SDRAM
Memories (available under click license)

24. XAPP851, DDR SDRAM Controller Using Virtex-5 FPGA Devices

25. XAPP853, QDR II SRAM Interface for Virtex-5 Devices

26. XAPP858, High-Performance DDR2 SDRAM Interface In Virtex-5 Devices

27. DS099, Spartan-3 FPGA Family: Complete Data Sheet

28. DS312, Spartan-3E FPGA Family: Complete Data Sheet

29. Chapter 6: PARTGen, Development System Reference Guide

30. WASSO Calculator for Virtex-4 devices
https://secure.xilinx.com/webreg/clickthrough.do?cid=30163

31. WASSO Calculator for Virtex-5 devices
https://secure.xilinx.com/webreg/clickthrough.do?cid=30154

32. Micron Technical Note TN-47-01, DDR2-533 Memory Design Guide for Two-DIMM
Unbuffered Systems
http://download.micron.com/pdf/technotes/ddr2/tn_47_01.pdf

Additional Resources
To search the database of silicon and software questions and answers, or to create a
technical support case in WebCase, see the Xilinx website at:
http://www.xilinx.com/support.

Typographical Conventions
This document uses the following typographical conventions. An example illustrates each
convention.

Convention Meaning or Use Example

Italic font

References to other documents See the Virtex-4 Configuration
Guide for more information.

Emphasis in text The address (F) is asserted after
clock event 2.

Underlined Text Indicates a link to a web page. http://www.xilinx.com/virtex4

http://www.xilinx.com/virtex4
http://www.xilinx.com
https://secure.xilinx.com/webreg/clickthrough.do?cid=30154
http://download.micron.com/pdf/technotes/ddr2/tn_47_01.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp645.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp701.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp702.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp703.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp709.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp710.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp721.pdf
http://www.xilinx.com/support/software/memory/protected/index.htm
http://www.xilinx.com/support/documentation/application_notes/xapp851.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp853.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp858.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds099.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds312.pdf
http://toolbox.xilinx.com/docsan/xilinx8/de/dev/partgen.pdf
https://secure.xilinx.com/webreg/clickthrough.do?cid=30163
http://www.xilinx.com/support

20 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Preface: About This Guide
R

Type Case of Port and Signal Names
Some port and signal names given in the figures and tables in this document might appear
in uppercase type, even though those same names are in lowercase type in the designs
themselves. This is strictly a typographical issue in the User Guide, and does not imply
that the port and signal names in the designs need to be changed.

http://www.xilinx.com

MIG User Guide www.xilinx.com 21
UG086 (v2.2) March 3, 2008

R

Section I: Introduction

Chapter 1, “Using MIG”

http://www.xilinx.com

22 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Introduction
R

http://www.xilinx.com

MIG User Guide www.xilinx.com 23
UG086 (v2.2) March 3, 2008

R

Chapter 1

Using MIG

MIG is a tool used to generate memory interfaces for Xilinx FPGAs. MIG generates Verilog
or VHDL RTL design files, user constraints file (UCF) constraints, and script files. The
script files are used to run simulations, synthesis, map, and par for the selected
configuration.

This chapter describes the user interface details of all memory interfaces supported in
MIG. It provides MIG features, usage, and installation details and describes the output
files. This chapter also summarizes the changes and enhancements made from earlier
versions of MIG.

MIG 2.2 Changes from MIG 2.1
The new features of MIG 2.2 are summarized in this section:

• Support of Qimonda memory parts for the DDR2 SDRAM interface of all FPGA
families.

• Multiple interface support in Virtex™-5 FPGAs for DDR2 SDRAM and QDRII SRAM
designs:

♦ Provides an option to select DDR2 SDRAM and QDRII SRAM interfaces for
multicontroller designs.

♦ Supports different frequencies for different memory interfaces.

♦ Provides controller-wise DCI Cascade support.

• Creates different UCF files for all the selected compatible FPGAs.

• Enhanced support for the Debug port option using VIO.

• Updates to Virtex-5 and Virtex-4 FPGA designs:

♦ Supports updated designs.

♦ Provides an option to browse the old project file (.prj) in the Verify UCF page.

♦ Provides IDELAYCTRL location constraints in the UCF.

• Added Debug port to all memory interface designs

http://www.xilinx.com

24 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 1: Using MIG
R

MIG 2.1 Changes from MIG 2.0
The new features of MIG 2.1 are summarized in this section:

• Support for 64-bit/32-bit Linux Red Hat Enterprise 4.0

• Support for 64-bit Microsoft Windows® XP Professional

• Support for 32-bit Microsoft Vista Business

• Support for 64-bit SUSE 10 Enterprise

• Data mask enable/disable option for DDR and DDR2 SDRAM designs

• Debug signals support

• Real-time pin allocation implemented in the GUI. As the user selects the banks, the
GUI displays the information as the total number of required pin count and the
number of pins allocated for each group of signals.

• Implements the priority bank selection for the data. Priority is given for exclusive
Data banks first, then Data banks with the combination of other groups.

• Creates the RLOC and DQS gate constraints to older versions of UCF files that use the
design from MIG 2.0 or following versions for Virtex-5 FPGA DDR2 SDRAMs. An
option is provided to add or not add the constraints while verifying the UCF.

• Simulations support for custom memory parts

• Reserve Pin banks are changed from list view to hierarchical view

• Implemented the DCI Cascade and Master Bank selection option for QDRII SRAM
Virtex-5 FPGA designs

• Support for Spartan-3A FPGA DDR2 SDRAM 200 MHz design

• 166 MHz frequency support for all possible data widths for Spartan-3E, Spartan-3A,
and Spartan-3A DSP families

• Uncommon banks are faded out in the Bank Selection page when the user selects
compatible FPGAs, allowing only the common banks for pin allocation

• Attributes X_CORE_INFO and CORE_GENERATION_INFO support for all designs

• Updates to Virtex-5 FPGA designs:

♦ DDR2 SDRAM

- Changing the MIG 1.73 or prior versions of UCF files compatible to MIG 2.0
or following versions of designs using Verify UCF feature

♦ QDRII SRAM

- BL2 support

- DCI cascade support

• Updates to Virtex-4 FPGA designs:

♦ DDR2 SDRAM Direct Clocking

- CAS latency 5 support

- Linear addressing support from the user interface

- Calibration algorithm modified to fix the low-frequency issues

♦ DDR2 SDRAM SerDes

- Linear addressing support from the user interface

♦ DDR SDRAM

- Linear addressing support from the user interface

http://www.xilinx.com

MIG User Guide www.xilinx.com 25
UG086 (v2.2) March 3, 2008

MIG 2.0 Changes from MIG 1.73
R

♦ DDRII SRAM

- Two address FIFOs replaced by a common address FIFO for both write and
read commands

• Updates to Spartan FPGA designs:

♦ DDR2 SDRAM and DDR SDRAM

- Linear addressing support from the user interface

For MIG 2.1 release notes and a list of specific issues addressed in this release, consult
Xilinx Answer Record 29767.

MIG 2.0 Changes from MIG 1.73
The new features of MIG 2.0 are summarized in this section:

• MIG GUI is changed to WIZARD implementation

• Supports 32-bit Linux Red Hat Enterprise 4.0

• Generates a compatible simulation testbench for the generated design

• Supports Preset Configuration

• Updates to Virtex-5 FPGA designs:

♦ DDR SDRAM

- Support for DIMMs

♦ DDR2 SDRAM

- Major physical layer changes: Read capture architecture modified, support
added for read postamble DQS glitch gating, operation of PHY logic at half
clock speed. See XAPP858 for details.

- Support for unbuffered DIMMs. Implemented 2T timing to support
unbuffered DIMMs

- 72-bit ECC support

♦ QDRII SRAM

- Partial support for DCI Cascade

- Allocating CQ, CQ# pins

- Allocating K, K# to P and N pairs

- Read data FIFOs removed from the user interface

• Unsupported features:

♦ Edit signal names

For MIG 2.0 release notes and a list of specific issues addressed in this release, consult
Xilinx Answer Record 29312.

MIG 1.73 Changes from MIG 1.72
The new features of MIG 1.73 are summarized in this section:

• Spartan-3A DSP FPGAs are supported

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp858.pdf
http://www.xilinx.com/xlnx/xil_ans_display.jsp?iLanguageID=1&iCountryID=1&getPagePath=29312
http://www.xilinx.com/xlnx/xil_ans_display.jsp?iLanguageID=1&iCountryID=1&getPagePath=29767

26 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 1: Using MIG
R

MIG 1.72 Changes from MIG 1.7
There are no new features added to this release from MIG 1.7.

For MIG 1.72 release notes and a list of specific issues addressed in this release, consult
Xilinx Answer Record 25056.

MIG 1.7 Changes from MIG 1.6
The new features of MIG 1.7 are summarized in this section:

• Supports creating a new memory part by modifying an existing part

• Generates a script file to create an ISE™ project

• Updates to Virtex-5 FPGA designs:

♦ Supports DDR SDRAM Verilog and VHDL

♦ Supports QDRII SRAM and DDR2 SDRAM VHDL

• Updates to Virtex-4 FPGA designs:

♦ DDR2 SDRAM

- ECC supported in Pipelined or Unpipelined modes

- Add per-bit deskew for DDR2 Direct clocking

- Change SerDes clock scheme

♦ QDRII SRAM

- No DCM support

♦ DDRII SRAM

- No DCM support

• Updates to Spartan-3 FPGA designs:

♦ Spartan-3A FPGA support for DDR and DDR2 SDRAMs

♦ Pinout compatibility with MIG 1.6 and MIG 1.5 versions for Spartan-3 and
Spartan-3E devices. There are several limitations to this feature. Contact Xilinx
support for more details.

For MIG 1.7 release notes and a list of specific issues addressed in this release, consult
Xilinx Answer Record 25406.

MIG 1.6 Changes from MIG 1.5
The new features of MIG 1.6 are summarized in this section:

• Supports Virtex-5 FPGA interfaces

• Outputs two different folders with and without a testbench for the selected memory
interface. This feature is supported for all interfaces.

• Supports batch mode

• Virtex-4 FPGA GUI changes

♦ DDR SDRAM

- No DCM support

♦ RLDRAM II

- No DCM support

http://www.xilinx.com
http://www.xilinx.com/xlnx/xil_ans_display.jsp?iLanguageID=1&iCountryID=1&getPagePath=25406
http://www.xilinx.com/xlnx/xil_ans_display.jsp?iLanguageID=1&iCountryID=1&getPagePath=25056

MIG User Guide www.xilinx.com 27
UG086 (v2.2) March 3, 2008

MIG 1.5 Changes from MIG 1.4
R

♦ DCI for data

♦ DCL for address and control

• Spartan-3 FPGA GUI changes

♦ DDR2 SDRAM

- No DCM support

• Removed Add Testbench button. The tool by default outputs with and without
testbench designs, hence it is not required to have the Add Testbench button.

MIG 1.5 Changes from MIG 1.4
The new features of MIG 1.5 are summarized in this section:

• GUI changes:

♦ Clock-capable I/Os for strobes and read clocks for Direct clocking method

♦ Programmable Mode Register options

♦ Verify my UCF feature

♦ Programmable pin allocation limit for selected banks

♦ Reserved Pin list

♦ Save option to a file

• DDR2 SDRAM Direct clocking (Virtex-4 FPGA interfaces) support:

♦ Synplicity Synplify 8.2 support

♦ SODIMM support

♦ Modified Read Enable implementation

• ISE 8.1.01i tool support (all MIG 1.5 designs support this ISE tool version)

• DDR2 SDRAM SerDes clocking (Virtex-4 FPGA interfaces) support

• DDR SDRAM for Virtex-4 FPGA interfaces:

♦ Synplicity Synplify 8.2 support

♦ CL = 2, 2.5, and 4

♦ BL = 2 and 8

♦ SODIMMs

♦ Support for more memory devices

♦ Modified Read Enable implementation

• DDR SDRAM for Spartan-3/Spartan-3E devices:

♦ CL = 2 and 2.5

♦ BL = 2 and 8

♦ Synplicity Synplify 8.2

♦ Registered DIMMs

♦ Support for more memory devices

• DDR2 SDRAM for Spartan-3 devices:

♦ Synplicity Synplify 8.2

♦ BL = 8

♦ Registered DIMMs

http://www.xilinx.com

28 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 1: Using MIG
R

• RLDRAM II:

♦ Synplicity Synplify 8.2 support

• QDRII and DDRII SRAMs:

♦ Synplicity Synplify 8.2 support

• Supports skip wait 200 μs delay for Verilog simulations. This feature is not supported
for VHDL cases.

♦ To skip 200 μs initial delay, users should use the following run-time options for
Verilog in ModelSim.

♦ For DDR SDRAM for Virtex-4 FPGA interfaces:

vlog +define+simulation modulename_ddr_controller_0.v

Where:

- simulation is the parameter.

- modulename_ddr_controller.v is the file with the parameter
'simulation'. The file modulename_ddr_controller.v must be present in
the sim folder.

♦ For DDR2 SDRAM for Virtex-4 FPGA interfaces:

vlog +define+simulation modulename_ddr2_controller_0.v

♦ For Spartan-3 FPGA interfaces:

vlog +define+simulation modulename_ddr_infrastructure_top.v

http://www.xilinx.com

MIG User Guide www.xilinx.com 29
UG086 (v2.2) March 3, 2008

Tool Features
R

Tool Features
The key features of MIG are listed below:

• Supported memory types for Virtex-5 FPGA interfaces:

♦ DDR2 SDRAM components and single-rank DIMMs

See “Supported Devices” in Chapter 9 for a complete listing of supported devices.

♦ QDRII SRAM

See “Supported Devices” in Chapter 10 for a complete listing of supported
devices.

♦ DDR SDRAM components and single-rank DIMMs

See “Supported Devices” in Chapter 11 for a complete listing of supported
devices.

Both Verilog and VHDL RTL are generated. Additional devices can be created using
the “Create Custom Part” feature.

• Supported memory types for Virtex-4 FPGA interfaces:

♦ DDR SDRAM components, registered DIMMs, unbuffered DIMMs, and
SODIMMs.

See “Supported Devices” in Chapter 2 for a complete listing of supported devices.

♦ DDR2 SDRAM components and single-rank DIMMs. The DDR2 controller
supports deep memory depths from one to four.

See “Supported Devices” in Chapter 3 for a complete listing of supported devices.

♦ QDRII and DDRII SRAMs

See “Supported Devices” in Chapter 4 for a complete listing of supported QDRII
devices.

See “Supported Devices” in Chapter 5 for a complete listing of supported DDRII
devices.

♦ RLDRAM II CIO and SIO memories

See “Supported RLDRAM II Devices” in Chapter 6 for a complete listing of
supported devices.

Additional devices can be created using the “Create Custom Part” feature.

• Supported memory types for Spartan-3 FPGA interfaces:

♦ DDR SDRAM components, registered DIMMs, unbuffered DIMMs, and
SODIMMs.

See “Supported Devices” in Chapter 7 for a complete listing of supported devices.

♦ DDR2 SDRAM components, registered DIMMs, unbuffered DIMMs, and
SODIMMs.

See “Supported Devices” in Chapter 8 for a complete listing of supported devices.

Additional devices can be created using the “Create New Memory Part” feature.

• Supported memory types for Spartan-3E FPGA interfaces:

♦ DDR SDRAM components

See “Supported Devices” in Chapter 7 for a complete listing of supported devices.

Additional devices can be created using the “Create New Memory Part” feature.

http://www.xilinx.com

30 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 1: Using MIG
R

• Supported memory types for Spartan-3A/3AN FPGA interfaces:

♦ DDR SDRAM components, registered DIMMs, unbuffered DIMMs, and
SODIMMs.

See “Supported Devices” in Chapter 7 for a complete listing of supported devices.

♦ DDR2 SDRAM components, registered DIMMs, unbuffered DIMMs, and
SODIMMs.

See “Supported Devices” in Chapter 8 for a complete listing of supported devices.

Additional devices can be created using the “Create New Memory Part” feature.

• Supported memory types for Spartan-3A DSP FPGA interfaces:

♦ DDR SDRAM components, unbuffered DIMMs, and SODIMMs.

See “Supported Devices” in Chapter 7 for a complete listing of supported devices.

♦ DDR2 SDRAM components, unbuffered DIMMs, and SODIMMs.

See “Supported Devices” in Chapter 8 for a complete listing of supported devices.

Additional devices can be created using the “Create New Memory Part” feature.

• Supported synthesis and place-and-route tools:

♦ XST (Xilinx ISE Design Suite 10.1) and Synplify Pro Version 8.8.0.4 are supported
for Virtex-5, Virtex-4, and Spartan-3/3E/3A/3AN/3A DSP FPGA interfaces

• All currently available Virtex-5, Virtex-4, Spartan-3A, Spartan-3AN, Spartan-3A DSP,
Spartan-3E, and Spartan-3 FPGAs are supported.

• DDR2 designs can use either the SerDes or the Direct clocking technique. The
individual bits are deskewed in the Direct clocking technique used in DDR2 designs.
The Direct clocking technique for other memories does not deskew each bit. Details
are explained in the appropriate application notes referenced in this document.

• Direct and SerDes clocking techniques for data capture for Virtex-4 FPGA interfaces.

Direct clocking using per-bit deskew is explained in XAPP701 [Ref 17]. With this
technique, it is not necessary to use clock-capable I/Os for strobes or read clocks.
SerDes clocking is explained in XAPP721 [Ref 22]. The use of clock-capable I/Os for
strobes and read clocks is recommended for maximum flexibility with higher
frequency designs (200 MHz and above).

• Local clocking technique for data capture for all Spartan-3, Spartan-3A/3AN/3A DSP,
and Spartan-3E FPGA interfaces.

The data capture technique using Spartan-3 FPGAs is explained in XAPP768c [Ref 23].

• VHDL and Verilog RTLs are supported for all designs.

• Variable data widths in multiples of 8 up to 144 bits.

The actual width depends upon the selected component. For a 9-bit wide component,
data widths of 9, 18, 36, and 72 are supported.

For DDR2 SDRAM, most of the components support up to a 144-bit data width. 16-bit
or 8-bit wide components can be used to create designs of any data width that is a
multiple of 8.

• User-selectable banks for address, data, system control, and system clock signals.

For QDRII SRAM and RLDRAM II (SIO) memories, the user selects the data banks for
reads and writes separately.

• Different banks are supported with different I/O standards.

http://www.xilinx.com

MIG User Guide www.xilinx.com 31
UG086 (v2.2) March 3, 2008

Design Tools
R

MIG uses different banks for groups of signals whose I/O standards are different. If
the I/O voltages for different groups (such as address, data, and system control) are
different, the user must ensure enough banks are selected for MIG to use. If insufficient
banks are selected, MIG cannot allocate pins.

• Various configurations are supported through changing bits in the Mode and
Extended Mode registers.

• All fields not highlighted in the GUI either are not supported or are not relevant for
that type of memory.

• Only one type of component is supported per interface.

Users cannot mix different components to create an interface.

• Multiple DDR2 interfaces for Virtex-4 FPGA designs.

Users can create up to eight controllers.

• Multiple DDR2 and QDRII interfaces for Virtex-5 FPGA designs and the combination
of both interfaces can be selected.

• Different frequencies can be set for different memory interfaces in Virtex-5 FPGA
designs.

• Pin compatibility.

Users can select multiple devices with the same package to generate compatible
pinouts.

• Update UCF.

Users can update the old UCF files to be compatible with the latest MIG designs.

Design Tools
All MIG designs have been tested with ISE Design Suite 10.1 and Synplify Pro. MIG is
currently supported on the following operating systems: 64-bit/32-bit Microsoft Windows
XP, 64-bit/32-bit Linux Red Hat Enterprise 4.0, 32-bit Vista Business, and 64-bit SUSE 10
Enterprise.

Installation
MIG provides Xilinx CORE Generator™ reference designs and is included in the latest IP
update. IP updates are available through the Xilinx Download Center or WebUpdate. Visit
the Xilinx Download Center for the latest IP update and full documentation on both
installation methods at http://www.xilinx.com/download.

Getting Started
MIG is a self-explanatory tool. This section is intended to help with understanding the
various steps involved in using it.

The following steps launch MIG:

1. The CORE Generator system is launched by selecting Start →Xilinx ISE Design Suite
10.1 → ISE →Accessories →CORE Generator.

2. Create a CORE Generator project.

3. The Xilinx part must be correctly set because it cannot be changed inside MIG.
Virtex-5, Virtex-4, and Spartan-3/Spartan-3E/Spartan-3A/3AN/3A DSP devices are

http://www.xilinx.com
http://www.xilinx.com/support/download/index.htm

32 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 1: Using MIG
R

supported. Select the part via the part's Project Options menu in the CORE Generator
system. The Generation tab is used to select between Verilog or VHDL by “design
entry” under “flow”. The “flow settings” and “vendor” must be chosen appropriately.
The vendor choices are “Synplicity” for Synplify and “ISE” for XST.

4. Remember the location of the CORE Generator project directory. The “View by
Function” tab to the left shows the available cores organized into folders.

5. MIG is launched by selecting Memories & Storage Elements →Memory Interface
Generator →MIG.

6. The name of the module to be generated is entered in the Component Name text box.
After entering all the parameters in the GUI, click Generate to generate the module
files in a directory with the same name as the module name in the CORE Generator
project directory.

7. After generation, the GUI is closed by selecting the Close button.

The “Generated IP” tab to the left lists the generated modules.

MIG User Interface

Getting Help
At any point in time, the MIG user manual can be accessed by clicking the User Guide
button.

Version Information
The Version Info Button gives the information on new features added and the bugs fixed
in the current version. It opens the web browser to display the contents.

http://www.xilinx.com

MIG User Guide www.xilinx.com 33
UG086 (v2.2) March 3, 2008

MIG User Interface
R

CORE Generator Options

The CORE Generator Options screen displays the details of the selected CORE Generator
options that are selected before invoking MIG.

Note: CORE Generator project options are used in the generation of the memory controller.
Correct CORE Generator project options must be selected.

If the displayed CORE Generator Project Options are inaccurate, click the Cancel button
and reselect the CORE Generator Project Options.

Click Next to move ahead. A new window shows the MIG Output Options page.

MIG Output Options
MIG can have five different output options. They are:

1. Create Design
2. Create Design for Xilinx Reference Boards
3. Verify UCF/Update Design
4. Create Preset Configuration
5. Spartan-3A FPGA DDR2 SDRAM 200 MHz Design

MIG outputs are generated with folder name <Component Name>.

Note: <Component Name> does not accept special characters. Only alphanumeric characters
can be used to specify a component name. It should always start with an alphabet character and
can end with an alphanumeric character.

Figure 1-1: CORE Generator Options
UG086_c1_04_091307

http://www.xilinx.com

34 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 1: Using MIG
R

For multicontroller applications, the number of controllers should be selected at the
Number of controllers spin box. More than one controller can be selected for DDR2
SDRAM Direct clocking interface for Virtex-4 FPGA designs and for DDR2 SDRAM and
QDRII SRAM designs in Virtex-5 FPGA designs. In case more than one controller is
selected, MIG limits the design generation to DDR2 SDRAM for Virtex-4 FPGA designs,
and MIG limits the design generation to DDR2 SDRAM and QDRII SRAM for Virtex-5
FPGA designs. Select the appropriate number (1-8) in the pull-down menu. The Number
of controllers selection is enabled only for Virtex-5 and Virtex-4 FPGA families.

The Create Preset Configuration option is not supported for Virtex-5 FPGA designs, and
the Verify UCF/ Update Design option is not supported for Spartan designs.

Note: The Create Design option can use a multiple number of controllers. For the Create
Design for Xilinx Reference Boards, Verify UCF/Update Design, and Create Preset Configuration
options, the number of controllers is limited to one.

Click Back to return to previous page. Click Cancel to quit from the tool. Click Next to
move ahead. The next page display depends upon the options selected in the current page.
o

Figure 1-2: MIG Output Options / Component Name / Number of Controllers
UG086_c1_05_022008

http://www.xilinx.com

MIG User Guide www.xilinx.com 35
UG086 (v2.2) March 3, 2008

MIG User Interface
R

The Spartan-3A DDR2 SDRAM 200MHz Design option appears only for Spartan-3A FPGA
designs (see Figure 1-3).

Create Design

Using the Create Design option, designs can be generated that are supported for that
FPGA family. For example, the Virtex-4 family supports DDR2 SDRAM, DDR SDRAM,
QDRII SRAM, DDRII SRAM, and RLDRAM II. Here is the flow for creating a design:

1. Pin Compatible FPGAs

2. Memory Selection

3. Controller Options

4. Set Mode Registers

5. Set Extended Mode Registers

6. FPGA Options

7. Reserve Pins

8. Bank Selection

9. Summary

Figure 1-3: MIG Output Options Page of Spartan-3A FPGA Design
UG086_c1_55_022008

http://www.xilinx.com

36 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 1: Using MIG
R

10. Memory Model License

11. PCB Information

12. Finish

All the options are described in this section.

Pin Compatible FPGAs

FPGAs in the selected family with the same package are listed here. In case the generated
pinout from MIG needs to be reusable with any of these other FPGAs, use this option to
select the FPGAs with which the pinout has to be compatible.

Note: The SerDes design is only supported for FPGAs with PMCDs. In case the target FPGA
or the selected compatible FPGA has no PMCD, the capture method for DDR2 SDRAM is
restricted to Direct clocking.

Select any number of compatible FPGAs out of the listed ones. Only the common pins
between target and selected FPGAs are used by MIG. The name in the text box signifies the
Target FPGA selected. Click Next to move ahead. The Memory Selection is displayed.

Memory Selection

This page displays all memory types that are supported by the selected FPGA family. An
example is shown in Figure 1-5 for Virtex-4 FPGA designs and in Figure 1-6 for Virtex-5
FPGA designs. In Virtex-5 FPGA designs, the user can select the combination of both
DDR2 SDRAM and QDRII SRAM interfaces for a multicontroller design.

Figure 1-4: Pin Compatible FPGAs

Figure 1-5: Memory Selection for Virtex-4 FPGA Designs

UG086_c1_06_122707

UG086_c1_07_083007

http://www.xilinx.com

MIG User Guide www.xilinx.com 37
UG086 (v2.2) March 3, 2008

MIG User Interface
R

Select the appropriate option, and then click Next to move ahead. The Controller Options
window is displayed.

Controller Options

This page shows the various controller options that can be selected. If the design has
multiple controllers, this page is repeated for each of the controllers. The page is
partitioned into a maximum of nine sections. The number of partitions depends on the
type of selected memory.

• Capture Method. This feature deals with the data capture method. The DDR2 SDRAM
controller for Virtex-4 devices supports two types of capture method. For other
designs, the capture method is displayed, but it cannot be changed.

Click the pull-down menu button and select an option. Certain other options such as
frequency and ECC are restricted based on this selection.

• Frequency. This feature indicates the desired frequency for all the controllers. This
frequency block is limited by factors such as the selected FPGA, device speed grade,
and clocking type.

Vary the frequency as required. Either use the spin box or enter a valid value through
the keyboard. Values entered are restricted based on the minimum and maximum
frequencies supported.

Note: For a Virtex-4 multicontroller design, the frequency selected for the first controller is used
for all other controllers with the same memory interface. Memory parts and data width are
restricted based on the frequency selection.

• Memory Type. For DDR2 SDRAM, MIG categorizes different memory components
and modules available into components, UDIMMs, SODIMMs, and RDIMMs. This
can vary according to the memory selected.

Figure 1-6: Memory Selection for Virtex-5 FPGA Designs

Figure 1-7: Capture Method

Figure 1-8: Frequency

UG086_c1_56_022208

UG086_c1_08_022708

UG086_c1_09_022708

http://www.xilinx.com

38 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 1: Using MIG
R

Click the pull-down menu combo box and select the memory type. This selection
restricts the available choices in memory part selection list and data width.

• Memory Part. This feature helps the selection of a memory part for the design.
Selection can be made from an existing list, or a new part can be created.

Select the appropriate memory part from the list. If the required part or its equivalent
is unavailable, a new memory part can be created. To create a custom part, select the
Create Custom Part from the drop down combo box. A new window appears as shown
in Figure 1-11.

The window called Create Custom Part includes all the details of the memory
component selected in Select Base Part. Enter the appropriate memory part name in
the text box. Select the suitable base part from the Select base part list. Edit the Value
column as needed. Select the suitable values from the Row, Column, and Bank options
as per the requirements. After editing the required fields, click the Save button. The
new part can be saved with the selected name. This new part is added in the Memory
Parts list as shown in Figure 1-12 and saved into the database for reuse and to produce
the design.

Figure 1-9: Memory Type

Figure 1-10: Memory Part

UG086_c1_10_022708

UG086_c1_11_091707

http://www.xilinx.com

MIG User Guide www.xilinx.com 39
UG086 (v2.2) March 3, 2008

MIG User Interface
R

• Data Width. The data width value can be selected here based on the memory type
selected earlier. The list shows all supported data widths for the selected part. Choose
one of them. These values are generally multiples of the individual device data
widths. In some cases, the width might not be an exact multiple. For example, though
16 bits is the default data width for x16 components, 8 bits is also a valid value.

Figure 1-11: Create Custom Part

Figure 1-12: Memory Part

UG086_c1_12_022008

UG086_c1_13_083007

http://www.xilinx.com

40 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 1: Using MIG
R

• Memory Depth. The DDR2 SDRAM Virtex-4 FPGA controller with Direct clocking as
capture method and frequency less than or equal to 150 MHz supports memory depth
of one to four. For other designs, this option is unavailable.

Select the appropriate option from the Memory Depth option.

• ECC. ECC stands for Error Correction Code. This feature enables the generation of
ECC along with the code. This section is enabled based on selected data width. This
option is available only for DDR2 SDRAM Virtex-4 and Virtex-5 FPGA designs.

Note that ECC selection is enabled only when the appropriate data width is selected.
DDR2 SDRAM Virtex-4 FPGA design supports three modes: ECC Disabled,
Unpipeline Mode, and Pipeline Mode, as shown in Figure 1-15. Select the appropriate
mode. The Pipeline mode improves frequency performance at the cost of an extra
pipeline stage.

For other Virtex-4 FPGA designs, this window is disabled as shown in Figure 1-16. For
Virtex-5 FPGA DDR2 SDRAM designs, the two options are ECC Enabled and ECC
Disabled.

Figure 1-13: Data Width

Figure 1-14: Memory Depth

Figure 1-15: ECC (a)

Figure 1-16: ECC (b)

UG086_c1_14_122907

UG086_c1_15_122907

UG086_c1_16_090407

UG086_c1_17_090407

http://www.xilinx.com

MIG User Guide www.xilinx.com 41
UG086 (v2.2) March 3, 2008

MIG User Interface
R

Figure 1-17 shows the ECC option section for the Virtex-5 FPGA design GUI. For
Virtex-5 devices, ECC is supported for 72-bit or 144-bit DDR2 SDRAM designs.

• Data Mask. When this Data Mask check box is marked, the Data Mask pins are
allocated. When this Data Mask check box is not checked, the data mask pins are not
allocated, which increases the pin efficiency. This option is disabled and cannot be
changed for memory parts that do not support data masks. This option is available
only for DDR2 and DDR SDRAMs.

Select the option as per the requirement.

• Clock Capable I/O. Checking the Clock Capable I/O box makes use of the CC pins
available in Virtex-4 FPGAs for strobes or read clocks. This option is enabled and
cannot be changed for DDR2 SDRAM SerDes designs, but is editable for other
designs.

Select the option as per the requirement.

• Write Pipe Stages. The Write Pipe Stages is supported only for Spartan FPGA designs.
This option allows users to implement the write data pipelines in the user interface.

Figure 1-17: ECC (c)

Figure 1-18: Data Mask

Figure 1-19: Clock Capable I/O

Figure 1-20: Write Pipe Stages

UG086_c1_18_083007

UG086_c1_43_022708

UG086_c1_19_022708

UG086_c1_57_022208

http://www.xilinx.com

42 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 1: Using MIG
R

• Memory Details. This section displays details about the selected memory. For
DIMMs, the details listed are the base component memory details.

The memory details change based on the selected Memory part.

Click Next to move ahead. The Set Mode Registers window is displayed for
RLDRAM II, DDR, and DDR2 SDRAM devices. For other memories, the next window
displayed is FPGA Options.

Set Mode Registers

This feature allows selection of various memory mode register values as supported by the
controller type.

The Mode Register Value is loaded into the Load Mode register during initialization.

Note: CAS latency values listed on this GUI are restricted by the frequency and the memory
part selected in the prior page.

Click Next to move ahead. The Set Extended Mode Register window or FPGA Options
window is displayed.

Figure 1-21: Memory Details

Figure 1-22: Mode Register Data

UG086_c1_20_091307

UG086_c1_21_022208

http://www.xilinx.com

MIG User Guide www.xilinx.com 43
UG086 (v2.2) March 3, 2008

MIG User Interface
R

Set Extended Mode Registers

Select the memory extended mode register values here. This page appears for DDR
SDRAM and DDR2 SDRAM only, and the contents can change according to the selected
memory.

These values are programmed into memory during initialization.

Click Next to move ahead. The FPGA Options window is displayed.

Figure 1-23: Extended Mode Register Data
UG086_c1_22_022708

http://www.xilinx.com

44 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 1: Using MIG
R

FPGA Options

This feature is partitioned into five sections: DCM, DCI, DCI Cascading Information, SSTL
Class, and Debug Signals Control.

• DCM. DCM allows design generation with or without a DCM in the design.

• DCI. This feature indicates whether the Digitally Controlled Impedance is Disabled or
Enabled. DCI can be enabled or disabled for Input/Inout pins or Outputs. This option
can change according to the memory selected. They are listed as follows:

DDR2 SDRAM — DCI for DQ/DQS and DCI for Address/Control
DDR SDRAM — DCI for DQ/DQS and DCI for Address/Control
RLDRAM II — DCI for Data, Read Clocks, and Data Valid Signals and DCI for
Address/Control
QDRII SRAM — DCI for Data and Read Clocks
DDRII SRAM — DCI for Data and Read Clocks

For multiple interfaces in Virtex-5 FPGA designs, when selected, DCI is applied for all
the interfaces. The DCI for Address/Control is applicable only for DDR2 SDRAM
designs when multiple interfaces are selected.

If DCI is enabled, the pins are characterized by the DCI I/O standards.

Figure 1-24: DCM Option

Figure 1-25: DCI Options

Figure 1-26: DCI Option for Multiple Interfaces Selected in Virtex-5 FPGA Designs

UG086_c1_23_022708

UG086_c1_24_022708

UG086_c1_58_022708

http://www.xilinx.com

MIG User Guide www.xilinx.com 45
UG086 (v2.2) March 3, 2008

MIG User Interface
R

• DCI Cascading Information. This option appears only for QDRII Virtex-5 FPGA
designs. This option is necessary for generating 36-bit component designs with DCI
support.

Note: If the DCI Cascading Information option is checked, the Bank Selection window shows
the Master Bank selection box. The user must not reserve VRN/VRP pins in the Reserve Pins
window for the selected master banks.

• SSTL Class Options. SSTL Class Option determines the I/O standard drive strength
in the UCF of DDR SDRAM and DDR2 SDRAM. These I/O standards can be changed
based on their application.

• Debug Signals Control. Selecting this option enables the debug signals to be port-
mapped to the ChipScope™ modules in the design top module. This helps in
monitoring the debug signals on the ChipScope tool. When the generated design is
run in batch mode using ise_flow.bat in the design's par folder, the CORE
Generator system is called to generate ChipScope modules (that is, EDIF files are
generated). Deselecting this option leaves the debug signals unconnected in the
design top module. No ChipScope modules are instantiated in the design top module,
and no ChipScope modules are generated by the CORE Generator system.

Figure 1-27: DCI Cascading Information Option

Figure 1-28: SSTL Class Options

Figure 1-29: Debug Signals Control

UG086_c1_25_022708

UG086_c1_26_083007

UG086_c1_44_022708

http://www.xilinx.com

46 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 1: Using MIG
R

In Virtex-5 FPGA multiple interface designs, the Debug port is supported for either the
DDR2 SDRAM or the QDRII SRAM interface of the first controller.

Click Next to move ahead. The Reserve Pins window is displayed.

Reserve Pins

This feature allows reservation of specific pins for other applications. After selecting
suitable pins as necessary, the reserved pins are not used by MIG while generating the
pinout for that particular design.

Select the pins from the Available Pins column, and click the Reserve button. The
particular pin is transferred to Reserve Pins column along with its bank information. This
signifies that the selected pin has been reserved. To unreserve a reserved pin, click the
appropriate pin that needs to be removed, and then click the Unreserve button. The
number 408 in the Available Pins header signifies the number of pins available for pinout,
whereas the number 16 in the Reserve Pins header signifies the number of pins selected to
be reserved.

The reserved pins information can be saved in a user defined file using the Save as button.
A browser window appears after clicking the Save as button. Set the file location here.

Figure 1-30: Debug Signals in Virtex-5 FPGA Multiple Interface Designs

Figure 1-31: Reserve Pins

UG086_c1_59_022708

UG086_c1_27_122907

http://www.xilinx.com

MIG User Guide www.xilinx.com 47
UG086 (v2.2) March 3, 2008

MIG User Interface
R

Use the Read UCF File button to read a reserve pins from a UCF. When the Read UCF File
button is clicked, a new window pop ups. Select the UCF to be read. After reserving the
pins, click the Next button to continue. The Bank Selection window is displayed.

Bank Selection

This feature allows selection of banks for the Memory interface. Banks can be selected for
different classes of memory signals. The different classes are:

• Address and Control Signals

• Data Signals

• System Control Signals

• System Clock

Figure 1-32: Bank Select (a)
UG086_c1_28_122907

http://www.xilinx.com

48 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 1: Using MIG
R

Select the appropriate bank and memory signals as required.

The WASSO limit in conjunction with the Reserve pins limits the number of available I/Os
in a bank. For more information on the WASSO limit, refer Appendix C, “WASSO Limit
Implementation Guidelines.”

To unselect the banks that are selected, click the Deselect Banks button. To restore the
defaults, click the Restore Defaults button.

In certain banks, global clock pins are not allowed for system clock. This is because system
clock signals have different I/O standards as compared to those of any other signals in the
design. In such banks, global clock pins are left unused.

• Real-time pin allocation. As the user selects the banks, pin allocation is done
dynamically, and the number of pins required is updated for each group of signals.

♦ The red circle with a cross mark at each group indicates that sufficient pins are not
allocated, and additional pins are required for the selected configuration.

♦ The green circle with a tick mark at each group indicates that sufficient pins are
allocated for the selected configuration.

♦ The denominator in each group indicates the total number of pins required for
each group.

The user must select banks until the numerator equals the denominator. The user
cannot move to the next page unless sufficient pins are allocated for each group.

Figure 1-34 illustrates the conditions where sufficient banks are selected in order to
successfully generate the design.

Figure 1-33: Bank Select (b)
UG086_c1_29_122907

http://www.xilinx.com

MIG User Guide www.xilinx.com 49
UG086 (v2.2) March 3, 2008

MIG User Interface
R

Figure 1-35 indicates when sufficient banks are not allocated for each signal group.

Figure 1-36 indicates sufficient pins are allocated for System Control and System Clock
groups, but sufficient pins are not allocated for Data and Address groups.

Figure 1-34: Real-Time Pin Allocation: Sufficient Banks Selected

Figure 1-35: Real-Time Pin Allocation: Sufficient Banks Not Selected

UG086_c1_45_122907

UG086_c1_46_122907

http://www.xilinx.com

50 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 1: Using MIG
R

• Pin Allocation Priority. MIG allocates the pins starting with exclusive data banks
first, followed by data banks that combine with other groups.

Figure 1-37 indicates that data banks are selected in bank 6 and bank 5. In bank 6, only
data is selected; in bank 5, data, address, and system control are selected. Here, data is
allocated first in bank 6 and then in bank 5. This Pin Allocation Priority is applicable
only for data group signals in Virtex-4 and Virtex-5 devices.

Figure 1-36: Real-Time Pin Allocation: Insufficient Pins for Data/Address Groups

Figure 1-37: Pin Allocation Priority

UG086_c1_47_122907

UG086_c1_48_122907

http://www.xilinx.com

MIG User Guide www.xilinx.com 51
UG086 (v2.2) March 3, 2008

MIG User Interface
R

• Master Bank selection. This is applicable only for QDRII Virtex-5 FPGA designs when
the DCI Cascading Information option is selected. A Master bank should be selected
in each column when a Data Read is selected in that particular column. There is an
exception for the middle column. The middle column is divided into two parts: above
zero bank and below zero bank. The middle column can have two Master banks,
depending on where the Read Data banks are selected. If the Read Data bank is
selected either above or below the Zero bank, only one Master Bank is required. If the
Read Data banks are selected both above and below Zero bank, two Master banks are
required.

Figure 1-38 shows that the Data Read is selected in both the columns and user needs to
select the Master Banks in both the columns. Master bank combo box lists all the
possible banks that can be selected as Master Bank. MIG does not show the Master
Bank selection check box for a column if that column does not have enough pins in the
banks.

Figure 1-38: Master Bank Selection (a)
UG086_c1_49_122907

http://www.xilinx.com

52 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 1: Using MIG
R

Figure 1-39 shows the Master Bank selection in the center column. It uses all the pins
for Read Data from the center column.

After the selection of the banks, click the Next button to move ahead. The Memory Model
License window is displayed.

Figure 1-39: Master Bank Selection (b)
UG086_c1_50_122907

http://www.xilinx.com

MIG User Guide www.xilinx.com 53
UG086 (v2.2) March 3, 2008

MIG User Interface
R

• Bank Selections for Multiple Memory Interfaces in Virtex-5 FPGA Designs. For a
multiple interface design, a particular group is allowed to select in a bank only for
compatible I/O standards. For example, Controller 0 is DDR2 SDRAM (see
Figure 1-40) and Controller 1 is QDRII SRAM (see Figure 1-41). In DDR2 SDRAM,
bank 20 is checked for Data and Bank 19 is checked for Address and System Control.
In QDRII SRAM, neither bank 20 nor bank 19 is allowed to select Data Read, because
the I/O standard for DDR2 SDRAM Data and Address is SSTL18_II_DCI, and the I/O
standard for QDRII SRAM Data Read is HSTL_I_DCI_18. These two I/O standards
are not compatible. Hence MIG does not allow bank selection for the group of signals
that do not follow the I/O standard compatibility rules.

Figure 1-40: DDR2 SDRAM Bank Selection in a Multiple Interface Design
UG086_c1_60_022108

http://www.xilinx.com

54 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 1: Using MIG
R

Figure 1-41: QDRII SRAM Bank Selection in a Multiple Interface Design
UG086_c1_61_022108

http://www.xilinx.com

MIG User Guide www.xilinx.com 55
UG086 (v2.2) March 3, 2008

MIG User Interface
R

Summary

This window provides complete details about the bank selection, Interface parameters,
CORE Generator options, and FPGA options of the active project.

Click the Next button to move to the License Agreement page of the selected memory of
the Micron memory model.

Figure 1-42: Summary
UG086_c1_31_022108

http://www.xilinx.com

56 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 1: Using MIG
R

Memory Model License

MIG outputs a Micron memory model for simulation purposes for memories such as DDR
SDRAM, DDR2 SDRAM, and RLDRAM II. To access the models in the output sim folder,
click the Micron License Agreement check box. Read the License Agreement carefully
and mark the Accept License Agreement check box to accept it.

If the License Agreement is not agreed to, the memory model is not available. The user
then needs to get the appropriate memory model by some other means to simulate the
design.

Click the Generate button to generate the design files. MIG generates two output
directories example_design and user_design. After generating the design, a new
window called PCB Information page is displayed.

Figure 1-43: License Agreement

UG086_c1_30_022108

http://www.xilinx.com

MIG User Guide www.xilinx.com 57
UG086 (v2.2) March 3, 2008

MIG User Interface
R

PCB Information

This page displays the PCB related information to be considered while designing the board
that uses MIG generated designs. Click Next to go to the Finish page.

Figure 1-44: PCB Information
UG086_c1_42_090407

http://www.xilinx.com

58 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 1: Using MIG
R

Finish

This window shows if the design was generated successfully. This page provides the
design notes that should be taken into account while using MIG generated designs.

The text in the blue color indicates the path of the design output files. Click the blue text to
go through the output files. Click the Finish button to quit. The Quit Confirmation
window shown in Figure 1-46 appears.

Click Yes to exit or No to return to the Finish page.

Figure 1-45: Finish

Figure 1-46: Quit Confirmation

UG086_c1_32_083007

UG086_c1_33_091307

http://www.xilinx.com

MIG User Guide www.xilinx.com 59
UG086 (v2.2) March 3, 2008

MIG User Interface
R

Output Files

A MIG-generated design has the following output files and directory:

• A <component name>_xmdf.tcl file, used for the CORE Generator application.

• A <component name>.vho file, used for the core to be instantiated, created only
when a VHDL design is generated.

• A <component name>.veo file, used for the core to be instantiated, created only
when a Verilog design is generated.

• A <component name> directory.

In the <component name> directory, three folders are created:

• docs

• example_design

• user_design

Any relevant documents, such as application notes, timing analysis spreadsheets, and user
guide are in the docs directory.

The example_design and user_design folders contain several other folders and files.
They are:

• rtl — Contains all the RTL files (either VHDL or Verilog design files).

• par — Contains the UCF with constraints for the design. Two scripts files are
generated:

♦ ise_flow.bat — The user double-clicks the ise_flow.bat script file to run
the design through synthesis, build, map, and par. This script file sets all the
required options. Users should refer to this file for the recommended build
options for the design.

♦ create_ise.bat — The user double-clicks the create_ise.bat file to
create an ISE project. The ISE project thus generated contains the recommended
build options for the design. To run the project in GUI mode, the user double-
clicks the ISE project file to open up ISE in GUI mode with all project settings.

• synth — Contains the SDC file which has design constraints for Synplify Pro
synthesis tool. This folder also has the script files, which set various tool options.
There is also a project file, through which the RTL files are passed for synthesis.

• sim — Contains the testbench files that are needed to simulate the design. It also has
an executable and a .do file. If sim.exe is double-clicked, the design is
automatically simulated using the ModelSim simulator.

There is a simulation_help.chm file in the sim folder that helps you to understand
the simulation environment provided. For the user_design folder, a synthesizable
testbench module is also present in the sim folder.

Caution! Recommended Build Options. The ise_flow.bat file in the par folder of the
component name directory contains the recommended build options for the design. Failure to follow
the recommended build options could produce unexpected results.

http://www.xilinx.com

60 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 1: Using MIG
R

Create Design for Xilinx Reference Boards

To create a design for the Xilinx Reference Boards, select Create Design for Xilinx
Reference Boards from the MIG Output Options. It is intended to generate the board files
for various Xilinx Reference Boards. Click the Next button to move ahead.

The flow is as follows:

1. Reference Board Designs

2. Memory Model License

3. PCB Information

4. Finish

Reference Board Designs

This section allows selection of the board for which the designs are to be generated.

The pull-down menu includes a list of boards. Select the appropriate board. Details about
the particular board are displayed in the pane below. After selecting the board, click Next
to move to next page.

Figure 1-47: Create Design for Xilinx Reference Boards
UG086_c1_34_090407

http://www.xilinx.com

MIG User Guide www.xilinx.com 61
UG086 (v2.2) March 3, 2008

MIG User Interface
R

Memory Model License

MIG outputs a Micron memory model for simulation purpose for memories like DDR
SDRAM, DDR2 SDRAM, and RLDRAM II. To generate the board files for the specified
Xilinx Reference Board, read the License Agreement carefully and mark the Accept
License Agreement checkbox to accept it.

If the License Agreement is not accepted, the user cannot generate board files. The Next
button is disabled unless the License Agreement is accepted.

After accepting the agreement, click Generate to generate the board files for the specified
Xilinx Reference Board. After the successful generation of board files, the PCB Information
page is displayed.

Figure 1-48: Memory Model License
UG086_c1_54_010108

http://www.xilinx.com

62 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 1: Using MIG
R

PCB Information

This page displays the PCB-related information to be considered while designing the
board that is to use a MIG generated design. Click Next to go to the Finish page.

Clicking Next displays the Finish page.

Figure 1-49: PCB Information
UG086_c1_51_123007

http://www.xilinx.com

MIG User Guide www.xilinx.com 63
UG086 (v2.2) March 3, 2008

MIG User Interface
R

Finish

The blue text above the pane shows the path of the output folder. Click the Back button to
choose a different board. Click the Close button to terminate.

Click Yes to exit or No to return to the Finish page.

Note: In order to run the simulations in batch mode using ModelSim for the board design files, the
sim.exe file must be copied to the respective board design's sim folder. The sim.exe file is
provided in the simulation_executable folder.

Figure 1-50: Finish

Figure 1-51: Quit Confirmation

UG086_c1_35_083007

UG086_c1_33_091307

http://www.xilinx.com

64 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 1: Using MIG
R

Verify UCF/Update Design

To verify and update the user constraints file (UCF), select the third option (Verify
UCF/Update Design) from the MIG Output Options page. Verify UCF is intended for
verification of UCF files that are generated from MIG and later modified. Update Design is
intended to update the old UCF files to be compatible to the current RTL design. This
feature ensures that the pinout still follows the rules required for the generated design.

Click the Next button to move ahead.

The flow is as follows:

1. Verify UCF File

2. Summary

3. Update Design

4. Memory Model License

5. Verification Report

6. PCB Information

7. Finish

Verify UCF File

Provide the input UCF path at the Load UCF File box and input the project file path
(mig.prj) at the Load Prj File Box, or click the Browse button to enter the UCF and Prj
files through a browser window.

Note: Update Design is not supported for the UCF signal names that were modified using the Edit
Signal Names option of MIG 1.73.

Select the appropriate files. After selecting the files, click Next to move ahead.

Figure 1-52: Verify UCF File
UG086_c1_37_022108

http://www.xilinx.com

MIG User Guide www.xilinx.com 65
UG086 (v2.2) March 3, 2008

MIG User Interface
R

Summary

This page provides complete details about the bank selection, Interface parameters, CORE
Generator options and FPGA options of the project for which the UCF is to be verified.

Click the Verify button to generate the verification report file. After verification, the
Update Design page is displayed if the loaded UCF does not contain any required
constraints or any changes required to be compatible with the current design. If the loaded
UCF is compatible with the current design, the Finish page is displayed.

Figure 1-53: Summary Page
UG086_c1_38_091707

http://www.xilinx.com

66 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 1: Using MIG
R

Update Design

If the user selects Update UCF file and clicks the Next button, the License agreement page
appears for Micron parts. The Finish page appears for other memory parts.

Click Next to move ahead.

Memory Model License

MIG outputs a Micron memory model for simulation purposes for memories such as DDR
SDRAM, DDR2 SDRAM, and RLDRAM II. To get the simulation model in the output
folder, click the Micron License Agreement check box. Read the License Agreement
carefully and mark the Accept License Agreement check box to accept it.

If the License Agreement is not agreed to, the simulation model is not output into the
output folder.

Figure 1-54: Update Design

Figure 1-55: Micron License Agreement

UG086_c1_52_022108

UG086_c1_62_022108

http://www.xilinx.com

MIG User Guide www.xilinx.com 67
UG086 (v2.2) March 3, 2008

MIG User Interface
R

Click the Generate button to generate the complete design with the loaded Prj settings and
modified UCF (the UCF is updated without affecting the pin location constraints) in the
updated_ucf folder.

Verification Report

This window indicates if the loaded UCF has been verified successfully or provides
warnings and errors if the loaded UCF does not follow the pin allocation rules.

Click the Next button to move to the PCB information page.

Figure 1-56: Verification Report
UG086_c1_63_022108

http://www.xilinx.com

68 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 1: Using MIG
R

PCB Information

This page displays the PCB related information to be considered while designing the board
that uses MIG generated designs. Click Next to go to the Finish page.

Figure 1-57: PCB Information

UG086_c1_64_022108

http://www.xilinx.com

MIG User Guide www.xilinx.com 69
UG086 (v2.2) March 3, 2008

MIG User Interface
R

Finish

This window shows if the design was generated successfully. This page provides the
design notes that should be taken into account while using MIG generated designs.

The text in the blue color indicates the path of the design output files. Click the blue text to
go through the output files. Click the Finish button to quit.

Click Yes to exit or No to return to the Finish page.

Figure 1-58: Finish

Figure 1-59: Quit Confirmation

UG086_c1_65_022108

UG086_c1_33_091307

http://www.xilinx.com

70 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 1: Using MIG
R

Features Verified

Features verified using Verify UCF option are described as follows:

• Whether all the data bits are allocated in the selected banks.

• The associated groups are allocated in the same bank. For example, data bits
corresponding to a DQS in SDRAMs are treated as a group, and data read bits
corresponding to a CQ in QDRII SRAMs are treated as a group. All the signals within
the same group should be in the same bank.

• The selected data width. For example if the data width is 32 bits and the reference
UCF has more bits, the tool verifies the required bits and ignores the excess data.

• The uniqueness of the pins. It flags an error if two signals are allocated to the same pin
or vice versa, or if the same signal is allocated to more than one pin.

• The strobe signals are allocated to the CC pins when the CC pins option is enabled.

• The signals are allocated within the selected banks.

Error Messages

This section describes the different error messages that can be generated when verifying
the UCF.

The reference UCF must follow the MIG naming conventions (refer to the UCF generated
by MIG). For example, the Virtex-4 FPGA DDR2 SDRAM controller 0 should have
cntrl0_ddr2_dq[0] for data bits, and RLDRAM controller 0 should have cntrl0_rld2_dq[0]
for data bits.

• Uniqueness. If two signals are allocated to the same pins in the reference UCF, an error
message is listed in the directed file with a user-assigned name.

The error message format is “<signal_name1> and <I> are allocated to same pins.”

For example, if cntrl0_ddr2_dq[0] and cntrl0_ddr2_dqs[0] are allocated to same pin,
such as:

NET "cntrl0_ddr2_dq[0]" LOC = "D12" ;

NET "cntrl0_ddr2_dqs[0]" LOC = "D12" ;

Then the following error message is printed:

ERROR: cntrl0_ddr2_dq[0] and cntrl0_ddr2_dqs[0] are allocated to the
same pins. Pins are not unique.

• Association. Signals in the same group (for example, assume dqs[0] and dq[0:7] form
the same group) should go to the same bank, otherwise an error message is printed in
the same user directed file. This Association rule is not applied for data write bits in
SIO components.

The error message format is “<signal_name1> and <signal_name2> are not allocated in
the same banks.”

For example:

NET "cntrl0_ddr2_dq[0]" LOC = "D12" ; #bank 6

NET "cntrl0_ddr2_dq[1]" LOC = "C12" ; #bank 6

NET "cntrl0_ddr2_dq[2]" LOC = "B10" ; #bank 6

NET "cntrl0_ddr2_dq[3]" LOC = "C10" ; #bank 7

Assume cntrl0_ddr2_dq[3] and cntrl0_ddr2_dq[2] are allocated to pins of different
banks, such as bank 7 and bank 6, respectively. The following error messages are
printed:

http://www.xilinx.com

MIG User Guide www.xilinx.com 71
UG086 (v2.2) March 3, 2008

MIG User Interface
R

ERROR: cntrl0_ddr2_dq[0](6) and cntrl0_ddr2_dq[3](7) are not
allocated in the same banks

ERROR: cntrl0_ddr2_dq[1](6) and cntrl0_ddr2_dq[3](7) are not
allocated in the same banks

ERROR: cntrl0_ddr2_dq[2](6) and cntrl0_ddr2_dq[3](7) are not
allocated in the same banks

These types of error messages are printed for each pair of signals of same group, but
are allocated to different banks.

• Clock Capable I/Os for strobes/read clock. Check for CC pins if Use CC for Direct
clocking is clicked. In this case, the strobe/read_clock signals should be allocated to
the CC pins only. If not, an error message is displayed.

The error message format is “<signal_name> should be allocated to the CC Pins.” For
example, cntrl0_ddr2_dqs[0] is a strobe. Assume it is allocated to the K12 pin, which is
not a clock capable I/O pin. The following error message is printed:

ERROR: cntrl0_ddr2_dqs[0 should be allocated to the CC Pins.

• Absence of signals. If one or more signal-pin pair is missing and/or commented in the
given UCF against the selected inputs, the verification result indicates the absence of
those signal-pin pairs as a warning.

The warning message format is ”<signal_name> is forbidden in the given UCF against
the selected inputs.”

For example, assume the reference UCF has 8 bits (dq[0:7]), and the data width passed
through PRJ is 16 bits. While checking, MIG verifies only 8 bits and reports the other
expected bits as follows:

WARNING : cntrl0_ddr2_dq[8] is expected, but not present in the UCF.

WARNING : cntrl0_ddr2_dq[9] is expected, but not present in the UCF.

WARNING : cntrl0_ddr2_dq[10] is expected, but not present in the
UCF.

WARNING : cntrl0_ddr2_dq[11] is expected, but not present in the
UCF.

WARNING : cntrl0_ddr2_dq[12] is expected, but not present in the
UCF.

WARNING : cntrl0_ddr2_dq[13] is expected, but not present in the
UCF.

WARNING : cntrl0_ddr2_dq[14] is expected, but not present in the
UCF.

WARNING : cntrl0_ddr2_dq[15] is expected, but not present in the
UCF.

• Bank selection. If one or more banks are not selected and one or more pins from that
(those) bank(s) is (are) used for some purpose, an error message is printed.

The error message format is “<signal_name> (<signal_group>) is not allowed to be
allocated in Bank (<bank_number>) against the selected inputs.”

For example:

NET "cntrl0_ddr2_dqs[0]" LOC = "D12" ;#bank 6

Bank 6 is not selected for Data (as cntrl0_ddr2_dqs[0] from Data). Assume that
cntrl0_ddr2_dqs[0], which belongs to the strobe group, is allocated to a pin belonging
to bank 6. The following error message is printed:

ERROR: cntrl0_ddr2_dqs[0] (strobe) should not be allocated to bank 6.

http://www.xilinx.com

72 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 1: Using MIG
R

Create Preset Configuration

This option outputs pre-verified configurations for the selected FPGA. The preset
configurations meet the specified frequency with a reasonable margin. Banks, frequency,
memory component, and all the other parameters are already selected. When the preset
configuration option is selected and Next is clicked, the Preset Configurations page
appears.

The flow for preset configuration is as follows:

1. Create Preset Configuration

2. Memory License Agreement

3. Summary

4. PCB Information

5. Finish

Select the controller type here to select the memory and click the Next button. In case of
DDR2 SDRAM Direct clocking, DDR2 SDRAM SerDes, DDR SDRAM, and RLDRAM II
memories, the Micron License page is displayed. For other memories, the Summary page is
displayed.

Memory License Agreement

Check or uncheck the check box to accept the License Agreement and then click Next.

Summary

This page gives details about the options set for Preset Configuration. Make sure to check
this page and ensure that the preset parameters are good for the design requirements.
Refer to the Summary section for details.

Click the Generate button to generate the design files. This displays the PCB information
page.

PCB Information

Refer to the PCB Information section for details. Clicking Next displays the Finish page.

Figure 1-60: Preset Configurations
UG086_c1_41_090407

http://www.xilinx.com

MIG User Guide www.xilinx.com 73
UG086 (v2.2) March 3, 2008

MIG User Interface
R

Finish

Refer to the Finish section for more information.

Spartan-3A FPGA DDR2 SDRAM 200 MHz Design
This page is displayed only for Spartan-3A FPGA designs. It provides links to XAPP458
[Ref 15] and the Spartan-3A DDR2 SDRAM 200 MHz reference design.

Figure 1-61: Spartan-3A FPGA 200 MHz Design Support
UG086_c1_53_010208

http://www.xilinx.com

74 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 1: Using MIG
R

Using MIG in Batch Mode
To run MIG in batch mode, the XCO and MIG.PRJ files must be created by running MIG in
GUI mode through the CORE Generator system.

XCO File
The XCO file contains the following information:

• Path of the MIG.prj file

• Synthesis tool to be used

• FPGA device information

• HDL to be used

To change these parameters they must be set in the XCO file.

MIG.prj File
The user can change various parameter values in the PRJ file with valid input data and can
regenerate the design. Parameters with a fixed value cannot be changed. Table 1-1
describes the information contained in the PRJ file.

Table 1-1: PRJ File Parameters

Parameter Description

Controller number Indicates the most recent controller selected in the GUI before generating the design.

NoOfControllers Indicates the number of controllers selected. Multicontrollers are supported only for
Virtex-4 FPGA DDR2 SDRAM Direct clocking designs.

MemoryDevice Contains the memory device configuration. For a multicontroller case, this parameter
contains the most recent memory device selected.

SelectedPins If the user reserves some pins, this parameter displays the remaining pins along with the
bank number from the selected banks. If the user does not reserve any pins, no pins are
displayed (the user can use all the pins).

ReservedPins Displays the pins that are reserved by the user. If the user does not reserve any pins, no pins
are displayed.

DCM Indicates whether DCM is enabled [1] or disabled [0].

ModuleName Displays the top-level design name assigned by the user.

dci_inouts_inputs Indicates whether Digitally Controlled Impedance (DCI) for inputs and inouts is enabled
[1] or disabled [0]. If DCI is enabled, input and inout pins have the DCI I/O standards.

dci_outputs Indicates whether Digitally Controlled Impedance (DCI) for address and control signals is
enabled [1] or disabled [0]. If DCI is enabled, address and control pins have the DCI I/O
standards.

FPGADevice Displays the compatible devices selected by the user for the selected target device. If the
compatible devices are not selected, nothing is displayed.

Class Indicates the I/O standard class. It can be either Class I or Class II. They determine the
various drive strengths of the signal.

Debug_En Indicates whether the debug signals are to be port-mapped to the ChipScope modules in
design_top.

http://www.xilinx.com

MIG User Guide www.xilinx.com 75
UG086 (v2.2) March 3, 2008

Using MIG in Batch Mode
R

Controller number Information related to each controller is between “<Controller number="X">” and
“</Controller>”. X holds the values from 0 to NoOfControllers – 1. It is different than
ControllerNumber. The options selected by the user for each controller are listed below:

MemoryDevice Gives the selected memory device and the memory type.

Clocking Denotes the selected clocking type.

CCCheck Indicates whether the Clock Capable (CC) option is enabled [1]
or disabled [0]. If CC is enabled, strobe pins are allocated to the
CC pins only.

Frequency Indicates the frequency selected by the user for that controller.

DataWidth Data width selected by the user.

Data Mask Indicates whether Data Mask pin is to be allocated.

DeepMemory Indicates the depth of the memory. This parameter is supported
for Virtex-4 DDR2 SDRAM Direct clocking designs only. The
depth of the memory for that controller is increased by
multiples of DeepMemory value.

RowAddress Indicates the row address width, this is the parameter of the
Create New Memory Part.

MasterBanks Indicates the Master Banks selected. (This appears only for the
QDRII Virtex-5 FPGA design.)

ColAddress Indicates the column address width, this is the parameter of the
Create New Memory Part.

BankAddress Indicates the bank address width, this is the parameter of the
Create New Memory Part.

TimingParameters Indicates various timing parameters of the selected Memory
component.

ECC Error Correction Code (ECC) is supported for Virtex-4 DDR2
SDRAM Direct clocking designs only.

WritePipeLine Represents the pipeline stages. This parameter is supported for
Spartan-3, Spartan-3E, Spartan-3A, and Spartan-3A DSP
designs only.

BankSelection Displays the banks selected by the user for that controller.
Information about the particular bank is “<Bank Control="0"
Address="0" SysClk="1" Dwrite="0" Data="0" name="3"
wasso="16" />”, where:

• “0” denotes signals that are not allocated in that bank.
• “1” denotes signals that are allocated in that bank.
• Control, Address, SysClk, Dwrite, and Data are the different

signal groups.
• “name” denotes the bank number.
• “wasso” denotes the number of pins limited by the user in the

particular bank.

Notes:
1. All the above parameters might not be available for all the designs. They vary according to the design.

Table 1-1: PRJ File Parameters (Continued)

Parameter Description

http://www.xilinx.com

76 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 1: Using MIG
R

Load Mode and Extended Mode Register value parameters are listed in “Mode Register
Values.” These define specific modes of operation. These mode registers are not supported
by all designs. They appear controller-wise.

Table 1-2: Mode Register Values

Description

<mrBurstLength name="Burst Length" >8(011)</mrBurstLength> Denotes the Burst length selected by
the user. Valid values are 2 (001), 4
(010), or 8 (011), depending on the
design.

<mrBurstType name="Burst Type" >sequential(0)</mrBurstType> Gives information about the burst
type. Not all designs support this
parameter.

<mrCasLatency name="Cas Latency" >4(100)</mrCasLatency> Supported CAS latencies are 3 (011),
4 (100) and 5 (101). Some designs
do not have this concept.

<mrMode name="Mode" >normal(0)</mrMode> MIG supports normal mode only.
The test mode is used only by the
manufacturer.

<mrDllReset name="DLL Reset" >no(0)</mrDllReset> Self-clearing is supported when ‘1’.
MIG does not support this option for
all designs.

<mrPdMode name="PD Mode" >fast exit(0)</mrPdMode> Power Down mode determines the
performance versus power savings.
MIG only supports fast exit mode.

<mrWriteRecovery name="Write Recovery" >5(100)</mrWriteRecovery> During a WRITE with auto
precharge operation, the DDR2
SDRAM delays the internal auto
precharge operation by WR clocks.
WR supports the following values: 2
(001), 3 (010), 4 (011), 5 (100) and 6
(101). This value varies depending
on the user-selected frequency.

<emrDllEnable name="DLL Enable" >Enable-
Normal(0)</emrDllEnable>

The DLL should be enabled for
normal mode of operation.

<emrOutputDriveStrength name="Output Drive Strength">
Fullstrength(0)</emrOutputDriveStrength>

It selects full drive strength for all
outputs. MIG supports full drive
strength alone.

<emrRTT name="RTT (nominal) - ODT" >150ohms(10)</emrRTT> On-Die Termination effective
resistance (RTT) has the following
values: Disabled (00), 75Ω (01), 150Ω
(10), and 50Ω (11). MIG does not
support 50Ω (11).

<emrPosted name="Additive Latency (AL)" >2(010)</emrPosted> Additive Latency (AL) can have
values of 0 (000), 1 (001), 2 (010), 3
(011), and 4 (100). MIG only
supports AL values of 0, 1, and 2,
depending on the design.

http://www.xilinx.com

MIG User Guide www.xilinx.com 77
UG086 (v2.2) March 3, 2008

Using MIG in Batch Mode
R

Running in Batch Mode
The following GUI features are not supported in batch mode:

• Generate board files

• Verify UCF

• Read ucf file in the Reserve Pins option

• Save as option in the Reserve Pins option

• User guide

• Create New Memory Part

• Version info

• Real-time pin allocation

MIG designs can also be generated through the CORE Generator tool in batch mode as
follows:

• First set the command prompt to the output path. To generate the MIG design, the
following command is executed from the command prompt:

coregen -b <xcofilename>.xco -p <project path>

Where the <project path> indicates the path of the mig.prj file.

For example,

coregen -b test.xco -p D:\MIG_testing\coregen_test\v4_design

• After this command is executed, all the outputs are generated in the
<Component Name> folder.

<emrOCD name="OCD Operation" >OCD Exit(000)</emrOCD> Not supported by MIG.

<emrDQS name="DQS# Enable" >Enable(0)</emrDQS> A 0 enables differential DQS.
A 1 enables single DQS. This is
applicable for designs supporting
both differential and single-ended
DQSs. For example, Virtex-4 DDR2
SDRAM designs supports both
differential DQS and single-ended
DQS.

<emrRDQS name="RDQS Enable" >Disable(0)</emrRDQS> When enabled, RDQS is identical in
function and timing to data strobe
DQS during a READ operation.
During a WRITE operation, RDQS is
ignored by the DDR2 SDRAM. MIG
does not support this option, which
is disabled in the tool.

<emrOutputs name="Outputs" >Enable(0)</emrOutputs> This value should always be 0
(enables the outputs). A value of 1 is
not supported.

Table 1-2: Mode Register Values (Continued)

Description

http://www.xilinx.com

78 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 1: Using MIG
R

http://www.xilinx.com

MIG User Guide www.xilinx.com 79
UG086 (v2.2) March 3, 2008

R

Section II: Virtex-4 FPGA to Memory Interfaces

Chapter 2, “Implementing DDR SDRAM Controllers”

Chapter 3, “Implementing DDR2 SDRAM Controllers”

Chapter 4, “Implementing QDRII SRAM Controllers”

Chapter 5, “Implementing DDRII SRAM Controllers”

Chapter 6, “Implementing RLDRAM II Controllers”

http://www.xilinx.com

80 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Virtex-4 FPGA to Memory Interfaces
R

http://www.xilinx.com

MIG User Guide www.xilinx.com 81
UG086 (v2.2) March 3, 2008

R

Chapter 2

Implementing DDR SDRAM Controllers

This chapter describes how to implement DDR SDRAM interfaces for Virtex™-4 FPGAs
generated by MIG. This design is based on XAPP709 [Ref 20].

Feature Summary

Supported Features
The DDR SDRAM controller design supports the following:

• Burst lengths of two, four, and eight

• Sequential and interleaved burst types

• CAS latencies of 2, 2.5, and 3

• Precharge based on the row to be accessed or the precharge command given by the
user

• Registered DIMMs, unbuffered DIMMs, and SODIMMs

• Different memories (density/speed)

• Auto refresh

• Linear addressing

• VHDL and Verilog

• With and without a testbench

• With and without a DCM

The supported features are described in more detail in “Architecture.”

Design Frequency Ranges

Table 2-1: Design Frequency Range in MHz

Memory

FPGA Speed Grade

-10 -11 -12

Min Max Min Max Min Max

Component 100 165 100 170 100 175

DIMM 100 165 100 170 100 175

http://www.xilinx.com

82 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 2: Implementing DDR SDRAM Controllers
R

Unsupported Features
• Dual Rank DIMMs

• Deep Memory

• Auto Precharge

• Bank Management

• Multi Controller

Architecture

Interface Model
DDR SDRAM interfaces are source-synchronous and double data rate. They transfer data
on both edges of the clock cycle. A memory interface can be modularly represented as
shown in Figure 2-1. A modular interface has many advantages. It allows designs to be
ported easily and also makes it possible to share parts of the design across different types
of memory interfaces.

Implemented Features
This section provides details on the supported features of the DDR SDRAM controller.
Based on user selection, the tool generates a parameter file, which is used to set various
features of the memory and to generate the control signals accordingly.

The parameter file provides the settings for burst length, CAS latency, sequential or
interleaved addressing, number of row address bits, number of column address bits, bank
address, and the timing parameters based on the frequency and the speed grade selected
from the GUI. The DDR SDRAM controller uses these parameters directly.

Figure 2-1: Modular Memory Interface Representation

Application Interface Layer

Xilinx FPGA

Physical Layer

Control Layer

UG086_c2_01_012507

Memories

http://www.xilinx.com

MIG User Guide www.xilinx.com 83
UG086 (v2.2) March 3, 2008

Architecture
R

The user issues a command through the FIFOs (user_interface). The user address (i.e.,
APP_AF_ADDR that is written into the FIFO as shown in Figure 2-10 or Figure 2-12) is
decoded in a sequence. The total width of the Read/Write Address FIFO
(rd_wr_addr_fifo) is 36 bits. The user writes the column address (least-significant bits),
row address, bank address, chip address [31:0], and the command to be issued [34:32]. The
36th bit (APP_AF_ADDR[35]) is reserved by the design to manipulate whether or not the
row to be accessed is same as that of the previous row. The APP_AF_ADDR[35] input is a
don't care for the design. The controller takes the row and column address bits based on
the selected component. The “Write Interface” and “Read Interface” sections provide
further details on how to issue the write and read commands, respectively.

Table 2-2 lists the commands that the user can issue through the User interface. If the user
issues an invalid command, the state of the controller is undefined. The functionality is not
guaranteed when an invalid command is issued.

Burst Length

Bits M0:M3 of the Mode Register define the burst length and burst type. Read and write
accesses to the DDR SDRAM are burst-oriented. The burst length is programmable to
either 2, 4, or 8 from the GUI. It determines the maximum number of column locations
accessed for a given READ or WRITE command.

The DDR SDRAM ddr_controller module implements the user-selected burst length from
MIG.

CAS Latency

Bits M4:M6 of the Mode Register define the CAS latency (CL). CL is the delay in clock
cycles between the registration of a READ command and the availability of the first bit of
output data. CL can be set to 2, 2.5, or 3 clocks from the GUI.

The controller supports CAS latencies of 2, 2.5, and 3.

During read data operations, the generation of the read_en signal varies according to the
CL in the ddr_controller module.

Registered DIMMs

DDR SDRAM supports registered DIMMs. This feature is implemented in the
ddr_controller module. For registered DIMMs, the READ and WRITE commands and
address have one additional clock latency than unbuffered DIMMs. Also for registered
DIMMs, the controller delays the data and the strobe by one clock because the command
has one clock latency due to the register in the DIMM.

Table 2-2: User Commands

Command APP_AF_ADDR[34:32]

READ 101

WRITE 100

REFRESH 001

PRECHARGE 010

http://www.xilinx.com

84 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 2: Implementing DDR SDRAM Controllers
R

Unbuffered DIMMs and SODIMMs

DDR SDRAM design supports unbuffered DIMMs and SODIMMs. Unbuffered DIMMs
are normal DIMMs where a set of components are used to get a particular configuration.
SODIMMs vary from the unbuffered DIMMs only by package type. They are functionally
the same.

Precharge

The PRECHARGE command is issued before the next read or write is issued for a different
row, but not if the read or write is in the same row. The PRECHARGE command checks the
row address, bank address, and chip selects. The DDR Virtex-4 FPGA controller issues a
PRECHARGE command if there is a change in any address where a read or write
command is to be issued. The AUTO PRECHARGE command via the A10 column bit is
not supported.

Auto Refresh

The DDR SDRAM controller issues AUTO REFRESH commands at specified intervals for
the memory to refresh the charge required to retain the data in the memory. The user can
also issue a REFRESH command through the user interface by setting bits 34, 33, and 32 of
the app_af_addr signal in the user_interface module to 3’b001. If there is a refresh request
while during an ongoing read or write burst, the controller issues a REFRESH command
after completing the current read or write burst command.

Linear Addressing

The DDR SDRAM controller supports linear addressing. Linear addressing refers to the
way the user provides the address of the memory to be accessed. For Virtex-4 DDR
SDRAM controllers, the user provides the address information through the app_af_addr
signal. As the densities of the memory devices vary, the number of column address bits
and row address bits also changes. In any case, the row address bits in the app_af_addr
signal always start from the next-higher bit, where the column address ends. This feature
increases the number of devices that can be supported with the design.

Different Memories (Density/Speed)

This feature supports different memory components and DIMMs. The component
densities can vary from 128 Mb to 1 Gb, and the DIMM densities can vary from 128 MB to
1 GB. Higher densities can be created using the "Create new memory part" feature of MIG.
The maximum supported column address is 13 bits, the maximum row address is 15 bits,
and the maximum bank address is 2 bits. To support this feature, the design can decode
write and read addresses from the user in the DDR SDRAM controller module. The user
address consists of row, column, bank, and chip addresses, and the user command. Apart
from the address decoding, timing parameters vary according to the density and speed
grade.

Table 2-3 lists the timing parameters for components, and Table 2-4 lists the timing
parameters for DIMMs.

http://www.xilinx.com

MIG User Guide www.xilinx.com 85
UG086 (v2.2) March 3, 2008

Architecture
R

Table 2-3: Timing Parameters for Components

Parameter Description
Micron 128 Mb Micron 256 Mb Micron 512 Mb Micron 1 Gb

-5 -75 -5 -75 -5 -75 -5 -75

TCK Clock Cycle
Time

CL = 3 5 ns NA 5 ns NA 5 ns NA 5 ns NA

CL = 2.5 6 ns 7.5 ns 6 ns 7.5 ns 6 ns 7.5 ns 6 ns 7.5 ns

CL = 2 7.5 ns 10 ns 7.5 ns 10 ns 7.5 ns 10 ns 7.5 ns 10 ns

TMRD LOAD MODE
Command Cycle Time

10 ns 15 ns 10 ns 15 ns 10 ns 15 ns 10 ns 15 ns

TRP PRECHARGE
Command Period

15 ns 20 ns 15 ns 20 ns 15 ns 20 ns 15 ns 20 ns

TRFC REFRESH Time 70 ns 75 ns 70 ns 75 ns 70 ns 75 ns 120 ns 120 ns

TRCD ACTIVE to READ or
WRITE Delay

15 ns 20 ns 15 ns 20 ns 15 ns 20 ns 15 ns 20 ns

TRAS ACTIVE to
PRECHARGE
Command

40 ns 40 ns 40 ns 40 ns 40 ns 40 ns 40 ns 40 ns

TRC ACTIVE to ACTIVE
(Same Bank) Command

55 ns 65 ns 55 ns 65 ns 55 ns 65 ns 55 ns 65 ns

TWTR WRITE to READ
Command Delay

2 * TCK 1 * TCK 2 * TCK 1 * TCK 2 * TCK 1 * TCK 2 * TCK 1 * TCK

TWR WRITE Recovery Time 15 ns 15 ns 15 ns 15 ns 15 ns 15 ns 15 ns 15 ns

Table 2-4: Timing Parameters for DIMMs (Unbuffered and Registered)

Parameter Description
Micron 128 MB Micron 256 MB Micron 512 MB Micron 1 GB

-40 -40 -40 -40

TCK Clock Cycle
Time

CL = 3 5 ns 5 ns 5 ns 5 ns

CL = 2.5 6 ns 6 ns 6 ns 6 ns

CL = 2 7.5 ns 7.5 ns 7.5 ns 7.5 ns

TMRD LOAD MODE Command
Cycle Time

10 ns 10 ns 10 ns 10 ns

TRP PRECHARGE Command
Period

15 ns 15 ns 15 ns 15 ns

TRFC REFRESH Time 70 ns 70 ns 70 ns 70 ns

TRCD ACTIVE to READ or WRITE
Delay

15 ns 15 ns 15 ns 15 ns

TRAS ACTIVE to PRECHARGE
Command

40 ns 40 ns 40 ns 40 ns

TRC ACTIVE to ACTIVE (Same
Bank) Command

55 ns 55 ns 55 ns 55 ns

http://www.xilinx.com

86 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 2: Implementing DDR SDRAM Controllers
R

Note: For the latest timing information, refer to the vendor memory data sheets.

Hierarchy
Figure 2-2 shows the hierarchical structure of the DDR SDRAM design generated by MIG
with a testbench and a DCM. The physical and control layers are clearly separated in this
figure. MIG generates the entire DDR SDRAM controller as shown in this hierarchy,
including the testbench. MIG also generates a parameter file where all user input
parameters or some parameters used internally by the design are defined.

The modules are classified as follows:

• Design modules

• Testbench modules

• Clocks and reset generation modules

TWTR WRITE to READ Command
Delay

2 * TCK 2 * TCK 2 * TCK 2 * TCK

TWR WRITE Recovery Time 15 ns 15 ns 15 ns 15 ns

Table 2-4: Timing Parameters for DIMMs (Unbuffered and Registered) (Continued)

Parameter Description
Micron 128 MB Micron 256 MB Micron 512 MB Micron 1 GB

-40 -40 -40 -40

Figure 2-2: Hierarchical Structure of the Virtex-4 DDR SDRAM Design

<top_
module>

main* idelayctrlinfrastructure*

iobs*
data_
path*

user_
interface*

data_
path_iobs*

controller
_iobs*

infrastructure
_iobs*

ddr_
controller*

v4_dq_
iob

Design Modules

v4_dm_
iob

RAM_D

v4_dqs_
iob

backend
_fifos*

rd_wr_
addr_
fifo*

wr_data
_fifo

rd_data*

rd_data
_fifo*

pattern_
compare

data_
write*

tap_
logic*

tap_
ctrl*

data_
tap_inc*

test_
bench*

top*

Test Bench Modules

Clocks and Reset Generation Modules

UG086_c2_02_091107Note: A block with a * has a parameter file included.

cmp_rd_
data*

backend
_rom*

data_
gen

addr_
gen

http://www.xilinx.com

MIG User Guide www.xilinx.com 87
UG086 (v2.2) March 3, 2008

Architecture
R

There is a parameter file generated with the design that has all the user input and design
parameters selected from MIG.

MIG can generate four different DDR SDRAM designs:

• With a testbench and a DCM

• Without a testbench and with a DCM

• With a testbench and without a DCM

• Without a testbench and without a DCM

When the testbench is not generated by MIG, the top-level module has the user interface
signals. The list of user interface signals is provided in Table 2-7.

Design clocks and resets are generated in the infrastructure module. The DCM clock is
instantiated in the infrastructure module for designs with a DCM. The inputs to this
module are the differential design clock and a 200 MHz differential clock for the
IDELAYCTRL module. A user reset is also input to this module. Using the input clocks and
reset signals, the system clocks and the system reset are generated in this module, which is
used in the design.

The DCM primitive is not instantiated in this module if the Use DCM option is unchecked.
So, the system operates on the user-provided clocks. The system reset is generated in the
infrastructure module using the DCM_LOCK input signal.

Figure 2-3 shows a DDR SDRAM controller block diagram representation of the top-level
module for a design with a DCM and a testbench. SYS_CLK_P and SYS_CLK_N are
differential input system clocks. The DCM clock is instantiated in the infrastructure
module that generates the required design clocks. CLK200_P and CLK200_N are used for
the idelay_ctrl element. SYS_RESET_IN_N is the active-Low system reset signal. All
design resets are gated by the dcm_lock signal. Memory device signals are prepended with
the controller number. For example, DDR_RAS_N appears as cntrl0_DDR_RAS_N.

Figure 2-3: Top-Level Block Diagram of the DDR SDRAM Design with a DCM and a Testbench

main_0

idelay_ctrl_rdy

CLK200

Memory
Device

UG086_c2_03_090507

Status
Signals

System
Clocks

and Reset

idelay_ctrl

Infrastructure

sys_rst_rt

clk_0

clk_90

sys_rst90

CLK200_P

CLK200_N

SYS_CLK_P

SYS_CLK_N

SYS_RESET_IN_N
sys_rst

DDR_RAS_N

DDR_CAS_N

DDR_WE_N

DDR_CS_N

DDR_CKE

DDR_DM

DDR_BA

DDR_A

DDR_CK

DDR_CK_N

DDR_DQ

DDR_DQS

DDR_RESET_N

ERROR

init_done

http://www.xilinx.com

88 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 2: Implementing DDR SDRAM Controllers
R

The error output signal indicates whether the case passes or fails. The testbench module
does writes and reads, and also compares the read data with the written data. The error
signal is driven High on data mismatches.

The init_done signal indicates the completion of initialization and calibration of the design.

All the signals listed under the Memory Device category do not necessarily appear in the
top level port list. The port list varies according to the memory type selected, such as a
component or a registered DIMM. For example, a component does not have the
ddr_reset_n signal.

Figure 2-4 shows a block diagram representation of the top-level module for a design with
a DCM but without a testbench.

The DCM clock module is instantiated in the infrastructure module. Using the differential
SYS_CLK_P and SYS_CLK_N signals, the internal DCM generates all the required clocks
for the design. CLK200_P and CLK200_N are used by the idelay_ctrl element.
SYS_RESET_IN_N is the active-Low system reset signal. All design resets are generated
using the input reset signal gated by the dcm_lock signal.

The init_done signal indicates the completion of initialization and calibration of the design.

The application’s user interface signals are listed in Figure 2-4. The design provides the
clk_tb and reset_tb signals to the user to synchronize with the design.

Figure 2-4: Top-Level Block Diagram of the DDR SDRAM Design with a DCM but without a Testbench

top_0

idelay_ctrl_rdy

clk200

Memory
Device

UG086_c2_04_090507

User
Application

System
Clocks

and Reset

idelay_ctrl

Infrastructure

sys_rst_rt

clk_0

clk_90

sys_rst90

CLK200_P

CLK200_N

SYS_CLK_P

SYS_CLK_N

SYS_RESET_IN_N

APP_AF_ADDR

APP_AF_WREN

APP_WDF_DATA

APP_MASK_DATA

APP_WDF_WREN

WDF_ALMOST_FULL

AF_ALMOST_FULL

BURST_LENGTH_DIV2

READ_DATA_VALID

READ_DATA_FIFO_OUT

sys_rst

DDR_RAS_N

DDR_CAS_N

DDR_WE_N

DDR_CS_N

DDR_CKE

DDR_DM

DDR_BA

DDR_A

DDR_CK

DDR_CK_N

DDR_DQ

DDR_DQS

CLK_TB

RESET_TB

init_done

DDR_RESET_N

http://www.xilinx.com

MIG User Guide www.xilinx.com 89
UG086 (v2.2) March 3, 2008

Architecture
R

Figure 2-5 shows a block diagram representation of the top-level module for a design
without a DCM or a testbench. There is no DCM instantiated in the infrastructure module.
All the clocks and dcm_lock should be given as inputs from the user interface. Resets are
generated using the SYS_RESET_IN_N signal gated by the dcm_lock signal in the
infrastructure module. Clk200 is used by the idelay_ctrl element. All the clocks should be
single-ended. The user application must have a DCM primitive instantiated in the design.

The init_done signal indicates the completion of initialization and calibration of the design.

The user interface signals are also listed in the <top_module> module. The design
provides the clk_tb and reset_tb signals to the user to synchronize with the design.

Figure 2-5: Top-Level Block Diagram of the DDR SDRAM Design without a DCM or a Testbench

top_0

idelay_ctrl_rdy

Memory
Device

UG086_c2_05_090507

System
Reset

and User
DCM

Clocks

idelay_ctrl

Infrastructure

sys_rst_r1

sys_rst

sys_rst90

clk_0

clk_200

clk_90

SYS_RESET_IN_N

dcm_lock
DDR_RAS_N

DDR_CAS_N

DDR_WE_N

DDR_CS_N

DDR_CKE

DDR_DM

DDR_BA

DDR_A

DDR_CK

DDR_CK_N

DDR_DQ

DDR_DQS

DDR_RESET_N

User
Application

APP_AF_ADDR

APP_AF_WREN

APP_WDF_DATA

APP_MASK_DATA

APP_WDF_WREN

WDF_ALMOST_FULL

AF_ALMOST_FULL

BURST_LENGTH_DIV2

READ_DATA_VALID

READ_DATA_FIFO_OUT

CLK_TB

RESET_TB

init_done

http://www.xilinx.com

90 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 2: Implementing DDR SDRAM Controllers
R

Figure 2-6 shows a block diagram representation of the top-level module for a design with
a testbench but without a DCM. The user should provide all the clocks and the dcm_lock
signal. These clocks should be single-ended. SYS_RESET_IN_N is the active-Low system
reset signal. All design resets are gated by the dcm_lock signal.

The error output signal indicates whether the case passes or fails. The testbench module
does writes and reads, and also compares the read data with the written data. The ERROR
signal is driven High on data mismatches. The init_done signal indicates the completion of
initialization and calibration of the design.

Figure 2-6: Top-Level Block Diagram of the DDR SDRAM Design with a Testbench but without a DCM

main_0

idelay_ctrl_rdy

Memory
Device

UG086_c2_06_090507

Status
Signals

System
Reset

and User
DCM

Clocks

idelay_ctrl

Infrastructure

sys_rst_rt

sys_rst

sys_rst90

clk_0

clk_200

clk_90

SYS_RESET_IN_N

dcm_lock

DDR_RAS_N

DDR_CAS_N

DDR_WE_N

DDR_CS_N

DDR_CKE

DDR_DM

DDR_BA

DDR_A

DDR_CK

DDR_CK_N

DDR_DQ

DDR_DQS

ERROR

init_done

DDR_RESET_N

http://www.xilinx.com

MIG User Guide www.xilinx.com 91
UG086 (v2.2) March 3, 2008

Architecture
R

Figure 2-7 shows the expanded block diagram of the design. The top module is expanded
to show various internal blocks. The functions of these blocks are explained in the
subsections following the figure.
I

Figure 2-7: Expanded DDR SDRAM Controller Block Diagram

Infrastructure

Datapath

User Interface

Idelay_ctrl

IOBsController

WDF_ALMOST_FULL

AF_ALMOST_FULL

READ_DATA_VALID

APP_WDF_DATA[2n:0]

APP_MASK_DATA[2m-1:0]

READ_DATA_FIFO_OUT

AF_ADDR

Clocks and Resets

AF_EMPTY

CTRL_AF_RDEN

CTRL_WDF_RDEN

BURST_LENGTH_DIV2

dqs_delayed

data_idelay_incMASK_DATA

WDF_DATA

CLK

CLK_n

ADDRESSctrl_ddr_address

ctrl_ddr_ba RAS_n

CAS_n

WE_nBURST_LENGTH_DIV2[2:0]

CLK200_P

CLK200_N

SYS_CLK_P

SYS_CLK_N

SYS_RESET_IN_N

CLK_TB

INIT_DONE

RESET_TB

ctrl_ddr_ras_L

ctrl_ddr_cas_L

ctrl_ddr_we_L

ctrl_ddr_cs_L

ctrl_ddr_cke

DQ

DQS

DM

RESET_N

CKE_n

CS_n

BA

ctrl_Rden

Idelay_ctrl_rdy

UG086_c2_07_090507

data_idelay_ce

data_idelay_rst

dqs_idelay_inc

dqs_idelay_ce

dqs_idelay_rst

RISING_FIRST

dqs_rst

dqs_en

wr_en

wr_data_rise

wr_data_fall

mask_data_rise

mask_data_fall

APP_AF_ADDR

APP_AF_WREN

APP_WDF_WREN

CLK_200

RESET

http://www.xilinx.com

92 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 2: Implementing DDR SDRAM Controllers
R

Controller

The DDR SDRAM controller initializes the memory, accepts and decodes user commands,
and generates READ, WRITE, and REFRESH commands. The DDR SDRAM controller also
generates signals for other modules. The memory is initialized and powered-up using a
defined process. The controller state machine handles the initialization process upon
power-up. If the AUTO REFRESH command is to be issued between any user read or write
commands, then the read or write command is suspended until the ref_done flag is
deasserted.

Datapath

This module transmits data to the memories. Its major functions include storing the write
data and calculating the tap value for the read datapath. The data_write and
data_path_IOBs modules do the actual write functions. The Idelay_ctrl, tap_ctrl and
data_tap_inc modules do the calibration.

User Interface

This module stores write data in its Write Data FIFO (wr_data_fifo), stores write and read
addresses in its Read/Write Address FIFO (rd_wr_addr_fifo), and stores received read
data from memory in its Read Data FIFO (rd_data_fifo). The width of the Write Data FIFO
is twice the data width and mask width of the memory. For example, for a 16-bit width, the
width of the FIFO is 36 because the data width is 32 and the mask width is 4. The
rd_wr_addr_fifo and wr_data_fifo modules store the data and address in block RAMs. The
rd_data_fifo module captures the data in the LUT-based RAMs.

The controller also generates user commands, such as READ and WRITE.

The pattern_compare module registers the delay between the command and the data
received from the IOBs. This delay is then applied to the Rden signal generated from the
ddr_controller module during the actual read to register the valid data in the internal
FIFOs.

Infrastructure

The infrastructure module generates the FPGA clocks and reset signals. A DCM generates
the phase-shifted clocks (clk0, clk90), refresh clock, and calibration clock. All the reset
signals required for the design are also generated.

IOBS Module

All DDR SDRAM address, control, and data signals are transmitted and received in the
through the input and output buffers.

DDR SDRAM Initialization and Calibration
DDR memory is initialized through a specified sequence as shown in Figure 2-8. The
controller starts the memory initialization at power up itself. Following the initialization,
the relationship between the data and the FPGA clock is calculated using the TAP logic.
The controller issues a dummy read command to the memory. As the data and the memory
strobe are edge-aligned, the strobe is passed through the IDELAY elements of the Virtex-4
device and the taps are adjusted to find the center of the strobe pulse. The sel_done port in
tap_logic module indicates the completion of DQS to FPGA calibration. The number of

http://www.xilinx.com

MIG User Guide www.xilinx.com 93
UG086 (v2.2) March 3, 2008

DDR SDRAM Initialization and Calibration
R

taps is then used to delay the data during normal reads to register the valid data in the
FPGA. XAPP701 [Ref 17] provides more information about the calibration architecture.

Following the strobe detection, the controller does a read enable calibration. This
calibration is used to determine the delay from read command to read data at rd_data_fifo.
The delay between read command and read data is affected by the CAS latency
parameters, the PCB traces, and the I/O buffer delays. Read enable calibration is used to
generate a write enable to rd_data_fifo so that valid data is registered. Controller writes a
known fixed pattern and reads back the data from memory. The read data is compared
against the known fixed pattern. The comp_done port in rd_data module indicates the
completion of the read enable calibration.

The init_done port indicates the completion of both DQS to FPGA calibration and read
enable calibration. After initialization and calibration is done, the controller can start
issuing user commands to the memory.

Figure 2-8: DDR Memory Initialization Sequence

Load Mode Register
Command for Extended Mode

Register to enable the DLL

Load Mode Register
Command to reset the DLL

Precharge All Command

Two Auto Refresh Commands

Load Mode Register
Command to deactivate the

DLL Reset

Precharge All Command

200 clock cycles delay

200 μs Delay

Power Up

UG086_c2_08_012507

http://www.xilinx.com

94 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 2: Implementing DDR SDRAM Controllers
R

DDR SDRAM System and User Interface Signals
Table 2-5 describes the DDR SDRAM system interface signals for designs with the DCM.
The system interface signals are the clocks and the reset signals given by the user to the
FPGA. SYS_CLK_P and SYS_CLK_N are the two clocks to be provided to the design. These
two clocks must have a phase difference of 180 degrees with respect to each other.
SYS_RESET_IN_N resets all the logic.

Table 2-6 shows the system interface signals for designs without the DCM. The clk_0,
clk_90, and clk_200 signals are the single-ended input clocks. The clk_90 signal must have
a phase difference of 90° with respect to clk_0. The clk_200 signal is the clock used for the
IDELAYCTRL primitives in Virtex-4 FPGAs.

Table 2-7 describes the DDR SDRAM user interface signals for designs without the
testbench.

Table 2-5: DDR SDRAM System Interface Signals for Designs with DCM

Signal Name Direction Description

SYS_CLK_P, SYS_CLK_N Input Differential input clock to the DCM. The DDR SDRAM controller
and memory operate on this frequency.

SYS_RESET_IN_N Input Active-Low reset to the DDR SDRAM controller.

CLK200_P, CLK200_N Input Differential clock used in the idelay_ctrl logic.

Table 2-6: System Interface Signals for Designs without the DCM

Signal Direction Description

clk_0 Input The DDR SDRAM controller and memory operate on this clock.

SYS_RESET_IN_N Input Active-Low reset to the DDR SDRAM controller. This signal is used
to generate a synchronous system reset.

clk_90 Input 90° phase-shifted clock with the same frequency as clk0.

clk_200 Input 200 MHz input differential clock for the IDELAYCTRL primitive of
the Virtex-4 FPGA.

dcm_lock Input The status signal indicating whether the DCM is locked or not. It is
used to generate the synchronous system reset.

Table 2-7: DDR SDRAM User Interface Signals for Designs without the Testbench Case

Signal Name Direction Description

CLK_TB Output All user interface signals must be synchronized with respect to
CLK_TB.

RESET_TB Output Active-High system reset for the user interface.

BURST_LENGTH_DIV2[2:0] Output Indicates the number of bursts that can be written to or read from
the memory.

001: burst length = 2
010: burst length = 4
100: burst length = 8

http://www.xilinx.com

MIG User Guide www.xilinx.com 95
UG086 (v2.2) March 3, 2008

DDR SDRAM System and User Interface Signals
R

READ_DATA_VALID Output Status of the Read Data FIFO. This signal is asserted when read data
is available in the Read Data FIFO.

READ_DATA_FIFO_OUT
[2n–1:0]

Output Read data from memory, where n is the data width of the interface.
The read data is stored into the Read Data FIFO. This data can be
read from the FIFO depending upon the status of the FIFO.

WDF_ALMOST_FULL Output ALMOST FULL status of the Write Data FIFO. When this signal is
asserted, the user can write 5 more locations into the FIFO in designs
generated with a testbench and 14 more locations in designs without
a testbench.

AF_ALMOST_FULL Output ALMOST FULL status of the Read Address FIFO. The user can issue
eight more locations into the FIFO after AF_ALMOST_FULL is
asserted.

APP_AF_ADDR[35:0] Input Memory address and command. Bit 35 is used internally by the
controller. The controller ignores this bit from the user interface. Bits
[34:32] are used for dynamic commands as follows:

001: Auto Refresh
010: Precharge
100: Write
101: Read

Bits [31:0] form the memory chip select, bank address, row address,
and column address. The positioning of the chip, bank, row, and
column addresses changes based on the memory configuration.

APP_AF_WREN Input Write-enable signal to the Write Address FIFO. This signal is
synchronized with the write address. The write address is written to
the Write Address FIFO only when this signal is asserted High.

APP_MASK_DATA[2m–1:0] Input User mask data, where m indicates the data mask width of the
interface. The mask data is twice the mask width of the interface.
The mask data is written into the Write Data FIFO along with the
write data.

APP_WDF_DATA[2n–1:0] Input User write data to the memory, where n indicates the data width of
the interface. The user write data is twice the data width of the
interface. The most-significant bits contain the rising-edge data, and
the least-significant bits contain the falling-edge data. Memory write
data is written into the Write Data FIFO, and the write address is
written into the Write Address FIFO from the user interface. The
DDR SDRAM controller reads the Write Address FIFO and Write
Data FIFO.

APP_WDF_WREN Input Write-enable signal to the Write Data FIFO. This signal is
synchronized with the write data. The write data is written to the
Write Data FIFO only when this signal is asserted High.

Notes:
1. All user interface signal names are prepended with a controller number, for example, cntrl0_APP_WDF_DATA. DDR SDRAM

devices currently support only one controller.

Table 2-7: DDR SDRAM User Interface Signals for Designs without the Testbench Case (Continued)

Signal Name Direction Description

http://www.xilinx.com

96 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 2: Implementing DDR SDRAM Controllers
R

Table 2-8 describes the status signals that are available to the user.

User Interface Accesses
The user backend logic communicates with the memory controller through a FIFO-based
user interface. This interface consists of three related buses:

• A Command/Address FIFO bus, which accepts write/read commands as well as the
corresponding memory address from the user

• A Write Data FIFO bus, which accepts the corresponding write data when the user
issues a write command on the Command/Address bus

• A Read bus on which the corresponding read data for an issued read command is
returned

The user interface has the following timing and signaling restriction:

• When issuing a write command, the first write data word must be written to the Write
Data FIFO no more than one clock cycle after the write command is issued. This
restriction arises from the fact that the controller assumes write data is available when
it receives the write command from the user.

Write Interface
Figure 2-9 shows the user interface block diagram for write operations.

Table 2-8: DDR SDRAM Design Status Signals

Signal Name Direction Description

init_done Output This signal indicates the completion of initialization and calibration
of the design.

Figure 2-9: User Interface Block Diagram for Write Operations

User Interface

Controller

 Address FIFO
(FIFO16)
512 x 36

af_addr

af_empty

ctrl_af_rden

ctrl_wdf_rden

app_af_addr

app_af_wren

app_wdf_data

app_mask_data

app_wdf_wren

wdf_data

mask_data
To Phy Layer

wdf_almost_full

af_almost_full

Write Data
FIFO

(FIFO16)
512 x 36

Write Data
FIFO

(FIFO16)
512 x 36

ug086_c2_11_110607

http://www.xilinx.com

MIG User Guide www.xilinx.com 97
UG086 (v2.2) March 3, 2008

DDR SDRAM System and User Interface Signals
R

The following steps describe the architecture of the Address and Write Data FIFOs and
show how to perform a write burst operation to DDR SDRAM from the user interface.

1. The user interface consists of an Address FIFO and a Write Data FIFO. These FIFOs are
constructed using Virtex-4 FIFO16 primitives with a 512 x 36 configuration. The 36-bit
architecture comprises one 32-bit port and one 4-bit port. For Write Data FIFOs, the
32-bit port is used for data bits and the 4-bit port is used for mask bits.

2. The Common Address FIFO is used for both write and read commands, and comprises
a command part and an address part. Command bits discriminate between write and
read commands.

3. User interface data width app_wdf_data is twice that of the memory data width. For
an 8-bit memory width, the user interface is 16 bits consisting of rise data and fall data.
For every 8 bits of data, there is a mask bit. For 72-bit memory data, the user interface
data width app_wdf_data is 144 bits, and the mask data app_mask_data is 18 bits.

4. The minimum configuration of the Write Data FIFO is 512 x 36 for a memory data
width of 8 bits. For an 8-bit memory data width, the least significant 16 bits of the data
port is used for write data. The controller internally pads all zeros for the most-
significant 16 bits.

5. Depending on the memory data width, MIG instantiates multiple FIFO16s to gain the
required width. For designs using 8-bit data width, one FIFO16 is instantiated; for
72-bit data width, a total of five FIFO16s are instantiated. The bit architecture
comprises 16 bits of rising-edge data, 2 bits of rising-edge mask, 16 bits of falling-edge
data, and 2 bits of falling-edge mask, which are all stored in a FIFO16. MIG routes the
app_wdf_data and app_mask_data to FIFO16s accordingly.

6. The user can initiate a write to memory by writing to the Address FIFO and the Write
Data FIFO when the FIFO Full flags are deasserted. Status signal af_almost_full is
asserted when Address FIFO is full, and similarly wdf_almost_full is asserted when
Write Data FIFO is full.

7. Both the Address FIFO and Write Data FIFO Full flags are deasserted with power-on.

8. The user should assert the Address FIFO write-enable signal app_af_wren along with
address app_af_addr to store the write address and write command into the Address
FIFO.

9. The user should assert the Data FIFO write-enable signal app_wdf_wren along with
write data app_wdf_data and mask data app_mask_data to store the write data and
mask data into the Write Data FIFO. The user should provide both rise and fall data
together for each write to the Data FIFO.

10. The controller reads the Address FIFO by issuing the ctrl_af_rden signal. The
controller reads the Write Data FIFO by issuing the ctrl_wdf_rden signal after the
Address FIFO is read. It decodes the command part after the Address FIFO is read.

11. The write command timing diagram in Figure 2-10 is derived from the MIG-generated
test bench. As shown (burst length of 4), each write to the Address FIFO must be
coupled with two writes to the Data FIFO. Similarly, for a burst length of 8, every write
to the Address FIFO must be coupled with four writes to the Data FIFO. Failure to
follow this rule can cause unpredictable behavior.

http://www.xilinx.com

98 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 2: Implementing DDR SDRAM Controllers
R

Correlation between the Address and Data FIFOs
There is a worst case two-cycle latency from the time the address is loaded into the address
FIFO on APP_AF_ADDR[35:0] to the time the controller decodes the address. Because of
this latency, it is not necessary to provide the address on the last clock where data is
entered into the data FIFO. If the address is written before the last data phase, the overall
efficiency and performance increases because it eliminates or reduces the two-cycle
latency. However, if the address is written before data is input into the data FIFO, a FIFO
empty condition might result because the Data FIFO does not contain valid data.

Based on these considerations, Xilinx recommends entering the address into the address
FIFO between the first data phase and the next-to-last data phase. For a burst of four or
eight, this means the address can be asserted one clock before the first data phase. This
implementation increases efficiency by reducing the one clock latency and guarantees that
valid data is available in the Data FIFO.

Figure 2-10: DDR SDRAM Write Burst for Four Bursts (BL = 4)

CLK_TB

RESET_TB

WDF_ALMOST_FULL

APP_WDF_WREN

APP_WDF_DATA

APP_MASK_DATA

APP_AF_WREN

APP_AF_ADDR

D0D1

A0

M0M1 M2M3 M4M5 M6M7 M8M9 M10M11 M12M13 M14M15

A1 A2 A3

D2D3 D4D5 D6D7 D8D9 D10D11 D12D13 D14D15

ug086_c2_09_072006

http://www.xilinx.com

MIG User Guide www.xilinx.com 99
UG086 (v2.2) March 3, 2008

DDR SDRAM System and User Interface Signals
R

Read Interface
Figure 2-11 shows a block diagram of the read interface.

The following steps describe the architecture of the Read Data FIFOs and show how to
perform a burst read operation from DDR SDRAM from the user interface.

1. The read user interface consists of an Address FIFO and a Read Data FIFO. The
Address FIFO is common to both read and write operations. These FIFOs are
constructed using Virtex-4 Distributed RAMs with a 16 x 1 configuration. MIG
instantiates a number of RAM16Ds depending on the data width. For example, for
8-bit data width, MIG instantiates a total of 16 RAM16Ds, 8 for rising-edge data and 8
for falling-edge data. Similarly, for 72-bit data width, MIG instantiates a total of 144
RAM16Ds, 72 for rising-edge data and 72 for falling-edge data.

2. The user can initiate a read to memory by writing to the Address FIFO when the
FIFO Full flag af_almost_full is deasserted.

3. To write the read address and read command into the Address FIFO, the user should
issue the Address FIFO write-enable signal app_af_wren along with read address
app_af_addr.

4. The controller reads the Address FIFO containing the address and command. After
decoding the command, the controller generates the appropriate control signals to
memory.

5. Prior to the actual read and write commands, the design calibrates the latency (number
of clock cycles) from the time the read command is issued to the time data is received.
Using this pre-calibrated delay information, the controller generates the write-enable
signals to the Read Data FIFOs.

6. The read_data_valid signal is asserted when data is available in the Read Data FIFOs.

7. Figure 2-12 shows a user interface timing diagram for a burst length of 4, CAS latency
of 3 at 175 MHz, and a Trcd value of the memory part at 20 ns. The read latency is
calculated from the point when the Read command is given by the user to the point

Figure 2-11: User Interface Block Diagram for Read Operation

User Interface

Controller
 Address FIFO

(FIFO16)
512 x 36

af_addr

af_empty

ctrl_af_rden

app_af_addr

app_af_wren

read_data_fifo_out

read_data_rise

read_data_fall From Phy Layer

read_data_valid

af_almost_full

Read Data
FIFO

RAM16 x 1D

Read Data
FIFO

RAM16 x 1D

ug086_c2_12_110607

http://www.xilinx.com

100 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 2: Implementing DDR SDRAM Controllers
R

when the data is available with the read_data_valid signal. The minimum latency in
this case is 26 clocks, where no precharge is required, no auto-refresh request is
pending, the user commands are issued after initialization is completed, and the first
command issued is a Read command. The controller executes the commands only
after initialization is done as indicated by the init_done signal.

8. After the address and command are loaded into the Address FIFO, it takes 26 clock
cycles minimum for CL = 3 at a frequency of 175 MHz for the controller to assert the
read_data_valid signal.

9. Read data is available only when the read_data_valid signal is asserted. The user
should access the read data on every positive edge of the read_data_valid signal.

The read latency for the case where (1) CL = 3, (2) the read is written to an empty
address/command FIFO, (3) the read targets an unopened bank/row, and (4) the
frequency is 175 MHz, is broken down as indicated in Table 2-9.

In general, read latency varies based on the following parameters:

• Number of commands already in the FIFO pipeline before the read command is
issued

• Whether an ACTIVATE command needs to be issued to open the new bank/row

• Whether a PRECHARGE command needs to be issued to close a previously opened
bank

Figure 2-12: DDR SDRAM Read Burst for Four Bursts (BL = 4)

CLK_TB

A0 A1

APP_AF_WREN

APP_AF_ADDR

READ_DATA_VALID

READ_DATA_FIFO_OUT

WDF_ALMOST_FULL

UG086_c2_10_111407

A2 A3

D0D1

D2D3

D4D5

D6D7

D8D9

D10D11

D12D13

D14D15
26 clocks

Table 2-9: Read Command to Read Data Clock Cycles

Parameter Number of Clock Cycles

Read Command to Empty Signal Deassertion 7 clocks

Empty to Active Command 5.5 clocks

Active to Read Command 4 clocks

Memory Read to Valid 9.5 clocks

Total: 26 clocks

http://www.xilinx.com

MIG User Guide www.xilinx.com 101
UG086 (v2.2) March 3, 2008

Simulating the DDR SDRAM Design
R

• Specific timing parameters for the memory, such as TRAS and TRCD in conjunction
with the bus clock frequency

• Commands can be interrupted, and banks/rows can forcibly be closed when the
periodic AUTO REFRESH command is issued

• CAS latency

• If the user issues the commands before initialization is complete, the latency cannot be
determined.

• Board-level and chip-level (for both memory and FPGA) propagation delays

Table 2-10 shows the list of signals allocated in a group from bank selection check boxes.
See Chapter 11, “Implementing DDR SDRAM Controllers,” for more factors.

MIG allows selection of banks for different classes of memory signals. When a particular
bank is checked for an address, MIG allocates the memory address, the memory control,
and the memory clocks in that bank. When a bank is checked for data, MIG allocates the
data, the data mask, and the data strobes in that bank. When a bank is checked for system
control, MIG allocates the system reset and status signals in that bank. When a bank is
checked for system clocks, MIG allocates the system clock signals in that bank.

Simulating the DDR SDRAM Design
After generating the design, MIG creates a sim folder in the specified path. This folder
contains simulation files for a particular design. The sim folder contains the external
testbench, memory model, do file and the executable file to simulate the generated design.
The memory model files are currently generated in Verilog only. To learn more about the
files in the sim folder and to simulate the design, refer to the simulation_help.chm
file in sim folder.

Changing the Refresh Rate
Change the global ̀ define (for Verilog) or constant (for VHDL) variable MAX_REF_CNT in
mymodule_parameters_0.v (or .vhd) so that MAX_REF_CNT = (refresh interval in
clock periods) = (refresh interval) / (clock period). For example, for a refresh rate of 3.9 µs
with a memory bus running at 200 MHz:

MAX_REF_CNT = 3.9 µs / (clock period) = 3.9 µs / 5 ns = 780 (decimal) = 0x30C

If the above value exceeds 2MAX_REF_WIDTH – 1, the value of MAX_REF_WIDTH must be
increased accordingly in parameters_0.v (or .vhd) to increase the width of the counter
used to track the refresh interval.

Table 2-10: DDR SDRAM Signal Allocations

Bank Selected Signals Allocated in the Group

Address Memory address, memory control, and memory clock signals

Data Data, data mask, and data strobes

System Control System reset from the user interface and status signals

System_Clock System clocks from the user interface

http://www.xilinx.com

102 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 2: Implementing DDR SDRAM Controllers
R

Supported Devices
The design generated out of MIG is independent of the memory package, hence the
package part of the memory component is replaced with XX or XXX, where XX or XXX to
indicate a don't care condition. The tables below list the components (Table 2-11) and
DIMMs (Table 2-12 through Table 2-14) supported by MIG for DDR SDRAM. In supported
devices, XX in the memory component column denotes either single or two alphanumeric
characters. For example, MT46V32M4XX-75 can be either MT46V32M4P-75 or
MT46V32M4BN-75. An X in the DIMM columns (for Unbuffered, Registered, and SO
DIMMs) denotes a single alphanumeric character. For example, MT9VDDF3272X-40B can
be either MT9VDDF3272G-40B or MT9VDDF3272Y-40B. Similarly MT4VDDT1664AX-40B
can be either MT4VDDT1664AG-40B or MT4VDDT1664AY-40B.

Table 2-11: Supported Components for DDR SDRAM

Components Packages (XX) Components Packages (XX)

MT46V32M4XX-75 P,TG MT46V32M4XX-5B -

MT46V64M4XX-75 FG,P,TG MT46V64M4XX-5B BG,FG,P,TG

MT46V128M4XX-75 BN,FN,P,TG MT46V128M4XX-5B BN,FN,P,TG

MT46V256M4XX-75 P,TG MT46V256M4XX-5B P,TG

MT46V16M8XX-75 P,TG MT46V16M8XX-5B TG,P

MT46V32M8XX-75 FG,P,TG MT46V32M8XX-5B BG,FG,P,TG

MT46V64M8XX-75 BN,FN,P,TG MT46V64M8XX-5B BN,FN,P,TG

MT46V128M8XX-75 P,TG MT46V128M8XX-5B -

MT46V8M16XX-75 P,TG MT46V8M16XX-5B TG,P

MT46V16M16XX-75 BG,FG,P,TG MT46V16M16XX-5B BG,FG,P,TG

MT46V32M16XX-75 - MT46V32M16XX-5B BN,FN,P,TG

MT46V64M16XX-75 P,TG MT46V64M16XX-5B -

Table 2-12: Supported Unbuffered DIMMs for DDR SDRAM

Unbuffered DIMMs Packages (X) Unbuffered DIMMs Packages (X)

MT4VDDT1664AX-40B G,Y MT8VDDT3264AX-40B G,Y

MT4VDDT3264AX-40B G,Y MT9VDDT3272AX-40B Y

Table 2-13: Supported Registered DIMMs for DDR SDRAM

Registered DIMMs Packages (X) Registered DIMMs Packages (X)

MT9VDDF3272X-40B G,Y MT18VDDF6472X-40B D,G,Y

MT9VDDF6472X-40B G,Y MT18VDDF12872X-40B DY,G,Y

Table 2-14: Supported SODIMMs for DDR SDRAM

SODIMMs Packages (X) SODIMMs Packages (X)

MT4VDDT3264HX-40B G,Y MT9VDDT3272HX-40B -

MT4VDDT1664HX-40B Y MT9VDDT6472HX-40B G,Y

MT8VDDT3264HX-40B - MT9VDDT12872HX-40B -

MT8VDDT6464HX-40B DG,DY,G,Y

http://www.xilinx.com

MIG User Guide www.xilinx.com 103
UG086 (v2.2) March 3, 2008

Hardware Tested Configurations
R

Hardware Tested Configurations
The frequencies shown in Table 2-15 were achieved on the Virtex-4 FPGA ML461 Memory
Interfaces Development Board under nominal conditions. This frequency should not be
used to determine the maximum design frequency. The maximum design frequency
supported in the MIG wizard is based on a combination of the TRCE results for fabric
timing on multiple device/package combinations and I/O timing analysis using FPGA
and memory timing parameters for a 64-bit wide interface.

Table 2-15: Hardware Tested Configurations

Synthesis Tools XST and Synplicity

HDL Verilog and VHDL

FPGA Device XC4VLX25-FF668-11

Burst Lengths 2, 4, 8

CAS Latency (CL) 2, 2.5, 3

16-bit Design Tested on 16-bit Component “MT46V32M16XX-5B”

72-bit Design Tested on 72-bit DIMM “MT18VDDF6472X-40B”

CL =2

Achieved Frequency
Range for Component 110 MHz to 170 MHz

Achieved Frequency
Range for DIMM 110 MHz to 150 MHz

CL=2.5

Achieved Frequency
Range for Component 110 MHz to 230 MHz

Achieved Frequency
Range for DIMM 110 MHz to 170 MHz

CL=3

Achieved Frequency
Range for Component 110 MHz to 250 MHz

Achieved Frequency
Range for DIMM 110 MHz to 230 MHz

http://www.xilinx.com

104 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 2: Implementing DDR SDRAM Controllers
R

http://www.xilinx.com

MIG User Guide www.xilinx.com 105
UG086 (v2.2) March 3, 2008

R

Chapter 3

Implementing DDR2 SDRAM Controllers

This chapter describes how to implement DDR2 SDRAM interfaces for Virtex-4 FPGAs
generated by MIG. MIG supports two implementations of DDR2 SDRAM interfaces:
Direct clocking and SerDes clocking. The Direct clocking interface supports frequencies up
to 240 MHz. This design is based on XAPP702 [Ref 18]. The SerDes clocking design
supports frequencies up to 300 MHz and is based on XAPP721 [Ref 22].

Interface Model
DDR2 SDRAM interfaces are source-synchronous and double data rate. They transfer data
on both edges of the clock cycle. A memory interface can be modularly represented as
shown in Figure 3-1. A modular interface has many advantages. It allows designs to be
ported easily and also makes it possible to share parts of the design across different types
of memory interfaces.

Figure 3-1: Modular Memory Interface Representation

Application Interface Layer

Xilinx FPGA

Physical Layer

Control Layer

UG086_c3_01_033105

Memories

http://www.xilinx.com

106 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 3: Implementing DDR2 SDRAM Controllers
R

Direct Clocking Interface

Feature Summary
This section summarizes the supported and unsupported features of the Direct clocking
DDR2 SDRAM controller design.

Supported Features

The DDR2 SDRAM controller design supports the following:

• Burst lengths of four and eight

• Sequential and interleaved burst types

• CAS latencies of 3, 4, and 5

• Additive latencies of 0, 1, and 2

• Differential and single-ended DQS

• On-Die Termination (ODT)

• Up to four deep memories

• Memory components

• Registered DIMMs (up to 240 MHz)

• Unbuffered DIMMs (up to 200 MHz)

• Unbuffered SODIMMs (up to 200 MHz)

• Different memories (density/speed)

• Byte-wise data masking

• Precharge and auto refresh

• Linear addressing

• ECC support

• Verilog and VHDL

• With and without a testbench

• With and without a DCM

• Multicontrollers (up to eight)

The supported features are described in more detail in “Architecture.”

Design Frequency Ranges

Table 3-1: Design Frequency Range in MHz

Memory

FPGA Speed Grade

-10 -11 -12

Min Max Min Max Min Max

Component 125 220 125 230 125 240

UDIMM/SODIMM 125 200 125 200 125 200

RDIMM 125 220 125 230 125 240

Deep Memory /
Dual Rank DIMM

125 150 125 150 125 150

http://www.xilinx.com

MIG User Guide www.xilinx.com 107
UG086 (v2.2) March 3, 2008

Direct Clocking Interface
R

Unsupported Features

The DDR2 SDRAM controller design does not support:

• Additive latencies of 3 and 4

• Redundant DQS (RDQS)

• Unbuffered DIMMs (greater than 200 MHz)

• Unbuffered SODIMMs (greater than 200 MHz)

Architecture

Implemented Features

This section provides details on the supported features of the DDR2 SDRAM controller.

Burst Length

The DDR2 SDRAM controller supports burst lengths of four and eight. The burst length
can be selected through the “Set mode register(s)” option from the GUI. For a design
without a testbench (user design), the user has to provide bursts of the input data based on
the chosen burst length. Bits M2:M0 of the Mode Register define the burst length, and bit
M3 indicates the burst type (see the Micron data sheet). Read and write accesses to the
DDR2 SDRAM are burst-oriented. It determines the maximum number of column
locations accessed for a given READ or WRITE command.

CAS Latency

The DDR2 SDRAM controller supports CAS latencies (CLs) of three and four. CL can be
selected in the “Set mode register(s)” option from the GUI. The CAS latency is
implemented in the ddr2_controller module. During data write operations, the generation
of the ctrl_Dqs_En and ctrl_Dqs_Rst signals varies according to the CL in the
ddr2_controller module. During data read operations, the generation of the ctrl_RdEn
signal varies according to the CL in the ddr2_controller module. Bits M4:M6 of the Mode
Register define the CL (see the Micron data sheet). CL is the delay in clock cycles between
the registration of a READ command and the availability of the first bit of output data.

Additive Latency

DDR2 SDRAM devices support a feature called posted CAS additive latency (AL). The
DDR2 SDRAM supports additive latencies of 0, 1, and 2. AL can be selected in the “Set
mode register(s)” option from the GUI. Additive latency is implemented in the
ddr2_controller module. The ddr2_controller module issues READ/WRITE commands
prior to tRCD (minimum) depending on the user-selected AL value in the Extended Mode
Register. This feature allows the READ command to be issued prior to tRCD (minimum) by
delaying the internal command to the DDR2 SDRAM by AL clocks. Posted CAS AL makes
the command and data bus efficient for sustainable bandwidths in DDR2 SDRAM. Bits
E3:E5 of the Extended Mode Register define the value of AL (see the Micron data sheet).

Registered DIMMs

DDR2 SDRAM supports registered DIMMs. This feature is implemented in the
ddr2_controller module. For registered DIMMs, the READ and WRITE commands and
address have one additional clock latency than unbuffered DIMMs.

http://www.xilinx.com

108 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 3: Implementing DDR2 SDRAM Controllers
R

Unbuffered DIMMs and SODIMMs

The DDR2 SDRAM design supports unbuffered DIMMs and SODIMMs. Unbuffered
DIMMs are normal DIMMs, where a set of components are used to get a particular
configuration. SODIMMs differ from the unbuffered DIMMs only by the package type.
Otherwise they are functionally the same.

Multicontrollers

MIG supports multicontrollers for DDR2 SDRAMs. A maximum of eight controllers can be
selected by the user from the tool. In multicontroller designs, MIG supports the same
frequency for all the controllers.

Different Memories (Density/Speed)

The DDR2 SDRAM controller supports different densities. For DDR2 components shown
in MIG, densities vary from 256 Mb to 2 Gb, and DIMM densities vary from 128 Mb to
4 Gb. Higher densities can be created using the “Create new memory part” feature of MIG.
The supported maximum column address is 13, the maximum row address is 15, and the
maximum bank address is 3. The design can decode write and read addresses from the
user in the DDR2 SDRAM controller module. The user address consists of column, row,
bank, chip address, and user command.

Table 3-2 and Table 3-3 list sample timing sheets for Micron components and DIMMs,
respectively.

Table 3-2: Timing Parameters for Components

Parameter Description
Micron 256 Mb Micron 512 Mb Micron 1 Gb

-37E -5E -37E -5E -37E -5E

TMRD LOAD MODE command cycle time 2 2 2 2 2 2

TRP PRECHARGE command period 15 15 15 15 15 15

TRFC REFRESH to ACTIVE or REFRESH to
REFRESH command interval

75 75 105 105 127.5 127.5

TRCD ACTIVE to READ or WRITE delay 15 15 15 15 15 15

TRAS ACTIVE to PRECHARGE command 40 40 40 40 40 40

TRC ACTIVE to ACTIVE (same bank) command 55 55 55 55 55 55

TRTP READ to PRECHARGE command delay 7.5 7.5 7.5 7.5 7.5 7.5

TWTR WRITE to READ command delay 7.5 10 7.5 10 7.5 10

TWR WRITE Recovery time 15 15 15 15 15 15

Table 3-3: Timing Parameters for DIMMs

Parameter Description
MT4HTF MT8HTF MT16HTF MT9HTF MT18HTF

-53E -40E -53E -40E -53E -40E -53E -40E -53E -40E

TMRD LOAD MODE command
cycle time

2 2 2 2 2 2 2 2 2 2

TRP PRECHARGE command
period

15 15 15 15 15 15 15 15 15 15

http://www.xilinx.com

MIG User Guide www.xilinx.com 109
UG086 (v2.2) March 3, 2008

Direct Clocking Interface
R

Note: For the latest timing information, refer to the vendor memory data sheets.

Data Masking

The DDR2 SDRAM design supports data masking per byte. Masking per nibble is not
supported due to the limitation of the internal block RAM based FIFOs. So, the masking of
data can be done on a per byte basis. The mask data is stored in the Data FIFO along with
the actual data.

Precharge

The PRECHARGE command is used to close the open row in a bank if there is a command
to be issued in the same bank. The PRECHARGE command checks the row address, bank
address, and chip address, and the DDR2 Virtex™-4 controller issues a PRECHARGE
command if there is a change in any of the addresses where a read or write command is to
be issued. The auto precharge function is not supported.

Auto Refresh

The DDR2 SDRAM controller issues AUTO REFRESH commands at specified intervals for
the memory to refresh the charge required to retain the data in the memory. The user can
also issue a REFRESH command through the user interface by setting bits 34, 33, and 32 of
the app_af_addr signal in the user_interface module to 3’b001. If there is a refresh request
while there is an ongoing read or write burst, the controller issues a refresh command after
completing the current read or write burst command.

Linear Addressing

The DDR2 SDRAM controller supports linear addressing. Linear addressing refers to the
way the user provides the address of the memory to be accessed. For Virtex-4 FPGA DDR2
SDRAM controllers, the user provides address information through the app_af_addr bus.
As the densities of the memory devices vary, the number of column address bits and row

TRFC REFRESH to ACTIVE or
REFRESH to REFRESH
command interval

128 MB
75

75 256 MB
75

75 512 MB
75

75 256 MB
75

 75 512 MB
75

 75

256 MB
105

105 512 MB
105

105 1 GB
105

105 512 MB
105

105 1 GB
105

105

512 MB
127.5

127.5 1 GB
127.5

127.5 2 GB
127.5

127.5 1 GB
127.5

127.5 2 GB
127.5

127.5

TRCD ACTIVE to READ or
WRITE delay

15 15 15 15 15 15 15 15 15 15

TRAS ACTIVE to
PRECHARGE command

40 40 40 40 40 40 40 40 40 40

TRC ACTIVE to ACTIVE
(same bank) command

55 55 55 55 55 55 55 55 55 55

TRTP READ to PRECHARGE
command delay

7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5

TWTR WRITE to READ
command delay

7.5 10 7.5 10 7.5 10 7.5 10 7.5 10

TWR WRITE recovery time 15 15 15 15 15 15 15 15 15 15

Table 3-3: Timing Parameters for DIMMs (Continued)

Parameter Description
MT4HTF MT8HTF MT16HTF MT9HTF MT18HTF

-53E -40E -53E -40E -53E -40E -53E -40E -53E -40E

http://www.xilinx.com

110 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 3: Implementing DDR2 SDRAM Controllers
R

address bits also change. In any case, the row address bits in the app_af_addr bus always
start from the next higher bit, where the column address ends. This feature increases the
number of devices that can be supported with the design.

On-Die Termination

The DDR2 SDRAM controller supports on-die termination (ODT). Through the “Set mode
register(s)” option from the GUI, the user can disable ODT or can choose 75, 150, or 50.
ODT can turn the termination on and off as needed to improve signal integrity in the
system. Because DDR2 supports the deep memory maximum of four, a maximum of four
ODTs is supported. Four examples are given below:

1. If the user selects deep memory = 4, the memory component sequence is 0, 1, 2, and 3.
During write operations, the ODT is enabled for component 3 when writing into 0, 1,
or 2, otherwise it is enabled for component 2 when writing into component 3. During
read operations, the ODT is enabled for component 3 when reading from 0, 1, or 2,
otherwise it is enabled for component 2 for reading from component 3.

2. If the user selects deep memory = 3, the memory component sequence is 0, 1, and 2.
During write operations, the ODT is enabled for component 2 when writing into 0 or 1,
otherwise it is enabled for component 1 when writing into component 2. During read
operations, the ODT is enabled for component 2 when reading from 0 or 1, otherwise
it is enabled for component 1 for reading from component 2.

3. If the user selects deep memory = 2, the memory component sequence is 0 and 1.
During write operations, the ODT is enabled for component 1 when writing into 0,
otherwise it is enabled for component 0 when writing into component 1. During read
operations, the ODT is enabled for component 1 when reading from 0, otherwise it is
enabled for component 0 for reading from component 1.

4. If the user selects deep memory = 1, the memory component sequence is 0. During
write operations, the ODT is enabled for component 0 when writing into 0. During
read operations, the ODT is disabled.

Deep Memories

The MIG DDR2 SDRAM controller supports depths up to 4. Through the “Depth” option,
the user can select various deep values. For deep memory implementations, MIG
generates chip selects, CKE signals, and ODT signals for each memory. The clock widths
(CK and CK_N) are a multiple factor of the deep configuration chosen in MIG. This feature
increases the depth of the memory. For example, if the user selects a 256 Mb component
and deep memory = 4 from MIG, the tool generates a memory interface for a 1 Gb design.

Deep memory logic is implemented in the ddr2_ controller module. With deep memories,
DDR2 SDRAMs are initialized one after the other to avoid loading the address and control
buses, and the calibration is done on the last memory. Apart from initialization, the DDR2
SDRAM controller module also demultiplexes the column, row, and bank addresses from
the user address. The module also decodes the chip selects and rank addresses for
components and DIMMs.

The formats of user read/write addresses for a 256 Mb component and 2 GB and 4 GB
DIMMs are given in “Deep Memory Configurations.”

ECC Support

The DDR2 SDRAM controller supports ECC. ECC is supported for the following data
widths:

• 40-bit (32-bit data and a 0 prepended to 7-bit parity)

http://www.xilinx.com

MIG User Guide www.xilinx.com 111
UG086 (v2.2) March 3, 2008

Direct Clocking Interface
R

• 72-bit (64-bit data and 8-bit parity)

• 144-bit (128-bit data and 16-bit parity)

The user can completely disable the ECC or can generate the design for the above data
widths by choosing either the Unpipeline mode or the Pipeline mode from the GUI.

ECC is based on XAPP645 [Ref 16]. The design can detect and correct all single bit errors,
and it can detect double bit errors in the data. This design utilizes Hamming code for the
ECC operations. The Pipeline mode improves the frequency performance at the cost of an
extra pipeline stage.

Hierarchy

Figure 3-2 shows the hierarchical structure of the DDR2 SDRAM controller.

Figure 3-2 shows the hierarchical structure of the DDR2 SDRAM design generated by MIG
with a testbench and a DCM. The modules are classified as follows:

• Design modules

• Testbench modules

• Clocks and reset generation modules

There is a parameter file generated with the design that has all the user input and design
parameters selected from MIG.

Figure 3-2: Hierarchical Structure of the DDR2 Design (Direct Clocking)

<top_
module>

main* idelayctrlinfrastructure*

iobs*
data_
path*

user_
interface*

data_
path_iobs*

controller
_iobs*

infrastructure
_iobs*

ddr2_
controller*

decoder
_32/64

encoder
_32/64

v4_dq_
iob

Design Modules

v4_dm_
iob

RAM_D

v4_dqs_
iob

decoder*
backend
_fifos*

rd_wr_
addr_
fifo*

wr_data
_fifo

tap_
ctrl*

data_
tap_inc*

rd_data*

rd_data
_fifo*

pattern_
compare

encoder*
tap_
logic*

test_
bench*

top*

Test Bench Modules

DCM and Reset Generation Modules

ECC Modules

UG086_c3_03_091107
Note: A block with a * has a parameter file included.

cmp_rd_
data*

backend
_rom*

data_
gen

addr_
gen

data_
write*

http://www.xilinx.com

112 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 3: Implementing DDR2 SDRAM Controllers
R

MIG can generate four different DDR2 SDRAM designs:

• With a testbench and a DCM

• Without a testbench and with a DCM

• With a testbench and without a DCM

• Without a testbench and without a DCM

A design without a testbench (user_design) does not have testbench modules. The
<top_module> module has the user interface signals for designs without a testbench. The
list of user interface signals is provided in Table 3-6, page 119.

Design clocks and resets are generated in the infrastructure module. The DCM clock is
instantiated in the infrastructure module for designs with a DCM. The inputs to this
module are the differential design clock and a 200 MHz differential clock for the
IDELAYCTRL module. A user reset is also input to this module. Using the input clocks and
reset signals, the system clocks and the system reset are generated in this module, which is
used in the design.

The DCM primitive is not instantiated in this module if the Use DCM option is unchecked.
So, the system operates on the user-provided clocks. The system reset is generated in the
infrastructure module using the DCM_LOCK input signal.

For ECC enabled designs, the corresponding shaded modules are present in the design.
ECC data is generated from these modules.

http://www.xilinx.com

MIG User Guide www.xilinx.com 113
UG086 (v2.2) March 3, 2008

Direct Clocking Interface
R

Figure 3-3 shows a top-level block diagram of a DDR2 SDRAM design with a DCM and a
testbench. SYS_CLK_P and SYS_CLK_N are differential input system clocks. The DCM is
instantiated in the infrastructure module that generates the required design clocks.
CLK200_P and CLK200_N are used for the idelay_ctrl element. SYS_RESET_IN_N is the
active-Low system reset signal. All design resets are gated by the dcm_lock signal. The
ERROR output signal indicates whether the case passes or fails. The testbench module
does writes and reads, and also compares the read data with the written data. The ERROR
signal is driven High on data mismatches. The INIT_DONE signal indicates the
completion of initialization and calibration of the design. Memory device signals are
prepended with the controller number. For example, for a single controller design, the
DDR2_RAS_N signal appears as cntrl0_DDR2_RAS_N. Similarly, for a four-controller
design with controllers 0, 1, 2, and 3, the controller 3 DDR2_RAS_N signal appears as
cntrl3_DDR2_RAS_N.

All Memory Device ports do not necessarily appear for all MIG-generated designs. For
example, port DDR2_RESET_N appears in the port list for Registered DIMM designs only.
Similarly, DDR2_DQS_N does not appear for single-ended DQS designs. Port DDR2_DM
appears only for parts that contain a data mask; a few RDIMMs have no data mask, and
DDR2_DM does not appear in the port list for them.

Figure 3-3: Top-Level Block Diagram of the DDR2 SDRAM Design with a DCM and a Testbench

main_0

idelay_ctrl_rdy

CLK200

Memory
Device

UG086_c3_03_090507

Status
Signals

System
Clocks

and Reset

idelay_ctrl

Infrastructure

sys_rst200

CLK

CLK90

sys_rst90

CLK200_P

CLK200_N

SYS_CLK_P

SYS_CLK_N

SYS_RESET_IN_N
sys_rst

DDR2_RAS_N

DDR2_CAS_N

DDR2_WE_N

DDR2_CS_N

DDR2_ODT

DDR2_CKE

DDR2_DM

DDR2_BA

DDR2_A

DDR2_CK

DDR2_CK_N

DDR2_DQ

DDR2_DQS

DDR2_RESET_N

DDR2_DQS_N

ERROR

INIT_DONE

http://www.xilinx.com

114 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 3: Implementing DDR2 SDRAM Controllers
R

Figure 3-4 shows a top-level block diagram of a DDR2 SDRAM design with a DCM but
without a testbench. SYS_CLK_P and SYS_CLK_N are differential input system clocks. A
DCM is instantiated in the infrastructure module that generates the required design clocks.
CLK200_P and CLK200_N are used for the idelay_ctrl element. SYS_RESET_IN_N is an
active-Low system reset signal. All design resets are gated by the dcm_lock signal. The
user has to drive the user application signals. The design provides the CLK_TB and
RESET_TB signals to the user to synchronize with the design. The INIT_DONE signal
indicates the completion of initialization and calibration of the design.

Figure 3-4: Top-Level Block Diagram of the DDR2 SDRAM Design with a DCM but without a Testbench

top_0

idelay_ctrl_rdy

CLK200

Memory
Device

UG086_c3_04_090507

User
Application

System
Clocks

and Reset

idelay_ctrl

Infrastructure

sys_rst200

CLK

CLK90

sys_rst90

CLK200_P

CLK200_N

SYS_CLK_P

SYS_CLK_N

SYS_RESET_IN_N

APP_AF_ADDR

APP_AF_WREN

APP_WDF_DATA

APP_MASK_DATA

APP_WDF_WREN

WDF_ALMOST_FULL

AF_ALMOST_FULL

BURST_LENGTH_DIV2

READ_DATA_VALID

READ_DATA_FIFO_OUT

sys_rst

DDR2_RAS_N

DDR2_CAS_N

DDR2_WE_N

DDR2_CS_N

DDR2_CKE

DDR2_DM

DDR2_BA

DDR2_A

DDR2_CK

DDR2_CK_N

DDR2_DQ

DDR2_DQS

DDR2_ODT

DDR2_RESET_N

DDR2_DQS_N

CLK_TB

RESET_TB

INIT_DONE

http://www.xilinx.com

MIG User Guide www.xilinx.com 115
UG086 (v2.2) March 3, 2008

Direct Clocking Interface
R

Figure 3-5 shows a top-level block diagram of a DDR2 SDRAM design without a DCM or
a testbench. The user should provide all the clocks and the dcm_lock signal. These clocks
should be single-ended. SYS_RESET_IN_N is an active-Low system reset signal. All design
resets are gated by the dcm_lock signal. The user application must have a DCM primitive
instantiated in the design. All user clocks should be driven through BUFGs. The user has to
drive the user application signals. The design provides the CLK_TB and RESET_TB signals
to the user to synchronize with the design. The INIT_DONE signal indicates the
completion of initialization and calibration of the design.

Figure 3-5: Top-Level Block Diagram of the DDR2 SDRAM Design without a DCM or a Testbench

top_0

idelay_ctrl_rdy

Memory
Device

UG086_c3_05_090507

System
Reset

and User
DCM

Clocks

idelay_ctrl

Infrastructure

sys_rst200

sys_rst

sys_rst90

clk_0

clk_200

clk_90

SYS_RESET_IN_N

dcm_lock

DDR2_RAS_N

DDR2_CAS_N

DDR2_WE_N

DDR2_CS_N

DDR2_ODT

DDR2_CKE

DDR2_DM

DDR2_BA

DDR2_A

DDR2_CK

DDR2_CK_N

DDR2_DQ

DDR2_DQS

DDR2_DQS_N

DDR2_RESET_N

User
Application

APP_AF_ADDR

APP_AF_WREN

APP_WDF_DATA

APP_MASK_DATA

APP_WDF_WREN

WDF_ALMOST_FULL

AF_ALMOST_FULL

BURST_LENGTH_DIV2

READ_DATA_VALID

READ_DATA_FIFO_OUT

CLK_TB

RESET_TB

INIT_DONE

http://www.xilinx.com

116 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 3: Implementing DDR2 SDRAM Controllers
R

Figure 3-6 shows a top-level block diagram of a DDR2 SDRAM design with a testbench but
without a DCM. The user should provide all the clocks and the dcm_lock signal. These
clocks should be single-ended. SYS_RESET_IN_N is an active-Low system reset signal. All
design resets are gated by the dcm_lock signal. The user application must have a DCM
primitive instantiated in the design. All user clocks should be driven through BUFGs. The
ERROR output signal indicates whether the case passes or fails. The testbench module
does writes and reads, and also compares the read data with the written data. The ERROR
signal is driven High on data mismatches. The INIT_DONE signal indicates the
completion of initialization and calibration of the design.

Figure 3-6: Top-Level Block Diagram of the DDR2 SDRAM Design with a Testbench but without a DCM

main_0

idelay_ctrl_rdy

Memory
Device

UG086_c3_06_090507

Status
Signals

System
Reset

and User
DCM

Clocks

idelay_ctrl

Infrastructure

sys_rst200

sys_rst

sys_rst90

clk_0

clk_200

clk_90

SYS_RESET_IN_N

dcm_lock

DDR2_RAS_N

DDR2_CAS_N

DDR2_WE_N

DDR2_CS_N

DDR2_ODT

DDR2_CKE

DDR2_DM

DDR2_BA

DDR2_A

DDR2_CK

DDR2_CK_N

DDR2_DQ

DDR2_DQS

DDR2_DQS_N

DDR2_RESET_N

ERROR

INIT_DONE

http://www.xilinx.com

MIG User Guide www.xilinx.com 117
UG086 (v2.2) March 3, 2008

Direct Clocking Interface
R

DDR2 Controller Submodules

Figure 3-7 is a detailed block diagram of the DDR2 SDRAM controller. The five blocks
shown are the sub-blocks of the top module. User backend signals are provided by the tool
for designs with a testbench. The user has to drive these signals for designs without a
testbench. The functions of these blocks are explained in the subsections following the
figure.
I

Controller

The DDR2 SDRAM ddr2_controller accepts and decodes user commands and generates
read, write, and refresh commands. The DDR2 SDRAM controller also generates signals
for other modules. The memory is initialized and powered-up using a defined process. The
controller state machine handles the initialization process upon power-up. After memory
initialization, the controller issues dummy read commands. During dummy reads, the
tap_logic module calibrates and delays the data to center-align with the FPGA clock. After
the calibration is done, the controller issues a dummy write and pattern read commands to
get the delay between the read command and IOB output data.

The delay, calculated in number of clocks, is used as a write-enable signal to the read data
FIFOs. For deep designs, the DQ calibration and pattern calibration are done only on the
last memory. For example, for four deep designs, the fourth memory is used for
calibration. There is no reason to use the fourth memory because the controller retains the
last chip select during initialization of memory. Thus the same chip select is used for
calibration. XAPP701 [Ref 17] provides more details about the calibration architecture.

User Interface

This module stores write data, write addresses, and read addresses in FIFOs and receives
read data from the memory. The rd_data and rd_data_fifos modules capture the data in the

Figure 3-7: DDR2 Memory Controller Block Diagram

DDR2
SDRAM

Controller

Physical
Layer

Virtex-4 FPGA

DDR2
SDRAM

User Backend User Interface

Backend FIFOs

rd_en_delayed_rise/fall

Ctrl_Dummyread_Start

Af_empty

Af_addrAPP_AF_ADDR

APP_AF_WREN

WDF_data

UG086_c3_07_090507

CK/CK_N

DQ

DQS

Read/Write
Address FIFO

Write Data
FIFOs

Read Data
FIFOs

Address
and Data

Generation

Read
Data

Compare
Module

AF_ALMOST_FULL

READ_DATA_FIFO_OUT

BURST_LENGTH_DIV2

WDF_ALMOST_FULL

READ_DATA_VALID

INIT_DONE

CLK_TB

RESET_TB

ctrl_Waf_RdEn

ctrl_RdEn

Phy_Dly_Slct_Done

ctrl_Wdf_RdEn

read_data_rise/fall

APP_WDF_DATA

APP_MASK_DATA

APP_WDF_WREN

Address/Controls

ctrl_Dqs_Rst

ctrl_Dqs_En

ctrl_WrEn

http://www.xilinx.com

118 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 3: Implementing DDR2 SDRAM Controllers
R

LUT-based RAMs. The rd_wr_addr_fifo and wr_data_fifo modules store the data and
address in block RAMs.

Once the calibration is done, the controller issues a pattern_write command with a known
pattern (0xAA559966) to the memory. Then the controller issues a pattern_read command
from the same location and compares the read data with the known pattern in the
pattern_compare8 or the pattern_compare4 module. During the pattern_read command,
the controller generates the ctrl_rden signal, which is delayed in the pattern_compare
module to synchronize with the read data. This delay is applied to the ctrl_rden signal
generated from the ddr2_controller module during a normal read to register the valid data
in the internal FIFOs.

The FIRST_RISING logic is implemented in the pattern_compare module. FIRST_RISING
is asserted when the first data is captured with respect to the falling edge of FPGA clock.
This signal is used in rd_data_fifo to swap rise and fall data.

DDR2 SDRAM Initialization and Calibration
DDR2 memory is initialized through a specified sequence as per both Micron and JEDEC
specifications. The controller starts the memory initialization at power-up. Following the
initialization, the relationship between the data and the FPGA clock is calculated using the
tap_logic. The controller issues a dummy write command and a dummy read command to
the memory and compares read data with the fixed pattern. During dummy reads, the
tap_logic module calibrates and delays the data to center-align with the FPGA clock.

The sel_done port in the tap_logic module indicates the completion of the per-bit
calibration. After the per-bit calibration is done, the controller does a read enable
calibration. This calibration is used to determine the delay from read command to read
data at rd_data_fifo. The delay between read command and read data is affected by the
CAS latency and additive latency parameters, the PCB traces, and the I/O buffer delays.
This in turn is used to generate a write enable to rd_data_fifo so that valid data is
registered. The controller writes a known fixed pattern and reads back the data. The read
data is compared against the known fixed pattern. The comp_done port in the rd_data
module indicates the completion of the read enable calibration.

The init_done port indicates the completion of both per-bit calibration and read enable
calibration. After initialization and calibration is done, the controller can start issuing user
commands to the memory.

DDR2 SDRAM System and User Interface Signals
Table 3-4 describes the DDR2 SDRAM system interface signals. The system interface
signals are the clocks and the reset signals given by the user to the FPGA. SYS_CLK_P and
SYS_CLK_N are the two clocks provided to the design. They must have a phase difference
of 180° with respect to each other. Similarly, CLK200_P and CLK_200N are 200 MHz
differential clocks for the IDELAYCTRL module. SYS_RESET_IN_N resets all the logic.

Table 3-4: DDR2 SDRAM Controller System Interface Signals (with a DCM)

Signal Name Direction Description

SYS_CLK_P, SYS_CLK_N Input Differential input clock to the DCM. The DDR2 controller and
memory operate at this frequency.

CLK200_P, CLK200_N Input Differential clock used in the idelay_ctrl logic.

SYS_RESET_IN_N Input Active-Low reset to the DDR2 controller.

http://www.xilinx.com

MIG User Guide www.xilinx.com 119
UG086 (v2.2) March 3, 2008

Direct Clocking Interface
R

Table 3-5 shows the system interface signals for designs without a DCM. clk_0, clk_90, and
clk_200 are single-ended input clocks. The clk_90 signal must have a phase difference of
90° with respect to clk_0. The clk_200 signal is the clock used for the IDELAYCTRL
primitives in Virtex-4 FPGAs.

Table 3-6 describes the DDR2 SDRAM user interface signals.

Table 3-5: DDR2 SDRAM Controller System Interface Signals (without a DCM)

Signal Direction Description

clk_0 Input The DDR2 SDRAM controller and memory operates on this clock.

SYS_RESET_IN_N Input Active-Low reset to the DDR2 SDRAM controller. This signal is used to
generate the synchronous system reset.

clk_90 Input 90° phase-shifted clock with the same frequency as clk0.

clk_200 Input 200 MHz input differential clock for the IDELAYCTRL primitive of Virtex-4
FPGAs.

dcm_lock Input This status signal indicates whether the DCM is locked or not. It is used to
generate the synchronous system reset.

Table 3-6: DDR2 SDRAM Controller User Interface Signals

Signal Name(1) Direction Description

CLK_TB Output All user interface signals must be synchronized with respect to
CLK_TB.

RESET_TB Output Reset signal for the User Interface.

BURST_LENGTH_DIV2[2:0] Output This signal determines the data burst length for each write
address.

010: burst length = 4

100: burst length = 8

WDF_ALMOST_FULL Output This signal indicates the ALMOST_FULL status of the Write
Data FIFO. When this signal is asserted, the user can write
5 more locations into the FIFO in designs generated with a
testbench and 14 more locations in designs without a testbench.

APP_WDF_DATA[2n-1:0] Input User write data to the memory, where n indicates the data width
of the interface. The user data is twice the data width of the
interface. The most-significant bits contain the rising-edge data
and the least-significant bits contain the falling-edge data.

APP_MASK_DATA[2m-1:0] Input User mask data to the memory, where m indicates the data mask
width of the interface. The mask data is twice the mask width of
the interface. The most-significant bits contain the rising-edge
mask data and the least-significant bits contain the falling-edge
mask data. These signals are not present when the memory part
does not have mask support (for example, certain Registered
DIMMs) or when the Data Mask option is not selected in the
MIG GUI.

APP_WDF_WREN Input Write Enable signal to the Write Data FIFO.

AF_ALMOST_FULL Output This signal indicates the ALMOST_FULL status of the Address
FIFO. The user can issue eight more locations into the FIFO after
AF_ALMOST_FULL is asserted.

http://www.xilinx.com

120 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 3: Implementing DDR2 SDRAM Controllers
R

User Interface Accesses

The user backend logic communicates with the memory controller through a FIFO-based
user interface. This interface consists of three related buses:

• A Command/Address FIFO bus, which accepts write/read commands as well as the
corresponding memory address from the user

• A Write Data FIFO bus, which accepts the corresponding write data when the user
issues a write command on the Command/Address bus

• A Read bus on which the corresponding read data for an issued read command is
returned

The user interface has the following timing and signaling restrictions:

• Commands and write data cannot be written by the user until calibration is complete
(as indicated by INIT_DONE). In addition, the following interface signals need to be
held Low until calibration is complete: APP_AF_WREN, APP_WDF_WREN,
APP_WDF_DATA, and APP_MASK_DATA. Failure to hold these signals Low causes
errors during calibration. This restriction arises from the fact that the Write Data FIFO
is used during calibration to hold the training patterns for the various stages of
calibration.

APP_AF_ADDR[35:0] Input The user address consists of a memory address and dynamic
commands. Bits [31:0] are the memory read/write address. Bits
[31:0] form the memory chip select, bank address, row address,
and column address.

Bit 35 is reserved for internal use of the controller. Bits [34:32]
represent the following dynamic commands:

001: Auto Refresh
010: Precharge
100: Write
101: Read

Other combinations are invalid. Functionality of the controller is
unpredictable for unimplemented commands.

APP_AF_WREN Input Write Enable signal to the Address FIFO.

READ_DATA_FIFO_OUT[2n-1:0] Output Read data from the memory, where n indicates the data width of
the interface. The most-significant bits of the read data consist of
the rising-edge data and the least-significant bits consist of the
falling-edge data.

READ_DATA_VALID Output This signal is asserted to indicate the read data is available to the
user.

INIT_DONE Output This signal indicates the completion of initialization and
calibration of the design.

Notes:
1. All user interface signal names are prepended with a controller number. DDR2 SDRAM devices support multicontroller operation,

where a maximum of eight controllers can be selected by the user from MIG. For example, when the user selects eight controllers,
the signal names have the following format: cntrl0_user_signal, cntrl1_user_signal, cntrl2_user_signal, cntrl3_user_signal,
cntrl4_user_signal, cntrl5_user_signal, cntrl6_user_signal, and cntrl7_user_signal.

Table 3-6: DDR2 SDRAM Controller User Interface Signals (Continued)

Signal Name(1) Direction Description

http://www.xilinx.com

MIG User Guide www.xilinx.com 121
UG086 (v2.2) March 3, 2008

Direct Clocking Interface
R

• When issuing a write command, the first write data word must be written to the Write
Data FIFO no more than two clock cycles after the write command is issued. This
restriction arises from the fact that the controller assumes write data is available when
it receives the write command from the user.

Write Interface

Figure 3-8 shows the user interface block diagram for write operations.

The following steps describe the architecture of the Address and Write Data FIFOs and
show how to perform a write burst operation to DDR2 SDRAM from the user interface.

1. The user interface consists of an Address FIFO and a Write Data FIFO. These FIFOs are
constructed using Virtex-4 FIFO16 primitives with a 512 x 36 configuration. The 36-bit
architecture comprises one 32-bit port and one 4-bit port. For Write Data FIFOs, the
32-bit port is used for data bits and the 4-bit port is used for mask bits. Mask bits are
available only when supported by the memory part and when Data Mask is enabled in
the MIG GUI. Some memory parts, such as Registered DIMMs of x4 parts, do not
support mask bits.

2. The Common Address FIFO is used for both write and read commands, and comprises
a command part and an address part. Command bits discriminate between write and
read commands.

3. User interface data width app_wdf_data is twice that of the memory data width. For
an 8-bit memory width, the user interface is 16 bits consisting of rise data and fall data.
For every 8 bits of data, there is a mask bit. For 72-bit memory data, the user interface
data width app_wdf_data is 144 bits, and the mask data app_mask_data is 18 bits.

4. The minimum configuration of the Write Data FIFO is 512 x 36 for a memory data
width of 8 bits. For an 8-bit memory data width, the least-significant 16 bits of the data
port are used for write data and the least-significant two bits of the 4-bit port are used

Figure 3-8: User Interface Block Diagram for Write Operations

User Interface

Controller

 Address FIFO
(FIFO16)
512 x 36

af_addr

af_empty

ctrl_af_rden

ctrl_wdf_rden

app_af_addr

app_af_wren

app_wdf_data

app_mask_data

app_wdf_wren

wdf_data

mask_data
To Phy Layer

wdf_almost_full

af_almost_full

Write Data
FIFO

(FIFO16)
512 x 36

Write Data
FIFO

(FIFO16)
512 x 36

ug086_c3_26_110707

http://www.xilinx.com

122 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 3: Implementing DDR2 SDRAM Controllers
R

for mask bits. The controller internally pads all zeros for the most-significant 16 bits of
the 32-bit port and the most-significant two bits of the 4-bit port.

5. Depending on the memory data width, MIG instantiates multiple FIFO16s to gain the
required width. For designs using 8-bit data width, one FIFO16 is instantiated; for
72-bit data width, a total of five FIFO16s are instantiated. The bit architecture
comprises 16 bits of rising-edge data, 2 bits of rising-edge mask, 16 bits of falling-edge
data, and 2 bits of falling-edge mask, which are all stored in a FIFO16. MIG routes the
app_wdf_data and app_mask_data to FIFO16s accordingly.

6. The user can initiate a write to memory by writing to the Address FIFO and the Write
Data FIFO when the FIFO Full flags are deasserted and after the init_done signal is
asserted. Status signal af_almost_full is asserted when Address FIFO is full, and
similarly wdf_almost_full is asserted when Write Data FIFO is full.

7. Both the Address FIFO and Write Data FIFO Full flags are deasserted with power-on.

8. The user should assert the Address FIFO write-enable signal app_af_wren along with
address app_af_addr to store the write address and write command into the Address
FIFO.

9. The user should assert the Data FIFO write-enable signal app_wdf_wren along with
write data app_wdf_data and mask data app_mask_data to store the write data and
mask data into the Write Data FIFO. The user should provide both rise and fall data
together for each write to the Data FIFO.

10. The controller reads the Address FIFO by issuing the ctrl_af_rden signal. The
controller reads the Write Data FIFO by issuing the ctrl_wdf_rden signal after the
Address FIFO is read. It decodes the command part after the Address FIFO is read.

11. The write command timing diagram in Figure 3-9 is derived from the MIG-generated
test bench. As shown (burst length of 4), each write to the Address FIFO must be
coupled with two writes to the Data FIFO. Similarly, for a burst length of 8, every write

Figure 3-9: DDR2 SDRAM Write Burst (BL = 4) for Four Bursts

CLK_TB

RESET_TB

WDF_ALMOST_FULL

BURST_LENGTH_DIV2[2:0] 3’b010 (BL = 4)

APP_AF_WREN

APP_AF_ADDR[35:0]

APP_WDF_WREN

A0

APP_WDF_DATA[2n-1:0] D0D1 D2D3 D4D5 D6D7 D8D9 D10D11 D12D13 D14D15

APP_MASK_DATA[2m-1:0] M0M1 M2M3 M4M5 M6M7 M8M9 M10M11 M12M13 M14M15

A1 A2 A3

UG086_c3_08_090607

http://www.xilinx.com

MIG User Guide www.xilinx.com 123
UG086 (v2.2) March 3, 2008

Direct Clocking Interface
R

to the Address FIFO must be coupled with four writes to the Data FIFO. Failure to
follow this rule can cause unpredictable behavior.

Note: The user can start filling the Write Data FIFO two clocks after the Address FIFO is
written, because there is a two-clock latency between the command fetch and reading the Data
FIFO. Using the terms shown in Figure 3-10, therefore, the user can assert the A0 address two
clocks before D0D1.

12. The write command timing diagram in Figure 3-10 is derived from the MIG-generated
test bench. As shown (burst length of 8), each write to the Address FIFO must be
coupled with four writes to the Data FIFO. Because the controller first reads the
address and command together, the address need not coincide with the last data. After
the command is analyzed (nearly two clocks later for a worst-case timing scenario), the
controller sequentially reads the data in four clocks. Thus, there are six clocks from the
time the address is read to the time the last data is read.

Correlation between the Address and Data FIFOs

There is a worst-case two-cycle latency from the time the address is loaded into the address
FIFO on APP_AF_ADDR[35:0] to the time the controller decodes the address. Because of
this latency, it is not necessary to provide the address on the last clock where data is
entered into the data FIFO. If the address is written before the last data phase, the overall
efficiency and performance increases because it eliminates or reduces the two-cycle
latency. However, if the address is written before data is input into the data FIFO, a FIFO
empty condition might result because the Data FIFO does not contain valid data.

Based on these considerations, Xilinx recommends entering the address into the address
FIFO between the first data phase and the next-to-last data phase. For a burst of four or
eight, this means the Address can be asserted two clocks before the first data phase. This

Figure 3-10: DDR2 SDRAM Write Burst (BL = 8) for Two Bursts

CLK_TB

RESET_TB

WDF_ALMOST_FULL

BURST_LENGTH_DIV2[2:0] 3’b100 (BL = 8)

APP_AF_WREN

APP_AF_ADDR[35:0]

APP_WDF_WREN

A 0

D 0 D 1 D 2 D 3 D 4 D 5 D 6 D 7 D 8 D 9 D 10 D 1 1 D 1 2 D 13 D 14 D 15

APP_MASK_DATA[2m-1:0]

APP_WDF_DATA[2n-1:0]

M 0 M 1 M 2 M 3 M 4 M 5 M 6 M 7 M 8 M 9 M 10 M 1 1 M 1 2 M 13 M 14 M 15

A 1

UG086_c3_09_090607

http://www.xilinx.com

124 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 3: Implementing DDR2 SDRAM Controllers
R

implementation increases efficiency by reducing the two clock latency and guarantees that
valid data is available in the Data FIFO.

Read Interface

Figure 3-11 shows a block diagram of the read interface.

The following steps describe the architecture of the Read Data FIFOs and show how to
perform a burst read operation from DDR SDRAM from the user interface.

1. The read user interface consists of an Address FIFO and a Read Data FIFO. The
Address FIFO is common to both read and write operations. The Read Data FIFOs are
constructed using Virtex-4 Distributed RAMs with a 16 x 1 configuration. MIG
instantiates a number of RAM16Ds depending on the data width. For example, for
8-bit data width, MIG instantiates a total of 16 RAM16Ds, 8 for rising-edge data and 8
for falling-edge data. Similarly, for 72-bit data width, MIG instantiates a total of 144
RAM16Ds, 72 for rising-edge data and 72 for falling-edge data.

2. The user can initiate a read to memory by writing to the Address FIFO when the
FIFO Full flag af_almost_full is deasserted and after init_done is asserted.

3. To write the read address and read command into the Address FIFO, the user should
issue the Address FIFO write-enable signal app_af_wren along with read address
app_af_addr.

4. The controller reads the Address FIFO containing the address and command. After
decoding the command, the controller generates the appropriate control signals to
memory.

5. Prior to the actual read and write commands, the design calibrates the latency (number
of clock cycles) from the time the read command is issued to the time data is received.
Using this pre-calibrated delay information, the controller generates the write-enable
signals to the Read Data FIFOs.

6. The read_data_valid signal is asserted when data is available in the Read Data FIFOs.

Figure 3-11: User Interface Block Diagram for Read Operation

User Interface

Controller
 Address FIFO

(FIFO16)
512 x 36

af_addr

af_empty

ctrl_af_rden

app_af_addr

app_af_wren

read_data_fifo_out

read_data_rise

read_data_fall From Phy Layer

read_data_valid

af_almost_full

Read Data
FIFO

RAM16 x 1D

Read Data
FIFO

RAM16 x 1D

ug086_c3_27_110607

http://www.xilinx.com

MIG User Guide www.xilinx.com 125
UG086 (v2.2) March 3, 2008

Direct Clocking Interface
R

7. Figure 3-12 shows the user interface timing diagram for a burst length of 4, and
Figure 3-13 shows the user interface timing diagram for a burst length of 8. Both the
cases shown here are for a CAS latency of 3 at 200 MHz. The read latency is calculated
from the point when the read command is given by the user to the point when the data
is available with the read_data_valid signal. The minimum latency in this case is
25 clocks, where no precharge is required, no auto-refresh request is pending, the user
commands are issued after initialization is completed, and the first command issued is
a Read command. Controller executes the commands only after initialization is done
as indicated by the init_done signal.

8. After the address and command are loaded into the Address FIFO, it takes 25 clock
cycles minimum for the controller to assert the read_data_valid signal.

9. Read data is available only when the read_data_valid signal is asserted. The user
should access the read data on every positive edge of the read_data_valid signal.

Figure 3-12: DDR2 SDRAM Read Burst (BL = 4) for Four Bursts

CLK_TB

AF_ALMOST_FULL

APP_AF_WREN

RESET_TB

APP_AF_ADDR[35:0]

BURST_LENGTH_DIV2[2:0]

READ_DATA_VALID

READ_DATA_FIFO_OUT[2n-1:0]

25 clocks

D0D1 D2D3 D4D5 D6D7 D8D9 D10D11 D12D13 D14D15

UG086_c3_10_111607

A0 A1 A

3’b010 (BL = 4)

2 A3

Figure 3-13: DDR2 SDRAM Read Burst (BL = 8) for Two Bursts

READ_DATA_VALID

READ_DATA_FIFO_OUT[2n-1:0]

UG086_c3_11_111607

A0 A1

AF_ALMOST_FULL

APP_AF_WREN

APP_AF_ADDR [35:0]

D 0 D 1 D 2 D 3 D 4 D 5 D 6 D 7 D 8 D 9 D 10 D 1 1 D 1 2 D 13 D 14 D 15

CLK_TB

RESET_TB

BURST_LENGTH_DIV2 [2:0]

25 clocks

3’b100 (BL = 8)

http://www.xilinx.com

126 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 3: Implementing DDR2 SDRAM Controllers
R

The 25 clocks from the read command to the read data, as shown in Figure 3-12 and
Figure 3-13, are broken up as indicated in Table 3-7.

In general, read latency varies based on the following parameters:

• CAS latency (CL) and additive latency (AL)

• The number of commands already in the FIFO pipeline before the read command is
issued

• Whether an ACTIVATE command needs to be issued to open the new bank/row

• Whether a PRECHARGE command needs to be issued to close a previously opened
bank

• Specific timing parameters for the memory, such as TRAS, and TRCD in conjunction
with the bus clock frequency

• Commands might be interrupted, and banks/rows might be forcibly closed when the
periodic AUTO REFRESH command is issued

• If the user issues the commands before initialization is complete, the latency cannot be
determined

• Board-level and chip-level (for both memory and FPGA) propagation delays

User to Controller Interface

Table 3-8 lists the signals between the User interface and the controller.

Table 3-7: Read Command to Read Data Clock Cycles

Parameter Number of Clocks

Read Address to Empty Deassert 7 clocks

Empty to Active Command 5.5 clocks

Active to Read Command 3 clocks

Memory Read Command to Read Data Valid 9.5 clocks

Total: 25 clocks

Table 3-8: List of Signals Between User Interface and Controller

Port Name
Port

Width
Port Description Notes

af_addr 36 Output of the Address FIFO in the user
interface. The mapping of these address
bits is:

[31:0]: Memory Address (CS, Bank,
Row, Column)

[34:32]: Dynamic Command Request

[35]: Reserved

Monitor FIFO-full status flag to write address into
the Address FIFO

af_empty 1 The user interface Address FIFO empty
status flag output. The user application
can write to the Address FIFO when this
signal is asserted until the write data
FIFO-full status flag is asserted.

FIFO16 Almost Empty flag

http://www.xilinx.com

MIG User Guide www.xilinx.com 127
UG086 (v2.2) March 3, 2008

Direct Clocking Interface
R

The memory address (af_addr) includes the column address, row address, bank address,
and chip-select width for deep memory interfaces.

Column Address

[column_address – 1:0]

Row Address

[column_address + row_address – 1:column_address]

Bank Address

[column_address + row_address + bank_address – 1:column_address +
row_address]

Chip Select

[column_address + row_address + bank_address + chip_address – 1:
column_address + row_address + bank_address]

Dynamic Command Request

Table 3-9 lists commands not required for normal operation of the controller. The user has
the option of requesting these commands if the commands are required by their
application.

ctrl_af_RdEn 1 Read Enable input to Address FIFO in
the user interface.

This signal is asserted for one clock cycle when
the controller state is write, read, Load Mode
register, Precharge All, Auto Refresh, or Active
resulting from dynamic command requests.
Figure 3-15 shows the timing waveform for burst
length of eight with four back-to-back writes
followed by four back-to-back reads.

ctrl_Wdf_RdEn 1 Read Enable input to Write Data FIFO in
the user interface.

The controller asserts this signal two clock cycles
after the first write state. This signal remains
asserted for two clock cycles for a burst length of
four and four clock cycles for a burst length of
eight. Figure 3-15 shows the timing waveform.
Sufficient data must be available in Write Data
FIFO associated with a write address for the
required burst length before issuing a write
command. For example, for a 64-bit data bus and
a burst length of four, the user should input two
128-bit data words in the Write Data FIFO for
every write address before issuing the write
command.

Table 3-8: List of Signals Between User Interface and Controller (Continued)

Port Name
Port

Width
Port Description Notes

http://www.xilinx.com

128 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 3: Implementing DDR2 SDRAM Controllers
R

Figure 3-14 describes four consecutive writes followed by four consecutive reads with a
burst length of 8.

Controller to Physical Layer Interface

Table 3-10 lists the signals between the controller and the physical layer.

Table 3-9: Optional Commands

Command Description

001 Auto Refresh

010 Precharge

100 Write

101 Read

Figure 3-14: Consecutive Writes Followed by Consecutive Reads with Burst Length of 8

UG086_c3_12_042507

top_00/clk_0

top_00/af_empty_w

top_00/ctrl_af_rden

top_00/ctrl_wr_df_rden

Table 3-10: Signals Between the Controller and Physical Layer

Port Name
Port

Width
Port Description Notes

ctrl_Dummyread_Start 1 Output from the controller to the
physical layer. When asserted, the
physical layer begins strobe and
data calibration after memory
initialization.

This signal is asserted after read strobe
begins to toggle in the dummy read state.
This signal is deasserted when the
phy_Dly_Slct_Done signal is asserted.

phy_Dly_Slct_Done 1 Output from the physical layer to
the controller indicating
calibration is complete.

This signal is asserted after data bits have
been delayed to center align with respect
to the FPGA global clock. The
ctrl_Dummyread_Start signal is
deasserted when the phy_Dly_Slct_Done
signal is asserted. Normal operation
begins after this signal is asserted.

ctrl_Dqs_Rst 1 Output from the controller to the
physical layer for the write strobe
preamble.

This signal is asserted for one clock cycle
during a write. The CAS latency and AL
values determine how many clock cycles
after the first write state this signal is
asserted. Figure 3-15 shows the timing
waveform for this signal with CAS latency
of 3 and AL of 0 for four back-to-back
writes with a burst length of 8.

http://www.xilinx.com

MIG User Guide www.xilinx.com 129
UG086 (v2.2) March 3, 2008

Direct Clocking Interface
R

Figure 3-15 describes the timing waveform for control signals from the controller to the
physical layer.

ctrl_Dqs_En 1 Output from the controller to the
physical layer for a write strobe.

This signal is asserted for three clock
cycles during a write with a burst length
of four and five clock cycles with a burst
length of 8. The CAS latency and AL
values determine how many clock cycles
after the first write or burst write state this
signal is asserted. Figure 3-15 shows the
timing waveform for this signal with CAS
latency of 3 and AL of 0 for four back-to-
back writes with a burst length of 8.

ctrl_WrEn 1 Output from the controller to the
physical layer for write data three-
state control.

This signal is asserted for two clock cycles
during a write with a burst length of 4 and
for four clock cycles with a burst length of
8. The CAS latency and AL values
determine how many clock cycles after
the first write or burst write state this
signal is asserted. Figure 3-15 shows the
timing waveform for this signal with CAS
latency of 3 and AL of 0 for four back-to-
back writes with a burst length of 8.

Table 3-10: Signals Between the Controller and Physical Layer (Continued)

Port Name
Port

Width
Port Description Notes

Figure 3-15: Timing Waveform for Control Signals from the Controller to the Physical Layer

UG086_c3_13_042507

top_00/clk_0

Additive Latency

CAS Latency

top_00/ctrl_wr_en

top_00/ctrl_rden

top_00/ctrl_dqs_enable

top_00/ctrl_dqs_reset

0

3

http://www.xilinx.com

130 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 3: Implementing DDR2 SDRAM Controllers
R

Deep Memory Configurations
The following examples provide user address formats for different densities of
components and DIMMs in deep memory designs. These are examples only, not associated
with any specific memory part number from memory data sheets.

Components

Case 1: 256 Mb (x4 component)

Write Address/Read Address:

Density 256 Mb (256 Mb x 4 = 1 Gb)

Depth 4

Row address 13

Column address 11

Bank address 2

Rank/chip + deep address 2

35 32 31 29 28 27 26 25 24 12 11 10 9 0

A10-A0 Column address

A23-A11 Row address

A25-A24 Bank address

A27 -A26 Rank + deep address

A31-A28 Assigned to all zeros

A34-A32 Dynamic commands

A35 Reserved for internal use

http://www.xilinx.com

MIG User Guide www.xilinx.com 131
UG086 (v2.2) March 3, 2008

Direct Clocking Interface
R

Case 2: 256 Mb (x8 component)

Write Address/Read Address:

Density 256 Mb (256 Mb x 3 = 768 Mb)

Depth 3

Row address 13

Column address 10

Bank address 2

Rank/chip + deep address 2

35 32 31 28 27 26 25 24 23 11 10 9 0

A9-A0 Column address

A22-A10 Row address

A24-A23 Bank address

A26-A25 Rank + deep address

A31-A27 Assigned to all zeros

A34-A32 Dynamic commands

A35 Reserved for internal use

http://www.xilinx.com

132 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 3: Implementing DDR2 SDRAM Controllers
R

Case 3: 256 Mb (x16 component)

Write Address/Read Address:

Density 256 Mb (256 Mb x 2 = 512 Mb)

Depth 2

Row address 13

Column address 9

Bank address 2

Rank/chip + deep address 1

35 32 31 30 29 28 27 25 24 11 10 9 0

A8-A0 Column address

A21-A9 Row address

A23-A22 Bank address

A24 Rank + deep address

A31-A25 Assigned to all zeros

A34-A32 Dynamic commands

A35 Reserved for internal use

http://www.xilinx.com

MIG User Guide www.xilinx.com 133
UG086 (v2.2) March 3, 2008

Direct Clocking Interface
R

DIMMs

Case 1: 2 GB

Write Address/Read Address:

Density 1 GB (1 x 2 = 2 GB)

Depth 2

Row address 14

Column address 10

Bank address 3

Rank/chip + deep address 2

35 32 31 30 29 28 27 25 24 11 10 9 0

A9-A0 Column address

A23-A10 Row address

A26-A24 Bank address

A28-A27 Rank + deep address

A31-A29 Assigned to all zeros

A34-A32 Dynamic commands

A35 Reserved for internal use

http://www.xilinx.com

134 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 3: Implementing DDR2 SDRAM Controllers
R

Case 2: (8 GB)

Write Address/Read Address:

Density 4 GB (4 x 2 = 8 GB)

Depth 2

Row address 14

Column address 11

Bank address 3

Rank/chip + deep address 2

35 32 31 30 29 28 26 25 12 11 10 9 0

A10-A0 Column address
A24-A11 Row address
A27-A25 Bank address
A29-A28 Rank + deep address
A31-A30 Assigned to zeros
A34 - A32 Dynamic commands
A35 Reserved for internal use

http://www.xilinx.com

MIG User Guide www.xilinx.com 135
UG086 (v2.2) March 3, 2008

Direct Clocking Interface
R

Table 3-11 is an example showing the pin mapping for x4 registered DIMMs between the
memory data sheet and the user constraint file (UCF).

MIG allows banks to be selected for different classes of memory signals. When a particular
bank is checked for an address, MIG allocates the memory address, the memory control,
and the memory clocks in that bank. When a bank is checked for data, MIG allocates the
data, the data mask, and the data strobes in that bank. When a bank is checked for system
control, MIG allocates the system reset and status signals in that bank. When a bank is
checked for system clocks, MIG allocates the system clock signals in that bank.

Table 3-11: Pin Mapping for x4 DIMMs

Memory Data Sheet MIG UCF

DQ[63:0] DQ[63:0]

CB3 - CB0 DQ[67:64]

CB7 - CB4 DQ[71:68]

DQS0, DQS0 DQS[0], DQS_N[0]

DQS1, DQS1 DQS[2], DQS_N[2]

DQS2, DQS2 DQS[4], DQS_N[4]

DQS3, DQS3 DQS[6], DQS_N[6]

DQS4, DQS4 DQS[8], DQS_N[8]

DQS5, DQS5 DQS[10], DQS_N[10]

DQS6, DQS6 DQS[12], DQS_N[12]

DQS7, DQS7 DQS[14], DQS_N[14]

DQS8, DQS8 DQS[16], DQS_N[16]

DQS9, DQS9 DQS[1], DQS_N[1]

DQS10, DQS10 DQS[3], DQS_N[3]

DQS11, DQS11 DQS[5], DQS_N[5]

DQS12, DQS12 DQS[7], DQS_N[7]

DQS13, DQS13 DQS[9], DQS_N[9]

DQS14, DQS14 DQS[11], DQS_N[11]

DQS15, DQS15 DQS[13], DQS_N[13]

DQS16, DQS16 DQS[15], DQS_N[15]

DQS17, DQS17 DQS[17], DQS_N[17]

http://www.xilinx.com

136 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 3: Implementing DDR2 SDRAM Controllers
R

Table 3-12 shows the list of signals allocated in a group from bank selection check boxes.

Simulating the DDR2 SDRAM Design
After generating the design, MIG creates a sim folder in the specified path. This folder
contains simulation files for a particular design. The sim folder contains the external
testbench, memory model, .do file, and the executable file to simulate the generated
design. The memory model files are currently generated in Verilog only. To learn more
details about the files in sim folder and to simulate the design, see the
simulation_help.chm file in sim folder.

Changing the Refresh Rate

Change the global ̀ define (for Verilog) or constant (for VHDL) variable MAX_REF_CNT in
mymodule_parameters_0.v (or .vhd) so that MAX_REF_CNT = (refresh interval in
clock periods) = (refresh interval) / (clock period). For example, for a refresh rate of 3.9 µs
with a memory bus running at 200 MHz:

MAX_REF_CNT = 3.9 µs / (clock period) = 3.9 µs / 5 ns = 780 (decimal) = 0x30C

If the above value exceeds 2MAX_REF_WIDTH – 1, the value of MAX_REF_WIDTH must be
increased accordingly in parameters_0.v (or .vhd) to increase the width of the counter
used to track the refresh interval.

Supported Devices
The design generated out of MIG is independent of memory package, hence the package
part of the memory component is replaced with XX or XXX, where XX or XXX indicates a
don't care condition. The tables below list the components (Table 3-13) and DIMMs
(Table 3-14 through Table 3-16) supported by the tool for DDR2 Direct clocking designs. In
supported devices, an X in the components column (for Components and Unbuffered
DIMMs) denotes a single alphanumeric character. For example MT47H128M4XX-3 can be
either MT47H128M4BP-3 or MT47H128M4B6-3. Similarly MT16HTF25664AX-40E can be
either MT16HTF25664AY-40E or MT16HTF25664AG-40E. An XX for Registered DIMMs
denotes a single or two alphanumeric characters. For example, MT9HTF3272XX-667 can be
either MT9HTF3272Y-667 or MT9HTF3272DY-667. An XXX for Registered DIMMs denotes
two or three alphanumeric characters. For example, MT18HTF12872XXX-667 can be either
MT18HTF12872DY-667 or MT18HTF12872PDY-667.

Table 3-12: Direct Clocking DDR2 SDRAM Signal Allocations

Bank Selected Signals Allocated in the Group

Address Memory address, memory control, and memory clock signals

Data Data, data mask, and data strobes

System Control System reset from user interface and status signals

System_Clock System clocks from the user interface

http://www.xilinx.com

MIG User Guide www.xilinx.com 137
UG086 (v2.2) March 3, 2008

Direct Clocking Interface
R

Table 3-13: Supported Components for DDR2 SDRAM

Components Packages (XX) Components Packages (XX)

MT47H64M4XX-3 BP MT47H128M8XX-3 BT,HQ

MT47H64M4XX-37E BP MT47H128M8XX-37E BT,HQ

MT47H64M4XX-5E BP MT47H128M8XX-5E BT,HQ

MT47H128M4XX-3 B6,CB,GB MT47H256M8XX-3 HG

MT47H128M4XX-37E B6,CB,GB MT47H256M8XX-37E HG

MT47H128M4XX-5E B6,CB,GB MT47H256M8XX-5E HG

MT47H256M4XX-3 BT,HQ MT47H16M16XX-3 BG

MT47H256M4XX-37E BT,HQ MT47H16M16XX-37E BG

MT47H256M4XX-5E BT,HQ MT47H16M16XX-5E BG

MT47H512M4XX-3 HG MT47H32M16XX-3 BN,CC,FN,GC

MT47H512M4XX-37E HG MT47H32M16XX-37E BN,CC,FN,GC

MT47H512M4XX-5E HG MT47H32M16XX-5E BN,CC,FN,GC

MT47H32M8XX-3 BP MT47H64M16XX-3 BT,HR

MT47H32M8XX-37E BP MT47H64M16XX-37E BT,HR

MT47H32M8XX-5E BP MT47H64M16XX-5E BT,HR

MT47H64M8XX-3 B6,CB,F6,GB MT47H128M16XX-3 HG

MT47H64M8XX-37E B6,CB,F6,GB MT47H128M16XX-37E HG

MT47H64M8XX-5E B6,CB,F6,GB MT47H128M16XX-5E --

Table 3-14: Supported Registered DIMMs for DDR2 SDRAM

Registered DIMMs Packages (X) Registered DIMMs Packages (X)

MT9HTF3272XX-667 -- MT18HTF25672XX-667 PDY,PY,Y

MT9HTF3272XX-53E Y MT18HTF25672XX-53E PDY,PY,Y

MT9HTF3272XX-40E Y MT18HTF25672XX-40E DY,PDY,Y

MT9HTF6472XX-667 PY,Y MT18HTF6472XXX-667 --

MT9HTF6472XX-53E Y MT18HTF6472XXX-53E DY,Y

MT9HTF6472XX-40E Y MT18HTF6472XXX-40E DY,Y

MT9HTF12872XX-667 PY MT18HTF12872XXX-667 DY,PDY,PY,Y

MT9HTF12872XX-53E PY,Y MT18HTF12872XXX-53E
DY,MY,NDY,

NY,PY,Y

MT9HTF12872XX-40E Y MT18HTF12872XXX-40E DY,PY,Y

MT18HTF6472G-53E -- MT18HTF25672XXX-667 PDY,PY,Y

MT18HTF6472XX-667 -- MT18HTF25672XXX-53E PDY,PY,Y

MT18HTF6472XX-53E DY,Y MT18HTF25672XXX-40E DY,PDY,Y

MT18HTF6472XX-40E DY,Y MT36HTJ51272XX-667 --

MT18HTF12872XX-667 DY,PDY,PY,Y MT36HTJ51272XX-53E Y

MT18HTF12872XX-53E
DY,MY,NDY,

NY,PY,Y
MT36HTJ51272XX-40E Y

MT18HTF12872XX-40E DY,PY,Y -- --

http://www.xilinx.com

138 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 3: Implementing DDR2 SDRAM Controllers
R

Hardware Tested Configurations
The frequencies shown in Table 3-17 were achieved on the Virtex-4 FPGA ML461 Memory
Interfaces Development Board under nominal conditions. This frequency should not be
used to determine the maximum design frequency. The maximum design frequency
supported in the MIG wizard is based on a combination of the TRCE results for fabric
timing on multiple device/package combinations and I/O timing analysis using FPGA
and memory timing parameters for a 64-bit wide interface.

Table 3-15: Supported Unbuffered DIMMs for DDR2 SDRAM

Unbuffered DIMMs Unbuffered DIMMs

MT4HTF1664AY-667 MT8HTF12864AY-667

MT4HTF1664AY-40E MT8HTF12864AY-40E

MT4HTF3264AY-667 MT9HTF3272AY-667

MT4HTF3264AY-40E MT9HTF3272AY-40E

MT4HTF6464AY-667 MT9HTF6472AY-667

MT4HTF6464AY-40E MT16HTF25664AX-40E

MT8HTF6464AY-667 MT18HTF6472AY-40E

MT8HTF6464AY-53E MT18HTF12872AY-40E

MT8HTF6464AY-40E MT18HTF25672AY-40E

Table 3-16: Supported SODIMMs for DDR2 SDRAM

SODIMMs SODIMMs

MT4HTF1664HY-667 MT8HTF3264HY-53E

MT4HTF1664HY-53E MT8HTF3264HY-40E

MT4HTF1664HY-40E MT8HTF6464HY-667

MT4HTF3264HY-667 MT8HTF6464HY-53E

MT4HTF3264HY-53E MT8HTF6464HY-40E

MT4HTF3264HY-40E MT8HTF3264HDY-40E

MT8HTF3264HY-667 MT8HTF6464HDY-40E

Table 3-17: Hardware Tested Configurations

Synthesis Tools XST and Synplicity

HDL Verilog and VHDL

FPGA Device XC4VLX25-FF668-11

Burst Lengths 4, 8

CAS Latency (CL) 3, 4

Additive Latency 0, 1, 2

8-bit Design Tested on 16-bit Component “MT47H32M16XX-3”

72-bit Design Tested on 72-bit DIMM “MT9HTF6472XX-667”

ECC with Pipelined Mode 72-bit Registered DIMM design

http://www.xilinx.com

MIG User Guide www.xilinx.com 139
UG086 (v2.2) March 3, 2008

SerDes Clocking Interface
R

SerDes Clocking Interface
This technique uses the Input Serializer/Deserializer (ISERDES) and Output
Serializer/Deserializer (OSERDES) features available in every Virtex-4 I/O. A DDR2
SDRAM interface is source-synchronous, where the read data and read data strobe are
transmitted edge-aligned. To capture this transmitted data using Virtex-4 FPGAs, either
the strobe or the data can be delayed. In this design, the read data is captured in the
delayed strobe domain and recaptured in the FPGA clock domain in the ISERDES. The
received signal, double data rate (DDR) read data, is converted to 4-bit parallel single data
rate (SDR) data at the frequency of the interface using the ISERDES. The write data and
strobe transmitted by the FPGA use the OSERDES. The OSERDEDS converts 4-bit parallel
data at half the frequency of the interface to DDR data at the interface frequency.

Feature Summary
This section summarizes the supported and unsupported features of the SerDes clocking
DDR2 SDRAM controller design.

Supported Features

The DDR2 SDRAM controller design supports:

• Burst lengths of four and eight
• Sequential and Interleaved burst types
• CAS latencies of 4 and 5
• Different memories (density/speed)
• Components
• Additive latencies 0, 1, and 2
• Verilog and VHDL
• Differential and single-ended DQS
• Linear addressing
• Without a testbench
• On Die Termination (ODT)
• DIMMs (registered DIMMs up to 300 MHz and unbuffered DIMMs up to 266 MHz)

The supported features are described in more detail in “Architecture.”

Frequency Range 110 MHz to 270 MHz for CL = 3

110 MHz to 300 MHz for CL = 4 or 5

Table 3-17: Hardware Tested Configurations (Continued)

Synthesis Tools XST and Synplicity

http://www.xilinx.com

140 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 3: Implementing DDR2 SDRAM Controllers
R

Design Frequency Ranges

Unsupported Features

The DDR2 SDRAM controller design does not support:

• CAS latency of 3

• Additive latencies of 3 and 4

• Redundant DQS (RDQS)

• Auto precharge

• Deep memories

• ECC support

• Without a DCM

• Multicontroller

Architecture

Implemented Features

This section provides details on the supported features of the DDR2 SDRAM controller.

Burst Length

The DDR2 SDRAM controller supports burst lengths of four and eight. The burst length
can be selected through the “Set mode register(s)” option in MIG. For a design without a
testbench (user design), the user has to provide bursts of the input data based on the
chosen burst length. Bits M2:M0 of the Mode Register define the burst length, and bit M3
indicates the burst type (see the Micron data sheet). Read and write accesses to the DDR2
SDRAM are burst-oriented. It determines the maximum number of column locations
accessed for a given READ or WRITE command.

CAS Latency

The DDR2 SDRAM controller supports CAS latencies (CLs) of four and five. CL can be
selected in the “Set mode register(s)” option from the GUI. The CAS latency is
implemented in the ddr2_controller module. During data write operations, the generation
of the ctrl_WrEn, ctrl_WrEn_Dis, and ctrl_Odd_Latency signals varies according to the CL
in the ddr2_controller module. During data read operations, the generation of the
ctrl_RdEn_div0 signal varies according to the CL in the ddr2_controller module. Bits
M4:M6 of the Mode Register define the CL (see the Micron data sheet). CL is the delay in
clock cycles between the registration of a READ command and the availability of the first
bit of output data.

Table 3-18: Design Frequency Range in MHz

Memory

FPGA Speed Grade

-10 -11 -12

Min Max Min Max Min Max

Component 200 230 200 266 200 300

Registered DIMM 200 230 200 266 200 300

Unbuffered DIMM 200 230 200 266 200 266

http://www.xilinx.com

MIG User Guide www.xilinx.com 141
UG086 (v2.2) March 3, 2008

SerDes Clocking Interface
R

Additive Latency

DDR2 SDRAM devices support a feature called posted CAS additive latency (AL). The
DDR2 SDRAM supports additive latencies of 0, 1, and 2. AL can be selected in the “Set
mode register(s)” option. Additive latency is implemented in the ddr2_controller module.
The ddr2_controller module issues READ/WRITE commands prior to tRCD (minimum)
depending on the user-selected AL value in the Extended Mode Register. This feature
allows the READ command to be issued prior to tRCD (minimum) by delaying the internal
command to the DDR2 SDRAM by AL clocks. Posted CAS AL makes the command and
data bus efficient for sustainable bandwidths in DDR2 SDRAM. Bits E3:E5 of the Extended
Mode Register define the value of AL (see the Micron data sheet).

Registered DIMMs

DDR2 SDRAM supports registered DIMMs. This feature is implemented in the
ddr2_controller module. For registered DIMMs, the address and command signals are
registered at the DIMM and therefore have one additional clock latency than unbuffered
DIMMs.

Unbuffered DIMMs and SODIMMs

The DDR2 SDRAM design supports unbuffered DIMMs and SODIMMs. Unbuffered
DIMMs do not have registers at the DIMM for address and command signals. SODIMMs
differ from the unbuffered DIMMs only by the package type; otherwise they are
functionally the same.

Different Memories (Density/Speed)

The DDR2 SDRAM controller supports different densities. For DDR2 components shown
in MIG, densities vary from 256 Mb to 1 Gb, and DIMM densities vary from 128 Mb to
4 Gb. The user can select various configurations using the “Create new memory part”
feature of MIG. The supported maximum column address is 13, the maximum row address
is 15, and the maximum bank address is 3. The design can decode write and read addresses
from the user in the DDR2 SDRAM controller module. The user address consists of
column, row, bank, chip address, and user command.

Table 3-19 and Table 3-20 list sample timing sheets for Micron components and DIMMs,
respectively.

Table 3-19: Timing Parameters for Components

Parameter Description

Micron
256 Mb

Micron
512 Mb

Micron 1 Gb
Units

-37E -3 -37E -3 -37E -3

TMRD LOAD MODE command cycle time 2 2 2 2 2 2 TCK

TRP PRECHARGE command period 15 15 15 15 15 15 ns

TRFC REFRESH to ACTIVE or REFRESH to
REFRESH command interval

75 75 105 105 127.5 127.5 ns

TRCD ACTIVE to READ or WRITE delay 15 15 15 15 15 15 ns

TRAS ACTIVE to PRECHARGE command 40 40 40 40 40 40 ns

TRC ACTIVE to ACTIVE (same bank) command 55 55 55 55 55 55 ns

TRTP READ to PRECHARGE command delay 7.5 7.5 7.5 7.5 7.5 7.5 ns

http://www.xilinx.com

142 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 3: Implementing DDR2 SDRAM Controllers
R

Data Masking

The DDR2 SDRAM design supports data masking per byte. Masking per nibble is not
supported due to the limitation of the internal block RAM based FIFOs. So, the masking of
data can be done on per byte basis. The mask data is stored in the Data FIFO along with the
actual data.

Precharge

The PRECHARGE command is used to close the open row in a bank if there is a command
to be issued to a different row in the same bank. The PRECHARGE command checks the
row address, bank address, and chip address, and the DDR2 Virtex-4 controller issues a
PRECHARGE command if there is a change in any address where a read or write
command is to be issued. The auto-precharge function is not supported.

TWTR WRITE to READ command delay 7.5 7.5 7.5 7.5 7.5 7.5 ns

TWR WRITE recovery time 15 15 15 15 15 15 ns

Table 3-19: Timing Parameters for Components (Continued)

Parameter Description

Micron
256 Mb

Micron
512 Mb

Micron 1 Gb
Units

-37E -3 -37E -3 -37E -3

Table 3-20: Timing Parameters for DIMMs

Para-
meter

Description
MT4HTF MT8HTF MT16HTF MT9HTF MT18HTF

-53E -40E -53E -40E -53E -40E -53E -40E -53E -40E

TMRD
LOAD MODE
command cycle time 2 ns 2 ns 2 ns 2 ns 2 ns 2 ns 2 ns 2 ns 2 ns 2 ns

TRP
PRECHARGE
command period 15 ns 15 ns 15 ns 15 ns 15 ns 15 ns 15 ns 15 ns 15 ns 15 ns

TRFC REFRESH time

128 MB
75 ns 75 ns 256 MB

75 ns 75 ns 512 MB
75 ns 75 ns 256 MB

75 ns 75 ns 512 MB
75 ns 75 ns

256 MB
105 ns 105 ns 512 MB

105 ns 105 ns 1 GB
105 ns 105 ns 512 MB

105 ns 105 ns 1 GB
105 ns 105 ns

512 MB
127.5 ns 127.5 ns 1 GB

127.5 ns 127.5 ns 2 GB
127.5 ns 127.5 ns 1 GB

127.5 ns 127.5 ns 2 GB
127.5 ns 127.5 ns

TRCD
ACTIVE to READ or
WRITE delay 15 ns 15 ns 15 ns 15 ns 15 ns 15 ns 15 ns 15 ns 15 ns 15 ns

TRAS

ACTIVE to
PRECHARGE
command

40 ns 40 ns 40 ns 40 ns 40 ns 40 ns 40 ns 40 ns 40 ns 40 ns

TRC
ACTIVE to ACTIVE
command (same bank) 55 ns 55 ns 55 ns 55 ns 55 ns 55 ns 55 ns 55 ns 55 ns 55 ns

TRTP

READ to
PRECHARGE
command delay

7.5 ns 7.5 ns 7.5 ns 7.5 ns 7.5 ns 7.5 ns 7.5 ns 7.5 ns 7.5 ns 7.5 ns

TWTR
WRITE to READ
command delay 7.5 ns 10 ns 7.5 ns 10 ns 7.5 ns 10 ns 7.5 ns 10 ns 7.5 ns 10 ns

TWR WRITE recovery time 15 ns 15 ns 15 ns 15 ns 15 ns 15 ns 15 ns 15 ns 15 ns 15 ns

Notes:
1. For the latest timing information, refer to the vendor memory data sheets.

http://www.xilinx.com

MIG User Guide www.xilinx.com 143
UG086 (v2.2) March 3, 2008

SerDes Clocking Interface
R

Auto Refresh

The DDR2 SDRAM controller issues AUTO REFRESH commands at specified intervals for
the memory to refresh the charge required to retain the data in the memory. The user can
also issue a REFRESH command through the user interface by setting bits 34, 33, and 32 of
the app_af_addr signal in the user_interface module to 3’b001. If there is a refresh request
while there is an ongoing read or write burst, the controller issues a REFRESH command
after completing the current read or write burst command.

Linear Addressing

The DDR2 SDRAM controller supports linear addressing. Linear addressing refers to the
way the user provides the address of the memory to be accessed. For Virtex-4 DDR2
SDRAM controllers, the user provides the address information through the app_af_addr
signal. As the densities of the memory devices vary, the number of column address bits
and row address bits also change. In any case, the row address bits in the app_af_addr
signal always start from the next higher bit, where the column address ends. This feature
increases the number of devices that can be supported with the design.

On-Die Termination

The DDR2 SDRAM controller supports on-die termination (ODT). Through the “Set mode
register(s)” option from the GUI, the user can disable ODT or can choose 75, 150, or 50.
ODT can turn the termination on and off as needed to improve the signal integrity in the
system. ODT is only enabled on writes to DDR2 memory. It is disabled on read operations.

http://www.xilinx.com

144 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 3: Implementing DDR2 SDRAM Controllers
R

Hierarchy

Figure 3-16 shows the hierarchical structure of the DDR2 SDRAM controller.

Figure 3-16 shows the hierarchical structure of the DDR2 SDRAM design generated by
MIG with a testbench and a DCM. The modules are classified as follows:

• Design modules
• Testbench modules
• Clocks and reset generation modules

There is a parameter file generated with the design that has all the user input and design
parameters selected from MIG.

MIG can generate two different DDR2 SDRAM designs:

• With a testbench and a DCM
• Without a testbench and with a DCM

A design without a testbench (user_design) does not have testbench modules. The
<top_module> module has the user interface signals for designs without a testbench. The
list of user interface signals is provided in Table 3-22.

Design clocks and resets are generated by using the DCM in the infrastructure module.
The inputs to this module are the differential design clock and a 200 MHz differential clock
for the IDELAYCTRL module. A user reset is also input to this module. Using the input
clocks and reset signals, the system clocks and the system reset are generated in this
module, which is used in the design.

Figure 3-16: Hierarchical Structure of the DDR2 SDRAM Design (SerDes Clocking)

<top_
module>

main* idelayctrlinfrastructure*

iobs*
data_
path*

user_
interface*

data_
path_iobs*

controller
_iobs*

infrastructure
_iobs*

ddr2_
controller*

rd_data
_fifo*

RAM_D

v4_dq_
iob

Design Modules

v4_dm_
iob

idelay_
rd_en_

io

v4_dqs_
iob

cmp_rd_
data*

backend
_rom*

data_
gen

addr_
gen

rd_data*
backend
_fifos*

rd_wr_
addr_
fifo*

wr_data
_fifo

data_
write*

tap_
logic*

tap_
ctrl*

data_
tap_inc*

UG086_c3_14_091207

test_
bench*

top*

Test Bench Modules

Clocks and Reset Generation Modules
Note: A block with a * has a parameter file included.

http://www.xilinx.com

MIG User Guide www.xilinx.com 145
UG086 (v2.2) March 3, 2008

SerDes Clocking Interface
R

Figure 3-17 shows a top-level block diagram of a DDR2 SDRAM design with a DCM and a
testbench. SYS_CLK_P and SYS_CLK_N are differential input system clocks. The DCM is
instantiated in the infrastructure module that generates the required design clocks.
CLK200_P and CLK200_N are used for the idelay_ctrl element. SYS_RESET_IN_N is an
active-Low system reset signal. All design resets are gated by the dcm_lock signal. The
ERROR output signal indicates whether a read passes or fails. The testbench module issues
writes and reads, and also compares the read data with the written data. The ERROR
signal is driven High on data mismatches. The INIT_COMPLETE signal indicates the
completion of initialization and calibration of the design. Memory device signals are
prepended with the controller number. For example, the DDR2_RAS_N signal appears as
cntrl0_DDR2_RAS_N.

All Memory Device ports do not necessarily appear for all MIG-generated designs. For
example, port DDR2_RESET_N appears in the port list for Registered DIMM designs only.
Similarly, DDR2_DQS_N does not appear for single-ended DQS designs. Port DDR2_DM
appears only for parts that contain a data mask; a few RDIMMs have no data mask, and
DDR2_DM does not appear in the port list for them.

Figure 3-18 shows a top-level block diagram of a DDR2 SDRAM design with a DCM but
without a testbench. SYS_CLK_P and SYS_CLK_N are differential input system clocks.
The DCM is instantiated in the infrastructure module that generates the required design
clocks. CLK200_P and CLK200_N are used for the idelay_ctrl element. SYS_RESET_IN_N
is an active-Low system reset signal. All design resets are gated by the dcm_lock signal.
The user has to drive the user application signals. The design provides the clk_tb and
reset_tb signals to the user to synchronize with the design. The INIT_COMPLETE signal
indicates the completion of initialization and calibration of the design.

Figure 3-17: Top-Level Block Diagram of the DDR2 SDRAM Design with a DCM and a Testbench

main_0

idelay_ctrl_rdy

CLK200

Memory
Device

UG086_c3_15_090607

Status
Signals

System
Clocks

and Reset

idelay_ctrl

Infrastructure

rst200

CLK

CLK90

sys_rst_270

sys_rst_90

CLK200_P

CLK200_N

SYS_CLK_P

SYS_CLK_N

SYS_RESET_IN_N

sys_rst

DDR2_RAS_N

DDR2_CAS_N

DDR2_WE_N

DDR2_CS_N

DDR2_ODT

DDR2_CKE

DDR2_DM

DDR2_BA

DDR2_A

DDR2_CK

DDR2_CK_N

DDR2_DQ

DDR2_DQS

DDR2_DQS_N

CLKDIV_0

CLKDIV_90

DDR2_RESET_N

ERROR

INIT_COMPLETE

http://www.xilinx.com

146 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 3: Implementing DDR2 SDRAM Controllers
R

Figure 3-18: Top-Level Block Diagram of the DDR2 SDRAM Design with a DCM but without a Testbench

top_0

idelay_ctrl_rdy

CLK200

Memory
Device

UG086_c3_16_090607

User
Application

System
Clocks

and Reset

idelay_ctrl

Infrastructure

rst200

CLK

CLK90

sys_rst_270

sys_rst_90

CLK200_P

CLK200_N

SYS_CLK_P

SYS_CLK_N

SYS_RESET_IN_N

APP_AF_ADDR

APP_AF_WREN

APP_WDF_DATA

APP_MASK_DATA

APP_WDF_WREN

WDF_ALMOST_FULL

AF_ALMOST_FULL

BURST_LENGTH_DIV2

READ_DATA_VALID

READ_DATA0_FIFO_OUT

sys_rst

DDR2_RAS_N

DDR2_CAS_N

DDR2_WE_N

DDR2_CS_N

DDR2_ODT

DDR2_CKE

DDR2_DM

DDR2_BA

DDR2_A

DDR2_CK

DDR2_CK_N

DDR2_DQ

DDR2_DQS

DDR2_DQS_N

DDR2_RESET_N

READ_DATA1_FIFO_OUT

READ_DATA2_FIFO_OUT

READ_DATA3_FIFO_OUT

CLK_TB

RESET_TB

INIT_COMPLETE

CLKDIV_0

CLKDIV_90

http://www.xilinx.com

MIG User Guide www.xilinx.com 147
UG086 (v2.2) March 3, 2008

SerDes Clocking Interface
R

DDR2 Controller Submodules

Figure 3-19 is a detailed block diagram of the DDR2 SDRAM controller. The five blocks
shown are the sub-blocks of the top module. The user backend signals are provided by the
tool for designs with a testbench. The user has to drive these signals for designs without a
testbench. The functions of these blocks are explained in the subsections following
Figure 3-19.
I

Controller

The DDR2 SDRAM ddr2_controller accepts and decodes user commands and generates
read, write, and refresh commands. The DDR2 SDRAM controller also generates signals
for other modules. The memory is initialized and powered up using a defined process. The
controller state machine handles the initialization process upon power-up. When the
initialization is over, the controller starts doing a dummy write and continuous dummy
reads. During these dummy reads, the tap_logic module calibrates DQ and DQS by
varying the delay to center-align the data with the FPGA clock. Then the tap_logic module
asserts the dp_dqs_dq_calib_done signal. After this assertion, the controller does one more
write and read to the memory for read-enable calibration to determine the delay between

Figure 3-19: DDR2 Memory Controller Block Diagram (SerDes Clocking)

DDR2
SDRAM

Controller

Physical
Layer

Virtex-4 FPGA

DDR2
SDRAM

User Backend

User Interface

Backend FIFOs

Ctrl_rden_valid

Cntl_dummyread_start

af_almost_empty

af_addr
APP_AF_ADDR

INIT_COMPLETE

APP_AF_WREN

WDF_DATA

UG086_c3_17_090607

CK/CK_N

DQ

DQS

Read/Write
Address FIFO

Write Data
FIFOs

Read Data
FIFOs

Infrastructure

Address
and Data

Generation

Read Data
Compare
Module

AF_ALMOST_FULL

READ_DATA0_FIFO_OUT

BURST_LENGTH_DIV2

READ_DATA1_FIFO_OUT

READ_DATA2_FIFO_OUT

READ_DATA3_FIFO_OUT

WDF_ALMOST_FULL

READ_DATA_VALID

CLKDIV_0 CLK_90 CLKDIV_90

Ctrl_waf_rden

dp_dly_sel_done

Ctrl_wdf_rden

READ_DATA0

READ_DATA1

READ_DATA2

READ_DATA3

APP_WDF_DATA

APP_MASK_DATA

APP_WDF_WREN

SYS_CLK_P

SYS_CLK_N

CLK200_P

CLK200_N

SYS_RESET_IN_N

Address/Controls

Ctrl_wr_dis

Ctrl_odd_latency

Ctrl_rden

Ctrl_wren

http://www.xilinx.com

148 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 3: Implementing DDR2 SDRAM Controllers
R

the read command and data. Then dp_dly_slct_done is asserted to start writing to and
reading from the memory.

The ddr2_controller is clocked at half the frequency of the interface using CLKDIV_0 and
CLKDIV_90 and CLK_90. Therefore the address and bank address are driven and the
command signals (RAS_L, CAS_L, and WE_L) are asserted for two clock cycles of the fast
memory interface clock. The control signals (CS_L, CKE, and ODT) are DDR of the half
frequency clock CLKDIV_0, ensuring that the control signals are asserted for just one clock
cycle of the fast memory interface clock. Figure 3-20 shows the command and control
timing diagram for unbuffered DIMMs and components in which CS_L is deasserted 3/4T
earlier when the write command is at the positive edge of the device clock to the memory.
For registered DIMMs, CS_L is deasserted T/2 earlier only.

Physical Layer

This module transmits data to and receives data from the memories. Its major functions
include processing the data in the write datapath, and calibrating the data in the read
datapath. The write datapath function is implemented in the data_write module and the
read datapath function is implemented in the tap_ctrl, data_tap_inc, and idelay_rd_en_io
modules.

To start calibration in the read datapath, the write datapath first generates the training
pattern (known data) and writes it to the memory during dummy writes. Calibration is
done during the dummy reads. The read datapath expects the training pattern. When the
received training pattern is correct, then DQ and DQS are aligned with the FPGA clock to
capture the data without errors during actual writes and reads. After this calibration is
finished, dp_dqs_dq_calib_done is asserted to start read-enable calibration to find the
delay between the read command and data at the input of the Read Data FIFO. So the read
enable generated from the controller with the read command is delayed by the same
amount and is used as the write enable to the Read Data FIFO for normal reads. Once this
read-enable calibration is complete, dp_dly_slct_done is asserted, which initiates writes
and reads to the memory.

User Interface

This module stores write data and write addresses, writes the data into a location specified
by the write address, stores read addresses used to read from a specific location, and also
stores data read from the memory in FIFOs. The rd_data and rd_data_fifos modules store
the data in LUT-based RAMs. The rd_wr_addr_fifo and wr_data_fifo modules store the
data and address in block RAMs.

Figure 3-20: Command and Control Timing from Controller to DDR2 Memory

CLKDIV_0

Memory Device
Clock

Command WRITE IDLE

Control (CS_L)

CLK

3/4T UG086_c3_18_012507

http://www.xilinx.com

MIG User Guide www.xilinx.com 149
UG086 (v2.2) March 3, 2008

SerDes Clocking Interface
R

 The width of the data stored by the wr_data_fifo module is four times the interface data
width, because the data corresponding to four edges is given in one clock cycle.

Infrastructure Module

The infrastructure module generates the necessary FPGA clocks and reset signals. The
clocking scheme used for this design includes one digital clock manager (DCM) and one
phase-matched clock driver (PMCD) as shown in Figure 3-21.

Note: SerDes design is not supported for FPGAs that do not have PMCDs. Unsupported FPGAs for
SerDes design are:

DDR2 SDRAM Initialization and Calibration
DDR2 memory is initialized through a specified sequence as per both Micron and JEDEC
specifications. The controller starts the memory initialization at power-up. Following the
initialization, the relationship between the data and the FPGA clock is calculated using the
tap_logic. The controller issues a dummy write command and dummy read command to
the memory and compares read data with the fixed pattern. During dummy reads, the
tap_logic module calibrates and delays the DQ and DQS to center-align with the FPGA
clock. The dqs_dq_calib_done port in the tap_logic module indicates the completion of
DQS to FPGA clock calibration and per bit calibration.

After the per-bit calibration is done, the controller does a read enable calibration. This
calibration is used to determine the delay from read command to read data at rd_data_fifo.
The delay between read command and read data is affected by the CAS latency and
additive latency parameters, the PCB traces, and the I/O buffer delays. This in turn is used
to generate a write enable to rd_data_fifo so that valid data is registered. The controller
issues a dummy read command and compares the read data with a fixed known pattern.
The training_done port in the tap_logic module indicates the completion of the read enable
calibration.

The init_complete port indicates the completion of DQS to FPGA clock calibration, per-bit
calibration, and read enable calibration. After initialization and calibration are done, the
controller can start issuing user commands to the memory.

Figure 3-21: Clocking Scheme for the High-Performance Memory Interface Design

SYS_CLK_IN

SYS_RESET

CLKIN

RST

CLKFB LOCKED

CLK90

CLKDV

CLK0

DCM PMCD

CLKB

RST

REL

CLKA1

CLKA1D2

CLKfast_90

CLKdiv_90

CLKB1
CLLKfast_0

CLKC1
CLKdiv_0

UG086_c3_19_012507

CLKA

CLKC

XC4VLX15-FF668 XC4VFX12-FF668 XC4VSX25-FF668

XC4VLX15-FF676 XC4VFX12-SF363 XC4VSX25-FF676

XC4VLX15-SF363 XC4VFX20-FF672

http://www.xilinx.com

150 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 3: Implementing DDR2 SDRAM Controllers
R

DDR2 SDRAM System and User Interface Signals
Table 3-21 lists the system signals that are required for the design. The system interface
signals are the clocks and the reset signals given by the user to the FPGA. SYS_CLK_P and
SYS_CLK_N comprise the differential clock pair provided to the design. Similarly,
CLK200_P and CLK_200N comprise the 200 MHz differential clock pair for the
IDELAYCTRL module. SYS_RESET_IN_N resets all the logic.

Table 3-22 describes the DDR2 SDRAM user interface signals.

Table 3-21: DDR2 SDRAM System Signals

Signal Name Direction Description

SYS_CLK_P, SYS_CLK_N Input This differential clock pair generates the single-ended clock to the
input of the DCM. Memory operates at this frequency, but the
ddr2_controller, data_path, and user_interface modules, and all
other FPGA slice logic are clocked at half of this frequency.

CLK200_P, CLK200_N Input Differential clock used in the idelay_ctrl logic.

SYS_RESET_IN_N Input Active-Low reset to the design.

Table 3-22: DDR2 SDRAM Controller User Interface Signals

Signal Name Direction Description

CLKDIV_0 Output All user interface signals must be synchronized with respect to the
negative edge of CLKDIV_0.

RESET0 Output Reset signal for the User Interface.

BURST_LENGTH_DIV2[2:0] Output This signal determines the data burst length for each write address.

010: burst length = 4

100: burst length = 8

WDF_ALMOST_FULL Output This signal indicates the ALMOST_FULL status of the Write Data
FIFO. When this signal is asserted, the user can write 5 more data
words into the FIFO for the with testbench case and 14 more data
words for the without testbench case.

APP_WDF_DATA[4n-1:0] Input User write data to the memory, where n indicates the data width of
the interface. The user data width is four times the data width of the
interface. This bus has the data for two rising edges and two falling
edges. The most-significant bits contain the second falling-edge data,
and the least-significant bits contain the first rising-edge data.

APP_MASK_DATA[4m-1:0] Input User mask data to the memory, where m indicates the data mask
width of the interface. The mask data width is four times the mask
width of the interface. This bus also has the mask data for four edges.
The most-significant bits contain the mask data for the second falling
edge, and the least-significant bits contain the mask data for the first
rising edge. These signals are not present when the memory part
does not have mask support (for example, certain Registered
DIMMs) or when the Data Mask option is not selected in the MIG
GUI.

APP_WDF_WREN Input Write Enable signal to the Write Data FIFO.

http://www.xilinx.com

MIG User Guide www.xilinx.com 151
UG086 (v2.2) March 3, 2008

SerDes Clocking Interface
R

User Interface Accesses

The user backend logic communicates with the memory controller through a FIFO-based
user interface. This interface consists of three related buses:

• A Command/Address FIFO bus, which accepts write/read commands as well as the
corresponding memory address from the user

• A Write Data FIFO bus, which accepts the corresponding write data when the user
issues a write command on the Command/Address bus

• A Read bus on which the corresponding read data for an issued read command is
returned

The user interface has the following timing and signaling restriction: When issuing a write
command, the first write data word must be written to the Write Data FIFO no more than
two clock cycles after the write command is issued. This restriction arises from the fact that
the controller assumes write data is available when it receives the write command from the
user.

AF_ALMOST_FULL Output This signal indicates the ALMOST_FULL status of the Address FIFO.
When this signal is asserted, the user can issue eight more
commands/addresses to the FIFO.

APP_AF_ADDR[35:0] Input The user address consists of a memory address and dynamic
commands. The address width [31:0] is the memory read/write
address, which includes the column, row, bank, and chip address.
The address width [35:32] represents dynamic commands.

001: Auto Refresh
010: Precharge All
100: Write
101: Read

APP_AF_WREN Input Write Enable signal to the Address FIFO.

READ_DATA0_FIFO_OUT[n-1:0]
READ_DATA1_FIFO_OUT[n-1:0]
READ_DATA2_FIFO_OUT[n-1:0]
READ_DATA3_FIFO_OUT[n-1:0]

Output The read data captured from the memory is four parallel n-bit data
buses, each at half the frequency of the interface, where n indicates
the data width of the interface. READ_DATA0_FIFO_OUT is the first
rising-edge data, READ_DATA1_FIFO_OUT is the second rising-
edge data, READ_DATA2_FIFO_OUT is the first falling-edge data,
and READ_DATA3_FIFO_OUT is the second falling-edge data.

READ_DATA_VALID Output This signal is asserted to indicate the read data is available to the user.

INIT_COMPLETE Output This signal indicates the completion of initialization to the memory
and calibration in the design.

Notes:
1. All user interface signal names are prepended with a controller number for the without testbench case, because SerDes clocking

supports only a single controller.

Table 3-22: DDR2 SDRAM Controller User Interface Signals (Continued)

Signal Name Direction Description

http://www.xilinx.com

152 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 3: Implementing DDR2 SDRAM Controllers
R

Write Interface

Figure 3-22 shows the user interface block diagram for write operations.

The following steps describe the architecture of the Address and Write Data FIFOs and
show how to perform a write burst operation to DDR2 SDRAM from the user interface.

1. The user interface consists of an Address FIFO and a Write Data FIFO. These FIFOs are
constructed using Virtex-4 FIFO16 primitives with a 512 x 36 configuration. The 36-bit
architecture comprises one 32-bit port and one 4-bit port. For Write Data FIFOs, the
32-bit port is used for data bits and the 4-bit port is used for mask bits. Mask bits are
available only when supported by the memory part and when Data Mask is enabled in
the MIG GUI. Some memory parts, such as Registered DIMMs of x4 parts, do not
support mask bits.

2. The Common Address FIFO is used for both write and read commands, and comprises
a command part and an address part. Command bits discriminate between write and
read commands.

3. User interface data width app_wdf_data is four times that of the memory data width.
For an 8-bit memory width, the user interface is 32 bits consisting of two rising-edge
data and two falling-edge data. For every 8 bits of data, there is a mask bit. For 72-bit
memory data, the user interface data width app_wdf_data is 288 bits, and the mask
data app_mask_data is 36 bits.

4. The minimum configuration of the Write Data FIFO is 512 x 36 for a memory data
width of 8 bits.

5. Depending on the memory data width, MIG instantiates multiple FIFO16s to gain the
required width. For designs using 8-bit data width, one FIFO16 is instantiated; for
72-bit data width, a total of nine FIFO16s are instantiated. The bit architecture
comprises 16 bits of rising-edge data, 2 bits of rising-edge mask, 16 bits of falling-edge
data, and 2 bits of falling-edge mask, which are all stored in a FIFO16. MIG routes the
app_wdf_data and app_mask_data to FIFO16s accordingly.

Figure 3-22: User Interface Block Diagram for Write Operations

User Interface

Controller

 Address FIFO
(FIFO16)
512 x 36

af_addr

af_empty

ctrl_af_rden

ctrl_wdf_rden

app_af_addr

app_af_wren

app_wdf_data

app_mask_data

app_wdf_wren

wdf_data

mask_data
To Phy Layer

wdf_almost_full

af_almost_full

Write Data
FIFO

(FIFO16)
512 x 36

Write Data
FIFO

(FIFO16)
512 x 36

ug086_c3_28_110707

http://www.xilinx.com

MIG User Guide www.xilinx.com 153
UG086 (v2.2) March 3, 2008

SerDes Clocking Interface
R

6. The user can initiate a write to memory by writing to the Address FIFO and the Write
Data FIFO when the FIFO Full flags are deasserted. Status signal af_almost_full is
asserted when Address FIFO is full, and similarly wdf_almost_full is asserted when
Write Data FIFO is full.

7. Both the Address FIFO and Write Data FIFO Full flags are deasserted with power-on.

8. The user should assert the Address FIFO write-enable signal app_af_wren along with
address app_af_addr to store the write address and write command into the Address
FIFO.

9. The user should assert the Data FIFO write-enable signal app_wdf_wren along with
write data app_wdf_data and mask data app_mask_data to store the write data and
mask data into the Write Data FIFO. The user should provide two rising-edge and two
falling-edge data together for each write to the Data FIFO.

10. The controller reads the Address FIFO by issuing the ctrl_af_rden signal. The
controller reads the Write Data FIFO by issuing the ctrl_wdf_rden signal after the
Address FIFO is read. It decodes the command part after the Address FIFO is read.

11. The write command timing diagram in Figure 3-23 is derived from the MIG-generated
test bench. As shown (burst length of 4), each write to the Address FIFO must be
coupled with one write to the Data FIFO.

Note: The user can start filling the Write Data FIFO two clocks after the Address FIFO is
written, because there is a two-clock latency between the command fetch and reading the Data
FIFO. Using the terms shown in Figure 3-23 and Figure 3-24, therefore, the user can assert the
A1 address two clocks before D0D1D2D3. Similarly, A2, A3, and A4 can be advanced by two
clocks.

Figure 3-23: DDR2 SDRAM Write Burst (BL = 4) for Four Bursts

A1

D0 D1 D2 D3

M0 M1 M2 M3 M0 M1 M2 M3 M0 M1 M2 M3 M0 M1 M2 M3

D0 D1 D2 D3 D0 D1 D2 D3 D0 D1 D2 D3

CLKDIV_0

RESET0

BURST_LENGTH_DIV2[2:0]

AF_ALMOST_FULL

APP_AF_WREN

APP_AF_ADDR[35:0]

APP_WDF_WREN

APP_WDF_DATA[4n-1:0]

APP_MASK_DATA[4m-1:0]

WDF_ALMOST_FULL

A2

3’b010 (BL = 4)

A3 A4

UG086_c3_20_090607

http://www.xilinx.com

154 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 3: Implementing DDR2 SDRAM Controllers
R

12. The write command timing diagram in Figure 3-24 is derived from the MIG-generated
test bench. As shown (burst length of 8), each write to the Address FIFO must be
coupled with two writes to the Data FIFO. Because the controller first reads the address
and command together, the address need not coincide with the last data. After the
command is analyzed (nearly two clocks later for a worst-case timing scenario), the
controller sequentially reads the data in four clocks. Thus, there are six clocks from the
time the address is read to the time the last data is read.

Correlation between the Address and Data FIFOs

There is a worst case two-cycle latency from the time the address is loaded into the address
FIFO on APP_AF_ADDR[35:0] to the time the controller decodes the address. Because of
this latency, it is not necessary to provide the address on the last clock where data is
entered into the data FIFO. If the address is written before the last data phase, the overall
efficiency and performance increases because it eliminates or reduces the two-cycle
latency. However, if the address is written before data is input into the data FIFO, a FIFO
empty condition might result because the Data FIFO does not contain valid data.

Based on these considerations, Xilinx recommends entering the address into the address
FIFO between the first data phase and the next-to-last data phase. For a burst of four or
eight, this means the Address can be asserted two clocks before the first data phase. This
implementation increases efficiency by reducing the two clock latency and guarantees that
valid data is available in the Data FIFO.

Figure 3-24: DDR2 SDRAM Write Burst (BL = 8) for Two Bursts

A1

D0 D1 D2 D3

M0 M1 M2 M3 M4 M5 M6 M7 M0 M1 M2 M3 M4 M5 M6 M7

D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7

CLKDIV_0

RESET0

BURST_LENGTH_DIV2[2:0]

AF_ALMOST_FULL

APP_AF_WREN

APP_AF_ADDR[35:0]

APP_WDF_WREN

APP_WDF_DATA[4n-1:0]

APP_MASK_DATA[m-1:0]

WDF_ALMOST_FULL

0

3’b100 (BL = 8)

A2 0

UG086_c3_21_090607

http://www.xilinx.com

MIG User Guide www.xilinx.com 155
UG086 (v2.2) March 3, 2008

SerDes Clocking Interface
R

Read Interface

Figure 3-25 shows a block diagram of the read interface.

The following steps describe the architecture of the Read Data FIFOs and show how to
perform a burst read operation from DDR SDRAM from the user interface.

1. The read user interface consists of an Address FIFO and a Read Data FIFO. The
Address FIFO is common to both read and write operations. These FIFOs are
constructed using Virtex-4 Distributed RAMs with a 16 x 1 configuration. MIG
instantiates a number of RAM16Ds depending on the data width. For example, for
8-bit data width, MIG instantiates a total of 32 RAM16Ds, 16 for first and second
rising-edge data and 16 for first and second falling-edge data. Similarly, for 72-bit data
width, MIG instantiates a total of 288 RAM16Ds, 144 for first and second rising-edge
data and 144 for first and second falling-edge data.

Figure 3-25: User Interface Block Diagram for Read Operation

User Interface

Controller

 Address FIFO
(FIFO16)
512 x 36

af_addr

af_empty

ctrl_af_rden

app_af_addr

app_af_wren

read_data0_fifo_out

read_data1_fifo_out

read_data2_fifo_out

read_data3_fifo_out

read_data0_fifo_out

read_data1_fifo_out

read_data2_fifo_out

read_data3_fifo_out

From Phy Layer

read_data_valid

af_almost_full
Read Data

FIFO 0
RAM16 x 1D

Read Data
FIFO 0

RAM16 x 1D

Read Data
FIFO 1

RAM16 x 1D

Read Data
FIFO 1

RAM16 x 1D

Read Data
FIFO 2

RAM16 x 1D

Read Data
FIFO 2

RAM16 x 1D

Read Data
FIFO 3

RAM16 x 1D

Read Data
FIFO 3

RAM16 x 1D

ug086_c3_29_110607

http://www.xilinx.com

156 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 3: Implementing DDR2 SDRAM Controllers
R

2. The user can initiate a read to memory by writing to the Address FIFO when the
FIFO Full flag af_almost_full is deasserted.

3. To write the read address and read command into the Address FIFO, the user should
issue the Address FIFO write-enable signal app_af_wren along with read address
app_af_addr.

4. The controller reads the Address FIFO containing the address and command. After
decoding the command, the controller generates the appropriate control signals to
memory.

5. Prior to the actual read and write commands, the design calibrates the latency (number
of clock cycles) from the time the read command is issued to the time data is received.
Using this pre-calibrated delay information, the controller generates the write-enable
signals to the Read Data FIFOs.

After the power-up calibration is done, dummy reads are executed to set up the delay
between the read command and read data from the memory. During the time these
dummy reads are in progress, the read enable is generated with each read command
and is delayed until the read data matches the write data. This delay includes CAS
latency, trace delay, and path delay. This precalculated delay is used for asserting the
read-enable signals that latch the data into the Read Data FIFOs. The delays are
calculated on a per-DQS basis. For example, if a bank has two DQS signals, there are
two read enables used to latch the read data to the FIFOs. The strobe (DQS), data (DQ),
and clock (CK/CK) signals should be matched in trace length from the FPGA to the
memory device. MIG ensures that a DQS and its corresponding DQ signals do not
cross a bank boundary.

6. The read_data_valid signal is asserted when data is available in the Read Data FIFOs.

Figure 3-26: DDR2 SDRAM Read Burst (BL = 4) for Two Bursts

CLKDIV_0

RESET0

AF_ALMOST_FULL

APP_AF_WREN

APP_AF_ADDR[35:0]

BURST_LENGTH_DIV2[2:0]

READ_DATA_VALID

READ_DATA0_FIFO_OUT[n-1:0]

READ_DATA1_FIFO_OUT[n-1:0]

READ_DATA2_FIFO_OUT[n-1:0]

READ_DATA3_FIFO_OUT[n-1:0]

UG086_c3_22_090607

A1 A2

D0 D0

D1 D1

D2 D2

D3 D3

3’b010 (BL=4)

25 Clocks

http://www.xilinx.com

MIG User Guide www.xilinx.com 157
UG086 (v2.2) March 3, 2008

SerDes Clocking Interface
R

7. Figure 3-26 shows the user interface timing diagram for a burst length of 4, and
Figure 3-27 shows user interface timing diagram for a burst length of 8. Both the cases
shown here are for a CAS latency of 4 at 200 MHz. The read latency is calculated from
the point when the read command is given by the user to the point when the data is
available with the read_data_valid signal. The minimum latency in this case is 25
clocks, where no precharge is required, no auto-refresh request is pending, the user
commands are issued after initialization is completed, and the first command issued is
a Read command. Controller executes the commands only after initialization is done
as indicated by the init_done signal.

8. After the address and command are loaded into the Address FIFO, it takes 25 clock
cycles minimum for the controller to assert the read_data_valid signal.

9. Read data is available only when the read_data_valid signal is asserted. The user
should access the read data on every positive edge of the read_data_valid signal.

Table 3-23 shows how the 25 clocks from the read command to the read data are broken up.

Figure 3-27: DDR2 SDRAM Read Burst (BL = 8) for Two Bursts

CLKDIV_0

RESET0

AF_ALMOST_FULL

APP_AF_WREN

APP_AF_ADDR[35:0]

BURST_LENGTH_DIV2[2:0]

READ_DATA_VALID

READ_DATA0_FIFO_OUT[n-1:0]

READ_DATA1_FIFO_OUT[n-1:0]

READ_DATA2_FIFO_OUT[n-1:0]

READ_DATA3_FIFO_OUT[n-1:0]

UG086_c3_23_090607

A1 A2

D0 D4

D1 D5

D2 D6

D3 D7

3’b100 (BL=8)

25 Clocks

D0 D4

D1 D5

D2 D6

D3 D7

Table 3-23: Read Command to Read Data Clock Cycles

Parameter
Number of Clocks

(CLKDIV_0)

Read Command to Empty Signal Deassertion 7 Clocks

Empty to Active Command 5.5 Clocks

Active to Read Command 3 Clocks

Memory Read Command to Read Data Valid 9.5 Clocks

Total: 25 Clocks

http://www.xilinx.com

158 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 3: Implementing DDR2 SDRAM Controllers
R

In general, read latency varies based on the following parameters:

• CAS latency (CL) and additive latency (AL)

• The number of commands already in the FIFO pipeline before the read command is
issued

• Whether an ACTIVATE command needs to be issued to open the new bank/row

• Whether a PRECHARGE command needs to be issued to close a previously opened
bank

• Specific timing parameters for the memory, such as TRAS, and TRCD in conjunction
with the bus clock frequency

• Possible interruption of commands and/or forced closure of banks/rows when the
periodic AUTO REFRESH command is issued

• Commands issued by the user before initialization is complete, causing latency to be
indeterminate

• Board-level and chip-level (for both memory and FPGA) propagation delays

User to Controller Interface

Table 3-24 lists the signals between the user interface and the controller.

Table 3-24: List of Signals Between User Interface and Controller

Port Name
Port

Width
Port Description Notes

waf_addr 36 Output of the Address FIFO in the user interface.
Mapping of these address bits:

Memory Address (CS, Bank, Row, Column): [31:0]

Dynamic Command Request: [34:32]

Reserved: [35]

Monitor FIFO-full status flag to
write address into the Address
FIFO

af_almost_empty 1 The user interface Address FIFO empty status flag
output. The user application can write to the
Address FIFO when this signal is asserted until the
write data FIFO-full status flag is asserted.

FIFO16 Almost Empty Flag

ctrl_waf_RdEn 1 Read Enable input to Address FIFO in the user
interface

This signal is asserted for one
CLKDIV_0 clock cycle when the
controller state is write, read,
Load Mode register, Precharge
All, Auto Refresh, or Active
resulting from dynamic
command requests. Figure 3-28
shows the timing waveform for a
burst length of 8 with two back-
to-back writes followed by two
back-to-back reads.

http://www.xilinx.com

MIG User Guide www.xilinx.com 159
UG086 (v2.2) March 3, 2008

SerDes Clocking Interface
R

The memory address (Waf_addr) includes the column address, row address, bank address,
and chip-select width for deep memory interfaces.

Column Address

[‘column_address - 1:0]

Row Address

[(row_address + ‘column_address) - 1:‘column_address]

Bank Address

[(‘bank_address + ‘row_address + ‘column_address) -
1:(‘column_address + ‘row_address)]

Chip Select

[‘cs_width + ‘bank_address + ‘row_address + ‘column_address -
1:‘bank_address + ‘row_address + ‘column_address]

ctrl_wdf_Rden 1 Read Enable input to Write Data FIFO in the user
interface

The controller asserts this signal
one CLKDIV_0 clock cycle after
the first write state. This signal
remains asserted for one clock
cycle for a burst length of 4 and
two clock cycles for a burst
length of 8. Figure 3-28 shows the
timing waveform. Sufficient data
must be available in the Write
Data FIFO associated with a
write address for the required
burst length before issuing a
write command. For example,
for a 64-bit data bus and a burst
length of 4, the user should input
four 64-bit data words in the
Write Data FIFO for every write
address before issuing the write
command.

Table 3-24: List of Signals Between User Interface and Controller (Continued)

Port Name
Port

Width
Port Description Notes

http://www.xilinx.com

160 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 3: Implementing DDR2 SDRAM Controllers
R

Dynamic Command Request

Table 3-25 lists the commands supported from user interface.

Figure 3-28 describes two consecutive writes followed by two consecutive reads with a
burst length of 8. Table 3-26 lists the state signal values for Figure 3-28.

Table 3-25: User Interface Commands

Command Description

001 Auto Refresh

010 Precharge All

100 Write

101 Read

Figure 3-28: Controller Read of Command and Data from User Interface FIFOs for a Burst Length of 8

af_almost_empty

ctrl_waf_RdEn

ctrl_wdf_RdEn

addr_controller/
state

CLKDIV_0

03 04 07 08 0C 16 09 0B 0A 0B

UG086_c3_24_012507

0C 0C0D

Table 3-26: State Signal Values for Figure 3-28

State Signal Value (hex) Description

03 precharge

04 precharge_wait

07 active

08 active_wait

09 first_read

0A burst_read

0B read_wait

0C first_write

0D burst_write

0E write_wait

16 write_read

http://www.xilinx.com

MIG User Guide www.xilinx.com 161
UG086 (v2.2) March 3, 2008

SerDes Clocking Interface
R

Controller to Physical Layer Interface

Table 3-27 lists the signals between the controller and the physical layer.

Table 3-27: Signals Between the Controller and Physical Layer

Signal Name
Signal
Width

Signal Description Notes

ctrl_wren 1 Output from the controller to the
write datapath.

Write DQS and DQ generation
begins when this signal is
asserted.

Asserted for two CLKDIV_0 cycles for a
burst length of 4 and three CLKDIV_0
cycles for burst length of 8.

Asserted one CLKDIV_0 cycle earlier
than the WRITE command for CAS
latency values of 4 and 5.

ctrl_wr_dis 1 Output from the controller to the
write datapath.

Write DQS and DQ generation
ends when this signal is asserted.

Asserted for one CLKDIV_0 cycle for a
burst length of 4 and two CLKDIV_0
cycles for burst length of 8.

Asserted one CLKDIV_0 cycle earlier
than the WRITE command for CAS
latency values of 4 and 5.

ctrl_odd_latency 1 Output from the controller to the
write datapath.

Asserted when the selected CAS
latency is an odd number.
Required for generation of write
DQS and DQ after the correct
latency (CAS latency – 1).

ctrl_RdEn_div0 1 Output from the controller to the
datapath generated with each
read command. This is delayed
by the precalculated amount and
is used as a write enable to the
read data capture FIFOs.

This signal is asserted for one CLKDIV_0
clock cycle for a burst length of 4 and two
clock cycles for a burst length of 8.

ctrl_dummyread_start 1 Output from the controller to the
write datapath. When this signal
is asserted, the strobe and data
calibration begin.

This signal must be asserted when valid
read data is available on the read data
bus.

This signal is deasserted when the
dp_dly_slct_done signal is asserted.

dp_dly_slct_done 1 Output from the read datapath
to the controller indicating the
strobe and data calibration are
complete.

This signal is asserted when the data and
strobe are calibrated.

Normal operation begins after this signal
is asserted.

http://www.xilinx.com

162 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 3: Implementing DDR2 SDRAM Controllers
R

Figure 3-29 describes the timing waveform for control signals from the controller to the
physical layer with a CAS latency of 4 and an additive latency of 0.

MIG allows bank selection for different classes of memory signals. When a particular bank
is checked for address, MIG allocates the memory address, the memory control, and the
memory clocks in that bank. When a bank is checked for data, MIG allocates the data, the
data mask, and the data strobes in that bank. When a bank is checked for system control,
MIG allocates the system reset and status signals in that bank. When a bank is checked for
system clocks, MIG allocates the system clock signals in that bank.

Table 3-28 shows the list of signals allocated in a group from bank selection check boxes.

Simulating the DDR2 SDRAM Design
After generating the design, MIG creates a sim folder in the specified path. This folder
contains simulation files for a particular design. The sim folder contains the external
testbench, memory model, .do file, and the executable file to simulate the generated
design. The memory model files are currently generated in Verilog only. To learn more
details about the files in the sim folder and to simulate the design, see
simulation_help.chm in the sim folder.

Changing the Refresh Rate

The formula is similar to the Virtex-4 DDR2 Direct Clocking case. However, since the
refresh logic in the controller is running at half the memory bus rate, the formula is
MAX_REF_CNT = (refresh interval) / (2 * clock period). For example, for a refresh rate of
3.9 µs with a memory bus running at 267 MHz:

MAX_REF_CNT = 3.9 µs / (2 * clock period) = 3.9 µs / 7.49 ns = 521 (decimal) = 0x209

Figure 3-29: Timing Waveform for Control Signals from the Controller to the Physical Layer

Command WRITE IDLE IDLEREAD

ctrl_wren

ctrl_wr_disable

ctrl_odd_latency

ctrl_RdEn_div0

CLKDIV_0

UG086_c3_25_012507

Table 3-28: SerDes DDR2 SDRAM Signal Allocations

Bank Selected Signals Allocated in the Group

Address Memory address, memory control, and memory clock signals

Data Data, data mask, and data strobes

System Control System reset from user interface and status signals

System_Clock System clocks from user interface

http://www.xilinx.com

MIG User Guide www.xilinx.com 163
UG086 (v2.2) March 3, 2008

SerDes Clocking Interface
R

If the above value exceeds 2MAX_REF_WIDTH – 1, the value of MAX_REF_WIDTH must be
increased accordingly in parameters_0.v (or .vhd) to increase the width of the counter
used to track the refresh interval.

Supported Devices
The design generated out of MIG is independent of memory package, hence the package
part of the memory component is replaced with XX, where XX indicates a don't care
condition. The tables below list the components (Table 3-29) and DIMMs (Table 3-30
through Table 3-32) supported by the tool for DDR2 SerDes clocking designs.

In supported devices, an X in the component column denotes a single alphanumeric
character. For example MT47H128M4XX-3 can be either MT47H128M4BP-3 or
MT47H128M4B6-3. An XX for Registered DIMMs denotes a single or two alphanumeric
characters. For example, MT9HTF3272XX-667 can be either MT9HTF3272Y-667 or
MT9HTF3272DY-667.

Table 3-29: Supported Components for DDR2 SDRAM

Components Packages (XX) Components Packages (XX)

MT47H64M4XX-3 BP MT47H128M8XX-3 BT,HQ

MT47H64M4XX-37E BP MT47H128M8XX-37E BT,HQ

MT47H64M4XX-5E BP MT47H128M8XX-5E BT,HQ

MT47H128M4XX-3 B6,CB,GB MT47H256M8XX-3 HG

MT47H128M4XX-37E B6,CB,GB MT47H256M8XX-37E HG

MT47H128M4XX-5E B6,CB,GB MT47H256M8XX-5E HG

MT47H256M4XX-3 BT,HQ MT47H16M16XX-3 BG

MT47H256M4XX-37E BT,HQ MT47H16M16XX-37E BG

MT47H256M4XX-5E BT,HQ MT47H16M16XX-5E BG

MT47H512M4XX-3 HG MT47H32M16XX-3 BN,CC,FN,GC

MT47H512M4XX-37E HG MT47H32M16XX-37E BN,CC,FN,GC

MT47H512M4XX-5E HG MT47H32M16XX-5E BN,CC,FN,GC

MT47H32M8XX-3 BP MT47H64M16XX-3 BT,HR

MT47H32M8XX-37E BP MT47H64M16XX-37E BT,HR

MT47H32M8XX-5E BP MT47H64M16XX-5E BT,HR

MT47H64M8XX-3 B6,CB,F6,GB MT47H128M16XX-3 HG

MT47H64M8XX-37E B6,CB,F6,GB MT47H128M16XX-37E HG

MT47H64M8XX-5E B6,CB,F6,GB MT47H128M16XX-5E --

Table 3-30: Supported Registered DIMMs for DDR2 SDRAM

Registered DIMMs Packages (X) Registered DIMMs Packages (X)

MT9HTF3272XX-667 -- MT18HTF25672XX-667 PDY,PY,Y

MT9HTF3272XX-53E Y MT18HTF25672XX-53E PDY,PY,Y

MT9HTF3272XX-40E Y MT18HTF25672XX-40E DY,PDY,Y

MT9HTF6472XX-667 PY,Y MT18HTF6472XXX-667 --

MT9HTF6472XX-53E Y MT18HTF6472XXX-53E DY,Y

http://www.xilinx.com

164 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 3: Implementing DDR2 SDRAM Controllers
R

MT9HTF6472XX-40E Y MT18HTF6472XXX-40E DY,Y

MT9HTF12872XX-667 PY MT18HTF12872XXX-667 DY,PDY,PY,Y

MT9HTF12872XX-53E PY,Y MT18HTF12872XXX-53E
DY,MY,NDY,

NY,PY,Y

MT9HTF12872XX-40E Y MT18HTF12872XXX-40E DY,PY,Y

MT18HTF6472G-53E -- MT18HTF25672XXX-667 PDY,PY,Y

MT18HTF6472XX-667 -- MT18HTF25672XXX-53E PDY,PY,Y

MT18HTF6472XX-53E DY,Y MT18HTF25672XXX-40E DY,PDY,Y

MT18HTF6472XX-40E DY,Y MT36HTJ51272XX-667 --

MT18HTF12872XX-667 DY,PDY,PY,Y MT36HTJ51272XX-53E Y

MT18HTF12872XX-53E
DY,MY,NDY,

NY,PY,Y MT36HTJ51272XX-40E Y

MT18HTF12872XX-40E DY,PY,Y -- --

Table 3-31: Supported Unbuffered DIMMs for DDR2 SDRAM

Unbuffered DIMMs Unbuffered DIMMs

MT4HTF1664AY-667 MT8HTF12864AY-667

MT4HTF1664AY-40E MT8HTF12864AY-40E

MT4HTF3264AY-667 MT9HTF3272AY-667

MT4HTF3264AY-40E MT9HTF3272AY-40E

MT4HTF6464AY-667 MT9HTF6472AY-667

MT4HTF6464AY-40E MT16HTF25664AX-40E

MT8HTF6464AY-667 MT18HTF6472AY-40E

MT8HTF6464AY-53E MT18HTF12872AY-40E

MT8HTF6464AY-40E MT18HTF25672AY-40E

Table 3-32: Supported SODIMMs for DDR2 SDRAM

SODIMMs SODIMMs

MT4HTF1664HY-667 MT8HTF3264HY-53E

MT4HTF1664HY-53E MT8HTF3264HY-40E

MT4HTF1664HY-40E MT8HTF6464HY-667

MT4HTF3264HY-667 MT8HTF6464HY-53E

MT4HTF3264HY-53E MT8HTF6464HY-40E

MT4HTF3264HY-40E MT8HTF3264HDY-40E

MT8HTF3264HY-667 MT8HTF6464HDY-40E

Table 3-30: Supported Registered DIMMs for DDR2 SDRAM (Continued)

Registered DIMMs Packages (X) Registered DIMMs Packages (X)

http://www.xilinx.com

MIG User Guide www.xilinx.com 165
UG086 (v2.2) March 3, 2008

SerDes Clocking Interface
R

Hardware Tested Configurations
The frequencies shown in Table 3-33 were achieved on the Virtex-4 FPGA ML461 Memory
Interfaces Development Board under nominal conditions. This frequency should not be
used to determine the maximum design frequency. The maximum design frequency
supported in the MIG wizard is based on a combination of the TRCE results for fabric
timing on multiple device/package combinations and I/O timing analysis using FPGA
and memory timing parameters for a 64-bit wide interface.

Table 3-33: Hardware Tested Configurations

Synthesis Tools XST and Synplicity

HDL Verilog and VHDL

FPGA Device XC4VLX25-FF668-11

Burst Lengths 4, 8

CAS Latency 4, 5

Additive Latency 0, 1, 2

8-bit Design Tested on 16-bit Component “MT47H32M16XX-3”

64-bit Design Tested on 64-bit DIMM “MT8HTF6464AY-667”

72-bit Design Tested on 72-bit DIMM “MT9HTF6472XX-667”

Frequency Range 140 MHz to 400 MHz for component and Registered DIMMs

140 MHz to 290 MHz for Unbuffered DIMMs

http://www.xilinx.com

166 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 3: Implementing DDR2 SDRAM Controllers
R

http://www.xilinx.com

MIG User Guide www.xilinx.com 167
UG086 (v2.2) March 3, 2008

R

Chapter 4

Implementing QDRII SRAM Controllers

This chapter describes how to implement QDRII SRAM interfaces for Virtex™-4 FPGAs
generated with MIG. This design is based on XAPP703 [Ref 19].

Feature Summary
The QDRII controller design supports the following:

• A maximum frequency of 250 MHz

• 9-bit, 18-bit, 36-bit, and 72-bit data widths

• Burst lengths of two and four

• Implementation using different Virtex-4 devices

• Operation with any 9-bit, 18-bit, and 36-bit memory component

• Verilog and VHDL

• With and without a testbench

• With and without a DCM

Design Frequency Range

Limitations
The controller performs consecutive read and writes when the User Read Address FIFO,
the User Write Address FIFO, and the User Read Data FIFOs are not full. The controller
might not follow the user issued commands sequence. When the User Read Address FIFO
is empty, the controller performs writes with the memory, depending on the status of the
User Write Data FIFOs and User Write Address FIFO. When the either the User Write Data
FIFOs or the User Write Address FIFO is empty, the controller performs reads with the
memory, depending on the status of the User Read Address FIFO. The controller remains
in the IDLE state when the User Read Address FIFO, the User Write Address FIFO, and the
User Write Data FIFOs are empty.

Table 4-1: Design Frequency Range in MHz

Memory

FPGA Speed Grade

-10 -11 -12

Min Max Min Max Min Max

Component 120 200 120 240 120 250

http://www.xilinx.com

168 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 4: Implementing QDRII SRAM Controllers
R

Architecture
Figure 4-1 shows a top-level block diagram of the QDRII memory controller. One side of
the QDRII memory controller connects to the user interface denoted as Block Application.
The other side of the controller interfaces to QDRII memory. The memory interface data
width is selectable.

Data is double-pumped to QDRII SRAM on both the positive and the negative clock edges.
The HSTL_18 Class I I/O standard is used for the data, address, and control signals.

QDRII SRAM interfaces are source-synchronous and double data rate like DDR SDRAM
interfaces.

The key advantage to QDRII devices is they have separate data buses for reads and writes
to SRAM.

Interface Model
The memory interface is layered to simplify the design and make the design modular.
Figure 4-2 shows the layered memory interface in the QDRII memory controller. The three
layers are the application layer, the implementation layer, and the physical layer.

Figure 4-1: QDRII Memory Controller

QDRII
Memory

Controller

Block
Application

UG086_c4_01_042205

QDRII
Memory

Figure 4-2: Interface Layering Model

User Interface

Physical Layer

Implementation Layer

UG086_c4_02_012507

Infrastructure Datapath Control

http://www.xilinx.com

MIG User Guide www.xilinx.com 169
UG086 (v2.2) March 3, 2008

Architecture
R

The application layer comprises the user interface, which initiates memory writes and
reads by writing data and memory addresses to the User Interface FIFOs. The
implementation layer comprises the infrastructure, datapath, and control logic.

• The infrastructure logic consists of the DCM and reset logic generation circuitry.

• The datapath logic consists of the calibration logic by which the data from the
memory component is captured using the FPGA clock.

• The control logic determines the type of data transfer, that is, read/write with the
memory component, depending on the User Interface FIFO’s status signals.

The physical layer comprises the I/O elements of the FPGA. The controller communicates
with the memory component using this layer. The I/ O elements (such as IDDRs, ODDRs,
and IDELAY elements) are associated with this layer.

Hierarchy
Figure 4-3 shows the QDRII SRAM controller hierarchy.

Figure 4-3 shows the hierarchical structure of the QDRII SRAM design generated by MIG
with a testbench and a DCM. The modules are classified as follows:

• Design modules

• Testbench modules

• Clocks and reset generation modules

Figure 4-3: QDRII SRAM Controller Hierarchy

<top_
module>

main*
infrastructure_

top*

iobs*
data_
path*

user_
interface*

data_path
_iobs*

ctrl_iobs*
clock_

forward*

qdr_mem
_sm*

address_
burst*

Design Modules

bw_
burst*

qdr_rd_
enable*

read_
ctrl*

write_
burst*

tap_
logic*

wr_rd_
sm* q_sm*

addr_
gen*

data_
gen*

qdr_q_
iob*

qdr_d_
iob*

qdr_cq_
iob*

wr_user_
interface*

rd_user_
interface*

rd_addr_
interface*

rd_data_
interface*

wr_data_
fifo*

data_bw
_fifo*

data_fifo
_mem*

wr_data_
interface*

dly_cal_
sm

data_
tap_inc

UG086_c4_03_091207

test_
bench*

top*

idelay_
ctrl

Test Bench Modules

DCM and Reset Generation Modules

Note: A block with a * has a parameter file included.

wr_addr_
interface*

http://www.xilinx.com

170 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 4: Implementing QDRII SRAM Controllers
R

There is a parameter file generated with the design that has all the user input and design
parameters selected from MIG.

MIG can generate QDRII SRAM designs in four different ways:

• With a testbench and a DCM

• Without a testbench and with a DCM

• With a testbench and without a DCM

• Without a testbench and without a DCM

For a design without a testbench (user_design) generated by MIG, the design top-level
module has the user interface signals. The list of user interface signals is provided in
Table 4-4, page 181.

Design clocks and resets are generated in the infrastructure_top module. When the
Use DCM option is checked in MIG, a DCM primitive and the necessary clock buffers are
instantiated in the infrastructure_top module. The inputs to this module are the
differential design clock and a 200 MHz differential clock required for the IDELAYCTRL
module. A user reset is also input to this module. Using the input clocks and reset signals,
the system clocks and the system resets used in the design are generated in this module.

When the Use DCM option is unchecked in MIG, the infrastructure_top module does not
have the DCM and the corresponding clock buffer instantiations; therefore, the system
operates on the user-provided clocks. The system reset is generated in the
infrastructure_top module using the DCM_LOCK signal and the ready signal of the
IDELAYCTRL element.

http://www.xilinx.com

MIG User Guide www.xilinx.com 171
UG086 (v2.2) March 3, 2008

Architecture
R

Figure 4-4 shows a top-level block diagram of a QDRII SRAM design with a DCM and a
testbench. Inputs to the design are referenced to a differential clock pair (REFCLK_P and
REFCLK_N) for the controller design, a 200 MHz differential clock pair (DLY_CLK_200_P
and DLY_CLK_200_N) for the IDELAYCTRL element, and the system reset signal,
SYS_RST_N. All design resets are generated using the DCM_LOCKED signal, the
SYS_RST_N signal, and the dly_ready signal of the IDELAYCTRL element. The
COMPARE_ERROR output signal indicates whether the design passes or fails. The
DLY_CAL_DONE signal indicates the completion of initialization and calibration of the
design. Because the DCM is instantiated in the infrastructure module, it generates the
required clocks and reset signals for the design.

Figure 4-4: Top-Level Block Diagram of the QDRII SRAM Design with a DCM and a Testbench

main0

dly_ready

USER_RESET200

Memory
Device

UG086_c4_04_021307

Status
Signals

Reference
Clocks

and Reset

idelay_ctrl

Infrastructure
_top

CLK_200

IBUFGDS

clk_200_n

CLK0

clk_200_p

CLK_270

USER_RESET

REFCLK_P

REFCLK_N

DLY_CLK_200_P

DLY_CLK_200_N

SYS_RST_N

USER_RESET270

QDR_DLL
_OFF_n

QDR_W_N

QDR_R_N

QDR_K

QDR_K_N

QDR_C

QDR_C_N

QDR_SA

QDR_BW_N

QDR_D

QDR_Q

QDR_CQ

COMPARE_ERROR

DLY_CAL_DONE

http://www.xilinx.com

172 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 4: Implementing QDRII SRAM Controllers
R

Figure 4-5 shows a top-level block diagram of a QDRII SRAM design without a DCM but
with a testbench. The user should provide all the clocks and the DCM_LOCKED signal.
These clocks should be single-ended. SYS_RST_N is the system reset signal. All design
resets are generated using the DCM_LOCKED signal, the SYS_RST_N signal, and the
dly_ready signal of the IDELAYCTRL element. The user application must have a DCM
primitive instantiated in the design, and all user clocks should be driven through BUFGs.
The COMPARE_ERROR signal, which is the output of the design, indicates whether the
design passes or fails. The testbench module does writes and reads, and also compares the
read data with written data. The COMPARE_ERROR signal is set High on data
mismatches. The DLY_CAL_DONE signal indicates the completion of initialization and
calibration of the design.

Figure 4-5: Top-Level Block Diagram of the QDRII SRAM Design with a Testbench but without a DCM

main0

dly_ready

Memory
Device

UG086_c4_05_013007

Status
Signals

User
DCM

Clocks
and

Reset

idelay_ctrl

Infrastructure
_top

USER_RESET200

USER_RESET270

USER_RESET

CLK_0

CLK_200

CLK_270

DCM_LOCKED

SYS_RST_N

QDR_DLL_OFF_n

QDR_W_N

QDR_R_N

QDR_K

QDR_K_N

QDR_C

QDR_C_N

QDR_SA

QDR_BW_N

QDR_D

QDR_Q

QDR_CQ

COMPARE_ERROR

DLY_CAL_DONE

http://www.xilinx.com

MIG User Guide www.xilinx.com 173
UG086 (v2.2) March 3, 2008

Architecture
R

Figure 4-6 shows a top-level block diagram of a QDRII SRAM design with a DCM but
without a testbench. REFCLK_P and REFCLK_N are differential input reference clocks.
The DCM is instantiated in the infrastructure module that generates the required design
clocks. DLY_CLK_200_P and DLY_CLK_200_N are used for the IDELAYCTRL element.
SYS_RST_N is the system reset signal. All design resets are generated using the
DCM_LOCKED signal, the SYS_RST_N signal, and the dly_ready signal of IDELAYCTRL
element. The user has to drive the user application signals. The design provides the
USER_CLK and USER_RST signals to the user to synchronize the user application signals
with the design. The DLY_CAL_DONE signal indicates the completion of initialization
and calibration of the design.

Figure 4-6: Top-Level Block Diagram of the QDRII SRAM Design with a DCM but without a Testbench

main0

dly_ready

USER-RESET200

Memory
Device

UG086_c4_06_031207

User
Application

Reference
Clocks

and Reset

idelay_ctrl

Infrastructure
_top

CLK_200

IBUFGDS

clk_200_n

CLK0

clk_200_p

CLK270

USER_RESET

REFCLK_P

REFCLK_N

DLY_CLK_200_P

DLY_CLK_200_N

SYS_RST_N

USER_RESET270

QDR_DLL
_OFF_n

QDR_W_N

QDR_R_N

QDR_K

QDR_K_N

QDR_C

QDR_C_N

QDR_SA

QDR_BW_N

QDR_D

QDR_Q

QDR_CQ

DLY_CAL_DONE

USER_WR_FULL

USER_RD_FULL

USER_QR_EMPTY

USER_WR_ERR

USER_RD_ERR

USER_QR_ERR

USER_CLK

USER_RST

USER_DWL

USER_DWH

USER_QRL

USER_QRH

USER_BWL_n

USER_BWH_n

USER_AD_WR

USER_AD_RD

USER_QEN_n

USER_R_n

USER_W_n

http://www.xilinx.com

174 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 4: Implementing QDRII SRAM Controllers
R

Figure 4-7 shows a top-level block diagram of a QDRII SRAM design without a DCM or a
testbench. The user should provide all the clocks and the DCM_LOCKED signal. These
clocks should be single-ended. SYS_RST_N is the system reset signal. All design resets are
generated using the DCM_LOCKED signal, the SYS_RST_N signal, and the dly_ready
signal of the IDELAYCTRL element. The user application must have a DCM primitive
instantiated in the design, and all user clocks should be driven through BUFGs. The user
has to drive the user application signals. The design provides the USER_CLK and
USER_RST signals to the user to synchronize the user application signals with the design.
The DLY_CAL_DONE signal indicates the completion of initialization and calibration of
the design.

Figure 4-7: Top-Level Block Diagram of the QDRII SRAM Design without a DCM or a Testbench

main0

dly_ready

Memory
Device

UG086_c4_07_031207

User
DCM

Clocks
and

Reset

idelay_ctrl

Infrastructure
_top

USER_RESET200

USER_RESET270

USER_RESET

clk_0

clk_200

clk_90

SYS_RESET_IN_N

dcm_lock

QDR_DLL_OFF_n

QDR_W_N

QDR_R_N

QDR_K

QDR_K_N

QDR_C

QDR_C_N

QDR_SA

QDR_BW_N

QDR_D

QDR_Q

QDR_CQ

User
Application

DLY_CAL_DONE

USER_WR_FULL

USER_RD_FULL

USER_QR_EMPTY

USER_WR_ERR

USER_RD_ERR

USER_QR_ERR

USER_CLK

USER_RST

USER_DWL

USER_DWH

USER_QRL

USER_QRH

USER_BWL_n

USER_BWH_n

USER_AD_WR

USER_AD_RD

USER_QEN_n

USER_R_n

USER_W_n

http://www.xilinx.com

MIG User Guide www.xilinx.com 175
UG086 (v2.2) March 3, 2008

Architecture
R

QDRII Memory Controller Modules
Figure 4-8 shows a detailed block diagram of the QDRII memory controller. The four
blocks shown are sub-blocks of the top module. The functionalities of these blocks are
explained in the subsections following the figure.

Figure 4-9 shows the QDRII memory controller modules with a 36-bit interface.

Figure 4-8: QDRII Memory Controller Modules

Infrastructure_top

IOBS QDRII
Interface

Data_pathUser_data

User_clk

User_fifo_status
QDRII

Memory
Controller

UG086_c4_08_090607

Figure 4-9: QDRII Memory Controller Modules

User Interface Physical InterfaceRead / Write
State Machine

Read / Write Control

Address Path

FIFO Status

QDRII
Memory
Device

USER_CLK
USER_RESET

USER_W_n
USER_R_n
USER_QEN_n

USER_AD_WR
USER_AD_RD

USER_BWH_n

USER_BWL_n

USER_DWL
USER_DWH

USER_QRL
USER_QRH

USER_WR_FULL
USER_RD_FULL
USER_QR_EMPTY

QDR_W_N
QDR_R_N

QDR_SA

QDR_BW_N
QDR_D

QDR_CQ
QDR_Q

QDR_K
QDR_K_N

USER_CLK
USER_CLK270
USER_RESET

Write Path

Read Path

CLK_0 Delay
Calibration

State Machine

UG086_c4_09_090607

http://www.xilinx.com

176 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 4: Implementing QDRII SRAM Controllers
R

Controller

The QDRII memory controller initiates alternate Write and Read commands to the
memory as long as the User Write Data FIFOs, the User Write Address FIFO, and the User
Read Address FIFO are not empty, and the User Read Data FIFOs are not full.

The user writes the write data and the write address into the User Write Data FIFOs and
the User Write Address FIFO, respectively. When neither the User Write Data FIFOs nor
the User Write Address FIFO is empty, the QDRII controller generates a write-enable signal
to the memory. When the write enable is asserted, the write data and the write address are
transferred to memory from the User Write Data FIFOs and the User Write Address FIFO,
respectively.

The read address from where the data is to be read from memory is stored by the user in
the User Read Address FIFO. The QDRII memory controller generates a read-enable signal
to the memory when the User Read Address FIFO is not empty and the User Read Data
FIFOs are not full. When the read enable is asserted, the read address from the Read
Address FIFO is transferred to memory. The captured read data from the memory
corresponding to the read address is stored in the User Read Data FIFOs. The user can
access the data read from memory by reading the User Read Data FIFOs.

Figure 4-10 shows the QDRII memory controller state machine for burst lengths of four.
The controller state machine is in the IDLE state when the calibration is complete. When
the User Write Data FIFO and the User Write Address FIFO are not empty (that is, when
there are user-written write data and write address bits in the corresponding FIFOs), the
state machine goes to the WRITE state, initiating a memory write of one complete burst.

When the User Read Address FIFO is not empty (that is, the user has written read address
bits into the User Read Address FIFO) and either Read Data FIFO is not full, the state
machine goes to the READ state, initiating a memory read of one burst.

From the IDLE state, the QDRII memory controller can go to either the WRITE or the
READ state depending on the not empty status of the Write Address FIFO and the Write
Data FIFOs or the Read Address FIFO, and not full status of the Read Data FIFOs,
respectively. Writes are given priority. In the WRITE state, a memory write is initiated, and
the User Read Address Not Empty and User Read Data FIFOs full status are checked to
transfer into the READ state. When the User Read Address FIFO is empty, or the User Read
Data FIFOs are full, the state machine goes to the IDLE state.

In the READ state, a memory read is initiated, and the User Write Data and the User Write
Address FIFO Not Empty status is checked before going to the WRITE state. If the FIFOs
are empty, the state machine goes to the IDLE state.

Figure 4-10: QDRII Memory Controller State Machine with Burst Lengths of 4

IDLE

RD

RD

WR

WR WRITE
R_n=1
W_n=0

READ
R_n=0
W_n=1

UG086_c4_10_012507

http://www.xilinx.com

MIG User Guide www.xilinx.com 177
UG086 (v2.2) March 3, 2008

Architecture
R

Figure 4-11 shows a state machine of the QDR II memory controller for burst lengths of
two. When calibration is complete, the state machine is in the IDLE state. When the User
Write Data FIFO or Write Address FIFO is not empty (that is, when there are user-written
write data and write address bits in the corresponding FIFOs), the state machine goes to
the READ_WRITE state, initiating a memory write of one complete burst, or when the
User Read Address FIFO is not empty, that is, the user has written read address bits into
the User Read Address FIFO, and the User Read Data FIFOs are not full, the state machine
goes to the READ_WRITE state, initiating a memory read of one complete burst.

From the IDLE state, the QDR II memory controller goes to READ_WRITE state if either:

• the User Write Address FIFO and the User Write Data FIFO are not empty or,

• the User Read Address FIFO is not empty and the User Read Data FIFOs are not full

In the READ_WRITE state, the User Read Address Not Empty and User Read Data FIFOs
Not Full status are checked to initiate a memory read. To initiate a memory write in the
READ_WRITE state, the User Write Data FIFOs and the User Write Address FIFO Not
Empty status are checked. If both the User Write Data FIFOs and User Write Address FIFO
are empty, and the User Read Address FIFO is empty, or the User Read Data FIFOs are full,
the state machine goes to the IDLE state. If the User Write Data FIFO and User Write
Address FIFO are not empty, or the User Read Address FIFO is not empty and the User
Read Data FIFO is not full, the state machine remains in the READ_WRITE state to issue
memory writes or reads.

Refer to XAPP703 [Ref 19] for detailed design and timing analysis of the QDRII memory
controller module.

Datapath

The Datapath module transmits and receives data to and from the memories. Its major
functions are listed below:

• Asserts a write-enable signal for memories with burst lengths of two or four

• Asserts a read-enable signal to memory and a write-enable signal to the User Read
Data FIFO

• Generates increment/decrement signals (tap count) for IDELAY elements in the IOBS

• Center-aligns the data window to the FPGA clock

Figure 4-11: QDRII Memory Controller State Machine with Burst Lengths of 2

IDLE

READ_
WRITE
R_n=0
W_n=0

UG086_c4_11_090607

http://www.xilinx.com

178 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 4: Implementing QDRII SRAM Controllers
R

Refer to XAPP703 [Ref 19] for techniques on data writes to memory and data captures from
memory. For burst lengths of two, the write-enable signal to memory is asserted at the
same time that write data is driven. For burst lengths of four, the write-enable signal is
asserted one clock before the write data is driven on the memory bus. The data is driven on
both edges of the clock. The address to memory is driven for one full clock cycle for burst
lengths of 4 and on both the edges of the clock cycle for burst lengths of 2.

Memory read data is edge-aligned with the source-synchronous clock, CQ. The QDRII
memory clock, to which data is synchronized, is a free-running strobe. The free-running
strobe from the memory CQ is captured using the FPGA clock. Thus the relation between
the CQ strobe and the FPGA clock is found, and the strobe CQ is center-aligned with the
FPGA clock. The same logic is applied to the read data Q window, which is center-aligned
with the same FPGA clock. This in turn means that the same amount of tap delays are
applied to both Q and CQ through IDELAY elements to center-align the Q and CQ
windows with respect to the FPGA clock. By center-aligning the Read Data window Q
with respect to the FPGA clock, the data capturing logic is complete.

The delay calibration circuit generates the delay reset, delay select, and delay increment
values for IDELAY elements used in delaying strobes and data read from memory. The
strobe is center-aligned with the FPGA clock, which results in the data window falling to
the center of the FPGA clock. Refer to XAPP703 [Ref 19] for details about the delay
calibration.

Infrastructure

The Infrastructure (infrastructure_top) module comprises the reset logic generation
circuitry and instantiates a DCM primitive for clock source generation. Inputs to the
infrastructure_top module are REFCLK_P and REFCLK_N (the differential clock pair for
the entire design), DLY_CLK_200_P and DLY_CLK_200_N (the differential clock pair for
the IDELAYCTRL elements) and SYS_RST_N (the user reset signal). REFCLK_P and
REFCLK_N are used by the DCM primitive to generate the clock and the 270° phase-
shifted version of the clock. This module generates multiple reset signals, each
synchronous to its respective clock domain for the controller design.

IOBS

All the input and output signals of the QDRII SRAM controller are implemented in the
IOBS module. All address and byte enable signals are registered in the IOBs and driven
out.

The IDELAY elements for the read strobe and data read from memory are implemented in
the IOBS. The IOBS also implements Inout buffers for write and read data. It registers the
output data (ODDR) before driving it out and registers the input data (IDDR).

http://www.xilinx.com

MIG User Guide www.xilinx.com 179
UG086 (v2.2) March 3, 2008

QDRII SRAM Initialization and Calibration
R

QDRII SRAM Initialization and Calibration
QDRII memory is initialized through a specified sequence. The QDRII device requires
2048 clock cycles of clock input after its DLL has been enabled. After the DCM clocks are
stable, the controller waits for a specified amount of time before asserting the
QDR_DLL_OFF_n signal to the memory. This signal can also be pulled up to a High on the
memory device without being driven from the FPGA.

Any command can be issued to the memory only after the 2048 clock cycle wait time. After
2048 clock cycles, the INIT_DONE signal is asserted indicating the completion of the
initialization sequence. Following initialization, the relationship between the data and the
FPGA clock is calculated using the TAP logic. The memory strobe CQ is a free-running
clock from the memory component. Because the read data Q and the memory strobe CQ
are edge-aligned, the strobe is passed through the IDELAY elements of the Virtex-4 device
and the taps are adjusted to center-align the strobe pulse with respect to the FPGA clock.
The same number of taps are applied to the data window's IDELAY element to center-align
the data window with respect to the FPGA clock. XAPP701 [Ref 17] provides more
information about the calibration architecture.

Calibration is done in two stages:

1. In the first stage of calibration, the read strobe CQ is center-aligned with respect to the
FPGA clock. CQ is a free-running clock from QDRII memory. The read data Q is edge-
aligned with the read strobe CQ. The first and second edges of the CQ strobe are
detected using the FPGA clock to determine the center of the CQ window.

Once the CQ window is center-aligned with the FPGA clock, the same amount of delay
(tap counts) is applied to the read data windows Q through the IDELAY element, so
that the Q window is center-aligned with the FPGA clock.

Port cq_q_cal_done in the data_path module indicates the status of the first stage
calibration. When cq_q_cal_done is asserted High, it indicates the completion of first
stage calibration. After the first stage calibration is complete, the second stage
calibration starts.

2. In the second stage of calibration, the write enable signal for the Read Data FIFO is
determined by delaying the controller-issued read command. This delay is calibrated
based on the delay between the read command and the corresponding read data at the
Read Data FIFO. For this delay calibration, the controller writes a known fixed pattern
of data into a memory location and reads back from the same location. This read data
is compared against the known fixed pattern. The delay between the read command
and the correct pattern read data comparison is the delay calibration.

The final_dly_cal_done port in the data_path module indicates the status of the second
stage calibration. When final_dly_cal_done is asserted High, it indicates the
completion of second stage calibration, which implies the completion of the whole
initialization and calibration process. After the initialization and calibration is done
(i.e., the dly_cal_done signal in design_top is asserted High), the controller can start
issuing user commands to the memory.

In the second stage calibration, when the pattern read data does not match with the
pattern write data, the controller does not issue any further pattern read commands,
and the controller gets stuck in the calibration state. The design must be restarted for
the calibration to start from the beginning.

http://www.xilinx.com

180 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 4: Implementing QDRII SRAM Controllers
R

QDRII Controller System and User Interface Signals
Table 4-2 through Table 4-3 describe the QDRII controller system interface signals with and
without a DCM, respectively. Table 4-4 describes the QDRII user interface signals without
a testbench. Table 4-5 describes the QDRII memory interface signals. In these tables, all
signal directions are with respect to the QDRII memory controller.

Table 4-2: QDRII SRAM System Interface Signals (with a DCM)

Signal Name Direction Description

REFCLK_P, REFCLK_N Input Reference clock input made up of differential clock pairs. This clock
pair goes to a differential input buffer. The differential buffer output
goes to the DCM input. The DCM generates the required clocks for the
design.

When the Without a DCM option is selected, this clock pair is not
present.

DLY_CLK_200_P,
DLY_CLK_200_N

Input 200 MHz differential clock used in the idelay_ctrl logic.

SYS_RST_N Input Reset to the QDRII memory controller.

COMPARE_ERROR Output This signal represents the status of the comparison between the read
data and the corresponding write data.

DLY_CAL_DONE Output This signal is asserted when the design initialization and calibration is
complete.

Table 4-3: QDRII SRAM System Interface Signals (without a DCM)

Signal Name Direction Description

CLK_0 Input Input clock

CLK_270 Input Input clock with a 270° phase difference.

CLK_200 Input 200 MHz clock for the IDELAYCTRL primitives.

DCM_LOCKED Input This active-High signal indicates whether the user DCM is locked or
not.

SYS_RST_N Input Reset to the QDRII memory controller.

COMPARE_ERROR Output This signal represents the status of the comparison between the read
data and the corresponding write data.

DLY_CAL_DONE Output This signal is asserted when the design initialization and calibration is
complete.

http://www.xilinx.com

MIG User Guide www.xilinx.com 181
UG086 (v2.2) March 3, 2008

QDRII Controller System and User Interface Signals
R

Table 4-4: QDRII SRAM User Interface Signals (without a Testbench)

Signal Name Direction Description

USER_WR_FULL Output This signal indicates the User Write FIFO status. It is asserted
when either the User Write Address FIFO or the User Write
Data FIFO is full. When this signal is asserted, any writes to
the User Write Address FIFO and the User Write Data FIFO
are invalid, possibly leading to controller malfunction.

USER_RD_FULL Output This signal indicates the User Read Address FIFO status. It is
asserted when the User Read Address FIFO is full. When this
signal is asserted, all writes to the User Read Address FIFO
are ignored.

USER_QR_EMPTY Output This signal indicates the User Read Data FIFO status. This
signal is asserted when the User Read Data FIFO is empty.
When this signal is asserted, all reads to the User Read Data
FIFO are invalid.

USER_WR_ERR Output This signal is asserted when an error occurs while writing to
the User Write Data FIFO or the User Write Address FIFO.

USER_RD_ERR Output This signal is asserted when an error occurs while writing to
the User Read Address FIFO.

USER_QR_ERR Output This signal is asserted when an error occurs while reading
the User Read Data FIFO.

DLY_CAL_DONE Output This signal is asserted to indicate that the calibration is done.

USER_CLK Output All user interface signals are to be synchronized to this clock.

USER_RST Output This reset is active until the DCM is not locked.

USER_DWL [(data_width-1):0] Input Positive-edge data for memory writes. This data bus is valid
when USER_W_ n is asserted.

USER_DWH [(data_width-1):0] Input Negative-edge data for memory writes. This data bus is valid
when USER_W_ n is asserted.

USER_QRL [(data_width-1):0] Output Positive-edge data read from memory. This data is output
when USER_QEN_n is asserted.

USER_QRH [(data_width-1):0] Output Negative-edge data read from memory. This data is output
when USER_QEN_n is asserted.

USER_BWL_n [(BW_width-1):0] Input Byte enables for QDRII memory positive-edge write data.
These byte enables are valid when USER_W_n is asserted.

USER_BWH_n [(BW_width-1):0] Input Byte enables for QDRII memory negative-edge write data.
These byte enables are valid when USER_W_n is asserted.

USER_AD_WR [(addr_width-1):0] Input QDRII memory address for write data. This bus is valid
when USER_W_n is asserted.

USER_AD_RD [(addr_width-1):0] Input QDRII memory address for read data. This bus is valid when
USER_R_n is asserted.

http://www.xilinx.com

182 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 4: Implementing QDRII SRAM Controllers
R

USER_QEN_n Input This active-Low signal is the read enable for the User Read
Data FIFOs. The QDRII memory controller captures the data
read from memory and stores it in the Read Data FIFOs. The
user can access these FIFOs to get the data read from
memory.

USER_W_n Input This active-Low signal is the write enable for the User Write
Data and User Write Address FIFOs. The user asserts this
signal to write new data to the FIFOs. The QDRII memory
controller reads the data from the User Write Data FIFO and
writes to memory at the address located in the User Write
Address FIFO.

USER_R_n Input This active-Low signal is the write enable for the User Read
Address FIFO. The user asserts this signal to read new data
from memory. The QDRII memory controller reads the
address from the Read Address FIFO and does a memory
read to the corresponding memory address.

Notes:
1. All user interface signal names are prepended with a controller number, for example, cntrl0_QDR_Q. QDRII SRAM devices

currently support only one controller.

Table 4-4: QDRII SRAM User Interface Signals (without a Testbench) (Continued)

Signal Name Direction Description

Table 4-5: QDRII SRAM Interface Signals

Signal Name Direction Description

QDR_D Output During WRITE commands, the data is sampled on both edges of K.

QDR_Q Input During READ commands, the data is sampled on both edges of the
FPGA clk.

QDR_BW_N Output Byte enables for QDRII memory write data. The byte enables are valid
when USER_W_n is asserted

QDR_SA Output Address for READ and WRITE operations.

QDR_W_N Output This signal represents the WRITE command.

QDR_R_N Output This signal represents the READ command.

QDR_CQ Input This read data clock transmitted by the QDRII SRAM is edge-aligned
with the read data.

K, K_N Output Differential write data clocks.

C, C_N Output Input clock for output data.

QDR_DLL_OFF_n Output The DLL is disabled when this signal is Low.

http://www.xilinx.com

MIG User Guide www.xilinx.com 183
UG086 (v2.2) March 3, 2008

QDRII Controller System and User Interface Signals
R

Write Interface
Figure 4-12 illustrates the user interface block diagram for write operations.

The following steps describe the architecture of Address and Write Data FIFOs and how to
perform a write burst operation to QDRII memory from user interface.

1. The user interface consists of an Address FIFO, Data FIFOs and a byte write FIFO.
These FIFOs are built out of Virtex-4 FIFO16 primitives of configuration 512x 36.

2. The Address FIFO stores the QDRII memory address where the data is to be written
from the user interface. A single instantiation of a FIFO16 constitutes the Address
FIFO.

3. Two separate sets of Data FIFOs store the rising-edge and falling-edge data to be
written to QDRII memory from the user interface. For 9-bit, 18-bit, and 36-bit data
widths, two FIFO16s are required for storing rising-edge and falling-edge data. For a
72-bit data width, two FIFO16s are required for storing rising-edge data and two
FIFO16s for storing falling-edge data. MIG instantiates the required number of FIFOs
depending on the memory data width selected. For 9-bit and 18-bit configurations, the
controller pads the extra bits of the Data FIFO with 0s.

Figure 4-12: Write User Interface Block Diagram

User Interface

Controller

 Address FIFO
(FIFO16)
512 x 36

 Byte Write FIFO
(FIFO16)
512 x 36

fifo_wr_empty

wr_init_n

user_ad_wr

user_w_n

user_dwl

user_dwh

user_bwl_n

user_bwh_n

fifo_dwl

fifo_ad_wr

fifo_dwh

fifo_bwl_n

fifo_bwh_n

To IOBS

user_wr_full

Rise Data FIFO
(FIFO16)
512 x 36

Fall Data FIFO
(FIFO16)
512 x 36

Rise Data FIFO
(FIFO16)
512 x 36

Fall Data FIFO
(FIFO16)
512 x 36

Data FIFOs

Data FIFOs

ug086_c4_15_111507

http://www.xilinx.com

184 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 4: Implementing QDRII SRAM Controllers
R

4. The Byte Write FIFO stores the Byte Write signals to QDRII memory from the user
interface. Extra bits are padded with zeros.

5. The user can initiate a write command to memory by writing to the Address FIFO,
Data FIFOs, and Byte Write FIFOs when FIFO Full flags are deasserted and after the
calibration done signal dly_cal_done is asserted. Users should not access any of these
FIFOs until dly_cal_done is asserted. The dly_cal_done signal assures that the clocks
are stable, the reset process is completed, and the controller is ready to accept
commands. Status signal user_wr_full is asserted when the Address FIFO, Data FIFOs,
or Byte Write FIFOs are full.

6. When user_w_n is asserted, user_ad_wr is stored in the Address FIFO, user_dwl and
user_dwh are stored in the Data FIFO, and user_bwl and user_bwh are stored in the
Byte Write FIFOs. A common write-enable signal is used to store the data into all three
FIFOs.

7. The controller reads the Address, Data, and Byte Write FIFOs when they are not empty
by issuing the wr_init_n signal. A QDRII memory write command is generated from
the wr_init_n signal by properly timing it.

8. Figure 4-13 shows the timing diagram for a write command of BL = 4. The address
must be asserted for one clock cycle as shown. For burst lengths of four, each write to
the Address FIFO must have two writes to the Data FIFO consisting of two rising edge
data and two falling edge data.

9. Figure 4-14 shows the timing diagram for a write command of BL = 2. For a burst
length of two, each write to the Address FIFO is coupled to one write to the Data FIFO,
consisting of one rising edge data and one falling edge data. For BL = 2, commands can
be given in every clock.

Figure 4-13: Write User Interface Timing Diagram for BL = 4

user_clk

dly_cal_done

user_wr_full

user_wr_err

user_w_n

user_ad_wr

user_dwl

user_dwh

DWL-00 DWL-01 DWL-10 DWL-11 DWL-20 DWL-21

DWH-00 DWH-01 DWH-10 DWH-11 DWH-20 DWH-21

A0 A1 A2

user_bwl_n

iser_bwh_n

BWL-00 BWL-01 BWL-10 BWL-11 BWL-20 BWL-21

BWH-00 BWH-01 BWH-10 BWH-11 BWH-20 BWH-21

UG086_c4_16_111507

http://www.xilinx.com

MIG User Guide www.xilinx.com 185
UG086 (v2.2) March 3, 2008

QDRII Controller System and User Interface Signals
R

Figure 4-14: Write User Interface Timing Diagram for BL = 2

user_clk

dly_cal_done

user_wr_full

user_wr_err

user_w_n

user_ad_wr

user_dwl

user_dwh

DWL-0 DWL-1 DWL-2 DWL-3 DWL-4

DWH-0 DWH-1 DWH-2 DWH-3 DWH-4

A0 A1 A3A2 A4

user_bwl_n

iser_bwh_n

BWL-0 BWL-1 BWL-2 BWL-3 BWL-4

BWH-0 BWH-1 BWH-2 BWH-3 BWH-4

UG086_c4_17_010108

http://www.xilinx.com

186 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 4: Implementing QDRII SRAM Controllers
R

Read Interface
Figure 4-15 shows a block diagram for the read interface.

The following steps describe the architecture of the Read Data FIFOs and show how to
perform a QDRII SRAM burst read operation from the user interface.

1. The read user interface consists of an Address FIFO and a Read Data FIFO. The
Address FIFO and Read Data FIFO are built from Virtex-4 FIFO16s of configuration
512 x 36.

2. The size of the Address FIFO is always of 512 x 16.

3. The number of Read Data FIFOs required depends on the number of QDRII
components being used. Using 9-bit components for 36-bit data width, a total of eight
FIFOs are required, four for rising-edge data and four for falling-edge data. Although
each FIFO can accommodate 36-bit data, the requirement of having one FIFO per
component arises from CQ pattern calibration, where an internal pattern calibration is
done per CQ. The controller generates the Read Data FIFO write-enable signal for each
FIFO separately depending on the CQ pattern calibration.

4. To initiate a QDRII read command, the user must write the Address FIFO when the
FIFO full flag user_rd_full is deasserted and the calibration done signal dly_cal_done
is asserted. Writing to the Address FIFO indicates to the controller that it is a Read
command. The dly_cal_done signal assures that the controller clocks are stable, the
internal reset process is completed, and the controller is ready to accept commands.

Figure 4-15: Read User Interface Block Diagram

Controller

fifo_rd_empty

rd_init_n

user_ad_rd

user_r_n

user_qrl

user_qrh

fifo_ad_rd

fifo_drl

fifo_drh

To/From IOBS

user_rd_full
fifo_qr_full

user_qen_n

user_qr_empty

ug086_c4_18_111507

User Interface

 Address FIFO
(FIFO16)
512 x 36

Rise Data FIFO
(FIFO16)
512 x 36

Fall Data FIFO
(FIFO16)
512 x 36

Rise Data FIFO
(FIFO16)
512 x 36

Fall Data FIFO
(FIFO16)
512 x 36

Data FIFOs
Component 0

Component (n–1)
Data FIFOs

http://www.xilinx.com

MIG User Guide www.xilinx.com 187
UG086 (v2.2) March 3, 2008

QDRII Controller System and User Interface Signals
R

5. The user must issue an Address FIFO write-enable signal user_r_n along with the read
address user_ad_rd to write the read address to the Address FIFO.

6. The controller reads the Address FIFO when status signal fifo_rd_empty is deasserted
and generates the appropriate control signals to QDRII memory required for a read
command.

7. Prior to the actual read and write commands, the design calibrates the latency (number
of clock cycles) from when the read command is issued to when the data is received.
Using this precalibrated delay information, the controller generates the write-enable
signals to the Read Data FIFOs. The delay calibration is done per QDRII component.

8. The Low state of user_qr_empty indicates read data is available. Asserting user_qen_n
reads rising-edge data and falling-edge data simultaneously on every rising edge of
the clock.

9. Figure 4-16 and Figure 4-17 show the user interface timing diagrams for BL = 4 and
BL = 2.

10. After the address is loaded into the Address FIFO, it can take 18 clock cycles (worst
case) for the controller to write the Data FIFOs.

Figure 4-16: Read User Interface Timing Diagram for BL = 4

user_clk

dly_cal_done

user_rd_full

user_qr_err

user_rd_err

user_qr_empty

user_qen_n

user_r_n

user_ad_rd

user_qrl

user_qrh

q00 q02 q10 q12 q20 q22

A0 A1 A3A2 A4

q01 q03 q11 q13 q21 q23

UG086_c4_19_111907

18 Tck between user read command
 and user read data

http://www.xilinx.com

188 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 4: Implementing QDRII SRAM Controllers
R

Table 4-6 shows the maximum read latency of the controller.

Figure 4-17: Read User Interface Timing Diagram for BL = 2

Table 4-6: Maximum Read Latency

Parameter
Number of

Clocks
Description

User command to
address FIFO empty
flag

5 (2 + 3) Two clocks for the two-stage pipeline before the
FIFO input. An empty FIFO takes three clocks to
deassert the empty status signal after the FIFO is
written with the first data.

Command from
controller state machine
to QDR memory

3 One clock cycle to read the FIFO and two clocks
for decoding and passing the command to QDR
memory.

QDR command to FIFO
input data

6 Two clocks for QDRII memory latency, two
clocks for calibration delay, and two clocks for
the input pipeline.

FIFO input to FIFO
output

4 Four clocks to deassert the empty status signal
in fall-through mode.

Total Latency 18 Total latency from read command issued to
Address FIFO, to data input to user interface.

user_clk

dly_cal_done

user_rd_full

user_qr_err

user_rd_err

user_qr_empty

user_qen_n

user_r_n

user_ad_rd

user_qrl

user_qrh

q00 q10 q20 q30 q40

A0 A1 A3A2 A4

q01 q11 q21 q31 q41

UG086_c4_20_010208

18 Tck between user read command
 and user read data

http://www.xilinx.com

MIG User Guide www.xilinx.com 189
UG086 (v2.2) March 3, 2008

QDRII Controller System and User Interface Signals
R

Table 4-7 shows the list of signals for a QDRII SRAM design allocated in a group from bank
selection check boxes in MIG.

When the Address box is checked in a bank, the address, QDR_W_N, QDR_R_N, and
QDR_DLL_OFF_n bits are assigned to that particular bank.

When the Data Write box is checked in a bank, the memory data write and memory byte
write are assigned to that particular bank.

When the Data Read box is checked in a bank, the memory data read, memory read clocks,
memory write clocks, and memory input clock for the output data are assigned to that
particular bank.

When the System Control box is checked in a bank, the SYS_RST_N, COMPARE_ERROR,
and DLY_CAL_DONE bits are assigned to that particular bank.

When the System_Clock box is checked in a bank, the REFCLK_P, REFCLK_N,
DLY_CLK_200_P, and DLY_CLK_200_N bits are assigned to that particular bank.

For special cases, such as without a testbench and without a DCM, the corresponding
input and output ports are not assigned to any FPGA pins in the design UCF because the
user can connect these ports to the FPGA pins or can connect to some logic internal to the
same FPGA.

Supported Devices
The design generated out of MIG is independent of the memory package, hence the
package part of the memory component is replaced with X, where X indicates a don't care
condition. Table 4-8 shows the list of components supported by MIG.

Table 4-7: QDRII Signal Allocations

Bank Selected Signals Allocated in the Group

Address Memory address and memory control

Data Write Memory write data and memory byte write

Data Read Memory read data, memory CQ, and K and C clocks

System Control System reset from the user interface and status signals

System_Clock System clocks from the user interface

Table 4-8: Supported Devices for QDRII SRAM

Virtex-4 FPGAs (Verilog and VHDL)

Components Make Configuration

CY7C1314BV18-167BZXC Cypress x36

CY7C1315BV18-250BZC Cypress x36

CY7C1426AV18-250BZC Cypress x9

CY7C1526V18-250BZC Cypress x9

CY7C1911BV18-250BZC Cypress x9

CY7C1515V18-250BZC Cypress x36

K7R160982B-FC25 Samsung x9

http://www.xilinx.com

190 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 4: Implementing QDRII SRAM Controllers
R

Simulating the QDRII SRAM Design
After generating the design, MIG creates a sim folder in the specified path. This folder
contains simulation files for a particular design. The sim folder contains an external
testbench, a memory model, a .do file, and an executable file to simulate the generated
design. The Samsung memory model files are currently generated in Verilog only. For
Cypress memory controller designs, a sample VHDL memory model file is provided. To
learn more details about the files in the sim folder and to simulate the design, see
simulation_help.chm in the sim folder.

K7R161882B-FC25 Samsung x18

K7R161884B-FC25 Samsung x18

K7R163682B-FC25 Samsung x36

K7R163684B-FC25 Samsung x36

K7R320982C-FC20 Samsung x9

K7R320982M-FC20 Samsung x9

K7R321882C-FC20 Samsung x18

K7R321882M-FC20 Samsung x18

K7R321884C-FC25 Samsung x18

K7R321884M-FC25 Samsung x18

K7R323682C-FC20 Samsung x36

K7R323682M-FC20 Samsung x36

K7R323684C-FC25 Samsung x36

K7R323684M-FC25 Samsung x36

K7R640982M-FC25 Samsung x9

K7R641882M-FC25 Samsung x18

K7R641884M-FC25 Samsung x18

K7R643682M-FC25 Samsung x36

K7R643684M-FC30 Samsung x36

Table 4-8: Supported Devices for QDRII SRAM (Continued)

Virtex-4 FPGAs (Verilog and VHDL)

Components Make Configuration

http://www.xilinx.com

MIG User Guide www.xilinx.com 191
UG086 (v2.2) March 3, 2008

Hardware Tested Configurations
R

Hardware Tested Configurations
The frequencies shown in Table 4-9 were achieved on the Virtex-4 FPGA ML461 Memory
Interfaces Development Board under nominal conditions. This frequency should not be
used to determine the maximum design frequency. The maximum design frequency
supported in the MIG wizard is based on a combination of the TRCE results for fabric
timing on multiple device/package combinations and I/O timing analysis using FPGA
and memory timing parameters for a 72-bit wide interface.

Table 4-9: Hardware Tested Configurations

Synthesis Tools XST and Synplicity

HDL Verilog and VHDL

FPGA Device XC4VLX25-FF668-11

Memory Component K7R163684B-FC25

Burst Length 4

Data Widths 36, 72

36-bit Frequency Range 110 to 350 MHz

72-bit Frequency Range 110 to 320 MHz

http://www.xilinx.com

192 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 4: Implementing QDRII SRAM Controllers
R

http://www.xilinx.com

MIG User Guide www.xilinx.com 193
UG086 (v2.2) March 3, 2008

R

Chapter 5

Implementing DDRII SRAM Controllers

This chapter describes how to implement DDRII SRAM interfaces for Virtex™-4 FPGAs
generated by MIG.

Feature Summary
This section summarizes the supported and unsupported features of the DDRII SRAM
controller design.

Supported Features
The DDRII SRAM controller design supports:

• A maximum frequency of 250 MHz

• Data widths of 9, 18, 36, and 72 bits

• Burst lengths of two and four

• Implementation using different Virtex-4 devices

• Operation with any 9-bit, 18-bit, and 36-bit memory component

• Verilog and VHDL

• With and without a testbench

• With and without a DCM

Design Frequency Range

Unsupported Features
The DDRII SRAM controller design does not support:

• DDR SIO memory

Table 5-1: Design Frequency Range in MHz

Memory

FPGA Speed Grade

-10 -11 -12

Min Max Min Max Min Max

Component 120 200 120 240 120 250

http://www.xilinx.com

194 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 5: Implementing DDRII SRAM Controllers
R

Architecture
Figure 5-1 shows a top-level block diagram of the DDRII SRAM controller interface. One
side of the DDRII SRAM controller connects to the user interface denoted as Block
Application. The other side of the controller interfaces to DDRII memory. The memory
interface data width is selectable.

Data is double-pumped to DDRII memory on both the positive and the negative edges of
the clock. The HSTL_18 Class II I/O standard is used for data, and the HSTL_18 Class I
I/O standard is used for address, control, and memory clock signals.

DDRII memory interfaces are source-synchronous and double data rate like DDR SDRAM
interfaces.

Interface Model
The Memory interface is layered to simplify the design and make the design modular.
Figure 5-2 shows the layered memory interface used in the DDRII SRAM controller. The
three layers are the application layer, the implementation layer, and the physical layer.

Figure 5-1: DDRII SRAM Controller Interface

DDRII SRAM
Controller

Block
Application

UG086_c5_01_012507

DDRII
Memory

Figure 5-2: Interface Layering Model

User Interface

Physical Layer

Implementation Layer

UG086_c5_02_012507

Infrastructure Data Path Control

http://www.xilinx.com

MIG User Guide www.xilinx.com 195
UG086 (v2.2) March 3, 2008

Architecture
R

The application layer comprises the user interface, which initiates memory writes and
reads by writing data and memory addresses to the User Interface FIFOs. The
implementation layer comprises the infrastructure, datapath, and control logic.

• The infrastructure logic consists of the DCM and reset logic generation circuitry.

• The datapath logic consists of the calibration logic by which the data from the
memory component is captured using the FPGA clock.

• The control logic determines the type of data transfer, that is, read/write with the
memory component, depending on the User Interface FIFO’s status signals.

The physical layer comprises the I/O elements of the FPGA. The controller communicates
with the memory component using this layer. I/ O elements (such as IDDRs, ODDRs,
IDELAY, and OFLOPs) are associated with this layer.

Hierarchy
Figure 5-3 shows the hierarchical structure of the DDRII SRAM design generated by MIG
with a testbench and a DCM.

The modules are classified as follows:

• Design modules

• Testbench modules

• Clocks and reset generation modules

Figure 5-3: DDRII SRAM Controller Hierarchy

<top_
module>

main*
infrastructure_

top*

iobs*
data_
path*

user_
interface*

data_path
_iobs*

ctrl_iobs*clock_
forward*

ddr_mem
_sm*

address_
burst*

Design Modules

bw_
burst*

ddr_rd_
enable*

read_
ctrl*

write_
burst*

tap_
logic*

wr_rd_
sm*

d_sm*
addr_
gen*

data_
gen*

ddr_d_
iob*

ddr_cq_
iob*

ddr_q_
iob*

wr_data_
interface*

rd_data_
interface*

rd_wr_
addr_

interface*

dly_cal_
sm

data_
tap_inc

UG086_c5_03_112907

test_
bench*

top*

idelay_
ctrl

Test Bench Modules

DCM and Reset Generation Modules

Note: A block with a * has a parameter file included.

http://www.xilinx.com

196 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 5: Implementing DDRII SRAM Controllers
R

There is a parameter file generated with the design that has all the user input and design
parameters selected from MIG.

MIG can generate DDRII SRAM designs in four different ways:

• With a testbench and a DCM

• Without a testbench and with a DCM

• With a testbench and without a DCM

• Without a testbench and without a DCM

For a design without a testbench (user_design) generated by MIG, the design
<top_module> module has the user interface signals.

The list of user interface signals is provided in Table 5-4.

Design clocks and resets are generated in the infrastructure_top module. When Use DCM
option is checked in MIG, a DCM primitive and the necessary clock buffers are instantiated
in the infrastructure_top module. The inputs to this module are the differential design
clock and a 200 MHz differential clock required for the IDELAYCTRL module. A user reset
is also input to this module. Using the input clocks and reset signals, the system clocks and
system resets used in the design are generated in this module.

When the Use DCM option is unchecked in MIG, the infrastructure_top module does not
have the DCM and the corresponding clock buffer instantiations. Therefore, the system
operates on the user-provided clocks. The system reset is generated in the
infrastructure_top module using the DCM_LOCK signal and the ready signal of the
IDELAYCTRL element.

http://www.xilinx.com

MIG User Guide www.xilinx.com 197
UG086 (v2.2) March 3, 2008

Architecture
R

Figure 5-4 shows a top-level block diagram of a DDRII SRAM design with a DCM and a
testbench. REFCLK_P and REFCLK_N are differential input reference clocks. The DCM is
instantiated in the infrastructure module that generates the required design clocks.
DLY_CLK_200_P and DLY_CLK_200_N are used for the IDELAYCTRL element.
SYS_RST_N is the system reset signal. All design resets are generated using the
DCM_LOCKED signal, the SYS_RST_N signal, and the dly_ready signal of the
IDELAYCTRL element. The COMPARE_ERROR output signal indicates whether the
design passes or fails. The DLY_CAL_DONE signal indicates the completion of
initialization and calibration of the design. Because the DCM is instantiated in the
infrastructure module, it generates the required clocks and resets signals for the design.

Figure 5-4: Top-Level Block Diagram of the DDRII SRAM Design with a DCM and a Testbench

main0

dly_ready

USER-RESET200

Memory
Device

UG086_c5_04_013007

Status
Signals

Reference
Clocks

and Reset

idelay_ctrl

Infrastructure
_top

CLK_200

IBUFGDS

CLK_200_N

USER_CLK0

CLK_200_P

USER_CLK270

USER_RESET

REFCLK_P

REFCLK_N

DLY_CLK_200_P

DLY_CLK_200_N

SYS_RST_N

USER_RESET270

DDR_DLL
_OFF_n

DDR_LD_N

DDR_RW_N

DDR_K

DDR_K_N

DDR_C

DDR_C_N

DDR_SA

DDR_BW_N

COMPARE_ERROR

DLY_CAL_DONE

DDR_CQ

DDR_DQ

http://www.xilinx.com

198 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 5: Implementing DDRII SRAM Controllers
R

Figure 5-5 shows a top-level block diagram of a DDRII SRAM design with a testbench but
without a DCM. The user should provide all the clocks and the DCM_LOCKED signal.
These clocks should be single-ended. SYS_RST_N is the system reset signal. All design
resets are generated using the DCM_LOCKED signal, the SYS_RST_N signal, and the
dly_ready signal of the IDELAYCTRL element. The user application must have a DCM
primitive instantiated in the design, and all user clocks should be driven through BUFGs.
The COMPARE_ERROR output signal indicates whether the design passes or fails. The
testbench module does writes and reads, and also compares the read data with the written
data. The COMPARE_ERROR signal is driven High on data mismatches. The
DLY_CAL_DONE signal indicates the completion of initialization and calibration of the
design.

Figure 5-5: Top-Level Block Diagram of the DDRII SRAM Design without a DCM but with a Testbench

main0

dly_ready

Memory
Device

UG086_c5_05_013007

Status
Signals

User
DCM

Clocks
and

Reset

idelay_ctrl

Infrastructure
_top

USER_RESET200

USER_RESET270

USER_RESET

CLK_0

CLK_200

CLK_270

DCM_LOCKED

SYS_RST_N

DDR_DLL_OFF_n

DDR_DL_N

DDR_RW_N

DDR_K

DDR_K_N

DDR_C

DDR_C_N

DDR_SA

DDR_BW_N

DDR_DQ

DDR_CQ

COMPARE_ERROR

DLY_CAL_DONE

http://www.xilinx.com

MIG User Guide www.xilinx.com 199
UG086 (v2.2) March 3, 2008

Architecture
R

Figure 5-6 shows a top-level block diagram of a DDRII SRAM design with a DCM but
without a testbench. REFCLK_P and REFCLK_N are differential input reference clocks.
The DCM is instantiated in the infrastructure module that generates the required design
clocks. DLY_CLK_200_P and DLY_CLK_200_N are used for the IDELAYCTRL element.
SYS_RST_N is the system reset signal. All design resets are generated using the
DCM_LOCKED signal, the SYS_RST_N signal, and the dly_ready signal of the
IDELAYCTRL element. The user has to drive the user application signals. The design
provides the USER_CLK and USER_RST signals to the user to synchronize the user
application signals with the design. The DLY_CAL_DONE signal indicates the completion
of initialization and calibration of the design.

Figure 5-6: Top-Level Block Diagram of the DDRII SRAM Design with a DCM but without a Testbench

main0

dly_ready

USER-RESET200

Memory
Device

UG086_c5_06_121907

User
Application

Reference
Clocks

and Reset

idelay_ctrl

Infrastructure
_top

CLK_200

IBUFGDS

CLK_200_N

USER_CLK0

CLK_200_P

USEER_CLK270

USER_RESET

REFCLK_P

REFCLK_N

DLY_CLK_200_P

DLY_CLK_200_N

SYS_RST_N

USER_RESET270

DDR_DLL
_OFF_n

DDR_LD_N

DDR_RW_N

DDR_K

DDR_K_N

DDR_C

DDR_C_N

DDR_SA

DDR_BW_N

DDR_DQ

DLY_CAL_DONE

WR_DATA_FULL

ADDR_FULL

RD_DATA_VALID

WR_DATA_WRERR

ADDR_WRERR

RD_DATA_RDERR

USER_CLK

USER_RST

USER_DWL

USER_DWH

USER_QRL

USER_QRH

USER_BWL_n

USER_BWH_n

USER_ADDR_CMD

USER_DATA_WR_ENA_n

USER_ADDR_WR_ENA_n

RD_DATA_EMPTY

USER_QEN_n

DDR_CQ

http://www.xilinx.com

200 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 5: Implementing DDRII SRAM Controllers
R

Figure 5-7 shows a top-level block diagram of a DDRII SRAM design without a DCM or a
testbench. The user should provide all the clocks and the DCM_LOCKED signal. These
clocks should be single-ended. SYS_RST_N is the system reset signal. All design resets are
generated using the DCM_LOCKED signal, the SYS_RST_N signal, and the dly_ready
signal of the IDELAYCTRL element. The user application must have a DCM primitive
instantiated in the design, and all user clocks should be driven through BUFGs. The user
has to drive the user application signals. The design provides the USER_CLK and
USER_RST signals to the user to synchronize the user application signals with the design.
The DLY_CAL_DONE signal indicates the completion of initialization and calibration of
the design.

Figure 5-7: Top-Level Block Diagram of the DDRII SRAM Design without a DCM or a Testbench

main0

dly_ready

Memory
Device

UG086_c5_07_121907

User
DCM

Clocks
and

Reset

idelay_ctrl

Infrastructure
_top

USER_RESET200

USER_RESET270

USER_RESET

CLK_0

CLK_200

CLK_270

DCM_LOCKED

SYS_RST_N

DDR_DLL_OFF_n

DDR_LD_N

DDR_RW_N

DDR_K

DDR_K_N

DDR_C

DDR_C_N

DDR_SA

DDR_BW_N

DDR_DQ

DDR_CQ

User
Application

DLY_CAL_DONE

WR_DATA_FULL

ADDR_FULL

RD_DATA_VALID

WR_DATA_WRERR

ADDR_WRERR

RD_DATA_RDERR

USER_CLK

USER_RST

USER_DWL

USER_DWH

USER_QRL

USER_QRH

USER_BWL_n

USER_BWH_n

USER_ADDR_CMD

USER_DATA_WR_ENA_n

USER_ADDR_WR_ENA_n

USER_QEN_n

RD_DATA_EMPTY

http://www.xilinx.com

MIG User Guide www.xilinx.com 201
UG086 (v2.2) March 3, 2008

Architecture
R

DDRII SRAM Controller Modules
Figure 5-8 shows a detailed block diagram of the DDRII SRAM controller. The four blocks
shown are sub-blocks of the top module. The functionalities of these blocks are explained
in the subsections following the figure.

Figure 5-9 shows the DDRII SRAM controller modules with a 36-bit interface.

Figure 5-8: DDRII SRAM Controller Modules

Infrastructure_top

IOBS
DDRII
SRAM

Interface
Data_pathUser_data

User_clk

User_fifo_status DDRII SRAM
Controller

UG086_c5_08_090707

Figure 5-9: DDRII SRAM Controller Modules with Interface Signals

User Interface Physical InterfaceRead / Write
State Machine

Read / Write Control

Address Path

FIFO Status

DDRII
Memory
Device

USER_CLK
USER_RESET

USER_DATA_WR_ENA_n
USER_ADDR_WR_ENA_n
USER_QEN_n

USER_ADDR_CMD

USER_BWL_n

USER_DWL
USER_DWH

USER_QRL
USER_QRH

WR_DATA_FULL
ADDR_FULL
RD_DATA_VALID

DDR_LD_N
DDR_RW_N

DDR_SA

DDR_BW_N
DDR_DQ

DDR_CQ

DDR_K
DDR_K_N

USER_CLK
USER_CLK270
USER_RESET

RD_DATA_EMPTY

Write Path

Read Path

CLK_0

USER_BWH_n

Delay
Calibration

State Machine

UG086_c5_09_121907

http://www.xilinx.com

202 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 5: Implementing DDRII SRAM Controllers
R

Controller

The DDRII SRAM controller initializes the memory, accepts and decodes the user
commands, and generates the READ and WRITE commands. It also generates control
signals for other modules. After power on it starts the calibration, after the calibration is
completed it process the READ or WRITE commands.

Datapath

The Datapath module transmits and receives data to and from the memories. Its major
functions are listed below:

• Asserts a write-enable signal for memories with burst lengths of two or four

• Asserts a read-enable signal to memory and a write-enable signal to the User Read
Data FIFO

• Generates increment/decrement signals (tap count) for IDELAY elements in the IOBS

• Center-aligns the data window to the FPGA clock

Refer to XAPP703 [Ref 19] for techniques on data writes to memory and data captures from
memory. For burst lengths of four and two, the write-enable signal is asserted one clock
before the write data is driven on the memory bus. The data is driven on both edges of the
clock. The address to memory is driven for one full clock cycle.

Memory read data is edge-aligned with the source-synchronous clock, CQ. The DDRII
clock, CQ, to which read data is synchronized, is a free-running strobe. The free-running
strobe from the memory CQ is captured using the FPGA clock. Thus the relation between
the CQ strobe and FPGA clock is found, and the strobe CQ is center-aligned with the FPGA
clock by delaying the CQ strobe in the IDELAY element. The same logic is applied to the
read data window. The read data window is center-aligned with the same FPGA clock.
This in turn means that the same amount of tap delays are applied on both the read data
window and the strobe CQ through the IDELAY elements to center-align the read data and
strobe CQ windows with respect to the FPGA clock. Center-aligning the read data window
with respect to the FPGA clock completes the data capturing logic.

The delay calibration circuit generates the delay reset, delay select, and delay increment
values for IDELAY elements used in delaying strobes and data read from memory. The
strobe is center-aligned with the FPGA clock, which results in the data window falling to
the center of the FPGA clock. Refer to XAPP703 [Ref 19] for details about the delay
calibration.

Infrastructure

The Infrastructure (infrastructure_top) module comprises the reset logic generation
circuitry and instantiates a DCM primitive for clock source generation. Inputs to the
infrastructure_top module are the REFCLK_P and REFCLK_N differential clock pair for
the entire design, the DLY_CLK_200_P and DLY_CLK_200_N differential clock pair for the
IDELAYCTRL elements, and the user reset signal SYS_RST_N. The REFCLK_P and
REFCLK_N differential clock pair is used by the DCM primitive to generate the clock and
the 270° phase-shifted version of the clock. This module generates multiple reset signals,
each synchronous to its respective clock domain.

IOBS

All the input and output signals of the DDRII SRAM controller are implemented in the
IOBS module. All address and byte enable signals are registered in the IOBs and driven
out.

http://www.xilinx.com

MIG User Guide www.xilinx.com 203
UG086 (v2.2) March 3, 2008

DDRII SRAM Initialization and Calibration
R

The IDELAY elements for the read strobe and data read from memory are implemented in
the IOBS. The IOBS also implements Inout buffers for write and read data. The IOBS
registers the output data (ODDR) before driving it out and also registers the input data
(IDDR).

DDRII SRAM Initialization and Calibration
DDRII SRAM is initialized through a specified sequence. Following the initialization, the
relationship between the read data and the FPGA clock is calculated using the TAP logic.
After the DCM clocks are stable, the controller waits for a specified amount of time before
asserting the DDR_DLL_OFF_n signal to the memory. This signal can also be pulled up to
a High on the memory device without being driven from the FPGA.

The memory strobe CQ is a free-running clock from the memory component. Because the
read data and the memory strobe CQ are edge-aligned, the strobe is passed through the
IDELAY elements of the Virtex-4 device and the taps are adjusted to center-align the strobe
pulse with respect to the FPGA clock. The same number of taps are applied to the data
window's IDELAY element to center-align the data window with respect to the FPGA
clock. XAPP701 [Ref 17] provides more information about the calibration architecture.

Calibration is done in two stages:

1. In the first stage of calibration, the read strobe CQ is center-aligned with respect to the
FPGA clock. CQ is a free-running clock from DDRII SRAM. The read data window is
edge-aligned with the read strobe CQ. The first and second edges of the CQ strobe are
detected using the FPGA clock to determine the center of the CQ window.

Once the CQ window is center-aligned with the FPGA clock, the same amount of delay
(tap counts) is applied to the read data window through the IDELAY element, so that
the read data window is center-aligned with the FPGA clock.

Port cq_q_cal_done in the data_path module indicates the status of the first stage
calibration. When cq_q_cal_done is asserted High, it indicates the completion of first
stage calibration. After the first stage calibration is complete, the second stage
calibration starts.

2. In the second stage of calibration, the write enable signal for the Read Data FIFO is
determined by delaying the controller-issued read command. This delay is calibrated
based on the delay between the read command and the corresponding read data at the
Read Data FIFO. For this delay calibration, the controller writes a known fixed pattern
of data into a memory location and reads back from the same location. This read data
is compared against the known fixed pattern. The delay between the read command
and the correct pattern read data comparison is the delay calibration.

The final_dly_cal_done port in the data_path module indicates the status of the second
stage calibration. When final_dly_cal_done is asserted High, it indicates the
completion of second stage calibration, which implies the completion of the whole
initialization and calibration process. After the initialization and calibration is done
(i.e., the dly_cal_done signal in design_top is asserted High), the controller can start
issuing user commands to the memory.

In the second stage calibration, when the pattern read data does not match with the
pattern write data, the controller does not issue any further pattern read commands
and the controller gets stuck in the calibration state. The design must be restarted for
the calibration to start from the beginning.

http://www.xilinx.com

204 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 5: Implementing DDRII SRAM Controllers
R

User Interface
The user interface consists of seven FIFOs. The User Write interface has four FIFOs: one
FIFO is used for the memory address, two FIFOs contain positive-edge and negative-edge
data for memory, and the remaining FIFO is used for Byte Writes. The DDRII SRAM
controller checks the not empty status of these FIFOs and initiates a memory write. The
user interface is single data rate (SDR). The controller handles the conversion from the SDR
user interface to the DDR Memory interface and vice versa.

The User Read interface has three FIFOs, where one FIFO is used for the memory address
and the remaining two FIFOs contain positive-edge and negative-edge data read from
memory. The user writes to the User Read Address FIFO the memory address from which
data is to be read. The DDRII SRAM controller checks the status of this FIFO and initiates
a memory read burst. The data read is stored in the User Read Data FIFOs. The user reads
these FIFOs to access the data read from memory.

Refer to Table 5-2 for how the user can access these FIFOs.

DDRII SRAM Controller Interface Signals
Table 5-2 through Table 5-3 describe the DDRII controller system interface signals.
Table 5-4 describes the DDRII SRAM user interface signals. Table 5-5 describes the DDRII
memory interface signals. In these tables, all signal directions are with respect to the DDRII
memory controller.

Table 5-2: DDRII SRAM System Interface Signals (with a DCM)

Signal Name Direction Description

REFCLK_P, REFCLK_N Input Reference clock input made up of differential clock pairs. This clock
pair goes to a differential input buffer. The differential buffer output
goes to the DCM input. The DCM generates the required clocks for the
design.

DLY_CLK_200_P,
DLY_CLK_200_N

Input 200 MHz differential clock used in the IDELAY_CTRL logic

SYS_RST_N Input Reset to the DDRII memory controller

COMPARE_ERROR Output This signal indicates the status of the comparison between the read
data with the corresponding write data

DLY_CAL_DONE Output This signal is asserted when the design initialization and calibration is
complete

Table 5-3: DDRII SRAM System Interface Signals (without a DCM)

Signal Name Direction Description

CLK_0 Input Input clock

CLK_270 Input Input clock with 270° phase difference

CLK_200 Input 200 MHz clock for IDELAYCTRL primitives

DCM_LOCKED Input This active-High signal indicates whether the user DCM is locked or
not

SYS_RST_N Input Reset to the DDRII memory controller

http://www.xilinx.com

MIG User Guide www.xilinx.com 205
UG086 (v2.2) March 3, 2008

DDRII SRAM Controller Interface Signals
R

COMPARE_ERROR Output This signal indicates the status of the comparison between the read
data with the corresponding write data

DLY_CAL_DONE Output This signal is asserted when the design initialization and calibration is
complete.

Table 5-3: DDRII SRAM System Interface Signals (without a DCM) (Continued)

Signal Name Direction Description

Table 5-4: DDRII SRAM User Interface Signals (without a Testbench)

Signal Name Direction Description

WR_DATA_FULL Output This signal indicates the User Write FIFOs status. It is
asserted when the User Write Data FIFOs are full. When
this signal is asserted, any writes to the User Write Data
FIFO are invalid, possibly leading to controller
malfunction.

ADDR_FULL Output This signal indicates the User Read Write Address FIFO
status. It is asserted when the User Read Write Address
FIFO is full. When this signal is asserted, any writes to the
User Read Write Address FIFO are ignored.

RD_DATA_VALID Output This signal indicate to the user that data available at read
data FIFOs.

WR_DATA_WRERR Output This signal is asserted when an error occurs while writing
to the User Write Data FIFOs.

ADDR_WRERR Output This signal is asserted when an error occurs while writing
to the User Read Write Address FIFO.

RD_DATA_RDERR Output This signal is asserted when an error occurs while reading
the User Read Data FIFO

DLY_CAL_DONE Output This signal is asserted to indicate that the calibration is done

USER_CLK Output All user interface signals are to be synchronized to this
clock

USER_RST Output This reset is active until the DCM is not locked

USER_DWL [(data_width–1):0] Input Positive-edge data for memory writes. The data bus is valid
when the WRITE command (DDR_LD_N=0 &&
DDR_RW_N=0) is asserted.

USER_DWH [(data_width–1):0] Input Negative-edge data for memory writes. The data bus is
valid when the WRITE command (DDR_LD_N=0 &&
DDR_RW_N=0) is asserted.

USER_QRL [(data_width–1):0] Output Positive-edge data read from memory. This data is output
when USER_QEN_n is asserted.

USER_QRH [(data_width–1):0] Output Negative-edge data read from memory. This data is output
when USER_QEN_n is asserted.

USER_BWL_n [(BW_width–1):0] Input Byte enables for DDRII memory positive-edge write data.
The byte enables are valid when the WRITE command
(DDR_LD_N=0 && DDR_RW_N=0) is asserted.

http://www.xilinx.com

206 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 5: Implementing DDRII SRAM Controllers
R

USER_BWH_n[(BW_width–1):0] Input Byte enables for DDRII memory negative-edge write data.
The byte enables are valid when the WRITE command
(DDR_LD_N=0 && DDR_RW_N=0) is asserted.

USR_ADDR_CMD[addr_width:0] Input DDRII memory address for read or write operation. This
address is valid when USER_DATA_WR_ENA_n is
asserted. An extra bit is driven by the user to represent the
command.

USER_QEN_n Input This active-Low signal is the read enable for the User Read
Data FIFOs. The DDRII memory controller captures the
data read from memory and stores it in the Read Data
FIFOs. The user can access these FIFOs to get the data read
from memory.

USER_DATA_WR_ENA_n Input This active-Low signal is the write enable for the User Write
Data FIFOs. The user asserts this signal to write new data to
the FIFOs. The DDRII SRAM controller reads the data from
the User Write Data FIFO and writes to memory.

USER_ADDR_WR_ENA_n Input This active-Low signal is the write enable for the User Read
Write Address FIFO. The user asserts this signal to write
write/read address and command in to user read write
address FIFO.

Notes:
1. All user interface signal names are prepended with a controller number, for example, cntrl0_DDR_DQ. DDRII SRAM devices

currently support only one controller.

Table 5-4: DDRII SRAM User Interface Signals (without a Testbench) (Continued)

Signal Name Direction Description

Table 5-5: DDRII SRAM Interface Signals

Signal Name Direction Description

DDR_DQ Input/
Output

Bidirectional data bus. During READ commands, the data is sampled
on both edges of the FPGA clk. During WRITE commands, the data is
sampled on both edges of the K clk.

DDR_BW_N Output Byte enables for DDRII memory write data. The byte enables are valid
when the WRITE command (DDR_LD_N=0 && DDR_RW_N=0) is
asserted.

DDR_SA Output Address for READ and WRITE operations

DDR_LD_N Output Synchronous load pin. The bus cycle sequence is to be defined when
this signal is Low.

DDR_RW_N Output Read/Write control pin. Read is active when High.

DDR_CQ Input This read data clock, transmitted by DDRII SRAM, is edge-aligned
with read data

K, K_N Output Differential write data clocks

C, C_N Output Input clock for output data

DDR_DLL_OFF_n Output The DLL is disabled when this signal is Low

http://www.xilinx.com

MIG User Guide www.xilinx.com 207
UG086 (v2.2) March 3, 2008

DDRII SRAM Controller Interface Signals
R

Write Interface
Figure 5-10 shows the user interface block diagram for write operations.

The following steps describe the architecture of the Address and Write Data FIFOs and
show how to perform a write burst operation to DDRII memory from the user interface.

1. The user interface consists of an Address FIFO, Data FIFOs, and a Byte Write FIFO.
These FIFOs are constructed using Virtex-4 FIFO16 primitives with a 512 x 36
configuration.

2. The common Address FIFO is used for both write and read commands, and comprises
a command part and an address part. The command bit (bit 0 of the Address FIFO)
discriminates between write and read commands; the address starts at bit 1. The
command bit should be set to 0 for writes and to 1 for reads.

3. Two separate sets of Data FIFOs are used for storing the rising-edge and falling-edge
data to be written to DDRII memory from the user interface. For 9-bit, 18-bit, and 36-bit
data widths, two FIFO16s are required for storing rising-edge and falling-edge data.
For 72-bit data width, two FIFO16s are required for rising-edge data and two for
falling-edge data. MIG instantiates the required number of FIFOs to gain the required

Figure 5-10: Write User Interface Block Diagram

User Interface

Controller

 Address FIFO
(FIFO16)
512 x 36

 Byte Write FIFO
(FIFO16)
512 x 36

user_add_cmd

user_addr_wr_ena_n

user_dwl

user_dwh

user_bwl_n

user_bwh_n

fifo_dwl

fifo_rd_addr

fifo_dwh

fifo_bwl

fifo_bwh

To IOBS

addr_full
Rise Data FIFO

(FIFO16)
512 x 36

Rise Data FIFO
(FIFO16)
512 x 36

Fall Data FIFO
(FIFO16)
512 x 36

Fall Data FIFO
(FIFO16)
512 x 36

Data FIFOs

addr_empty

wr_rd_cmd

fifo_addr_rd_ena_n

wr_init_n

user_data_wr_ena_n

wr_data_full

ug086_c5_15_010208

http://www.xilinx.com

208 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 5: Implementing DDRII SRAM Controllers
R

data width. For 9-bit and 18-bit configurations, the controller pads the extra bits of the
Data FIFO with 0s.

4. The Byte Write FIFO is used to store the Byte Write signals to DDRII memory from the
user interface. The controller internally pads all zeros for the unused bits.

5. The user can initiate a write to memory by writing to the Address FIFO, Data FIFOs,
and Byte Write FIFO when the FIFO full flags are deasserted and after dly_cal_done is
asserted. The user should not access any of these FIFOs until dly_cal_done is asserted.
The dly_cal_done signal assures that the clocks are stable, the reset process is
completed, and the controller is ready to accept commands. Status signals addr_full
and wr_data_full are asserted when the Address FIFO and Data FIFOs or Byte Write
FIFO are full.

6. When user_addr_wr_ena_n is asserted, the user address is stored in the Address FIFO.
Similarly, when user_data_wr_ena_n is asserted, user_dwl, user_dwh, user_bwl, and
user_bwh are stored into corresponding FIFOs. A common write-enable signal is used
to enable both the Data FIFO and the Byte Write FIFO.

7. The controller reads the address and decodes the command bit. The write command
wr_init_n is issued if the command bit is 0 when the Address FIFO is not empty. This
command acts as a read-enable to the Data and Byte Write FIFOs. The DDRII memory
write command is generated from the wr_init_n signal by properly timing it.

8. Figure 5-11 shows the timing diagram for a write command of BL = 4. The address
should be asserted for one clock cycle as shown. For burst lengths of four, each write to
the Address FIFO should have two writes to the Data FIFO consisting of two rising-
edge data and two falling-edge data.

Figure 5-11: Write User Interface Timing diagram for BL = 4

user_clk

dly_cal_done

addr_full

addr_wrerr

wr_data_wrerr

user_addr_wr_ena_n

user_data_wr_ena__n

user_add_cmd

user_dwl

user_dwh

DWL-00 DWL-01 DWL-10 DWL-11 DWL-20 DWL-21

DWH-00 DWH-01 DWH-10 DWH-11 DWH-20 DWH-21

A0, W A1, W A2, W

user_bwl_n

user_bwh_n

BWL-00 BWL-01 BWL-10 BWL-11 BWL-20 BWL-21

BWH-00 BWH-01 BWH-10 BWH-11 BWH-20 BWH-21

http://www.xilinx.com

MIG User Guide www.xilinx.com 209
UG086 (v2.2) March 3, 2008

DDRII SRAM Controller Interface Signals
R

9. Figure 5-12 shows the timing diagram for a write command of BL = 2. For burst length
of two, each write to Address FIFO has one write to Data FIFO, consisting of one
rising-edge data and one falling-edge data. For burst length of two, commands can be
given in every clock.

Figure 5-12: Write User Interface Timing diagram for BL = 2

user_clk

dly_cal_done

addr_full

addr_wrerr

wr_data_wrerr

user_addr_wr_ena_n

user_data_wr_ena__n

user_add_cmd

user_dwl

user_dwh

DWL-00 DWL-10 DWL-20 DWL-30 DWL-40 DWL-50

DWH-00 DWH-10 DWH-20 DWH-30 DWH-40 DWH-50

A0, W A2, W A4, WA1, W A3, W A5, W

user_bwl_n

user_bwh_n

BWL-00 BWL-10 BWL-20 BWL-30 BWL-40 BWL-50

BWH-00 BWH-10 BWH-20 BWH-30 BWH-40 BWH-50

UG086_c5_17_112907

http://www.xilinx.com

210 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 5: Implementing DDRII SRAM Controllers
R

Read Interface
Figure 5-13 shows the user interface block diagram for read operations.

The following steps describe the architecture of Read Data FIFOs and show how to
perform a burst read operation from DDRII SRAM from the user interface.

1. The read user interface consists of a common Address FIFO and a Read Data FIFO. The
Address FIFO and Read Data FIFO are constructed using FIFO16s with a 512 x 16
configuration.

2. The number of Read Data FIFOs required depends on the number of DDRII
components used. Using 9-bit components for 36-bit data width, a total of eight FIFOs
are required, four FIFOs for rising-edge data and four FIFOs for falling-edge data.
Though each FIFO can accommodate 36-bit data, the requirement of having one FIFO
per component arises from the CQ pattern calibration. Internal pattern calibration is
done per CQ. Controller generates the Read Data FIFO write-enable signal for each
FIFO separately, depending on the CQ pattern calibration.

3. To initiate a DDRII read command, the user should write the Address FIFO with the
command bit set to logic 1 when the FIFO addr_full flag is deasserted and the
dly_cal_done signal is asserted. The dly_cal_done signal assures the controller clocks
are stable, the internal reset process is completed, and the controller is ready to accept
commands.

Figure 5-13: Read User Interface Block Diagram

Controller

user_addr_cmd

user_addr_wr_ena_n

user_qrl

user_qrh

fifo_rd_addr

fifo_drl

fifo_drh

To/From IOBS

addr_full

addr_empty

wr_rd_cmd

rd_data_full

user_qen_n

fifo_addr_rd_ena_n

wr_init_n

rd_data_valid

rd_data_empty

ug086_c5_18_010108

User Interface

 Address FIFO
(FIFO16)
512 x 36

Rise Data FIFO
(FIFO16)
512 x 36

Fall Data FIFO
(FIFO16)
512 x 36

Rise Data FIFO
(FIFO16)
512 x 36

Fall Data FIFO
(FIFO16)
512 x 36

Data FIFOs
Component 0

Component (n–1)
Data FIFOs

http://www.xilinx.com

MIG User Guide www.xilinx.com 211
UG086 (v2.2) March 3, 2008

DDRII SRAM Controller Interface Signals
R

4. The user should issue the Address FIFO write enable signal user_addr_wr_ena_n
along with user_addr_cmd to write the address to the Address FIFO.

5. When status signal addr_empty is deasserted, the controller reads the Address FIFO.
If the command bit is 1 when the Read Data FIFO is not full, the appropriate control
signal required for a read command is sent to the DDRII memory.

6. Prior to the actual read and write commands, the design calibrates the latency from the
time the read command is issued to the time data is received in terms of the number of
clock cycles. Using the precalibrated delay information between the read commands to
read data, the controller generates the write-enable signals to the Read Data FIFOs.The
delay calibration is done per DDRII component.

7. The Low state of rd_data_empty indicates read data is available. Asserting user_qen_n
reads rising-edge data and falling-edge data simultaneously on every rising edge of
the clock.

8. Figure 5-14 and Figure 5-15 shows the user interface timing diagrams for BL = 2 and
BL = 4.

Figure 5-14: Read User Interface Timing Diagram for BL = 2

user_clk

dly_cal_done

user_rd_full

user_rd_err

addr_wrerr

rd_data_valid

user_qen_n

user_addr_wr_ena_n

user_ad_rd

user_qrl

user_qrh

q00 q10 q20 q30 q40

A0 A1 A3A2 A4

q01 q11 q21 q31 q41

UG086_c5_19_121907

19 clocks between user read command
 and user read data

http://www.xilinx.com

212 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 5: Implementing DDRII SRAM Controllers
R

Table 5-6 shows the maximum read latency of the controller. Maximum latency occurs
when the read command is given to an empty FIFO.

Figure 5-15: Read User Interface Timing Diagram for BL = 4

Table 5-6: Maximum Read Latency

Parameter
Number of

Clocks
Description

User command to
address FIFO empty
flag

6 (2 + 4) Two clocks for the two-stage pipeline before the
FIFO input. An empty FIFO takes four clocks to
deassert the empty status signal after the FIFO is
written with the first data in FWFT.

Command from
controller state machine
to DDR memory

3 Decoding and passing the command to DDR
memory.

DDR command to FIFO
input data

4 Two clocks for DDRII memory latency, two
clocks for calibration delay.

FIFO input to FIFO
output

6 Pipelines the write enable six clock cycles
(two-stage pipeline at the FIFO and one reg for
calibration, and four clocks for deassertion of
read data fifo empty).

Total Latency 19 Total latency from read command issued to
Address FIFO, to data input to user interface.

user_clk

dly_cal_done

user_rd_full

user_rd_err

addr_wrerr

rd_data_valid

user_qen_n

user_addr_wr_ena_n

user_ad_rd

user_qrl

user_qrh

q00 q02 q10 q12 q20

A0 A1 A3A2 A4

q01 q03 q11 q13 q21

UG086_c5_20_010208

19 Tck between user read command
 and user read data

http://www.xilinx.com

MIG User Guide www.xilinx.com 213
UG086 (v2.2) March 3, 2008

DDRII SRAM Controller Interface Signals
R

Table 5-7 shows the list of signals for a DDRII SRAM design allocated in a group from bank
selection check boxes in MIG.

When the Address box is checked in a bank, the address, DDR_LD_N, DDR_RW_N,
DDR_DLL_OFF_n bits are assigned to that particular bank.

When the Data box is checked in a particular bank, the memory data, the memory byte
write, the memory read clocks, the memory write clocks, and the memory input clock for
the output data are assigned to that particular bank.

When the System Control box is checked in a bank, the SYS_RST_N, COMPARE_ERROR,
and DLY_CAL_DONE bits are assigned to that particular bank.

When the System_Clock box is checked in a bank, the REFCLK_P, REFCLK_N,
DLY_CLK_200_P, and DLY_CLK_200_N bits are assigned to that particular bank.

For special cases, such as without a testbench and without a DCM, the corresponding
input and output ports are not assigned to any pins of the FPGA in the design UCF because
the user can connect these ports to the FPGA pins or can connect to some logic internal to
the same FPGA.

Supported Devices
The design generated out of MIG is independent of the memory package, hence the
package part of the memory component is replaced with X, where X indicates a don't care
condition. Table 5-8 shows the list of components supported by MIG.

Table 5-7: DDRII Signal Allocations

Bank Selected Signals Allocated in the Group

Address Memory address and memory control

Data Memory data and memory byte read/write

System Control System reset from the user interface and status signals

System_Clock System clocks from the user interface

Table 5-8: Supported Devices for DDRII SRAM

Virtex-4 FPGAs (Verilog and VHDL)

Components Make Configuration

CY7C1319BV18-250BZC Cypress x18

CY7C1318BV18-250BZC Cypress x18

CY7C1320BV18-200BZC Cypress x36

CY7C1320BV18-250BZC Cypress x36

CY7C1321AV18-250BZC Cypress x36

CY7C1321BV18-250BZC Cypress x36

CY7C1419AV18-250BZC Cypress x18

CY7C1420AV18-250BZC Cypress x36

CY7C1421AV18-250BZC Cypress x36

http://www.xilinx.com

214 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 5: Implementing DDRII SRAM Controllers
R

Simulating the DDRII SRAM Design
After generating the design, MIG creates a sim folder in the specified path. This folder
contains simulation files for a particular design. The sim folder contains an external
testbench, a memory model, a .do file, and an executable file to simulate the generated
design. The Samsung memory model files are currently generated in Verilog only. For
Cypress memory controller designs, a sample VHDL memory model file is provided. To
learn more details about the files in the sim folder and to simulate the design, see
simulation_help.chm in the sim folder.

Hardware Tested Configurations
This design is not hardware verified.

CY7C1427AV18-250BZC Cypress x9

CY7C1428AV18-250BZC Cypress x9

CY7C1518V18-250BZC Cypress x18

CY7C1520V18-250BZC Cypress x36

CY7C1916BV18-250BZC Cypress x9

CY7C1917BV18-250BZC Cypress x9

K7I161882B-FC25 Samsung x18

K7I161884B-FC25 Samsung x18

K7I163682B-FC25 Samsung x36

K7I163684B-FC25 Samsung x36

K7I321884C-FC25 Samsung x18

K7I321884M-FC25 Samsung x18

K7I323684C-FC25 Samsung x36

K7I323684M-FC25 Samsung x36

K7I641882M-FC25 Samsung x18

Table 5-8: Supported Devices for DDRII SRAM (Continued)

Virtex-4 FPGAs (Verilog and VHDL)

Components Make Configuration

http://www.xilinx.com

MIG User Guide www.xilinx.com 215
UG086 (v2.2) March 3, 2008

R

Chapter 6

Implementing RLDRAM II Controllers

Reduced Latency DRAM (RLDRAM II) devices address high bandwidth memory
requirements. The RLDRAM II utilizes an eight-bank architecture optimized for high-
speed operation and a double data rate I/O for increased bandwidth. This chapter
describes how to implement RLDRAM II interfaces for Virtex™-4 FPGAs generated with
MIG. This design is based on XAPP710 [Ref 21].

Feature Summary
This section summarizes the supported and unsupported features of the RLDRAM II
controller design.

Supported Features
The RLDRAM II controller design supports the following:

• A maximum frequency of 250 MHz

• Both SIO and CIO memories

• Multiplexed and non-multiplexed addresses

• All configurations (Config1, Config2, and Config3)

• x9, x18, and x36 components

• Data widths of 9, 18, 36, and 72 bits

• Back-to-back read and write operations

• Write followed by read operations

• Read followed by write operations

• All combinations of the Mode Register

• XST and Synplicity synthesis tools

• Verilog and VHDL

• With and without a testbench

• With or without a DCM

http://www.xilinx.com

216 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 6: Implementing RLDRAM II Controllers
R

Design Frequency Range

Unsupported Features
The RLDRAM II controller design does not support:

• Commands in successive clocks with a burst length of 2. The controller processes
these commands with one extra clock latency. For example, a READ or WRITE
sequence of commands, BL = 2, Configuration = Any, CIO/SIO.

Supported RLDRAM II Devices
The RLDRAM II controller design supports the RLDRAM II devices from Micron indicated
in Table 6-2. MIG generates the designs for the list of components mentioned in Table 6-2 in
both VHDL and Verilog. The design generated out of MIG is independent of memory
package, hence the package part of the memory component is replaced with XX, where XX
indicates any package.

Table 6-1: Design Frequency Range in MHz

Memory

FPGA Speed Grade

-10 -11 -12

Min Max Min Max Min Max

Component (SIO/CIO) 175 200 175 230 175 250

Table 6-2: Supported RLDRAM II Devices

Device Make CIO/SIO Configuration Speed Grade
Supported Data
Widths (in bits)

MT49H32M9FM Micron CIO x9 (-5), (-25), (-33) 9, 18, 36, 72

MT49H32M9BM Micron CIO x9 (-5), (-25), (-33) 9, 18, 36, 72

MT49H16M18FM Micron CIO x18 (-5), (-25), (-33) 18, 36, 72

MT49H16M18BM Micron CIO x18 (-5), (-25), (-33) 18, 36, 72

MT49H8M36FM Micron CIO x36 (-5), (-25), (-33) 36, 72

MT49H8M36BM Micron CIO x36 (-5), (-25), (-33) 36, 72

MT49H32M9CFM Micron SIO x9 (-5), (-25), (-33) 9, 18, 36, 72

MT49H32M9CBM Micron SIO x9 (-5), (-25), (-33) 9, 18, 36, 72

MT49H16M18CFM Micron SIO x18 (-5), (-25), (-33) 18, 36, 72

MT49H16M18CBM Micron SIO x18 (-5), (-25), (-33) 18, 36, 72

http://www.xilinx.com

MIG User Guide www.xilinx.com 217
UG086 (v2.2) March 3, 2008

Architecture
R

Architecture
Figure 6-1 shows a top-level block diagram of the RLDRAM II memory controller.

Figure 6-2 shows the hierarchical structure of the RLDRAM II design generated by MIG
with a testbench and a DCM.

The modules are classified as follows:

• Design modules

• Testbench modules

• Clocks and reset generation modules

There is a parameter file generated with the design that has all the user input and design
parameters selected from MIG.

Figure 6-1: RLDRAM II Memory Controller Block Diagram

User
Application

RLDRAM II
CIO/SIO
Memory

UG086_c6_01_012007

Memory Controller

Infrastructure_top

Top

Figure 6-2: RLDRAM II Memory Controller Hierarchy

<top_
module>

main*
infrastructure_

top*

iobs*

infrastructure
_iobs*

data_
path_
iobs*

controller
_iobs*

byte_
compare

controller
data_
path*

tap_
logic*

data_
read*

data_
write*

user_
interface*

rld_
mergedfifo

rld_
rdfifo*

rld_
wdfifo*

rld_
conf*

rld_ctl*

Design Modules

cmp_rd
_data*

backend
_rom*

v4_dm_
iob

v4_dq_
iob

d4_dqs
_iob

UG086_c6_02_091307

clk_
module rld_rst*test_

bench*
top*

Test Bench Modules

Clock Module and Reset Generation Module

Note: A block with a * has a parameter file included.

IDELAYCTRL tap_ctrl data_
tap_inc

idelay_rd
_en

http://www.xilinx.com

218 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 6: Implementing RLDRAM II Controllers
R

MIG can generate four different RLDRAM II designs:

• With a testbench and a DCM

• Without a testbench and with a DCM

• With a testbench and without a DCM

• Without a testbench and without a DCM

When the testbench is not generated by MIG, the <top_module> module has the user
interface signals for designs without a testbench. The list of user interface signals is
provided in Table 6-10.

Design clocks and resets are generated in the infrastructure_top module, which comprises
clk_module and rld_rst modules. The DCM clock is instantiated in the clk_module module
for designs with a DCM. The differential design clock is an input to this module, which
generates the system clocks. A user reset is input to the rld_rst module, which generates
the system resets. A 200 MHz differential clock for the IDELAYCTRL module is derived
from 200 MHz differential clocks. This clock is present in the top-level module.

The clk_module is not instantiated in the infrastructure_top module if the “DCM” option
is not checked in MIG. So, the system operates on the user-provided clocks. The system
reset is generated in the rld_rst module using the DCM_LOCK signal and the ready signal
of the idelay control element.

http://www.xilinx.com

MIG User Guide www.xilinx.com 219
UG086 (v2.2) March 3, 2008

Architecture
R

Figure 6-3 shows a block diagram representation of an RLDRAM II design with a DCM
and a testbench. The design inputs are the system clocks and the user reset. sysReset_n is
the system reset signal. All design resets are generated using the DCM_LOCKED signal,
the sysReset_n signal, and the idelay_ctrl_rdy signal of the IDELAYCTRL element. The
PASS_FAIL output signal indicates whether the design passes or fails. The init_done signal
indicates the completion of initialization and calibration of the design. Required clocks and
reset signals for the design are generated from the clk_module and the rld_rst modules,
respectively. clk_module instantiates the DCM primitive. The Infrastructure_top module
instantiates the clk_module and the rld_rst modules.

Figure 6-3: Top-Level Block Diagram of the RLDRAM II Design with a DCM and a Testbench

main_0
Memory
Device

UG086_c6_03_090707

System
Clocks

and Reset
Infrastructure

_top

CLK200_IN
CLK_200_n

rstHard_180

idelay_ctrl_rdy

calibration_done

CLK_200_p

rstHard_270

rstConfig

CLK200_p

CLK200_n

sysClk_p

sysClk_n

sysReset_n

rst_init

RLD2_WE_N

RLD2_REF_N

RLD2_CS_N

RLD2_BA

RLD2_A

RLD2_CK

RLD2_CK_N

RLD2_DK

RLD2_DM

clk90

clkGlob

rstHard_CLK200

rstHard

RLD2_DK_N

PASS_FAIL

Init_done RLD2_QVLD

RLD2_DQ

RLD2_QK

RLD2_QK_N

http://www.xilinx.com

220 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 6: Implementing RLDRAM II Controllers
R

Figure 6-4 shows a block diagram representation of the top-level RLDRAM II module
without a DCM but with a testbench. Design inputs are the user clocks and the user reset.
sysReset_n is the system reset signal. All design resets are generated using the
DCM_LOCKED signal, the sysReset_n signal, and the idelay_ctrl_rdy signal of the
IDELAYCTRL element. The design uses the user input clocks. These clocks should be
single-ended. The user application must have a DCM primitive instantiated in the design,
and all user clocks should be driven through BUFGs. The PASS_FAIL output signal
indicates whether the design passes or fails. The init_done signal indicates the completion
of initialization and calibration of the design.

Figure 6-4: Top-Level Block Diagram of the RLDRAM II Design without a DCM but with a Testbench

main_0

Memory
Device

UG086_c6_04_090707

System
Reset

and User
DCM

Clocks

Infrastructure
_top rstHard_180

idelay_ctrl_rdy

calibration_done

rstHard_270

rstConfig

CLK_200

CLKGLOB

CLK90

sysReset_n

DCM_LOCKED rst_init

RLD2_WE_N

RLD2_REF_N

RLD2_CS_N

RLD2_BA

RLD2_A

RLD2_CK

RLD2_CK_N

RLD2_DK

RLD2_DM

rstHard_CLK200

rstHard

RLD2_DK_N

PASS_FAIL

Init_done

RLD2_QVLD

RLD2_DQ

RLD2_QK

RLD2_QK_N

http://www.xilinx.com

MIG User Guide www.xilinx.com 221
UG086 (v2.2) March 3, 2008

Architecture
R

Figure 6-5 shows a block diagram representation of the top-level RLDRAM II module with
a DCM but without a testbench. Design inputs are the system clocks and reset. sysReset_n
is the system reset signal. All design resets are generated using the DCM_LOCKED signal,
the sysReset_n signal, and the idelay_ctrl_rdy signal of the IDELAYCTRL element. User
must drive the user application signals. The design provides the clkGlob_tb and
rstHard_tb signals to the user to synchronize the user application signals with the design.
The required clocks and reset signals for the design are generated from the clk_module and
the rld_rst modules, respectively. clk_module instantiates the DCM primitive. The
infrastructure_top module instantiates the clk_module and rld_rst modules. The Init_done
signal indicates the completion of initialization and calibration of the design.

Figure 6-5: Top-Level Block Diagram of the RLDRAM II Design with a DCM but without a Testbench

top_0
Memory
Device

UG086_c6_05_031207

System
Clocks

and Reset
Infrastructure

_top

CLK200_IN
CLK_200_n

rstHard_180

idelay_ctrl_rdy

calibration_done

CLK_200_p

rstHard_270

rstConfig

CLK200_p

CLK200_n

sysClk_p

sysClk_n

sysReset_n

rst_init

RLD2_WE_N

RLD2_REF_N

RLD2_CS_N

RLD2_BA

RLD2_A

RLD2_CK

RLD2_CK_N

RLD2_DK

RLD2_DM

clk90

clkGlob

rstHard_CLK200

rstHard

RLD2_DK_N

User
Application

RLD2_QVLD

RLD2_DQ

RLD2_QK

RLD2_QK_N

Init_done
rlWdFull
rlafFull
rlafEmpty
rlRdfEmpty
rlWdfEmpty
apConfRd
BurstLength
rldReadData
clkGlob_tb
rstHard_tb
Init_Done_tb
apAddr
apValid
apWriteDValid
apConfA
apConfWrD
apConfRd
apConfWr
apRdRdEn
apWriteData
apWriteDM
issueMRS_tb

http://www.xilinx.com

222 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 6: Implementing RLDRAM II Controllers
R

Figure 6-6 shows a block diagram representation of the top-level RLDRAM II module
without a DCM or a testbench. Design inputs are the user clocks and the user reset.
sysReset_n is the system reset signal. All design resets are generated using the
DCM_LOCKED signal, the sysReset_n signal, and the idelay_ctrl_rdy signal of the
IDELAYCTRL. The design uses the user input clocks, which should be single-ended. The
user application must have a DCM primitive instantiated in the design, and all user clocks
should be driven through BUFGs. User must drive the user application signals. The design
provides the clkGlob_tb and rstHard_tb signals to the user to synchronize the user
application signals with the design. The Init_done signal indicates the completion of
initialization and calibration of the design.

Figure 6-6: Top-Level Block Diagram of the RLDRAM II Design without a DCM or a Testbench

top_0
Memory
Device

UG086_c6_06_090707

System
Reset

and User
DCM

Clocks

Infrastructure
_top

rstHard_180

idelay_ctrl_rdy

calibration_done

rstHard_270

rstConfig

CLK_200

CLKGLOB

CLK90

sysReset_n

DCM_LOCKED
rst_init

RLD2_WE_N

RLD2_REF_N

RLD2_CS_N

RLD2_BA

RLD2_A

RLD2_CK

RLD2_CK_N

RLD2_DK

RLD2_DM

rstHard_CLK200

rstHard

RLD2_DK_N

Init_done

RLD2_QVLD

RLD2_DQ

RLD2_QK

RLD2_QK_N
User

Application

rlWdFull
rlafFull
rlafEmpty
rlRdfEmpty
rlWdfEmpty
apConfRd
BurstLength
rldReadData
clkGlob_tb
rstHard_tb
Init_Done_tb
apAddr
apValid
apWriteDValid
apConfA
apConfWrD
apConfRd
apConfWr
apRdRdEn
apWriteData
apWriteDM
issueMRS_tb

http://www.xilinx.com

MIG User Guide www.xilinx.com 223
UG086 (v2.2) March 3, 2008

Architecture
R

The RLDRAM II memory controller processes the user commands to generate the
RLDRAM II interface signals. The RLDRAM II memory controller has a built-in
synthesizable testbench to generate all the RLDRAM commands. The built-in testbench
enables simulation and validation of the design in hardware. To interface with the user
application, the RLDRAM II memory controller must be separated from the built-in
testbench. MIG generates designs with and without a testbench. The following parameters
are selectable through the GUI: the type of the RLDRAM (SIO or CIO), the data width, the
burst length, multiplexed or non-multiplexed address, memory component, and other
configuration values.

The design can use any selected banks of the Virtex-4 FPGAs. It can use different banks or
the same banks for data, address, and control signals.

The HSTL_II_18 I/O standard is used for address, control, and data signals, and the
DIFF_HSTL_II_DCI_18 I/O standard is used for clock signals.

Similar to other DRAM architectures, the RLDRAM II requires its entire content to be
refreshed periodically. The AREF command initiates a refresh for the device and must be
used each time a refresh is required. The RLDRAM II memory controller has an option to
enable the execution of auto-refresh commands periodically. If this option is OFF, the user
has to provide the auto-refresh commands at regular intervals.

Implemented Features
This section provides details on the supported features of the RLDRAM II controller.

Address Multiplexing

The RLDRAM II memory controller supports multiplexed and non-multiplexed address
modes. Bit A5 of the Mode Register determines whether the address mode is multiplexed
(A5 = 1) or non-multiplexed (A5 = 0). In multiplexed address mode, the address is
provided to the RLDRAM II memory in two cycles, which are latched into the memory on
two consecutive rising clock edges. The advantage of this approach is a maximum of 11
address bits are required to control the RLDRAM II memory.

In multiplexed address mode, the controller outputs an 11-bit address. The user has to
properly connect the addresses to the RLDRAM II devices. Table 6-3 provides the address
mapping between the controller and the RLDRAM II devices for the multiplexed address
mode.

CIO/SIO

The RLDRAM II memory controller supports both CIO and SIO memory components. The
GUI provides an option to select the required memory components. The separate
RLDRAM I/O interface transfers two 18-bit or 9-bit data words per clock cycle at the I/O
balls. The read port has dedicated data outputs to support read operations, while the write
port has dedicated input balls to support write operations. Output data is referenced to the

Table 6-3: Address Mapping in Multiplexed Address Mode

Address Address Mapping

Output
Address A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

RLDRAM II
Address A0 A3 A4 A5 A8 A9 A10 A13 A14 A17 A18

http://www.xilinx.com

224 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 6: Implementing RLDRAM II Controllers
R

free-running output data clock. This architecture eliminates the need for high-speed bus
turnarounds.

Data Capture Using the Direct Clocking Technique

The read data from the RLDRAM II is captured using the Direct clocking technique. In this
technique, data is delayed and center-aligned with respect to the internal FPGA clock. In
this scheme, the internal FPGA clock captures the read data. The clock/strobe transmitted
from the memory determines the delay value for the associated data bits. As a result, there
are no restrictions on the number of data bits associated with a strobe. Because the strobe
does not need to be distributed to the associated data bits, no additional clocking resources
are required. Refer to XAPP701 [Ref 17] for details on this technique.

Calibration is done in two stages:

1. In the first stage of calibration, QK is center-aligned with respect to the FPGA clock.
QK is a free-running clock from RLDRAM II. The DQ data is edge-aligned with the QK
read strobe, and the QVLD read data valid signal is edge-aligned with the QK read
strobe. The first and second edges of the QK strobe are detected using the FPGA clock
to determine the center of the QK window.

Once the QK window is center-aligned with the FPGA clock, the same amount of delay
(tap counts) is applied to the DQ through the IDELAY element, so that the DQ window
is center-aligned with the FPGA clock. Signal qk_tap_sel_done in the tap_logic
module indicates the status of the first stage calibration. When qk_tap_sel_done is
asserted High, it indicates the completion of first stage calibration. After the first stage
calibration is complete, the second stage calibration starts.

2. In the second stage of calibration, the write-enable signal for the read data FIFO is
determined in order to store the read data from memory into the Read Data FIFO.
QVLD from RLDRAM II is delayed such that it exactly aligns with the delayed DQ
window. This delayed QVLD signal is used as the write-enable signal for the Read
Data FIFO.

The sel_done port in the data_path module indicates the status of the second stage
calibration. When sel_done is asserted High, it indicates the completion of second
stage calibration, which implies the completion of the whole initialization and
calibration process. After the initialization and calibration is done (i.e., the init_done
signal in design_top is asserted High), the controller can start issuing user commands
to the memory.

When calibration is complete, the calibration_done signal is asserted High.

Memory Initialization

The RLDRAM II device must be powered up and initialized in a predefined manner. The
controller handles the initialization sequence as described in this section.

After all power supply and reference voltages are stable and the master clock (RLD_CK
and RLD_CK_N) is stable, the RLDRAM II device requires a 200 μs (minimum) delay prior
to applying an executable command. After the 200 μs (minimum) delay has passed, three
MODE REGISTER SET (MRS) commands are issued. For non-multiplexed addressing, two
dummy commands and one valid MRS command are issued. For multiplexed addressing,
four MODE REGISTER SET (MRS) commands are issued, consisting of two dummy
commands and two valid MRS commands.

Six clock cycles (tMRSC) after the valid MRS commands, eight AUTO REFRESH commands
are issued, one on each bank, separated by 2048 cycles.

http://www.xilinx.com

MIG User Guide www.xilinx.com 225
UG086 (v2.2) March 3, 2008

Architecture
R

Initialization is complete after tRC. The number of clock cycles (tRC) after auto refresh
depends on the Mode Register configuration parameter. The RLDRAM II memory
controller takes care of the tRC value for different configurations. The device is ready for
normal operation as indicated by the init_done outputs to the application.

Block Diagram Description
Figure 6-7 shows a detailed block diagram of the RLDRAM II memory controller. The
major blocks of the controller are described following the figure.

User Interface

The user interface of the RLDRAM II memory controller is a FIFO-based implementation.
Three FIFOs are used: an Address FIFO, a Write Data FIFO, and a Read Data FIFO. The
user interface also provides a configuration register and additional control signals.

Address FIFO

This FIFO serves as the buffer for the user interface to store addresses corresponding to the
read and write data as well as the user-controlled refreshes. All reads, writes, and user
refreshes are scheduled in this FIFO. This synchronous FIFO is 26 bits wide and 16 words
deep. Table 6-4 defines the configuration of the 26 bits.

Figure 6-7: Detailed Block Diagram of the RLDRAM II Memory Controller

User
Application

(Synthesizable
Test bench)

Address,
Data,
and

Control RLDRAM II
SIO/CIO
Memory
Device

UG086_c6_09_012507

RLDRAM II
Control and
Data Signals

(Physical Layer)

Address
FIFO

Control
Logic

Write
Data
FIFO

Read
Data
FIFO

Configuration
Registers

Reset
Generator

Clock
Generator

Address,
Data,
and

Control

Table 6-4: Address FIFO Bit Configuration

Bit Configuration Description

25 User Refresh

24 Read/Write

[23:3] Memory Address bits A[20:0]

[2:0] Memory Bank Address bits BA[2:0]

http://www.xilinx.com

226 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 6: Implementing RLDRAM II Controllers
R

Write Data FIFO

The Write Data FIFO serves as a buffer for the user interface to store data to be written into
memory. This synchronous FIFO is two times the memory data width plus the data mask
(DM) width and is 15 words deep. For a burst length of two, each location in the Write Data
FIFO comprises the required data. For a burst length of four, two locations in the Write
Data FIFO comprise the required data. For a burst length of eight, four locations in the
Write Data FIFO comprise the required data.

Table 6-5 defines the FIFO configuration for 36-bit data width using x36 memory
components.

Read Data FIFO

The Read Data FIFO serves as a buffer for the RLDRAM II memory controller to store data
it has read from the memory. This synchronous FIFO is two times the width of the memory
data width and 16 words deep. For x18 memory components, an 18-bit wide Base FIFO is
used, and for x36 memory components, a 36-bit wide Base FIFO is used. Multiple Base
FIFO instances are used to match the two times memory data width. For x18 components
with a 36-bit data width, the Base Read FIFO width is 18 bits. Four Read FIFO instances are
used to get two times the memory data width. For a burst length of two, each location in
the Read Data FIFO constitutes the data read from the memory. For a burst length of four,
two locations in the Read Data FIFO constitute the data read from the memory. For a burst
length of eight, four locations in the Read Data FIFO constitute the data read from the
memory.

Table 6-6 defines the configuration of the Read Data FIFO for the selected memory data
width of 36 bits.

Configuration Registers

This block provides an interface for the application to read from and write to the
Configuration Registers. Table 6-7 shows the internal configuration register read and write
details from the user interface. A 4-bit address from the user interface selects the internal
controller register that is to be read or written. Eight bits can be read or written at a time to
the selected register.

Table 6-5: Write Data FIFO Bit Configuration for 36-bit Data Width

Bit Configuration Description

[73:72] Write Data Mask

[71:0] Write Data

Table 6-6: Read Data FIFO Bit Configuration for a 36-bit Data Width

 Bit Configuration Description

[71:0] Read Data

http://www.xilinx.com

MIG User Guide www.xilinx.com 227
UG086 (v2.2) March 3, 2008

Architecture
R

Auto refresh is ON by default, making the RLDRAM II memory controller send AREF
commands to the memories at the required intervals. The user can turn auto refresh OFF
via the confCycRef bit (an internal configuration bit that the user can update and read
through the configuration read/write access port). In this case, the user is responsible for
issuing USER REFRESH commands at required intervals.

The burst length can be changed from the GUI through the Mode Register settings or
programmed from the user interface.

Clock Generator

This block generates all the required clocks for the RLDRAM II memory controller by
using a DCM. The two clock phases output are 0 degrees and 90 degrees. The 200 MHz
reference clock buffer is included in this module. This clock goes to all IDELAYCTRL
primitives.

Reset Generator

This block generates different reset signals. It also performs the initialization and
configuration (MRS) of the RLDRAM II memories.

Control Logic

The logic in this block controls NOP, READ, WRITE, and USER REFRESH operations with
the memories. The RLDRAM II memory controller is triggered with data in the Address
FIFO. Bit 24 of the Address FIFO discriminates between read and write commands. Bit 25
is the USER REFRESH command. If the auto refresh bit is ON, the controller generates the
AUTO REFRESH command periodically. The controller issues a read or a write grant only
when there is no user refresh request command or no pending internal refresh request. If
there is a pending refresh request, the RLDRAM II memory controller issues the read or the
write grant after the refresh is done.

Table 6-7: Configuration Read/Write Details from the User Interface

ApConfA[3:0]
(Address)

Register
Selected

ApConfWr ApConfRd Description

0000 confMReg[7:0] High Low ApConfWrD[7:0] from the user interface is
loaded into confMReg[7:0].

0000 confMReg[7:0] Low High confMReg[7:0] data is read into bits
ApConfRdD[7:0].

0011 confRcCnt0[6:0] High Low ApConfWrD[6:0] from the user interface is
loaded into register confRcCnt0[6:0].

0011 confRcCnt0[6:0] Low High confRcCnt0[6:0] data is read into bits
ApConfRdD[6:0]

1010 confMReg[9:8] High Low ApConfWrD[1:0] from the user interface is
loaded into confMReg[9:8].

1011 confCycRef High Low apConfWrD[0] from the user interface is
loaded into register confCycRef.

http://www.xilinx.com

228 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 6: Implementing RLDRAM II Controllers
R

RLDRAM II Control Signal Physical Layer

This block has the pads that interface with the RLDRAM II data signals. A calibration
circuit samples the QK/QK signals using the Virtex-4 ChipSync™ feature. The FPGA clock
samples both the data and clock (for calibration) and the data itself to capture it in the same
clock domain. Refer to XAPP701 [Ref 17] for more details.

RLDRAM II Interface Signals
Table 6-8 and Table 6-9 define the RLDRAM II system interface signals with and without a
DCM, respectively.

Table 6-8: RLDRAM II System Interface Signals (with a DCM)

Signal Name Direction Description

sysClk_p, sysClk_n Input System clock input made up of differential clock pairs. This clock pair goes
to a differential input buffer. The differential buffer output goes to the
DCM input. The DCM generates the required clocks for the design.

When the Without DCM option is selected, this clock pair is not present.

CLK200_p, CLK200_n Input Differential clock used in the idelay_ctrl logic.

sysReset_n Input Active-Low reset to the RLDRAM II controller.

PASS_FAIL[2:0] Output This signal bus indicates the status the comparison between the read data
compared with the corresponding write data.

001: INITIALIZATION STATE
010: PASS
100: FAIL

Init_done Output This signal is asserted when the design initialization and calibration is
complete.

Table 6-9: RLDRAM II System Interface Signals (without a DCM)

Signal Name Direction Description

CLKGLOB Input Input clock

CLK90 Input Input clock with a 90° phase difference

CLK_200 Input 200 MHz clock for Idelayctrl primitives

DCM_LOCKED Input This active-High signal indicates whether the user DCM is locked or not

sysReset_n Input Active-Low reset to the RLDRAM II controller

PASS_FAIL[2:0] Output This signal bus indicates the status the comparison between the read data
compared with the corresponding write data.

001: INITIALIZATION STATE
010: PASS
100: FAIL

Init_done Output This signal is asserted when the design initialization and calibration is
complete

http://www.xilinx.com

MIG User Guide www.xilinx.com 229
UG086 (v2.2) March 3, 2008

RLDRAM II Interface Signals
R

Table 6-10 describes the RLDRAM II user interface signals.

Table 6-10: RLDRAM II User Interface Signals (without a Testbench)

Signal Name Direction Description

rlWdfFull Output Almost full status signal for the Write Data FIFO. When this signal is asserted,
the user can write three more data words into the FIFO.

rlafFull Output Almost full status signal for the Address FIFO. When this signal is asserted, the
user can write two more data words into the FIFO.

rlafEmpty Output Empty status signal for the Address FIFO

rlRdfEmpty Output Empty status signal for the Read Data FIFO

rlWdfEmpty Output Empty status signal for the Write Data FIFO

apAddr[25:0] Input Address FIFO data input. This bus consists of the user-defined bank address, the
address, the WRITE/READ command, and the user-defined REFRESH
command.

apValid Input Address FIFO write-enable signal

apWriteDValid Input Write Data FIFO write-enable signal

apConfA[3:0] Input Address bus for the Configuration registers

apConfWrD[7:0] Input Write data for the Configuration registers

apConfRd Input Read enable for the Configuration registers

apConfRdD[7:0] Output Read data for the Configuration registers

apConfWr Input Write data valid for the Configuration registers

apRdfRdEn Input Read enable for the Read Data FIFO

BurstLength[1:0] Output Indicates the number of bursts that can be written to or read from the memory:

00: Burst length = 2
01: Burst length = 4
10: Burst length = 8

rldReadData[(2*n)-1:0] Output Read data from the memory, where n is the data width of the design. This read
data is stored in the Read Data FIFOs and can be read from the FIFOs depending
upon the status of the FIFOs.

apWriteData[(2*n)-1:0] Input Write data to be written into the memory, where n is the data width of the design.
This data is stored in the Write Data FIFO and is written into the memory
depending upon the controller status (write command).

apWriteDM[m-1:0] Input Data mask of the write data, where m is the number of data mask bits associated
with the write data width.

clkGlob_tb Output clkGlob clock input. All the corresponding signals must be synchronized with
clkGlob_tb.

rstHard_tb Output Active-Low system reset for the user interface, synchronous with clkGlob_tb.

Init_Done_tb Output When asserted, this signal indicates that memory initialization is complete.

issueMRS_tb Input A pulse on this input makes the controller program the Mode Register into the
memory. This signal is synchronous with clkGlob. (At power-up, MRS is done as
part of the initialization.)

Notes:
1. All user interface signal names are prepended with a controller number, for example, cntrl0_apWriteData. RLDRAM II devices

currently support only one controller.

http://www.xilinx.com

230 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 6: Implementing RLDRAM II Controllers
R

Table 6-11 describes the RLDRAM II memory interface signals.

User Command Interface
The current implementation supports commands that come in successive clocks with one
extra clock latency.

User Interface Accesses
The user backend logic communicates with the memory controller through a FIFO-based
user interface. This interface consists of three related buses:

• A Command/Address FIFO bus accepts write/read commands as well as the
corresponding memory address from the user

• A Write Data FIFO bus accepts the corresponding write data when the user issues a
write command on the command/address bus

• A Read bus on which the corresponding read data for an issued read command is
returned

The user interface has the following timing and signaling restrictions:

• Commands and write data cannot be written by the user until calibration is complete
(as indicated by init_done). In addition, the apvalid and app_wdf_wren interface
signals need to be held Low until calibration is complete.

Table 6-11: RLDRAM II Memory Interface Signals

Signal Name Direction Description

RLD2_DQ (CIO) Input/
Output

Data input/outputs. During READ commands, the data is captured using
the FPGA clock. During WRITE commands, the data is sampled on both
edges of DK.

RLD2_D (SIO) Output Write data

RLD2_Q (SIO) Input Read data

RLD2_A Output Row and column addresses for READ and WRITE operations. During a
MODE REGISTER SET command, the address inputs define the register
settings.

RLD2_BA Output These bank addresses select the internal bank to which to apply
commands.

RLD2_WE_N Output Write-enable command

RLD2_REF_N Output REFRESH command

RLD2_CS_N Output Chip-select command

RLD2_DM Output Data mask signals for the write data

RLD2_QVLD Input Data valid signals transmitted by the RLDRAM II devices. They indicate
valid read data.

RLD2_QK, RLD2_QK_N Input Differential read data clocks. These clocks are transmitted by the RLDRAM
II devices and are edge-aligned with the read data.

RLD2_DK, RLD2_DK_N Output Differential write data clocks.

RLD2_CK, RLD2_CK_N Output Master differential clocks for addresses and commands.

http://www.xilinx.com

MIG User Guide www.xilinx.com 231
UG086 (v2.2) March 3, 2008

User Command Interface
R

• When issuing a write command, the first write data word must be written to the Write
Data FIFO either prior to or on the same clock cycle as the write command is issued.
In addition, the write data must be written by the user over consecutive clock cycles;
there cannot be a break between words. These restrictions arise from the fact that the
controller assumes write data is available when it receives the write command from
the user.

Write Interface
Figure 6-8 shows the user interface block diagram for write operations.

The following steps describe the architecture of the Address and Write Data FIFOs and
show how to perform a write burst operation to RLDRAM II from the user interface.

1. The user interface consists of an Address FIFO and a Write Data FIFO. These FIFOs are
constructed using the CORE Generator™ FIFO generator module. Address FIFO is a
distributed RAM with 16 x 26 configuration. Data FIFO is a block RAM, with a depth
of 16 locations and width equal to two times the Data width and Data Mask width
together.

2. The Common Address FIFO is used for both write and read commands, and comprises
a command part and an address part. Command bits discriminate between write and
read commands.

3. User interface data width apwritedata is twice that of the memory data width. For
every memory component there is a mask bit. For 9-bit memory width, the user
interface is 20 bits consisting of rising-edge data, falling-edge data, rising-edge mask
bit, and falling-edge mask bit.

4. For a 9-bit memory component with 72-bit data, the user interface data width
apwritedata is 144 bits, and the mask data apwritedm is 8 bits.

5. The user can initiate a write to memory by writing to the Address FIFO and the Write
Data FIFO when the FIFO Full flags are deasserted and after the init_done signal is

Figure 6-8: User Interface Block Diagram for Write Operations

User Interface

Controller Address FIFO
(Distributed RAM)

16 x 26

ctlafrden

afa

rlafempty

ctlwdfrden

apaddr

apvalid

apwritedata

apwritedm

apwritevalid

wdfd

wdfd
To Phy Layer

rlafempty

rlaffull

Write Data FIFO
(Block RAM)

16 x (2 * [Data Width +
Data Mask Width])

rlwdfempty

rlwdffull

ug086_c6_13_120407

http://www.xilinx.com

232 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 6: Implementing RLDRAM II Controllers
R

asserted. Status signal rlaffull is asserted when Address FIFO is full, and similarly
rlwdffull is asserted when Write Data FIFO is full.

6. Both the Address FIFO and Write Data FIFO Full flags are deasserted with power-on.

7. The user should assert the Address FIFO write-enable signal apvalid along with
address apaddr to store the write address and write command into the Address FIFO.

8. The user should assert the Data FIFO write-enable signal apwritedvalid along with
write data apwritedata and mask data apwritedm to store the write data and mask
data into the Write Data FIFO. The user should provide both rise and fall data together
for each write to the Data FIFO.

9. The controller reads the Address FIFO by issuing the ctlafrden signal. The controller
reads the Write Data FIFO by issuing the ctlwdfrden signal after the Address FIFO is
read. It decodes the command part after the Address FIFO is read.

10. The write command timing diagram in Figure 6-9 is derived from the MIG-generated
test bench. As shown (burst length of 4), each write to the Address FIFO must be
coupled with two writes to the Data FIFO. Similarly, for a burst length of 8, every write
to the Address FIFO must be coupled with four writes to the Data FIFO. Failure to
follow this rule can cause unpredictable behavior.

Note: The user can start filling the Write Data FIFO two clocks after the Address FIFO is
written, because there is a two-clock latency between the command fetch and reading the Data
FIFO. Using the terms shown in Figure 6-9, therefore, the user can assert the A0 address two
clocks before D0D1.

11. The write command timing diagram in Figure 6-10, page 233 is derived from the MIG-
generated test bench. As shown (burst length of 8), each write to the Address FIFO
must be coupled with four writes to the Data FIFO. Because the controller first reads
the address and command together, the address need not coincide with the last data.
After the command is analyzed (nearly two clocks later for a worst-case timing
scenario), the controller sequentially reads the data in four clocks. Thus, there are six
clocks from the time the address is read to the time the last data is read.

Figure 6-9: RLDRAM II Write Burst Timing Diagram (BL = 4), Four Bursts

CLK

rlafFull

BurstLength

apWriteDValid

apWriteData

rlWdfFull

ApAddr

UG086_c6_10_012807

2’b01 (burst length = 4)

D0D1 D2D3 D4D5 D6D7 D8D9 D10D11 D12D13 D14D15

apWriteDM

apValid

DM0,1 DM2,3 DM4,5 DM6,7 DM8,9 DM10,11 DM12,13 DM14,15

A0 A1 A2 A3

http://www.xilinx.com

MIG User Guide www.xilinx.com 233
UG086 (v2.2) March 3, 2008

User Command Interface
R

Read Interface
Figure 6-11 shows a block diagram of the read interface.

The following steps describe the architecture of the Read Data FIFOs and show how to
perform a burst read operation from RLDRAM II from the user interface.

1. The read user interface consists of an Address FIFO and a Read Data FIFO. The
Address FIFO is common to both read and write operations. The Read Data FIFOs are
constructed using the CORE Generator FIFO generator module. The Read Data FIFO is
a Distributed RAM with depth of 16 locations and width equal to two times the

Figure 6-10: RLDRAM II Write Burst Timing Diagram (BL = 8), Two Bursts

CLK

UG086_c6_11_012807

2’b10 (burst length = 8)

D0D1 D2D3 D4D5 D6D7 D8D9 D10D11 D12D13 D14D15

DM0,1 DM2,3 DM4,5 DM6,7 DM8,9 DM10,11 DM12,13 DM14,15

A0 A1

rlafFull

BurstLength

apWriteDValid

apWriteData

rlWdfFull

ApAddr

apWriteDM

apValid

Figure 6-11: User Interface Block Diagram for Read Operations

User Interface

Controller

 Address FIFO
(Distributed RAM)

16 x 26

ctlafrden

afa

rlafempty

wren_rdfifo

apaddr

apvalid

dprddata_higher

dprddata_lower

aprdfrden

rldreaddata_higher

rldreaddata_lower From Phy Layer

rlafempty

rlaffull

Read Data FIFO
(Distributed RAM)

16 x (2 * Memory Width)

Read Data FIFO
(Distributed RAM)

16 x (2 * Memory Width)
rlrdfempty

rlrdffull

ug086_c6_14_121907

http://www.xilinx.com

234 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 6: Implementing RLDRAM II Controllers
R

memory device width, consisting of rising-edge data and falling-edge data. For
example, for a 9-bit memory component, the Read Data FIFO configuration is 16 x 18.
MIG instantiates a number of Read Data FIFO modules depending on the QK signal
width of the design. For example, for 9-bit memory component and 72-bit data width
designs, MIG instantiates a total of nine Read Data FIFO modules.

2. The user can initiate a read to memory by writing to the Address FIFO when the FIFO
Full flag rlaffull is deasserted and after init_done is asserted.

3. To write the read address and read command into the Address FIFO, the user should
issue the Address FIFO write-enable signal apvalid along with read address apaddr.

4. The controller reads the Address FIFO containing the address and command. After
decoding the command, the controller generates the appropriate control signals to
memory.

5. Prior to the actual read and write commands, the design calibrates the latency (number
of clock cycles) from the time the read command is issued to the time data is received.
Using this pre-calibrated delay information, the controller generates the write-enable
signals to the Read Data FIFOs.

6. The rlrdfempty signal is deasserted when data is available in the Read Data FIFOs.

7. The user can read the read data from the Read Data FIFOs by asserting aprdfrden to
High.

8. Figure 6-12 shows the user interface timing diagram for a burst length of 8. The read
latency is calculated from the point when the read command is given by the user to the
point when the rlrdfempty signal is deasserted. The minimum latency in this case is
21 clocks. Where no auto-refresh request is pending, the user commands are issued
after initialization is completed, and the first command issued is a Read command.
The controller executes the commands only after initialization is done, as indicated by
the init_done signal.

9. After the address and command are loaded into the Address FIFO, it takes 21 clock
cycles minimum for the controller to deassert the rlrdfempty signal.

10. Read data is available only when the rlrdfempty signal is deasserted. The user can
access the read data by asserting the aprdfrden signal, a read enable signal to the Read
Data FIFOs, to High.

Note: The RLDRAM controller does not check the status of the Read Data FIFO, and can issue
read commands even when the Read Data FIFO is full. The user must make this determination and
ensure that read commands are not issued by the controller when the Read Data FIFO is full.

Figure 6-12: RLDRAM II Read Burst Timing Diagram (BL = 8), Two Bursts

UG086_c6_12_012807

CLK

rlRdfEmpty

rlafEmpty

apValid

apAddr

apRdfRdEn

A0 A1

rldRead_Data D0,D1 D2,D3 D4,D5 D6,D7 D8,D9 D10,D11 D12,D13 D14,D15

http://www.xilinx.com

MIG User Guide www.xilinx.com 235
UG086 (v2.2) March 3, 2008

User Command Interface
R

In general, read latency varies based on the following parameters:

• Configuration

• The number of commands already in the FIFO pipeline before the read command is
issued

• Whether commands are interrupted when the periodic AUTO REFRESH command is
issued

• Whether the user issues the commands before initialization is complete (if so, the
latency cannot be determined)

• Board-level and chip-level propagation delays for both memory and FPGA

Refresh Commands
The confCycRef bit controls the auto refresh functionality. The user can update or read this
bit through the configuration read/write access port. If the confCycRef bit is set to one,
auto refresh is ON, making the controller send AREF commands to the memories at the
required intervals. To turn auto refresh OFF, the user clears the confCycRef bit. In this case,
the user is responsible for issuing refresh commands.

MIG shows the check boxes listed in Table 6-13 when a bank is selected for an RLDRAM II
design.

Table 6-12: Read Command Latency

Parameter
Number of

Clocks
Description

User command to deassertion
of the Address FIFO empty flag 1

When the read command is given to an
empty FIFO, it takes one clock time to
deassert the empty flag

Controller command reading
and decoding time 3

The FIFO outputs the data one clock after
the read command. Two clocks for
decoding the command.

Command from the controller
to the controller IOB’s output 3 Three-stage pipeline

RLDRAM II command to read
data latency (max) 8 RLDRAM II worst-case latency

Read data from the IOB to
dq_iob 2 Two-stage pipeline from IOB to dq_iob

dq_iob output to Read Data
FIFO input 2 Two-stage pipeline

Read Data FIFO input to Read
Data FIFO output 2 One clock for deassertion of empty signal,

and one clock for outputting the data

Total Latency 21 Total of all latencies

http://www.xilinx.com

236 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 6: Implementing RLDRAM II Controllers
R

When the Address box is checked in a particular bank, the bank address, the address, the
WE_N, the REF_N, and the CS_N bits are assigned to that particular bank.

When the Data box is checked in a particular bank for a CIO design, the memory data, the
memory data mask, the memory data valid (QVLD), the memory read clock, the memory
write clock, the memory address, and the command clock bits are assigned to that
particular bank.

When the Data_Write box is checked in a particular bank for an SIO design, the memory
data write, the memory data mask, and the memory write clock bits are assigned to that
particular bank.

When the Data_Read box is checked in a particular bank for an SIO design, the memory
data read, the memory data valid (QVLD), the memory read clock, the memory address,
and the command clock bits are assigned to that particular bank.

When the System Control box is checked in a particular bank, the sysReset_n, the
PASS_FAIL, and the Init_done bits are assigned to that particular bank.

When the System_Clock box is checked in a particular bank, the sysClk_p, sysClk_n,
CLK200_p, and CLK200_n bits are assigned to that particular bank.

For special cases, such as without a testbench and without a DCM, the corresponding
input and output ports are not assigned to any FPGA pins in the design UCF because the
user can connect these ports to the FPGA pins or can connect to some logic internal to the
same FPGA.

Simulating the RLDRAM II Design
After generating the design, MIG creates a sim folder in the specified path. This folder
contains simulation files for a particular design. The sim folder contains the external
testbench, memory model, .do file, and the executable file to simulate the generated
design. The memory model files are currently generated in Verilog only. To learn more
details about the files in the sim folder and to simulate the design, see
simulation_help.chm in the sim folder.

Table 6-13: RLDRAM II Signal Allocation

Bank Selected by
Check Box

Signals Allocated in the Group

Address Memory address and memory control

Data (CIO) Memory data, memory data mask, and memory clocks

Data_Write (SIO) Memory write data, memory data mask, and memory write clocks

Data_Read (SIO) Memory read data, memory QVLD, and memory read clocks

System Control System reset from the user interface and status signals

System_Clock System clocks from the user interface

http://www.xilinx.com

MIG User Guide www.xilinx.com 237
UG086 (v2.2) March 3, 2008

Hardware Tested Configurations
R

Hardware Tested Configurations
The frequencies shown in Table 6-14 were achieved on the Virtex-4 FPGA ML461 Memory
Interfaces Development Board under nominal conditions. This frequency should not be
used to determine the maximum design frequency. The maximum design frequency
supported in the MIG wizard is based on a combination of the TRCE results for fabric
timing on multiple device/package combinations and I/O timing analysis using FPGA
and memory timing parameters for a 72-bit wide interface.

Table 6-14: Hardware Tested Configurations

FPGA Device XC4VLX25-FF668-11

Memory Component MT49H16M18XX-25

Data Bus Options CIO

Data Width 36

Configuration 1, 2, 3

Burst Length 2, 4, 8

Addressing Mode Multiplexing and Non-Multiplexing Addressing mode

Frequency 120 MHz to 330 MHz

Flow Vendors Synplicity and XST

Design Entry VHDL and Verilog

http://www.xilinx.com

238 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 6: Implementing RLDRAM II Controllers
R

http://www.xilinx.com

MIG User Guide www.xilinx.com 239
UG086 (v2.2) March 3, 2008

R

Section III: Spartan-3/3E/3A/3AN/3A DSP FPGA
to Memory Interfaces

Chapter 7, “Implementing DDR SDRAM Controllers”

Chapter 8, “Implementing DDR2 SDRAM Controllers”

http://www.xilinx.com

240 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Spartan-3/3E/3A/3AN/3A DSP FPGA to Memory Interfaces
R

http://www.xilinx.com

MIG User Guide www.xilinx.com 241
UG086 (v2.2) March 3, 2008

R

Chapter 7

Implementing DDR SDRAM Controllers

This chapter describes how to implement DDR SDRAM interfaces for Spartan™-3,
Spartan-3E, Spartan-3A, Spartan-3AN, and Spartan-3A DSP FPGAs. The designs are based
on XAPP768c [Ref 23].

Feature Summary
The DDR SDRAM controller design supports the following:

• Burst lengths of two, four, and eight

• CAS latencies of 2, 2.5, and 3

• Sequential and interleaved burst types

• Auto refresh

• Spartan-3 FPGA maximum frequency:

♦ 133 MHz with a -4 speed grade device

♦ 166 MHz with a -5 speed grade device

• Spartan-3E FPGA maximum frequency:

♦ 133 MHz with a -4 speed grade device

♦ 166 MHz with a -5 speed grade device

• Spartan-3A, Spartan-3AN, and Spartan-3A DSP FPGA maximum frequency:

♦ 133 MHz with a -4 speed grade device

♦ 166 MHz with a -5 speed grade device

• Components, unbuffered DIMMs, registered DIMMs, and SODIMMs

• With and without a testbench

• With or without a DCM

• All Spartan-3, Spartan-3E, Spartan-3A, Spartan-3AN, and Spartan-3A DSP FPGAs

• Verilog and VHDL

• XST and Synplicity synthesis tools

http://www.xilinx.com

242 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 7: Implementing DDR SDRAM Controllers
R

Design Frequency Ranges

Controller Architecture

DDR SDRAM Interface
High-speed memory interfaces are source-synchronous and double data rate. They
transfer data on both edges of the clock cycle. A memory interface can be modularly
represented as shown in Figure 7-1. Creating a modular interface has many advantages. It
allows designs to be ported easily, and it also makes sharing parts of the design across
different types of memory interfaces possible.

Table 7-1: Design Frequency Range in MHz

FPGA Family Memory

FPGA Speed Grade

-4 -5

Min Max Min Max

Spartan-3
Component 77 133 77 166(1)

DIMM 77 133 77 133

Spartan-3A/3AN/3A DSP
Component 77 133 77 166

DIMM 77 133 77 166

Spartan-3E
Component 77 133 77 166

DIMM (Not supported)

Notes:
1. Spartan-3 devices support 133 MHz for data widths greater than 32 bits.

Figure 7-1: Modular Memory Interface Representation

ug086_c7_01_012907

Application Interface Layer

Control Layer

Physical Layer

Xilinx FPGA

Memories

http://www.xilinx.com

MIG User Guide www.xilinx.com 243
UG086 (v2.2) March 3, 2008

Controller Architecture
R

Hierarchy
Figure 7-2 shows the hierarchical structure of the DDR SDRAM design generated by MIG
with a testbench and a DCM. In the figure, the physical and control layers are clearly
separated. MIG generates the entire controller, as shown in this hierarchy, including the
testbench. The user can replace the testbench with a design that makes use of the DDR
SDRAM interface.

The modules are classified as follows:

• Design modules

• Testbench modules

• Clocks, reset generation, and calibration modules

There is a parameter file generated with the design that has all the user input and design
parameters selected from MIG.

MIG can generate four different DDR SDRAM designs:

• With a testbench and a DCM

• Without a testbench and with a DCM

• With a testbench and without a DCM

• Without a testbench and without a DCM

Figure 7-2: Hierarchical Structure of the DDR SDRAM Design with a Testbench

<top_
module>

main*
infrastructure_

top*

controller* infrastructure iobs*

data_
read*

data_
read_

controller*

data_
write*

data_
path*

controller_
iobs*

dqs_
delay

Design Modules

fifo_0_
wr_en

wr_gray_
cntr

fifo_1_
wr_en

addr_
gen* cmd_fsm data_

gen*
cmp_
data*

rd_gray_
cntr ram8d*

infrastructure
_iobs*

data_
path_
iobs*

s3_dq_
iob

s3_dm_
iob

s3_dqs_
iob

UG086_c7_02_010108

clk_dcm cal_toptest_
bench*

top*

tap_dly cal_ctl

Test Bench Modules

Clocks, Reset Generation, and Calibration Modules

Note: A block with a * has a parameter file included.

http://www.xilinx.com

244 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 7: Implementing DDR SDRAM Controllers
R

For designs generated without a testbench, the testbench modules in Figure 7-2 are not
present in the design. In this case, the user interface signals appear in the <top_module>
module. The list of user interface signals is in Table 7-4.

The infrastructure_top module has the clock and the reset generation module of the
design. It instantiates a DCM in the module when selected by MIG. The differential design
clock is an input to this module. A user reset is also input to this module. Using the input
clocks and reset signals, system clocks and system reset are generated in this module
which is used in the design. Infrastructure_top also consists of calibration logic.

The DCM primitive is not instantiated in the infrastructure_top module if the Use DCM
option is unchecked. Therefore, the system operates on the user-provided clocks. The
system reset is generated in the infrastructure module using the DCM_LOCK input signal.

Figure 7-3 shows a block diagram representation of the top-level module of a DDR
SDRAM design with a DCM and a testbench. SYS_CLK and SYS_CLKb are differential
input system clocks. The DCM clock is instantiated in the infrastructure module that
generates the required design clocks. reset_in_n is the active-Low system reset signal. All
design resets are gated by the dcm_lock signal.

The cntrl0_led_error_output1 output signal indicates whether the test passes or fails.
When set, this signal indicates that the test has failed. The testbench module does writes
and reads, and also compares the read data with the written data. The
cntrl0_data_valid_out signal indicates whether the read data is valid or not.

Figure 7-3: MIG Output of the DDR SDRAM Controller Design with a DCM and a Testbench

main_0 Memory
Device

UG086_c7_03_090707

System
Clocks

and Reset

Status
Signals

infrastructure_top
clk90_0

clk_0

SYS_CLK

SYS_CLKb

reset_in_n

cntrl0_DDR_RAS_N

cntrl0_DDR_CAS_N

cntrl0_DDR_WE_N

cntrl0_DDR_CS_N

cntrl0_DDR_CKE

cntrl0_DDR_DM

cntrl0_DDR_BA

cntrl0_DDR_A

cntrl0_DDR_CK_N

sys_rst

sys_rst90

sys_rst180

cntrl0_DDR_RESET_N

cntrl0_DDR_CK

cntrl0_led_error_output1

cntrl0_init_done

cntrl0_data_valid_out

cntrl0_DDR_DQ

cntrl0_DDR_DQS

http://www.xilinx.com

MIG User Guide www.xilinx.com 245
UG086 (v2.2) March 3, 2008

Controller Architecture
R

Figure 7-4 shows a block diagram representation of the top-level module for a DDR
SDRAM design with a DCM but without a testbench. SYS_CLK and SYS_CLKb are
differential input system clocks. The DCM clock is instantiated in the infrastructure
module that generates the required design clocks. reset_in_n is the active-Low system reset
signal. All design resets are gated by the dcm_lock signal.

The user interface signals are listed in Figure 7-4. The design provides the clk_tb, clk90_tb,
sys_rst_tb, sys_rst90_tb, and sys_rst180_tb signals to the user in order to synchronize with
the design.

Figure 7-4: MIG Output of the DDR SDRAM Controller Design with a DCM but without a Testbench

top_0
Memory
Device

UG086_c7_04_090707

System
Clocks

and Reset

User
Interface

Signals

infrastructure_top
clk90_0

clk_0

SYS_CLK

SYS_CLKb

reset_in_n

sys_rst

sys_rst90

sys_rst180

cntrl0_burst_done

cntrl0_user_command_register

cntrl0_user_data_mask

cntrl0_user_input_data

cntrl0_user_input_address

cntrl0_init_done

cntrl0_ar_done

cntrl0_auto_ref_req

cntrl0_user_cmd_ack

cntrl0_clk_tb

cntrl0_clk90_tb

cntrl0_sys_rst_tb

cntrl0_sys_rst90_tb

cntrl0_sys_rst180_tb

cntrl0_user_output_data

cntrl0_user_data_valid

cntrl0_DDR_RAS_N

cntrl0_DDR_CAS_N

cntrl0_DDR_WE_N

cntrl0_DDR_CS_N

cntrl0_DDR_CKE

cntrl0_DDR_DM

cntrl0_DDR_BA

cntrl0_DDR_A

cntrl0_DDR_CK_N

cntrl0_DDR_RESET_N

cntrl0_DDR_CK

cntrl0_DDR_DQ

cntrl0_DDR_DQS

http://www.xilinx.com

246 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 7: Implementing DDR SDRAM Controllers
R

Figure 7-5 shows a block diagram representation of the top-level module for a DDR
SDRAM design without a DCM or a testbench. The user should provide all the clocks and
the dcm_lock signal. These clocks should be single-ended. reset_in_n is the active-Low
system reset signal. All design resets are gated by the dcm_lock signal.

The user interface signals are listed in Figure 7-5. The design provides the clk_tb, clk90_tb,
sys_rst_tb, sys_rst90_tb, and sys_rst180_tb signals to the user in order to synchronize with
the design.

Figure 7-5: MIG Output of the DDR SDRAM Controller Design without a DCM or a Testbench

top_0 Memory
Device

UG086_c7_05_090707

System
Reset

and User
DCM

Clocks

User
Interface

Signals

infrastructure_top

clk90_int

dcm_lock

clk_int

reset_in_n

cntrl0_DDR_RAS_N

cntrl0_DDR_CAS_N

cntrl0_DDR_WE_N

cntrl0_DDR_CS_N

cntrl0_DDR_CKE

cntrl0_DDR_DM

cntrl0_DDR_BA

cntrl0_DDR_A

cntrl0_DDR_CK_N

sys_rst

sys_rst90

sys_rst180

cntrl0_burst_done

cntrl0_user_command_register

cntrl0_user_data_mask

cntrl0_user_input_data

cntrl0_user_input_address

cntrl0_DDR_CK

cntrl0_init_done

cntrl0_ar_done

cntrl0_auto_ref_req

cntrl0_user_cmd_ack

cntrl0_clk_tb

cntrl0_clk90_tb

cntrl0_sys_rst_tb

cntrl0_sys_rst90_tb

cntrl0_sys_rst180_tb

cntrl0_user_data_valid

cntrl0_user_output_data

cntrl0_DDR_DQ

cntrl0_DDR_DQS

cntrl0_DDR_RESET_N

http://www.xilinx.com

MIG User Guide www.xilinx.com 247
UG086 (v2.2) March 3, 2008

Controller Architecture
R

Figure 7-6 shows a block diagram representation of the top-level module of a DDR
SDRAM design without a DCM but with a testbench. The user should provide all the
clocks and the dcm_lock signal. These clocks should be single-ended. reset_in_n is the
active-Low system reset signal. All design resets are gated by the dcm_lock signal.

The cntrl0_led_error_output1 output signal indicates whether the test passes or fails. The
testbench module does writes and reads, and also compares the read data with the written
data. The cntrl0_led_error_output1 signal is driven High on data mismatches. The
cntrl0_data_valid_out signal indicates whether the read data is valid or not.

All the memory device interface signals shown in Figure 7-3 through Figure 7-6 might not
necessarily appear for all designs generated from MIG. For example, the
cntrl0_DDR_RESET_N port appears in the port list for Registered DIMM designs only.
Similarly, cntrl0_ddr_dm appears only for parts that have data mask signals. A few
RDIMMs do not have data mask, and cntrl0_DDR_DM does not appear in the port list for
these parts.

Figure 7-6: MIG Output of the DDR SDRAM Controller Design without a DCM but with a Testbench

main_0 Memory
Device

UG086_c7_06_090707

System
Reset

and User
DCM

Clocks

Status
Signals

infrastructure_top

cntrl0_DDR_RAS_N

cntrl0_DDR_CAS_N

cntrl0_DDR_WE_N

cntrl0_DDR_CS_N

cntrl0_DDR_CKE

cntrl0_DDR_DM

cntrl0_DDR_BA

cntrl0_DDR_A

cntrl0_DDR_CK_N

sys_rst

sys_rst90

sys_rst180

cntrl0_DDR_RESET_N

cntrl0_DDR_CKcntrl0_led_error_output1

cntrl0_data_valid_out

cntrl0_init_done

cntrl0_DDR_DQ

cntrl0_DDR_DQS

clk90_int

dcm_lock

clk_int

reset_in_n

http://www.xilinx.com

248 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 7: Implementing DDR SDRAM Controllers
R

Figure 7-7 shows a detailed block diagram of the DDR SDRAM controller. All four blocks
shown are sub-blocks of the ddr1_top module. The functionalities of these blocks are
explained in following sections.

Controller
The controller module accepts and decodes user commands and generates read, write, and
memory initialization commands. The controller also generates signals for other modules.

The memory is initialized and powered up using a defined process. The controller state
machine handles the initialization process upon receiving an initialization command.

Datapath
This module transmits and receives data to and from the memories. Major functions
include storing the read data and transferring write data and write enable to the IOBS
module. The data_read, data_write, data_path_IOBs, and data_read_controller modules
perform the actual read and write functions. For more information, refer to XAPP768c
[Ref 23].

Data Read Controller
This module generates all control signals that are used for data_read.

Data Read
The data_read module contains the read datapaths for the DDR SDRAM interface. Details
for this module are described in XAPP768c [Ref 23].

Data Write
This module contains the write datapath for the DDR SDRAM interface. The write data
and write enable signals are forwarded together to the DDR SDRAM through IOB flip-
flops. The IOBs are implemented in the data_path_iobs module.

Figure 7-7: Memory Controller Block Diagram
UG086_c7_07_090707

user_command_register

Controller

Datapath

Infrastructure_top

IOBs

cntrl0_DDR_CK

cntrl0_DDR_CK_N

cntrl0_DDR_CKE

cntrl0_DDR_DM

cntrl0_DDR_CS_N

cntrl0_DDR_DQS

cntrl0_DDR_CAS_N

cntrl0_DDR_WE_N

cntrl0_DDR_RESET_N

cntrl0_DDR_DQ

cntrl0_DDR_A

cntrl0_DDR_BA

cntrl0_DDR_RAS_N

user_clk

user_data

user_address

http://www.xilinx.com

MIG User Guide www.xilinx.com 249
UG086 (v2.2) March 3, 2008

Interface Signals
R

Infrastructure_top
The infrastructure_top module generates the FPGA clock and reset signals. A DCM
generates the clock and its inverted version. The calibration circuit is also implemented in
this module. If there is no DCM, the clocks are driven from the user interface.

IOBs
All input and output signals of the FPGA are implemented in the IOB registers.

Interface Signals
Table 7-2 lists the DDR SDRAM interface signals, directions, and descriptions to and from
DDR SDRAM controller. The signal direction is with respect to the DDR SDRAM
controller. Active-Low polarity is indicated with _N appended to the signal name.
Table 7-2 is common for designs with and without testbenches. The signal
cntrl0_DDR_RESET_N is present only for registered DIMMs.

Table 7-3 lists the DDR SDRAM clock, reset, and status signals for designs with and
without testbenches. Except for the contrl0_led_error_ouput1 signal, all other signals in
Table 7-3 are present in designs either with or without testbenches. The
contrl0_led_error_ouput1 signal is present only in designs with a testbench.

Table 7-2: DDR SDRAM Interface Signal Descriptions

Signal Name Signal Direction Description

cntrl0_DDR_A Output Address

cntrl0_DDR_DQ Input/Output Data

cntrl0_DDR_DQS Input/Output Data Strobe

cntrl0_DDR_RAS_N Output Command

cntrl0_DDR_CAS_N Output Command

 cntrl0_DDR_WE_N Output Command

 cntrl0_DDR_BA Output Bank Address

 cntrl0_DDR_CK Output Clock

cntrl0_DDR_CK_N Output Inverted Clock

cntrl0_DDR_CS_N Output Chip Select

cntrl0_DDR_CKE Output Clock Enable

cntrl0_DDR_DM Output Data Mask

cntrl0_DDR_RESET_N Output Reset

http://www.xilinx.com

250 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 7: Implementing DDR SDRAM Controllers
R

Table 7-4 describes the DDR SDRAM controller user interface signals used between the
ddr1_top (design top-level module) and user application modules in designs without a
testbench. These signals are buried one level down the hierarchy from memory interface
top for with testbench design.

Table 7-3: DDR SDRAM Clock, Reset, and Status Signals

Signal Name Direction Description

SYS_CLK and SYS_CLKb Input These signals are the system clock differential signals. They are
driven from the user application for designs with DCMs. These two
signals are given to a differential buffer, and the output of the
differential buffer is connected to a clock’s DCM. The DCM
generates the required clocks to the design modules. These signals
are not present when the design is generated without a DCM. When
there is no DCM, the user application should drive the required
clocks to the design.

clk_int and clk90_int Input These signals are the design clocks used in all modules. These clocks
are to be driven from the user application only when the DDR
SDRAM controller is generated without a DCM. These two clocks
should be generated from the same source (DCM output) with a 90°
phase shift.

reset_in_n Input This signal is the system reset signal. By default, this signal is active
Low. The parameter file contains a parameter called
RESET_ACTIVE_LOW. An active-High reset input can be selected
by changing this parameter to 0.

cntrl0_led_error_ouput1 Output This signal is asserted when there is a read data mismatch with the
write data. This signal is usually used to connect the LED on the
hardware to indicate a data error.

cntrl0_data_valid_out Output This signal is asserted when there is valid read data in the read FIFO.
The signal LED error output is generated when this signal is High
and there is a data mismatch. This signal can be driven to a status
LED on the hardware.

cntrl0_rst_dqs_div_in Input This loopback signal is connected to the contrl0_rst_dqs_div_out
signal on the board. Refer to XAPP768c [Ref 23] for the functionality
of this signal.

cntrl0_rst_dqs_div_out Output This loopback signal is connected to the cntrl0_rst_dqs_div_in signal
on the board.

dcm_lock Input This signal is present only in designs without a DCM.

cntrl0_init_done Output The DDR SDRAM controller asserts this signal to indicate that the
DDR SDRAM initialization is complete.

http://www.xilinx.com

MIG User Guide www.xilinx.com 251
UG086 (v2.2) March 3, 2008

Interface Signals
R

Table 7-4: DDR SDRAM Controller User Interface Signals (without a Testbench)

Signal Names Direction(1) Description

cntrl0_user_input_data[(2n–1):0] Input

This bus is the write data to the DDR SDRAM from the user
interface, where n is the width of the DDR SDRAM data bus.
The DDR SDRAM controller converts single data rate to double
data rate on the physical layer side. The data is valid on the
DDR SDRAM write command. In 2n, the MSB is rising-edge
data and the LSB is falling-edge data.

cntrl0_user_data_mask[(2m–1):0] Input

This bus is the data mask for write data. Like user_input_data,
it is twice the size of the data mask bus at memory, where m is
the size of the data mask at the memory interface. In 2m, the
MSB applies to rising-edge data and the LSB applies to falling-
edge data.

cntrl0_user_input_address
[(ROW_ADDRESS +
COLUMN_ADDRESS +
BANK_ADDRESS –1):0]

Input

This bus is the DDR SDRAM row, column, and bank address.
This bus is the combination of row, column, and bank addresses
for DDR SDRAM writes and reads. For example, for a given
memory if row_address = 13, column_address = 11,
bank_address = 2, and the user_input_address = 26, then:

• Bank Address from the user interface = A[1:0]
• Column Address from the user interface = A[12:2]
• Row Address part from the user interface = A[25:13]

cntrl0_user_command_register
[2:0] Input

Supported user commands for the DDR SDRAM controller:

cntrl0_burst_done Input

This signal is used to terminate a read or write command. This
signal must be asserted after the last address for one clock for
BL=2, two clocks for BL=4, and four clocks for BL =8. The DDR
SDRAM controller supports write burst or read burst capability
for a single row. The user must terminate the transfer on a
column boundary and must re-initialize the controller for the
next row of transactions on a column boundary.

cntrl0_user_output_data
[(2n–1):0] Output

This is the read data from the DDR SDRAM. The DDR SDRAM
controller converts the DDR data from the DDR SDRAM to
SDR data. As the DDR data is converted to SDR data, the width
of this bus is 2n, where n is data width of the DDR SDRAM data
bus.

cntrl0_user_data_valid Output When asserted, this signal indicates
cntrl0_user_output_data[(2n–1):0] is valid.

user_command[2:0] User Command Description

000 NOP

010 Memory (DDR SDRAM) initialization

100 Write

110 Read

Others Reserved

http://www.xilinx.com

252 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 7: Implementing DDR SDRAM Controllers
R

cntrl0_user_cmd_ack Output

This is the acknowledgement signal for a user read or write
command. It is asserted by the DDR SDRAM controller during
a write or read to/from the DDR SDRAM. The user should not
issue any new commands to the controller until this signal is
deasserted.

cntrl0_init_done Output The DDR SDRAM controller asserts this signal to indicate that
the DDR SDRAM initialization is complete.

cntrl0_auto_ref_req Output

This signal is asserted on every 7.7 µs. It is asserted until the
controller issues an auto-refresh command to the memory.
Upon seeing this signal, the user should terminate any ongoing
command after completion of the current burst cycle by
asserting the cntrl0_burst_done signal. To ensure reliable
operation, users should terminate the current command within
15 to 20 clock cycles after cntrl0_auto_ref_req is asserted. The
frequency with which this signal is asserted is determined by
the MAX_REF_CNT value in the parameter file. The
MAX_REF_CNT value is set in the parameter file based on the
frequency selected from the tool.

cntrl0_ar_done Output

This indicates that the auto-refresh command was completed to
DDR SDRAM. The DDR SDRAM controller asserts this signal
for one clock after giving an auto-refresh command to the DDR
SDRAM and completion of TRFC time. The TRFC time is
determined by the rfc_count_value in the parameter file. TRFC
is the minimum time required for the DDR SDRAM to
complete the refresh command. The Refresh command is
completed only after the assertion of the cntrl0_ar_done signal.
The user can assert the next command any time after the
assertion of the cntrl0_ar_done signal.

Notes:
1. All of the signal directions are with respect to the DDR SDRAM controller.

Table 7-4: DDR SDRAM Controller User Interface Signals (without a Testbench) (Continued)

Signal Names Direction(1) Description

http://www.xilinx.com

MIG User Guide www.xilinx.com 253
UG086 (v2.2) March 3, 2008

Resource Utilization
R

Resource Utilization
A local inversion clocking technique is used in this design. The DCM generates only clk0
and clk90. One DCM and two BUFGMUXs are used. The Spartan designs operate at
166 MHz and below.

DDR SDRAM Initialization
Before issuing the memory read and write commands, the controller initializes the DDR
SDRAM using the memory initialization command. The user can give the initialization
command only after all reset signals are deactivated. The controller is in the reset state for
200 µs after power up. For design optimization, a 200 µs timer is generated from the refresh
counter. The refresh timer is a function of frequency. Therefore, at lower frequencies, the
200 µs timer waits more than 200 µs. Because wait200 happens only during the power-up
sequence, design performance is not degraded. All resets are asserted for 200 µs because
DDR SDRAM requires a 200 µs delay prior to applying an executable command after all
power supply and reference voltages are stable. The controller asserts the clock enable to
memory after 200 µs.

All the load mode register parameters are taken from the Mode Register values in the
parameter file. The user has to enter the load mode parameters from the GUI while
generating the design from MIG. When the Init command is received from the user
interface, the controller starts DDR SDRAM initialization. The controller then writes this
data into the Load Mode Register. Once the DDR SDRAM is initialized, the DDR SDRAM
controller asserts the init_done signal.

Figure 7-8 shows the timing for the memory initialization command.

1. The user places the initialization command on user_command_register[2:0] on a
falling edge of clk0 for one clock cycle. This starts the initialization sequence.

2. The DDR SDRAM controller indicates that the initialization is complete by asserting
the init_done signal on a falling edge of clk0. The init_done signal is asserted
throughout the period.

3. After init_done is asserted, the user can pass the next command at any time.

DDR SDRAM Write and Read Operations
In Spartan designs, prior to issuing a read or write operation, the user must assert the first
address and command simultaneously and wait for a command acknowledge signal. The
assertion time of the command acknowledge varies depending on the controller status.
After the command acknowledge is asserted, the user waits for three clock cycles before
sending the next address. This three clock cycle time is the Active to Command (tRCD)
delay for a read or write command as defined in the memory specification. Subsequent
addresses are sent once every two clock cycles for a burst length of four.

I

Figure 7-8: DDR SDRAM Initialization

clk0

user_command_register

init_done

010 Cmd

UG086_c7_08_090707

2

1

3

http://www.xilinx.com

254 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 7: Implementing DDR SDRAM Controllers
R

Write

Figure 7-9 shows the timing diagram for a write to DDR SDRAM with a burst length of
four. The user initiates the write command by sending a Write command to the DDR
SDRAM controller. To terminate a write burst, the user asserts the burst_done signal for
two clocks after the last user_input_address. For a burst length of two, the burst_done
signal should be asserted for one clock. For a burst length of four, the burst_done signal
should be asserted for two clocks. For a burst length of eight, the burst_done signal should
be asserted for four clock cycles.

The write command is asserted on the falling edge of clk0. In response to a write
command, the DDR SDRAM controller acknowledges with the usr_cmd_ack signal on a
falling edge of clk0. The usr_cmd_ack signal is generated in the next clock after the write
command is asserted, if the controller is not busy. If there is an ongoing refresh command,
the usr_cmd_ack signal is asserted after completion of the refresh command. The user
asserts the first address (row + column + bank address) with the write command and
keeps it asserted for three clocks after usr_cmd_ack assertion. Any subsequent write
addresses are asserted on an alternate falling edge of clk0 after deasserting the first
memory address. For a burst length of two, subsequent addresses are asserted on each
clock cycle, and for a burst length of eight, subsequent addresses are asserted once every
four clock cycles. The first user data is asserted on a rising edge of clk90 after usr_cmd_ack
is asserted. As the SDR data is converted to DDR data, the width of this bus is 2n, where n
is data width of DDR SDRAM data bus.

For a burst length of four, only two data words (each of 2n) are given to the DDR SDRAM
controller for each user address. For a burst length of two, one data word is passed for each
burst. For a burst length of eight, four data words are passed for each burst. Internally, for
Burst Length = 4, the DDR SDRAM controller converts into four data words, each of n bits.
To terminate the write burst, the user asserts burst_done on a falling edge of clk0 for two
clocks. The burst_done signal is asserted after the last memory address. Any further
commands to the DDR SDRAM controller are given only after the usr_cmd_ack signal is
deasserted. After burst_done is asserted, the controller terminates the burst and issues a
precharge to the memory. The usr_cmd_ack signal is deasserted after completion of the
precharge.

1. A memory write is initiated by issuing a write command to the DDR SDRAM
controller. The write command must be asserted on a falling edge of clk0.

Figure 7-9: DDR SDRAM Write Burst, Burst Lengths of Four and Two Bursts

clk0

clk90

user_command_register

user_cmd_ack

user_input_address

burst_done

user_input_data

UG086_c7_09_010108

D0, D1

Write Command (3’b100)

D2, D3 D4, D5 D6, D7

Add1 Add2

0.75 Clks (clk90)

1

2

3

4

6

7
3 Clks

5

http://www.xilinx.com

MIG User Guide www.xilinx.com 255
UG086 (v2.2) March 3, 2008

Resource Utilization
R

2. The DDR SDRAM controller acknowledges the write command by asserting the
user_cmd_ack signal on a falling edge of clk0. The earliest this signal is asserted is one
clock after the command. The maximum number of clock cycles it takes to assert
cmd_ack signal depends on the refresh period.

3. The first user_input_address must be placed along with the command. The input data
is asserted with the clk90 signal after the user_cmd_ack signal is asserted.

4. The user asserts the first address (row + column + bank address) with the write
command and keeps it asserted for three clocks after usr_cmd_ack assertion. The
user_input_address signal is asserted on a falling edge of clk0. All subsequent
addresses are asserted on alternate falling edges of clk0 for burst lengths of four, on
each clock for burst lengths of two, and once in four clocks for burst lengths of eight.

5. To terminate the write burst, burst_done is asserted after the last user_input_address.
The burst_done signal is asserted for two clock cycles with respect to the falling edge
of clk0 for burst lengths of four.

6. The user command is deasserted after burst_done is asserted.

7. The controller deasserts the user_cmd_ack signal after completion of precharge to the
memory. The next command must be given only after user_cmd_ack is deasserted.
Back-to-back write operations are supported only within the same bank and row.

Read

The user initiates a memory read with a read command to the DDR SDRAM controller.
Figure 7-10 shows the memory read timing diagram for a burst length of four.

The user provides the first memory address with the read command, and subsequent
memory addresses upon receiving the usr_cmd_ack signal. Data is available on the user
data bus with the user_data_valid signal. To terminate read burst, the user asserts the
burst_done signal on a falling edge of clk0 for two clocks with the deassertion of the last
user_input_address. The burst_done signal is asserted for one clock for burst lengths of
two, two clocks for burst lengths of four, and four clocks for burst lengths of eight.

The read command flow is similar to the write command flow.

1. A memory read is initiated by issuing a read command to the DDR SDRAM controller.
The read command is accepted on a falling edge of clk0.

Figure 7-10: DDR SDRAM Read, Burst Lengths of Four and Two Bursts

clk0

clk90

user_command_register

user_cmd_ack

user_input_address

burst_done

user_data_valid

user_output_data

UG086_c7_10_022108

D0, D1 D2, D3 D4, D5 D6, D7

3 Clks

2 Clks

Read Command (3’b110)

1

2

3

4

5

6

7

8

Add2Add1

http://www.xilinx.com

256 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 7: Implementing DDR SDRAM Controllers
R

2. The first read address must be placed along with the read command. In response to the
read command, the DDR SDRAM controller asserts the user_cmd_ack signal on a
falling edge of clk0. The usr_cmd_ack signal is asserted a minimum of one clock cycle
after the read command is asserted. This signal is delayed if there is an ongoing refresh
cycle, in which case it is asserted after the current refresh command completes.

3. The user asserts the first address (row + column + bank address) with the read
command and keeps it asserted for three clocks after usr_cmd_ack is asserted. The
user_input_address signal is then accepted on the falling edge of clk0. All subsequent
memory read addresses are asserted on alternate falling edges of clk0 for burst lengths
of four. The subsequent addresses are changed on every clock for burst lengths of two,
on alternate clocks for burst lengths of four, and once in four clocks for burst lengths of
eight.

4. The data on user_output_data is valid only when the user_data_valid signal is
asserted.

5. The data read from the DDR SDRAM is available on user_output_data, which is
asserted with clk90. Because the DDR SDRAM data is converted to SDR data, the
width of this bus is 2n, where n is the data width of the DDR SDRAMs. For a read burst
length of four, the DDR SDRAM controller outputs only two data words with each
user address. For a burst length of two, the controller outputs one data word, and for
a burst length of eight, the controller outputs four data words.

6. To terminate the read burst, burst_done is asserted for two clocks on the falling edge of
clk0. The burst_done signal is asserted after the last memory address.

7. The user command is deasserted after burst_done is asserted.

8. The controller deasserts the user_cmd_ack signal after completion of precharge to the
memory. Any further commands to the DDR SDRAM controller should be given after
user_cmd_ack is deasserted. Back-to-back read operations are supported only within
the same bank and row. Approximately 17 clock cycles pass between the time a read
command is asserted on the user interface and the time data becomes available on the
user interface.

Auto Refresh
The DDR SDRAM controller does a memory refresh periodically. Every 7.7 µs, the
controller raises an auto-refresh request. The user must terminate any ongoing commands
within 15 to 20 clock cycles, when auto_ref_req flag is asserted. The user must assert the
burst_done signal at the end of the current burst transaction when sensing the auto_ref_req
flag for terminating the current transaction. The auto_ref_req flag is asserted until the
controller issues a refresh command to the memory. The user must wait for completion of
the auto-refresh command before giving any commands to the controller when
auto_ref_req is asserted.

The ar_done signal is asserted by the controller on completion of the auto-refresh
command—i.e., after TRFC time. The ar_done signal is asserted with clk180 for one clock
cycle.

The controller sets the MAX_REF_CNT value in the parameter file according to the
frequency selected for a refresh interval (7.7 µs). The rfc_count_value value in the
parameter file defines TRFC, the time between the refresh command to Active or another
refresh command.

After completion of the auto-refresh command, the next command can be given any time
after ar_done is asserted.

http://www.xilinx.com

MIG User Guide www.xilinx.com 257
UG086 (v2.2) March 3, 2008

Resource Utilization
R

Changing the Refresh Rate
Change the global ̀ define (for Verilog) or constant (for VHDL) variable MAX_REF_CNT in
mymodule_parameters_0.v (or .vhd) so that MAX_REF_CNT = (refresh interval in
clock periods) = (refresh interval) / (clock period). For example, for a refresh rate of 7.7 µs
with a memory bus running at 133 MHz:

MAX_REF_CNT = 7.7 µs / (clock period) = 7.7 µs / 7.5 ns = 1026 (decimal) = 0x402

If the above value exceeds 2MAX_REF_WIDTH – 1, the value of MAX_REF_WIDTH must be
increased accordingly in parameters_0.v (or .vhd) to increase the width of the counter
used to track the refresh interval.

Load Mode
MIG does not support the user LOAD MODE command. The mode register values from
the parameter file are loaded into the Load Mode register during initialization.

UCF Constraints
Some constraints are required to successfully create the design. The following examples
explain the different constraints in the UCF.

Calibration Circuit Constraints

All LUTs in the matched delay circuits are constrained to specific locations in the device.

For example:

INST "infrastructure_top0/cal_top0/tap_dly0/l0" RLOC=X0Y6;
INST "infrastructure_top0/cal_top0/tap_dly0/l0" U_SET =

delay_calibration_chain;
INST "infrastructure_top0/cal_top0/tap_dly0/gen_tap1[0].r" RLOC=X0Y6;
INST "infrastructure_top0/cal_top0/tap_dly0/gen_tap1[0].r" U_SET =

delay_calibration_chain;
INST "infrastructure_top0/cal_top0/tap_dly0/gen_tap1[1].r" RLOC=X0Y6;
INST "infrastructure_top0/cal_top0/tap_dly0/gen_tap1[1].r" U_SET =

delay_calibration_chain;

Data and Data Strobe Constraints

Data and data strobe signals are assigned to specific pins in the device; placement
constraints related to the dqs_delay circuit and the FIFOs used for the data_read module
are specified.

Example:

NET "cntrl0_DDR_DQS[0]" LOC = Y6;
INST "ddr1_top0/data_path0/data_read_controller0/gen_delay[0].dqs_delay_col0/one"
LOC = SLICE_X0Y110;
INST "ddr1_top0/data_path0/data_read_controller0/gen_delay[0].dqs_delay_col0/one"
BEL = F;
NET "cntrl0_DDR_DQ[0]" LOC = Y4;
INST "ddr1_top0/data_path0/data_read0/gen_strobe[0].strobe/fifo0_bit0" LOC =
SLICE_X2Y111;

The I/O standards for all the memory interface signals are required to be specified.

http://www.xilinx.com

258 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 7: Implementing DDR SDRAM Controllers
R

MAXDELAY Constraints

The MAXDELAY constraints define the maximum allowable delay on the net. Following
are the list of MAXDELAY constraints used in Spartan FPGA designs in the UCF on
different nets. The values provided here vary depending on FPGA family and the device
type. Some values are dependent on frequency. The constraints shown here are from
example_design. The hierarchy paths of the nets are different between
example_design and user_design.

NET "infrastructure_top0/cal_top0/tap_dly0/tap[7]" MAXDELAY = 350ps;
NET "infrastructure_top0/cal_top0/tap_dly0/tap[15]" MAXDELAY = 350ps;
NET "infrastructure_top0/cal_top0/tap_dly0/tap[23]" MAXDELAY = 350ps;

These constraints are used to minimize the tap delay inverter connection wire length. This
delay should be minimized to calibrate the delay of a tap (LUT element) accurately. These
values are independent of frequency and vary from family to family and device to device.
Without these constraints, the tool might synthesize longer routes between the tap
connections. Inappropriate delays in this circuit could cause the design to fail in hardware.

NET "main_00/top0/dqs_int_delay_in*" MAXDELAY = 675ps;

This constraint is used for the DQS nets from the I/O pad to the input of the LUT delay
chain. Without this constraint, the nets take unpredictable delays that affect the Data Valid
window. In Spartan designs, data is latched using the DQS signal. In order to latch the
correct data, DQS is delayed using LUT delay elements to center-align with respect to the
input read data. Incorrect data could be latched if the delays on this net are unpredictable.
Unpredictable delays might also cause the design to have intermittent failures, which are
difficult to debug in hardware.

NET "main_00/top0/dqs_div_rst" MAXDELAY = 460ps;

The net dqs_div_rst is the loopback signal. This signal is used as an enable for read data
FIFOs and FIFO write pointers after it is delayed using the LUT delay elements. The
overall delay on this net should be comparable with the delay on the DQS signal. This net
is constrained to control the overall delay. Both the dqs_div_rst and DQS signals take
similar paths. If the delay on the dqs_div_rst signal is higher, the first read data from
memory might be missed.

NET
"main_00/top0/data_path0/data_read_controller0/gen_delay*dqs_delay_col
/delay" MAXDELAY = 140ps;
NET
"main_00/top0/data_path0/data_read_controller0/rst_dqs_div_delayed/
delay*" MAXDELAY = 140 ps;

These constraints are required to minimize the wire delays between the LUT elements of a
LUT delay chain that is used to delay the DQS and rst_dqs_div loopback signal. Higher
wire delays between LUT delay elements can shift the data valid window, which in turn
can cause incorrect data to be latched. Therefore, the MAXDELAY constraint is required for
these nets.

NET "main_00/top0/data_path0/data_read_controller0/rst_dqs_div"
MAXDELAY = 3383 ps;
NET "main_00/top0/data_path0/data_read0/fifo*_wr_en*"
MAXDELAY = 3007ps;

These constraints are required because these paths are not constrained otherwise. The total
delay on the rst_dqs_div and fifo_wr_en nets must not exceed the clock period. The total
delay on both the nets is set to 85% of the clock period, leaving 15% as margin. These
delays vary with frequency.

http://www.xilinx.com

MIG User Guide www.xilinx.com 259
UG086 (v2.2) March 3, 2008

I/O Banking Rules
R

NET "main_00/top0/data_path0/data_read0/fifo*_wr_addr[*]"
MAXDELAY = 5610ps;

The MAXDELAY constraint is required on FIFO write address because this path is not
constrained otherwise. This is a single clock cycle path. It is set to 80% of the clock period,
leaving 20% as margin because this net generally meets the required constraint.

I/O Banking Rules
There are I/O banking rules to be followed for I/O pin allocations, stating that the I/O
signals allocated in a bank should adhere to compatible I/O standards. Refer to the “Rules
Concerning Banks” section for additional information regarding I/O banking rules in
DS099 [Ref 27] and DS312 [Ref 28].

Design Notes

Spartan-3/3E/3A/3AN/3A DSP Pin Allocation Rules
The pin allocation rules are different for top/bottom and left/right banks because of the
local clock structure of Spartan FPGAs.

Pin Allocation Rules for Left/Right Banks

1. When a DQS is allocated, its associated DQ bits should be allocated within five tiles
above and six tiles below the DQS tile.

2. The DQ bits should not be allocated in the DQS tile.

3. The rst_dqs_div signal should be placed in the center of the data bank.

Pin Allocation Rules for Top/Bottom Banks

1. All DQ bits corresponding to DQS are required to be placed to the right of its DQS tile.

2. All DQ bits corresponding to the DQS should be within five I/O tiles of the DQS tile.

3. A DQ bit should not be allocated in the same I/O tile where DQS is allocated.

Top/Bottom Bank Support

MIG does not support top/bottom banks for Spartan 3E/3A/3AN/3A DSP devices. For
some I/O pads, the fabric slices are not located next to the IOBs. These I/O pads cannot be
used for pin allocation. By excluding these I/O pins, there are not enough pins to allocate
DQ and DQS signals according to the pin allocation rules.

http://www.xilinx.com

260 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 7: Implementing DDR SDRAM Controllers
R

Supported Devices
This section provides tables for the memory components supported by Spartan-3,
Spartan-3A, Spartan-3AN, Spartan-3A DSP, and Spartan-3E devices.

The design generated out of MIG is independent of memory speed grade, hence the
package part of the memory component is replaced with X, where X indicates a don't care
condition.

The tables below list the components (Table 7-5) and DIMMs (Table 7-6 through Table 7-8)
supported by the tool for Spartan-3 FPGA DDR local clocking designs.

Table 7-5: Supported Components for DDR SDRAM Local Clocking
(Spartan-3 FPGAs)

Components Packages (XX) Components Packages (XX)

MT46V32M4XX-5B - MT46V32M4XX-75 P,TG

MT46V64M4XX-5B BG,FG,P,TG MT46V64M4XX-75 FG,P,TG

MT46V128M4XX-5B BN,FN,P,TG MT46V128M4XX-75 BN,FN,P,TG

MT46V256M4XX-5B P,TG MT46V256M4XX-75 P,TG

MT46V16M8XX-5B TG,P MT46V16M8XX-75 P,TG

MT46V32M8XX-5B BG,FG,P,TG MT46V32M8XX-75 FG,P,TG

MT46V64M8XX-5B BN,FN,P,TG MT46V64M8XX-75 BN,FN,P,TG

MT46V128M8XX-5B - MT46V128M8XX-75 P,TG

MT46V8M16XX-5B TG,P MT46V8M16XX-75 P,TG

MT46V16M16XX-5B BG,FG,P,TG MT46V16M16XX-75 BG,FG,P,TG

MT46V32M16XX-5B BN,FN,P,TG MT46V32M16XX-75 -

MT46V64M16XX-5B - MT46V64M16XX-75 P,TG

Table 7-6: Supported Unbuffered DIMMs for DDR SDRAM Local Clocking
(Spartan-3 FPGAs)

Unbuffered DIMMs Packages (X) Unbuffered DIMMs Packages (X)

MT4VDDT1664AX-40B G,Y MT8VDDT3264AX-40B G,Y

MT4VDDT3264AX-40B G,Y MT9VDDT3272AX-40B Y

Table 7-7: Supported Registered DIMMs for DDR SDRAM Local Clocking
(Spartan-3 FPGAs)

Registered DIMMs Packages (X) Registered DIMMs Packages (X)

MT9VDDF3272X-40B G,Y MT18VDDF3272X-40B D,G,Y

MT9VDDF3272X-40B G,Y MT18VDDF12872X-40B DY,G,Y

http://www.xilinx.com

MIG User Guide www.xilinx.com 261
UG086 (v2.2) March 3, 2008

Supported Devices
R

The tables below list the components (Table 7-9) and DIMMs (Table 7-10 through
Table 7-12) supported by the tool for Spartan-3A/AN DDR local clocking designs.

Table 7-8: Supported SODIMMs for DDR SDRAM Local Clocking (Spartan-3 FPGAs)

SODIMMs Packages (X) SODIMMs Packages (X)

MT4VDDT3264HX-40B G,Y MT9VDDT3272HX-40B

MT4VDDT1664HX-40B Y MT9VDDT6472HX-40B G,Y

MT8VDDT3264HX-40B - MT9VDDT12872HX-40B -

MT8VDDT6464HX-40B DG,DY,G,Y

Table 7-9: Supported Components for DDR SDRAM Local Clocking (Spartan-3A/AN
FPGAs)

Components Packages (XX) Components Packages (XX)

MT46V32M4XX-5B - MT46V32M4XX-75 P,TG

MT46V64M4XX-5B BG,FG,P,TG MT46V64M4XX-75 FG,P,TG

MT46V128M4XX-5B BN,FN,P,TG MT46V128M4XX-75 BN,FN,P,TG

MT46V256M4XX-5B P,TG MT46V256M4XX-75 P,TG

MT46V16M8XX-5B TG,P MT46V16M8XX-75 P,TG

MT46V32M8XX-5B BG,FG,P,TG MT46V32M8XX-75 FG,P,TG

MT46V64M8XX-5B BN,FN,P,TG MT46V64M8XX-75 BN,FN,P,TG

MT46V128M8XX-5B - MT46V128M8XX-75 P,TG

MT46V8M16XX-5B TG,P MT46V8M16XX-75 P,TG

MT46V16M16XX-5B BG,FG,P,TG MT46V16M16XX-75 BG,FG,P,TG

MT46V32M16XX-5B BN,FN,P,TG MT46V32M16XX-75 -

MT46V64M16XX-5B - MT46V64M16XX-75 P,TG

Table 7-10: Supported Unbuffered DIMMs for DDR SDRAM Local Clocking
(Spartan-3A/AN FPGAs)

Unbuffered DIMMs Packages (X) Unbuffered DIMMs Packages (X)

MT4VDDT1664AX-40B G,Y MT8VDDT3264AX-40B G,Y

MT4VDDT3264AX-40B G,Y

Table 7-11: Supported Registered DIMMs for DDR SDRAM Local Clocking
(Spartan-3A/AN FPGAs)

Registered DIMMs Packages (X) Registered DIMMs Packages (X)

MT9VDDF3272X-40B G,Y MT9VDDF3272X-40B G,Y

Table 7-12: Supported SODIMMs for DDR SDRAM Local Clocking
(Spartan-3A/AN FPGAs)

SODIMMs Packages (X) SODIMMs Packages (X)

MT4VDDT3264HX-40B G,Y MT8VDDT3264HX-40B -

MT4VDDT1664HX-40B Y MT8VDDT6464HX-40B DG,DY,G,Y

http://www.xilinx.com

262 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 7: Implementing DDR SDRAM Controllers
R

The tables below list the components (Table 7-13) and DIMMs (Table 7-14 and Table 7-15)
supported by the tool for Spartan-3A DSP DDR local clocking designs.

Table 7-13: Supported Components for DDR SDRAM Local Clocking
(Spartan-3A DSP FPGAs)

Components Packages (XX) Components Packages (XX)

MT46V32M4XX-5B - MT46V32M4XX-75 P,TG

MT46V64M4XX-5B BG,FG,P,TG MT46V64M4XX-75 FG,P,TG

MT46V128M4XX-5B BN,FN,P,TG MT46V128M4XX-75 BN,FN,P,TG

MT46V256M4XX-5B P,TG MT46V256M4XX-75 P,TG

MT46V16M8XX-5B TG,P MT46V16M8XX-75 P,TG

MT46V32M8XX-5B BG,FG,P,TG MT46V32M8XX-75 FG,P,TG

MT46V64M8XX-5B BN,FN,P,TG MT46V64M8XX-75 BN,FN,P,TG

MT46V128M8XX-5B - MT46V128M8XX-75 P,TG

MT46V8M16XX-5B TG,P MT46V8M16XX-75 P,TG

MT46V16M16XX-5B BG,FG,P,TG MT46V16M16XX-75 BG,FG,P,TG

MT46V32M16XX-5B BN,FN,P,TG MT46V32M16XX-75 -

MT46V64M16XX-5B - MT46V64M16XX-75 P,TG

Table 7-14: Supported Unbuffered DIMMs for DDR SDRAM Local Clocking
(Spartan-3A DSP FPGAs)

Unbuffered DIMMs Packages (X) Unbuffered DIMMs Packages (X)

MT4VDDT1664AX-40B G,Y MT8VDDT3264AX-40B G,Y

MT4VDDT3264AX-40B G,Y

Table 7-15: Supported SODIMMs for DDR SDRAM Local Clocking
(Spartan-3A DSP FPGAs)

SODIMMs Packages (X) SODIMMs Packages (X)

MT4VDDT3264HX-40B G,Y MT8VDDT3264HX-40B -

MT4VDDT1664HX-40B Y MT8VDDT6464HX-40B DG,DY,G,Y

http://www.xilinx.com

MIG User Guide www.xilinx.com 263
UG086 (v2.2) March 3, 2008

Simulating the Spartan-3/3E/3A/3AN/3A DSP FPGA Design
R

Table 7-16 lists the components supported by the tool for Spartan-3E FPGA DDR local
clocking designs.

Simulating the Spartan-3/3E/3A/3AN/3A DSP FPGA Design
After generating the design, MIG creates a sim folder in the specified path. This folder
contains simulation files for the generated design. The sim folder contains the external
testbench, memory model, .do file, and the executable file to simulate the generated
design. The memory model files are currently generated in Verilog only. To learn more
details about the files in the sim folder and to simulate the design, see
simulation_help.chm in the sim folder.

Table 7-16: Supported Components for DDR SDRAM Local Clocking
(Spartan-3E FPGAs)

Components Packages (XX) Components Packages (XX)

MT46V32M4XX-5B - MT46V32M4XX-75 P,TG

MT46V64M4XX-5B BG,FG,P,TG MT46V64M4XX-75 FG,P,TG

MT46V128M4XX-5B BN,FN,P,TG MT46V128M4XX-75 BN,FN,P,TG

MT46V256M4XX-5B P,TG MT46V256M4XX-75 P,TG

MT46V16M8XX-5B TG,P MT46V16M8XX-75 P,TG

MT46V32M8XX-5B BG,FG,P,TG MT46V32M8XX-75 FG,P,TG

MT46V64M8XX-5B BN,FN,P,TG MT46V64M8XX-75 BN,FN,P,TG

MT46V128M8XX-5B - MT46V128M8XX-75 P,TG

MT46V8M16XX-5B TG,P MT46V8M16XX-75 P,TG

MT46V16M16XX-5B BG,FG,P,TG MT46V16M16XX-75 BG,FG,P,TG

MT46V32M16XX-5B BN,FN,P,TG MT46V32M16XX-75 -

MT46V64M16XX-5B - MT46V64M16XX-75 P,TG

http://www.xilinx.com

264 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 7: Implementing DDR SDRAM Controllers
R

Hardware Tested Configurations
The frequencies shown in Table 7-17 and Table 7-18 were achieved on the Spartan-3 FPGA
Memory Interface Board and Spartan-3E FPGA Starter Kit, respectively, under nominal
conditions. This frequency should not be used to determine the maximum design
frequency. The maximum design frequency supported in the MIG wizard is based on a
combination of the TRCE results for fabric timing on multiple device/package
combinations and I/O timing analysis using FPGA and memory timing parameters for a
64-bit wide interface.

Table 7-17: Hardware Tested Configurations for Spartan-3 FPGA DDR SDRAM
Designs

Synthesis Tools XST

HDL Verilog and VHDL

FPGA Device XC3S1500FG676-5

Burst Lengths 2 and 8

CAS Latency (CL) 2 and 2.5

64-bit Design Tested on 16-bit Component “MT46V16M16XX-75”

64-bit DIMM “MT4VDDT3264AX”

Frequency Range 67 MHz to 170 MHz for CL = 2

40 MHz to 190 MHz for CL = 2.5

Table 7-18: Hardware Tested Configurations for Spartan-3E FPGA DDR SDRAM
Designs

Synthesis Tools XST

HDL Verilog and VHDL

FPGA Device XC3S500EFG320-4

Burst Lengths 2 and 4

CAS Latency (CL) 2 and 2.5

16-bit Design Tested on 16-bit Component “MT46V32M16XX-6T”

Frequency Range 80 MHz to 170 MHz for CL = 2

80 MHz to 170 MHz for CL = 2.5

http://www.xilinx.com

MIG User Guide www.xilinx.com 265
UG086 (v2.2) March 3, 2008

R

Chapter 8

Implementing DDR2 SDRAM Controllers

This chapter describes how to implement DDR2 SDRAM interfaces for Spartan™-3,
Spartan-3E, Spartan-3A, Spartan-3AN, and Spartan-3A DSP FPGAs generated by MIG.
This design is based on XAPP768c [Ref 23].

Feature Summary
The DDR2 SDRAM controller design supports:

• Burst lengths of four and eight

• Sequential and interleaved burst types

• CAS latency of 3

• Auto refresh

• Spartan-3 maximum frequency:

♦ 133 MHz with a -4 speed grade device

♦ 166 MHz with a -5 speed grade device

• Spartan-3E maximum frequency:

♦ 133 MHz with a -4 speed grade device

♦ 166 MHz with a -5 speed grade device

• Spartan-3A, Spartan-3AN, and Spartan-3A DSP maximum frequency:

♦ 133 MHz with a -4 speed grade device

♦ 166 MHz with a -5 speed grade device

• Components, unbuffered DIMMs, and registered DIMMs

• Verilog and VHDL

• XST and Synplicity synthesis tools

• With and without a testbench

• With or without a DCM

http://www.xilinx.com

266 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 8: Implementing DDR2 SDRAM Controllers
R

Design Frequency Ranges

Controller Architecture

DDR2 SDRAM Interface
High-speed memory interfaces are source-synchronous and double data rate. They
transfer data on both edges of the clock cycle. A memory interface can be modularly
represented as shown in Figure 8-1. Creating a modular interface has many advantages. It
allows designs to be ported easily, and it also makes sharing parts of the design across
different types of memory interfaces possible.

Table 8-1: Design Frequency Range in MHz

FPGA Family Memory

FPGA Speed Grade

-4 -5

Min Max Min Max

Spartan-3
Component 125 133 125 166(1)

DIMM 125 133 125 133

Spartan-3E
Component 125 133 125 166

DIMM Not supported

Spartan-3A/3AN/3A DSP
Component 125 133 125 166

DIMM 125 133 125 166

Notes:
1. Spartan-3 devices support 133 MHz for data widths greater than 32 bits.

Figure 8-1: Modular Memory Interface Representation

ug086_c8_01_012907

Application Interface Layer

Control Layer

Physical Layer

Xilinx FPGA

Memories

http://www.xilinx.com

MIG User Guide www.xilinx.com 267
UG086 (v2.2) March 3, 2008

Controller Architecture
R

Hierarchy
Figure 8-2 shows the hierarchical structure of the DDR2 SDRAM design generated by MIG
with a testbench and a DCM. In the figure, the physical and control layers are clearly
separated. MIG generates the entire controller, as shown in this hierarchy, including the
testbench. The user can replace the testbench with a design that makes use of the DDR2
SDRAM interface.

The modules are classified as follows:

• Design modules

• Testbench modules

• Clocks, reset generation, and calibration modules

There is a parameter file generated with the design that has all the user input and design
parameters selected from MIG.

MIG can generate four different DDR2 SDRAM designs:

• With a testbench and a DCM

• Without a testbench and with a DCM

• With a testbench and without a DCM

• Without a testbench and without a DCM

Figure 8-2: Hierarchical Structure of the Design

<top_
module>

main*
infrastructure_

top*

controller* infrastructure iobs*

data_
read*

data_
read_

controller*

data_
write*

data_
path*

controller_
iobs*

dqs_
delay

Design Modules

fifo_0_
wr_en

wr_gray_
cntr

fifo_1_
wr_en

addr_
gen* cmd_fsm data_

gen*
cmp_
data*

rd_gray_
cntr ram8d*

infrastructure
_iobs*

data_
path_
iobs*

s2_dq_
iob

s3_dm_
iob

s3_dqs_
iob

UG086_c8_02_010108

clk_dcm cal_toptest_
bench*

top*

tap_dly cal_ctl

Test Bench Modules

Clocks, Reset Generation, and Calibration Modules

Note: A block with a * has a parameter file included.

http://www.xilinx.com

268 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 8: Implementing DDR2 SDRAM Controllers
R

For a design without a testbench (user_design), the shaded modules in Figure 8-2 are not
present in the design. The <top_module> module has the user interface signals for designs
without a testbench. The list of user interface signals is provided in Table 8-4.

The infrastructure_top module comprises the clock and the reset generation module of the
design. It instantiates a DCM in the module when selected by MIG. The differential design
clock is an input to this module. A user reset is also input to this module. Using the input
clocks and reset signals, system clocks and system reset are generated in this module
which is used in the design. Infrastructure_top also consists of calibration logic.

The DCM primitive is not instantiated in this module if the Use DCM option is unchecked.
Therefore, the system operates on the user-provided clocks. The system reset is generated
in the infrastructure module using the DCM_LOCK input signal.

Figure 8-3 shows a block diagram representation of the top-level module for a DDR2
SDRAM design with a DCM and a testbench. SYS_CLK and SYS_CLKb are differential
input system clocks. The DCM clock is instantiated in the infrastructure module that
generates the required design clocks. reset_in_n is the active-Low system reset signal. All
design resets are gated by the dcm_lock signal.

The cntrl0_led_error_output1 output signal indicates whether the case passes or fails. The
testbench module does writes and reads, and also compares the read data with written
data. The cntrl0_led_error_output1 signal is driven High on data mismatches. The
cntrl0_data_valid_out signal indicates whether the read data is valid or not.

Figure 8-3: MIG Output of the DDR2 SDRAM Controller Design with a DCM and a Testbench

main_0 Memory
Device

UG086_c8_03_091007

System
Clocks

and Reset

Status
Signals

infrastructure_top clk90_0

clk0_0

SYS_CLK

SYS_CLKb

reset_in_n

sys_rst

sys_rst90

sys_rst180

cntrl0_led_error_output1

cntrl0_init_done

cntrl0_data_valid_out

cntrl0_DDR2_RAS_N

cntrl0_DDR2_CAS_N

cntrl0_DDR2_WE_N

cntrl0_DDR2_CS_N

cntrl0_DDR2_CKE

cntrl0_DDR2_DM

cntrl0_DDR2_BA

cntrl0_DDR2_A

cntrl0_DDR2_CK_N

cntrl0_DDR2_ODT

cntrl0_DDR2_CK

cntrl0_DDR2_DQ

cntrl0_DDR2_DQS

cntrl0_DDR2_RESET_N

cntrl0_DDR2_DQS_N

http://www.xilinx.com

MIG User Guide www.xilinx.com 269
UG086 (v2.2) March 3, 2008

Controller Architecture
R

Figure 8-4 shows a block diagram representation of the top-level module for a DDR2
SDRAM design with a DCM but without a testbench. SYS_CLK and SYS_CLKb are
differential input system clocks. The DCM clock is instantiated in the infrastructure
module that generates the required design clocks. reset_in_n is the active-Low system reset
signal. All design resets are gated by the dcm_lock signal.

The user interface signals are listed in Figure 8-4. The design provides the clk_tb, clk90_tb,
sys_rst_tb, sys_rst90_tb, and sys_rst180_tb signals to the user in order to synchronize with
the design.

Figure 8-4: MIG Output of the DDR2 SDRAM Controller Design with a DCM but without a Testbench

top_0 Memory
Device

UG086_c8_04_022208

System
Clocks

and Reset

User
Interface

Signals

infrastructure_top
clk90_0

clk_0

SYS_CLK

SYS_CLKb

reset_in_n

sys_rst

sys_rst90

sys_rst180

cntrl0_burst_done

cntrl0_user_command_register

cntrl0_user_data_mask

cntrl0_user_input_data

cntrl0_user_input_address

cntrl0_init_done

cntrl0_ar_done

cntrl0_auto_ref_req

cntrl0_user_cmd_ack

cntrl0_clk_tb

cntrl0_clk90_tb

cntrl0_sys_rst_tb

cntrl0_sys_rst90_tb

cntrl0_sys_rst180_tb

cntrl0_user_data_valid

cntrl0_user_output_data

cntrl0_DDR2_RAS_N

cntrl0_DDR2_CAS_N

cntrl0_DDR2_WE_N

cntrl0_DDR2_CS_N

cntrl0_DDR2_CKE

cntrl0_DDR2_DM

cntrl0_DDR2_BA

cntrl0_DDR2_A

cntrl0_DDR2_CK_N

cntrl0_DDR2_CK

cntrl0_DDR2_DQ

cntrl0_DDR2_DQS

cntrl0_DDR2_RESET_N

cntrl0_DDR2_DQS_N

http://www.xilinx.com

270 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 8: Implementing DDR2 SDRAM Controllers
R

Figure 8-5 shows a block diagram representation of the top-level module for a DDR2
SDRAM design without a DCM or a testbench. The user should provide all the clocks and
the dcm_lock signal. These clocks should be single-ended. reset_in_n is the active-Low
system reset signal. All design resets are gated by the dcm_lock signal.

The user interface signals are listed in Figure 8-5. The design provides the clk_tb, clk90_tb,
sys_rst_tb, sys_rst90_tb, and sys_rst180_tb signals to the user in order to synchronize with
the design.

Figure 8-5: MIG Output of the DDR2 SDRAM Controller Design without a DCM or a Testbench

top_0
Memory
Device

UG086_c8_05_091007

System
Reset

and User
DCM

Clocks

User
Interface

Signals

infrastructure_top

clk90_int

dcm_lock

clk_int

reset_in_n

sys_rst

sys_rst90

sys_rst180

cntrl0_burst_done

cntrl0_user_command_register

cntrl0_user_data_mask

cntrl0_user_input_data

cntrl0_user_input_address

cntrl0_init_done

cntrl0_ar_done

cntrl0_auto_ref_req

cntrl0_user_cmd_ack

cntrl0_clk_tb

cntrl0_clk90_tb

cntrl0_sys_rst_tb

cntrl0_sys_rst90_tb

cntrl0_sys_rst180_tb

cntrl0_user_data_valid

cntrl0_user_output_data

cntrl0_DDR2_RAS_N

cntrl0_DDR2_CAS_N

cntrl0_DDR2_WE_N

cntrl0_DDR2_CS_N

cntrl0_DDR2_CKE

cntrl0_DDR2_DM

cntrl0_DDR2_BA

cntrl0_DDR2_A

cntrl0_DDR2_CK_N

cntrl0_DDR2_ODT

cntrl0_DDR2_CK

cntrl0_DDR2_DQ

cntrl0_DDR2_DQS

cntrl0_DDR2_RESET_N

cntrl0_DDR2_DQS_N

http://www.xilinx.com

MIG User Guide www.xilinx.com 271
UG086 (v2.2) March 3, 2008

Controller Architecture
R

Figure 8-6 shows a block diagram representation of the top-level module for a DDR2
SDRAM design without a DCM but with a testbench. The user should provide all the
clocks and the dcm_lock signal. These clocks should be single-ended. reset_in_n is the
active-Low system reset signal. All design resets are gated by the dcm_lock signal.

The cntrl0_led_error_output1 output signal indicates whether the case passes or fails. The
testbench module does writes and reads, and also compares the read data with the written
data. The cntrl0_led_error_output1 signal is driven High on data mismatches. The
cntrl0_data_valid_out signal indicates whether the read data is valid or not.

All the Memory Device interface signals that are shown in Figure 8-3 through Figure 8-6
do not necessarily appear for all designs that are generated from MIG. For example, port
cntrl0_ddr2_RESET_N appears in the port list only for Registered DIMM designs.
Similarly, cntrl0_ddr2_DQS_N does not appear for single-ended DQS designs. Port
cntrl0_ddr2_dm appears only for the parts that contain a data mask. A few RDIMMs do
not have a data mask, and cntrl0_ddr2_dm does not appear in the port list for these parts.

Figure 8-6: MIG Output of the DDR2 SDRAM Controller Design without a DCM but with a Testbench

main_0
Memory
Device

UG086_c8_06_031307

System
Reset

and User
DCM

Clocks

Status
Signals

infrastructure_top

cntrl0_DDR2_RAS_N

cntrl0_DDR2_CAS_N

cntrl0_DDR2_WE_N

cntrl0_DDR2_CS_N

cntrl0_DDR2_CKE

cntrl0_DDR2_DM

cntrl0_DDR2_BA

cntrl0_DDR2_A

cntrl0_DDR2_CK_N

sys_rst

sys_rst90

sys_rst180

cntrl0_DDR2_ODT

cntrl0_DDR2_CK
cntrl0_led_error_output1

cntrl0_data_valid_out

cntrl0_init_done
cntrl0_DDR2_DQ

cntrl0_DDR2_DQS

cntrl0_DDR2_RESET_N

cntrl0_DDR2_DQS_N

clk90_int

dcm_lock

clk_int

reset_in_n

http://www.xilinx.com

272 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 8: Implementing DDR2 SDRAM Controllers
R

Figure 8-7 shows a detailed block diagram of the DDR2 SDRAM controller. All four blocks
shown are sub-blocks of the ddr2_top module. The functionality of these blocks is
explained in following sections.

Controller
The controller module accepts and decodes user commands and generates read, write,
memory initialization, and load mode commands. The controller also generates signals for
other modules.

The memory is initialized and powered up using a defined process. The controller state
machine handles the initialization process upon receiving an initialization command.

Datapath
This module transmits and receives data to and from the memories. Major functions
include storing the read data and transferring write data and write enable to the IOBS
module. The data_read, data_write, data_path_IOBs, and data_read_controller modules
perform the actual read and write functions. For more information, refer to XAPP768c
[Ref 23].

Data Read Controller
This module generates all control signals that are used for the data_read module.

Data Read
The data_read module contains the read datapaths for the DDR2 SDRAM interface. Details
for this module are described in XAPP768c [Ref 23].

Data Write
This module contains the write datapath for the DDR2 SDRAM interface. The write data
and write enable signals are forwarded together to the DDR2 SDRAM through IOB flip-
flops. The IOBs are implemented in the datapath_IOBs module.

Figure 8-7: Memory Controller Block Diagram
UG086_c8_07_091007

user_command_register

Controller

Datapath

Infrastructure_top

IOBs

cntrl0_DDR2_CK

cntrl0_DDR2_CK_N

cntrl0_DDR2_CKE

cntrl0_DDR2_DM

cntrl0_DDR2_CS_N

cntrl0_DDR2_DQS

cntrl0_DDR2_CAS_N

cntrl0_DDR2_WE_N

cntrl0_DDR2_ODT

cntrl0_DDR2_RESET_N

cntrl0_DDR2_DQ

cntrl0_DDR2_A

cntrl0_DDR2_BA

cntrl0_DDR2_RAS_N

user_clk

user_data

user_address

http://www.xilinx.com

MIG User Guide www.xilinx.com 273
UG086 (v2.2) March 3, 2008

Interface Signals
R

Infrastructure_top
The infrastructure_top module generates the FPGA clock and reset signals. A DCM
generates the clock and its inverted version. The calibration circuit is also implemented in
this module.

IOBs
All input and output signals of the FPGA are implemented in the IOBs.

Interface Signals
Table 8-2 shows the DDR2 SDRAM interface signals, directions, and descriptions. The
signal direction is with respect to the DDR2 SDRAM controller. The cntrl0_ddr2_reset_n
signal is present only for registered DIMMs, and the cntrl0_ddr2_dqs_n signal is present
when DQS# Enable is selected in the Extended Mode register.

Table 8-2: DDR2 SDRAM Interface Signal Descriptions

Signal Name Signal Direction Description

cntrl0_DDR2_A Output Address

cntrl0_DDR2_DQ Input/Output Data

cntrl0_DDR2_DQS Input/Output Data Strobe

cntrl0_DDR2_DQS_N Input/Output Data Strobe

cntrl0_DDR2_RAS_N Output Command

cntrl0_DDR2_CAS_N Output Command

 cntrl0_DDR2_WE_N Output Command

 cntrl0_DDR2_BA Output Bank Address

 cntrl0_DDR2_CK Output Clock

cntrl0_DDR2_CK_N Output Inverted Clock

cntrl0_DDR2_CS_N Output Chip Select

cntrl0_DDR2_CKE Output Clock Enable

cntrl0_DDR2_DM Output Data Mask

cntrl0_DDR2_ODT Output On-Die Termination

cntrl0_DDR2_RESET_N Output Reset

http://www.xilinx.com

274 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 8: Implementing DDR2 SDRAM Controllers
R

Table 8-3 describes the DDR2 SDRAM controller system interface signals. Except for the
cntlr0_led_error_ouput1 signal, all other signals in Table 8-3 are present in designs either
with or without testbenches. The cntrl0_led_error_ouput1 signal is present only in designs
with a testbench.

Table 8-3: DDR2 SDRAM Controller System Interface Signals

Signal Names Direction Description

SYS_CLK and SYS_CLKb Input

These signals are the system clock differential
signals. They are driven from the user
application for designs with DCMs. These two
signals are given to a differential buffer, and the
output of the differential buffer is connected to
a clock’s DCM. The DCM generates the required
clocks to the design modules. These signals are
not present when the design is generated
without a DCM. When there is no DCM, the
user application should drive the required
clocks to the design.

reset_in_n Input

This is the system reset signal. By default, this
signal is active Low. The parameter file contains
a parameter called RESET_ACTIVE_LOW. An
active-High reset input can be selected by
changing this parameter to 0.

cntrl0_led_error_ouput1 Output This signal is asserted when there is a read data
mismatch with the write data. This signal is
usually used to connect the LED on the
hardware to indicate a data error.

cntrl0_data_valid_out Output This signal is asserted when there is valid read
data in the read FIFO. The signal LED error
output is generated when this signal is High
and there is a data mismatch. This signal can be
driven to a status LED on the hardware.

cntrl0_rst_dqs_div_in Input This loopback signal is connected to the
contrl0_rst_dqs_div_out signal on the board.
Refer to XAPP768c [Ref 23] for the functionality
of this signal.

cntrl0_rst_dqs_div_out Output This loopback signal is connected to the
cntrl0_rst_dqs_div_in signal on the board.

dcm_lock Input This signal is present only in designs without a
DCM.

cntrl0_init_done Output The DDR2 SDRAM controller asserts this signal
to indicate that the DDR2 SDRAM initialization
is complete.

http://www.xilinx.com

MIG User Guide www.xilinx.com 275
UG086 (v2.2) March 3, 2008

Interface Signals
R

Table 8-4 describes the DDR2 SDRAM controller system interface signals in designs
without a testbench.

Table 8-4: DDR2 SDRAM Controller User Interface Signals (without a Testbench)

Signal Names Direction(1) Description

cntrl0_user_input_data[(2n–1):0] Input

This bus is the write data to the DDR2 SDRAM from the user
interface, where n is the width of the DDR2 SDRAM data bus.
The DDR2 SDRAM controller converts single data rate to
double data rate on the physical layer side. The data is valid
on the DDR2 SDRAM write command. In 2n, the MSB is
rising-edge data and the LSB is falling-edge data.

cntrl0_user_data_mask[(2m–1):0] Input

This bus is the data mask for write data. Like user_input_data,
it is twice the size of the data mask bus at memory, where m is
the size of the data mask at the memory interface. In 2m, the
MSB applies to rising-edge data and the LSB applies to falling-
edge data.

cntrl0_user_input_address
[(ROW_ADDRESS +
COLUMN_ADDRESS +
BANK_ADDRESS – 1):0](2)

Input

This bus consists of the row address, the column address, and
the bank address for DDR2 SDRAM writes and reads. The
address sequence starting from the LSB is bank address,
column address, and row address.

cntrl0_user_command_register[2:0] Input

Supported user commands for the DDR2 SDRAM controller:

cntrl0_burst_done Input

This signal is used to terminate read or write command. This
signal must be asserted after the last address for two clocks for
BL=4 and for four clocks for BL =8. The DDR2 SDRAM
controller supports write burst or read burst capability for a
single row. The user must terminate the transfer on a column
boundary and must re-initialize the controller for the next row
of transactions on a column boundary.

cntrl0_user_output_data[(2n–1):0] Output

This is the read data from the DDR2 SDRAM. The DDR2
SDRAM controller converts the DDR data from the DDR2
SDRAM to SDR data. As the DDR data is converted to SDR
data, the width of this bus is 2n, where n is data width of the
DDR2 SDRAM data bus.

cntrl0_user_data_valid Output When asserted, this signal indicates user_output_data[(2n–
1):0] is valid.

user_command[2:0] User Command Description

000 NOP

010 Initialize memory

100 Write Request

110 Read Request

Others Reserved

http://www.xilinx.com

276 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 8: Implementing DDR2 SDRAM Controllers
R

cntrl0_user_cmd_ack Output

This is the acknowledgement signal for a user read or write
command. It is asserted by the DDR2 SDRAM controller
during a write or read to/from the DDR2 SDRAM. The user
should not issue any new commands to the controller until
this signal is deasserted.

cntrl0_init_done Output The DDR2 SDRAM controller asserts this signal to indicate
that the DDR2 SDRAM initialization is complete.

cntrl0_auto_ref_req Output

This signal is asserted on every 7.7 µs. It is asserted until the
controller issues an auto-refresh command to the memory.
Upon seeing this signal, the user should terminate any
ongoing command after the current burst transaction by
asserting the cntrl0_burst_done signal. The frequency with
which this signal is asserted is determined by the
MAX_REF_CNT value in parameter file. cntrl0_auto_ref_req
indicates the refresh request to the memory, and
cntrl0_ar_done indicates completion of the auto-refresh
command.

cntrl0_ar_done Output

This indicates that the auto-refresh command was completed
to DDR2 SDRAM. The DDR2 SDRAM controller asserts this
signal for one clock after giving an auto-refresh command to
the DDR2 SDRAM and completion of TRFC time. The TRFC
time is determined by the rfc_count_value value in the
parameter file. The user can assert the next command any time
after the assertion of the cntrl0_ar_done signal.

Notes:
1. All of the signal directions are with respect to the DDR2 SDRAM controller.

Table 8-4: DDR2 SDRAM Controller User Interface Signals (without a Testbench) (Continued)

Signal Names Direction(1) Description

http://www.xilinx.com

MIG User Guide www.xilinx.com 277
UG086 (v2.2) March 3, 2008

Resource Utilization
R

Resource Utilization
A local inversion clocking technique is used in this design. The DCM generates only clk0
and clk90. One DCM and two BUFGMUXs are used. The Spartan designs operate at
166 MHz and below.

DDR2 SDRAM Initialization
Before issuing the memory read and write commands, the controller initializes the DDR2
SDRAM using the memory initialization command. The user can give the initialization
command only after all reset signals are deactivated. The controller is in the reset state for
200 µs after power up. For design optimization, a 200 µs timer is generated from the refresh
counter. The refresh timer is a function of frequency. Therefore, at lower frequencies, the
200 µs timer waits more than 200 µs. Because wait200 happens only during the power-up
sequence, design performance is not degraded. All resets are asserted for 200 µs because
DDR2 SDRAM requires a 200 µs delay prior to applying an executable command after all
power supply and reference voltages are stable. The controller asserts clock-enable to
memory after 200 µs.

Load mode parameters are to be selected from the GUI while generating the design. These
parameters are updated by MIG in the parameter file. When the INIT command is
executed, the DDR2 SDRAM controller passes these values to the Memory Load Mode
register. When the DDR2 SDRAM is initialized, the DDR2 SDRAM controller asserts the
init_done signal.

Figure 8-8 shows the timing for the memory initialization command.

1. The user places the initialization command on user_command_register[2:0] on a
falling edge of clk0 for one clock cycle. This starts the initialization sequence.

2. The DDR2 SDRAM controller indicates that the initialization is complete by asserting
the init_done signal on a falling edge of clk0. The init_done signal is asserted
throughout the period.

3. After init_done is asserted, the user can pass the next command at any time.

I

Figure 8-8: DDR2 SDRAM Initialization

clk0

clk180

user_command_register

init_done

010 Cmd

UG086_c8_08_091007

2

1

3

http://www.xilinx.com

278 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 8: Implementing DDR2 SDRAM Controllers
R

Write
Figure 8-9 shows the timing diagram for a write to DDR2 SDRAM for a burst length of
four. The user initiates the write command by sending a Write instruction to the DDR2
SDRAM controller. To terminate a write burst, the user asserts the burst_done signal for
two clocks after the last user_input_address. The burst_done signal should be asserted for
two clocks for burst lengths of four and four clocks for burst lengths of eight.

The write command is asserted on the falling edge of clk0. In response to a write
command, the DDR2 SDRAM controller acknowledges with the usr_cmd_ack signal on a
falling edge of clk0. If the controller is busy with a refresh, the usr_cmd_ack signal is not
asserted until after the refresh command cycle completes. The user asserts the first address
(row + column + bank address) with the write command and keeps it asserted for three
clocks after usr_cmd_ack assertion. Any subsequent write addresses are asserted on
alternate falling edges of clk0 after deasserting the first memory address for a burst length
of four, and it is asserted once in four clocks for a burst length of eight. The first user data
is asserted on a rising edge of clk90 after usr_cmd_ack is asserted. As the SDR data is
converted to DDR data, the width of this bus is 2n, where n is data width of DDR2 SDRAM
data bus.

For a burst length of four, only two data words (each of 2n) are given to the DDR2 SDRAM
controller for each user address, and four data words are given for a burst length of eight.
Internally, the DDR2 SDRAM controller converts into four data words for a burst length of
four and eight data words for a burst length of eight, each of n bits. To terminate the write
burst, the user asserts burst_done on a rising edge of clk180 for two clocks for a burst
length of four and four clocks for a burst length of eight. The burst_done signal is asserted
after the last memory address. Any further commands to the DDR2 SDRAM controller are
given only after the usr_cmd_ack signal is deasserted. After burst_done is asserted, the
controller terminates the burst and issues a precharge to the memory. The usr_cmd_ack
signal is deasserted after completion of the precharge.

1. A memory write is initiated by issuing a write command to the DDR2 SDRAM
controller. The write command must be asserted on a falling edge of clk0.

2. The DDR2 SDRAM controller acknowledges the write command by asserting the
user_cmd_ack signal on a falling edge of clk0. The user_cmd_ack signal is asserted a
minimum of one clock cycle after the write command is asserted. If the controller is

Figure 8-9: DDR2 SDRAM Write Burst, Burst Lengths of Four and Two Bursts

clk90

WRITE Command (3’b100)

Addr1

3 CLKs

Addr2

D0,D1 D2,D3 D4,D5 D6,D7

user_command_register

burst_done

user_input_data

user_cmd_ack

user_input_address

clk0

UG086_c8_09_0101083

5

6

7
4

2

1

(CLK180) (CLK90)1.75 CLKs

http://www.xilinx.com

MIG User Guide www.xilinx.com 279
UG086 (v2.2) March 3, 2008

Resource Utilization
R

busy with a refresh, the usr_cmd_ack signal is not asserted until after the refresh
command cycle completes.

3. The first user_input_address must be placed along with the command. The input data
is asserted with the clk90 signal after the user_cmd_ack signal is asserted.

4. The user asserts the first address (row + column +bank address) with the write
command and keeps it asserted for three clocks after usr_cmd_ack assertion. The
user_input_address signal is asserted on a falling edge of clk0. All subsequent
addresses are asserted on alternate falling edges of clk0.

5. To terminate the write burst, burst_done is asserted after the last user_input_address.
The burst_done signal is asserted for two clock cycles.

6. The user command is deasserted after burst_done is asserted.

7. The controller deasserts the user_cmd_ack signal after completion of precharge to the
memory. The next command must be given only after user_cmd_ack is deasserted.
Back-to-back write operations are supported only within the same bank and row.

Read
The user initiates a memory read with a read command to the DDR2 SDRAM controller.
Figure 8-10 shows the memory read timing diagram for a burst length of four.

The user provides the first memory address with the read command, and subsequent
memory addresses upon receiving the usr_cmd_ack signal. Data is available on the user
data bus with the user_data_valid signal. To terminate read burst, the user asserts the
burst_done signal on a falling edge of clk0 for two clocks with the deassertion of the last
user_input_address. All subsequent addresses are asserted on alternate clocks for burst
lengths of four, and subsequent addresses are asserted once every four clock cycles for
burst lengths of eight.

For burst lengths of four, the burst_done signal is asserted for two clocks after the last
address and for four clocks for burst lengths of eight.

The read command flow is similar to the write command flow.

Figure 8-10: DDR2 SDRAM Read, Burst Lengths of Four and Two Bursts

clk90

Read Command

Addr1

3 CLKs

Addr2

2 CLKs

D0,D1 D2,D3 D4,D5 D6,D7

user_command_
register

burst_done

user_data_valid

user_output_data

user_cmd_ack

user_input_
address

clk0

UG086_c8_10_010108
4

5

6

7

8

3
2

1

http://www.xilinx.com

280 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 8: Implementing DDR2 SDRAM Controllers
R

1. A memory read is initiated by issuing a read command to the DDR2 SDRAM
controller. The read command is accepted on a falling edge of clk0.

2. The first read address must be placed along with the read command. In response to the
read command, the DDR2 SDRAM controller asserts the user_cmd_ack signal on a
falling edge of clk0. The user_cmd_ack signal is asserted a minimum of one clock cycle
after the read command is asserted. If the controller is busy with a refresh, the
usr_cmd_ack signal is not asserted until after the refresh command cycle completes.

3. The user asserts the first address (row + column + bank address) with the read
command and keeps it asserted for three clocks after usr_cmd_ack is asserted. The
user_input_address signal is then accepted on the falling edge of clk0. All subsequent
memory read addresses are asserted on alternate falling edges of clk0.

4. The data on user_output_data is valid only when the user_data_valid signal is
asserted.

5. The data read from the DDR2 SDRAM is available on user_output_data, which is
asserted with clk90. Because the DDR2 SDRAM data is converted to SDR data, the
width of this bus is 2n, where n is the data width of the DDR2 SDRAMs. For a read
burst length of four, the DDR2 SDRAM controller outputs only two data words with
each user address.

6. To terminate the read burst, burst_done is asserted for two clocks on the falling edge of
clk0. The burst_done signal is asserted after the last memory address.

7. The user command is deasserted after burst_done is asserted.

8. The controller deasserts the user_cmd_ack signal after completion of precharge to the
memory. Any further commands to the DDR2 SDRAM controller should be given after
user_cmd_ack is deasserted. Back-to-back read operations are supported only within
the same bank and row. Approximately 17 clock cycles pass between the time a read
command is asserted on the user interface and the time data becomes available on the
user interface.

Auto Refresh
The DDR2 SDRAM controller does a memory refresh periodically. Every 7.7 µs, the
controller raises an auto-refresh request. The user must terminate any ongoing commands
when auto_ref_req flag is asserted after the current burst transaction by asserting the
burst_done signal. The auto_ref_req flag is asserted until the controller issues a refresh
command to the memory. The user must wait for completion of the auto-refresh command
before giving any commands to the controller when auto_ref_req is asserted.

The ar_done signal is asserted by the DDR2 SDRAM controller upon completion of the
auto-refresh command—i.e., after TRFC time. The ar_done signal is asserted on the falling
edge of clk0 for one clock cycle.

The controller sets the MAX_REF_CNT value in the parameter file according to the
frequency and selected memory component for a refresh interval (7.7 µs). The
rfc_count_value setting in the parameter file defines TRFC, the time between the refresh
command to Active or another refresh command.

After completion of the auto-refresh command, the next command can be given any time
after ar_done is asserted.

Changing the Refresh Rate

Change the global ̀ define (for Verilog) or constant (for VHDL) variable MAX_REF_CNT in
mymodule_parameters_0.v (or .vhd) so that MAX_REF_CNT = (refresh interval in

http://www.xilinx.com

MIG User Guide www.xilinx.com 281
UG086 (v2.2) March 3, 2008

Resource Utilization
R

clock periods) = (refresh interval) / (clock period). For example, for a refresh rate of 7.7 µs
with a memory bus running at 133 MHz:

MAX_REF_CNT = 7.7 µs / (clock period) = 7.7 µs / 7.5 ns = 1026 (decimal) = 0x402

If the above value exceeds 2MAX_REF_WIDTH – 1, the value of MAX_REF_WIDTH must be
increased accordingly in parameters_0.v (or .vhd) to increase the width of the counter
used to track the refresh interval.

Load Mode
MIG does not support the LOAD MODE command.

UCF Constraints
Some constraints are required to successfully create the design. The following examples
explain the different constraints in the UCF for XST.

Calibration Circuit Constraints

All LUTs in the matched delay circuits are constrained to specific locations in the device.

Example:

INST "infrastructure_top0/cal_top0/tap_dly0/l0" RLOC=X0Y6;
INST "infrastructure_top0/cal_top0/tap_dly0/l0" U_SET =
delay_calibration_chain;

INST "infrastructure_top0/cal_top0/tap_dly0/gen_tap1[0].r" RLOC=X0Y6;
INST "infrastructure_top0/cal_top0/tap_dly0/gen_tap1[0].r" U_SET =
delay_calibration_chain;

INST "infrastructure_top0/cal_top0/tap_dly0/gen_tap1[1].r" RLOC=X0Y6;
INST "infrastructure_top0/cal_top0/tap_dly0/gen_tap1[1].r" U_SET =
delay_calibration_chain;

Data and Data Strobe Constraints

Data and data strobe signals are assigned to specific pins in the device; placement
constraints related to the dqs_delay circuit and the FIFOs used for the data_read module
are specified.

Example:

NET "cntrl0_DDR2_DQS[0]" LOC = Y6;
INST "ddr2_top0/data_path0/data_read_controller0/gen_delay[0].dqs_delay_col0/
one" LOC = SLICE_X0Y110;
INST "ddr2_top0/data_path0/data_read_controller0/gen_delay[0].dqs_delay_col0/
one" BEL = F;
NET "cntrl0_DDR2_DQ[0]" LOC = Y5;
INST "ddr2_top0/data_path0/data_read0/gen_strobe[0].strobe/fifo0_bit0" LOC =
SLICE_X2Y111;

MAXDELAY Constraints

The MAXDELAY constraints define the maximum allowable delay on the net. Following
are the list of MAXDELAY constraints used in Spartan FPGA designs in the UCF on
different nets. The values provided here vary depending on FPGA family and the device
type. Some values are dependent on frequency. The constraints shown here are from
example_design. The hierarchy paths of the nets are different between
example_design and user_design.

http://www.xilinx.com

282 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 8: Implementing DDR2 SDRAM Controllers
R

NET "infrastructure_top0/cal_top0/tap_dly0/tap[7]" MAXDELAY = 350ps;
NET "infrastructure_top0/cal_top0/tap_dly0/tap[15]" MAXDELAY = 350ps;
NET "infrastructure_top0/cal_top0/tap_dly0/tap[23]" MAXDELAY = 350ps;

These constraints are used to minimize the tap delay inverter connection wire length. This
delay should be minimized to calibrate the delay of a tap (LUT element) accurately. These
values are independent of frequency and vary from family to family and device to device.
Without these constraints, the tool might synthesize longer routes between the tap
connections. Inappropriate delays in this circuit could cause the design to fail in hardware.

NET "main_00/top0/dqs_int_delay_in*" MAXDELAY = 675ps;

This constraint is used for the DQS nets from the I/O pad to the input of the LUT delay
chain. Without this constraint, the nets take unpredictable delays that affect the Data Valid
window. In Spartan designs, data is latched using the DQS signal. In order to latch the
correct data, DQS is delayed using LUT delay elements to center-align with respect to the
input read data. Incorrect data could be latched if the delays on this net are unpredictable.
Unpredictable delays might also cause the design to have intermittent failures, which are
difficult to debug in hardware.

NET "main_00/top0/dqs_div_rst" MAXDELAY = 460ps;

The net dqs_div_rst is the loopback signal. This signal is used as an enable for read data
FIFOs and FIFO write pointers after it is delayed using the LUT delay elements. The
overall delay on this net should be comparable with the delay on the DQS signal. This net
is constrained to control the overall delay. Both the dqs_div_rst and DQS signals take
similar paths. If the delay on the dqs_div_rst signal is higher, the first read data from
memory might be missed.

NET
"main_00/top0/data_path0/data_read_controller0/gen_delay*dqs_delay_col
/delay" MAXDELAY = 140ps;
NET
"main_00/top0/data_path0/data_read_controller0/rst_dqs_div_delayed/
delay*" MAXDELAY = 140 ps;

These constraints are required to minimize the wire delays between the LUT elements of a
LUT delay chain that is used to delay the DQS and rst_dqs_div loopback signal. Higher
wire delays between LUT delay elements can shift the data valid window, which in turn
can cause incorrect data to be latched. Therefore, the MAXDELAY constraint is required for
these nets.

NET "main_00/top0/data_path0/data_read_controller0/rst_dqs_div"
MAXDELAY = 3383 ps;
NET "main_00/top0/data_path0/data_read0/fifo*_wr_en*"
MAXDELAY = 3007ps;

These constraints are required because these paths are not constrained otherwise. The total
delay on the rst_dqs_div and fifo_wr_en nets must not exceed the clock period. The total
delay on both the nets is set to 85% of the clock period, leaving 15% as margin. These
delays vary with frequency.

NET "main_00/top0/data_path0/data_read0/fifo*_wr_addr[*]"
MAXDELAY = 5610ps;

The MAXDELAY constraint is required on FIFO write address because this path is not
constrained otherwise. This is a single clock cycle path. It is set to 80% of the clock period,
leaving 20% as margin because this net generally meets the required constraint.

http://www.xilinx.com

MIG User Guide www.xilinx.com 283
UG086 (v2.2) March 3, 2008

I/O Banking Rules
R

I/O Banking Rules
There are I/O banking rules to be followed for I/O pin allocations, stating that the I/O
signals allocated in a bank should adhere to compatible I/O standards. Refer to the “Rules
Concerning Banks” section for additional information regarding I/O banking rules in
DS099 [Ref 27].

Design Notes
The DDR2 SDRAM design is not validated on hardware. The MAXDELAY constraints in
the UCF are set based on the selected frequency.

Calibration circuit details and data capture techniques are covered in XAPP768c [Ref 23].

Tool Output
When the design is generated from the tool, it outputs docs, example_design, and
user_design folders. The example_design consists of the design with test_bench,
and user_design consists of the design without test_bench. Each folder contains
rtl, par, synth, and sim folders. The sim folder contains simulation files for the
generated design. The sim folder contains the external testbench, memory model, .do file,
and the executable file to simulate the generated design. The memory model files are
currently generated in Verilog only. To learn more details about the files in the sim folder
and to simulate the design, see simulation_help.chm in the sim folder.

Supported Devices
The design generated out of MIG is independent of memory speed grade, hence the
package part of the memory component is replaced with X, where X indicates a don't care
condition.

The tables below list the components (Table 8-5) and DIMMs (Table 8-6 through Table 8-8)
supported by the tool for Spartan-3 DDR2 local clocking designs.

Table 8-5: Supported Components for DDR2 SDRAM Local Clocking
(Spartan-3 FPGAs)

Components Packages (XX) Components Packages (XX)

MT47H64M4XX-3 BP MT47H128M8XX-3 BT,HQ

MT47H64M4XX-37E BP MT47H128M8XX-37E BT,HQ

MT47H64M4XX-5E BP MT47H128M8XX-5E BT,HQ

MT47H128M4XX-3 B6,CB,GB MT47H256M8XX-3 HG

MT47H128M4XX-37E B6,CB,GB MT47H256M8XX-37E HG

MT47H128M4XX-5E B6,CB,GB MT47H256M8XX-5E HG

MT47H256M4XX-3 BT,HQ MT47H16M16XX-3 BG

MT47H256M4XX-37E BT,HQ MT47H16M16XX-37E BG

MT47H256M4XX-5E BT,HQ MT47H16M16XX-5E BG

MT47H512M4XX-3 HG MT47H32M16XX-3 BN,CC,FN,GC

MT47H512M4XX-37E HG MT47H32M16XX-37E BN,CC,FN,GC

MT47H512M4XX-5E HG MT47H32M16XX-5E BN,CC,FN,GC

http://www.xilinx.com

284 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 8: Implementing DDR2 SDRAM Controllers
R

MT47H32M8XX-3 BP MT47H64M16XX-3 BT,HR

MT47H32M8XX-37E BP MT47H64M16XX-37E BT,HR

MT47H32M8XX-5E BP MT47H64M16XX-5E BT,HR

MT47H64M8XX-3 B6,CB,F6,GB MT47H128M16XX-3 HG

MT47H64M8XX-37E B6,CB,F6,GB MT47H128M16XX-37E HG

MT47H64M8XX-5E B6,CB,F6,GB MT47H128M16XX-5E --

Table 8-6: Supported Unbuffered DIMMs for DDR2
SDRAM Local Clocking (Spartan-3 FPGAs)

Unbuffered DIMMs

MT4HTF1664AY-667 MT8HTF6464AY-53E

MT4HTF1664AY-40E MT8HTF6464AY-40E

MT4HTF3264AY-667 MT8HTF12864AY-667

MT4HTF3264AY-40E MT8HTF12864AY-40E

MT4HTF6464AY-667 MT9HTF3272AY-667

MT4HTF6464AY-40E MT9HTF3272AY-40E

MT8HTF6464AY-667 MT9HTF6472AY-667

Table 8-7: Supported Registered DIMMs for DDR2 SDRAM Local Clocking
(Spartan-3 FPGAs)

Registered DIMMs Packages (X) Registered DIMMs Packages (X)

MT9HTF3272XX-53E Y MT18HTF6472XX-53E DY,Y

MT9HTF3272XX-40E Y MT18HTF6472XX-40E DY,Y

MT9HTF6472XX-53E Y MT18HTF12872XX-53E DY,MY,NDY,
NY,PY,Y

MT9HTF6472XX-40E Y MT18HTF12872XX-40E DY,PY,Y

MT9HTF12872XX-53E PY,Y MT18HTF25672XX-53E PDY,PY,Y

MT9HTF12872XX-40E Y MT18HTF25672XX-40E DY,PDY,Y

Table 8-8: Supported SODIMMs for DDR2 SDRAM
Local Clocking (Spartan-3 FPGAs)

SODIMMs

MT4HTF1664HY-667 MT8HTF3264HY-667

MT4HTF1664HY-53E MT8HTF3264HY-53E

MT4HTF1664HY-40E MT8HTF3264HY-40E

MT4HTF3264HY-667 MT8HTF6464HY-667

MT4HTF3264HY-53E MT8HTF6464HY-53E

MT4HTF3264HY-40E MT8HTF6464HY-40E

Table 8-5: Supported Components for DDR2 SDRAM Local Clocking
(Spartan-3 FPGAs) (Continued)

Components Packages (XX) Components Packages (XX)

http://www.xilinx.com

MIG User Guide www.xilinx.com 285
UG086 (v2.2) March 3, 2008

Supported Devices
R

The tables below list the components (Table 8-9) and DIMMs (Table 8-10 through
Table 8-12) supported by the tool for Spartan-3A/AN DDR2 local clocking designs.

Table 8-9: Supported Components for DDR2 SDRAM Local Clocking
(Spartan-3A/AN FPGAs)

Components Packages (XX) Components Packages (XX)

MT47H64M4XX-3 BP MT47H128M8XX-3 BT,HQ

MT47H64M4XX-37E BP MT47H128M8XX-37E BT,HQ

MT47H64M4XX-5E BP MT47H128M8XX-5E BT,HQ

MT47H128M4XX-3 B6,CB,GB MT47H256M8XX-3 HG

MT47H128M4XX-37E B6,CB,GB MT47H256M8XX-37E HG

MT47H128M4XX-5E B6,CB,GB MT47H256M8XX-5E HG

MT47H256M4XX-3 BT,HQ MT47H16M16XX-3 BG

MT47H256M4XX-37E BT,HQ MT47H16M16XX-37E BG

MT47H256M4XX-5E BT,HQ MT47H16M16XX-5E BG

MT47H512M4XX-3 HG MT47H32M16XX-3 BN,CC,FN,GC

MT47H512M4XX-37E HG MT47H32M16XX-37E BN,CC,FN,GC

MT47H512M4XX-5E HG MT47H32M16XX-5E BN,CC,FN,GC

MT47H32M8XX-3 BP MT47H64M16XX-3 BT,HR

MT47H32M8XX-37E BP MT47H64M16XX-37E BT,HR

MT47H32M8XX-5E BP MT47H64M16XX-5E BT,HR

MT47H64M8XX-3 B6,CB,F6,GB MT47H128M16XX-3 HG

MT47H64M8XX-37E B6,CB,F6,GB MT47H128M16XX-37E HG

MT47H64M8XX-5E B6,CB,F6,GB MT47H128M16XX-5E --

Table 8-10: Supported Unbuffered DIMMs for DDR2
SDRAM Local Clocking (Spartan-3A/AN FPGAs)

Unbuffered DIMMs

MT4HTF1664AY-667 MT8HTF6464AY-667

MT4HTF1664AY-40E MT8HTF6464AY-53E

MT4HTF3264AY-667 MT8HTF6464AY-40E

MT4HTF3264AY-40E MT8HTF12864AY-667

MT4HTF6464AY-667 MT8HTF12864AY-40E

MT4HTF6464AY-40E

Table 8-11: Supported Registered DIMMs for DDR2 SDRAM Local Clocking
(Spartan-3A/AN FPGAs)

Registered DIMMs Packages (X) Registered DIMMs Packages (X)

MT9HTF3272XX-53E Y MT9HTF6472XX-40E Y

MT9HTF3272XX-40E Y MT9HTF12872XX-53E PY,Y

MT9HTF6472XX-53E Y MT9HTF12872XX-40E Y

http://www.xilinx.com

286 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 8: Implementing DDR2 SDRAM Controllers
R

The tables below list the components (Table 8-13 and Table 8-16) and DIMMs (Table 8-14
through Table 8-15) supported by the tool for Spartan-3A DSP and Spartan-3E FPGA
DDR2 local clocking designs.

Table 8-12: Supported SODIMMs for DDR2 SDRAM
Local Clocking (Spartan-3A/AN FPGAs)

SODIMMs

MT4HTF1664HY-667 MT8HTF3264HY-667

MT4HTF1664HY-53E MT8HTF3264HY-53E

MT4HTF1664HY-40E MT8HTF3264HY-40E

MT4HTF3264HY-667 MT8HTF6464HY-667

MT4HTF3264HY-53E MT8HTF6464HY-53E

MT4HTF3264HY-40E MT8HTF6464HY-40E

Table 8-13: Supported Components for DDR2 SDRAM Local Clocking
(Spartan-3A DSP FPGAs)

Components Packages (XX) Components Packages (XX)

MT47H64M4XX-3 BP MT47H128M8XX-3 BT,HQ

MT47H64M4XX-37E BP MT47H128M8XX-37E BT,HQ

MT47H64M4XX-5E BP MT47H128M8XX-5E BT,HQ

MT47H128M4XX-3 B6,CB,GB MT47H256M8XX-3 HG

MT47H128M4XX-37E B6,CB,GB MT47H256M8XX-37E HG

MT47H128M4XX-5E B6,CB,GB MT47H256M8XX-5E HG

MT47H256M4XX-3 BT,HQ MT47H16M16XX-3 BG

MT47H256M4XX-37E BT,HQ MT47H16M16XX-37E BG

MT47H256M4XX-5E BT,HQ MT47H16M16XX-5E BG

MT47H512M4XX-3 HG MT47H32M16XX-3 BN,CC,FN,GC

MT47H512M4XX-37E HG MT47H32M16XX-37E BN,CC,FN,GC

MT47H512M4XX-5E HG MT47H32M16XX-5E BN,CC,FN,GC

MT47H32M8XX-3 BP MT47H64M16XX-3 BT,HR

MT47H32M8XX-37E BP MT47H64M16XX-37E BT,HR

MT47H32M8XX-5E BP MT47H64M16XX-5E BT,HR

MT47H64M8XX-3 B6,CB,F6,GB MT47H128M16XX-3 HG

MT47H64M8XX-37E B6,CB,F6,GB MT47H128M16XX-37E HG

MT47H64M8XX-5E B6,CB,F6,GB MT47H128M16XX-5E --

http://www.xilinx.com

MIG User Guide www.xilinx.com 287
UG086 (v2.2) March 3, 2008

Supported Devices
R

Table 8-14: Supported Unbuffered DIMMs for DDR2
SDRAM Local Clocking (Spartan-3A DSP FPGAs)

Unbuffered DIMMs

MT4HTF1664AY-667 MT8HTF6464AY-667

MT4HTF1664AY-40E MT8HTF6464AY-53E

MT4HTF3264AY-667 MT8HTF6464AY-40E

MT4HTF3264AY-40E MT8HTF12864AY-667

MT4HTF6464AY-667 MT8HTF12864AY-40E

MT4HTF6464AY-40E

Table 8-15: Supported SODIMMs for DDR2 SDRAM
Local Clocking (Spartan-3A DSP FPGAs)

SODIMMs

MT4HTF1664HY-667 MT8HTF3264HY-667

MT4HTF1664HY-53E MT8HTF3264HY-53E

MT4HTF1664HY-40E MT8HTF3264HY-40E

MT4HTF3264HY-667 MT8HTF6464HY-667

MT4HTF3264HY-53E MT8HTF6464HY-53E

MT4HTF3264HY-40E MT8HTF6464HY-40E

Table 8-16: Supported Components for DDR2 SDRAM Local Clocking
(Spartan-3E FPGAs)

Components Packages (XX) Components Packages (XX)

MT47H64M4XX-3 BP MT47H128M8XX-3 BT,HQ

MT47H64M4XX-37E BP MT47H128M8XX-37E BT,HQ

MT47H64M4XX-5E BP MT47H128M8XX-5E BT,HQ

MT47H128M4XX-3 B6,CB,GB MT47H256M8XX-3 HG

MT47H128M4XX-37E B6,CB,GB MT47H256M8XX-37E HG

MT47H128M4XX-5E B6,CB,GB MT47H256M8XX-5E HG

MT47H256M4XX-3 BT,HQ MT47H16M16XX-3 BG

MT47H256M4XX-37E BT,HQ MT47H16M16XX-37E BG

MT47H256M4XX-5E BT,HQ MT47H16M16XX-5E BG

MT47H512M4XX-3 HG MT47H32M16XX-3 BN,CC,FN,GC

MT47H512M4XX-37E HG MT47H32M16XX-37E BN,CC,FN,GC

MT47H512M4XX-5E HG MT47H32M16XX-5E BN,CC,FN,GC

MT47H32M8XX-3 BP MT47H64M16XX-3 BT,HR

MT47H32M8XX-37E BP MT47H64M16XX-37E BT,HR

MT47H32M8XX-5E BP MT47H64M16XX-5E BT,HR

MT47H64M8XX-3 B6,CB,F6,GB MT47H128M16XX-3 HG

MT47H64M8XX-37E B6,CB,F6,GB MT47H128M16XX-37E HG

MT47H64M8XX-5E B6,CB,F6,GB MT47H128M16XX-5E --

http://www.xilinx.com

288 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 8: Implementing DDR2 SDRAM Controllers
R

Maximum Data Widths
Table 8-17 provides the maximum data widths for Spartan-3 FPGAs. Table 8-18 provides
the maximum data widths for Spartan-3E FPGAs. Table 8-21 provides the maximum data
widths for Spartan-3A single-ended DQS FPGAs (differential DQS is disabled). Table 8-22
provides the maximum data widths for Spartan-3A differential DQS FPGAs (differential
DQS is enabled). Table 8-23 provides the maximum data widths for Spartan-3AN
differential DQS FPGAs (single/differential DQS is enabled). Table 8-24 provides the
maximum data widths for Spartan-3A DSP differential DQS FPGAs (single/differential
DQS is enabled). All the supported data width tables have the Mask Enable option
enabled.

Table 8-17: Spartan-3 FPGA Maximum Data Width for DDR and DDR2 Memories

Serial
Number

FPGA

Maximum Data Width when Data, Address, and Control are Allocated in...

...Different Banks ...the Same Bank

Bank
2

Bank
3

Bank
6

Bank
7

Left Right
Bank

2
Bank

3
Banks

6/7
Left Right

1 XC3S50CP132 0 0 0 0 8 8 0 0 0 0 0

2 XC3S50PQ208 0 0 0 0 8 8 0 0 0 0 0

3 XC3S50TQ144 0 0 0 0 8 8 0 0 0 0 0

4 XC3S200FT256 8 8 8 8 16 16 0 0 0 8 8

5 XC3S200PQ208 0 8 0 0 16 16 0 0 0 0 0

6 XC3S200TQ144 0 0 0 0 8 8 0 0 0 0 0

7 XC3S400FG320 8 8 8 8 24 24 0 0 0 16 16

8 XC3S400FG456 16 8 16 8 32 24 0 0 0 16 16

9 XC3S400FT256 8 8 8 8 16 16 0 0 0 8 8

10 XC3S400PQ208 0 0 0 0 8 8 0 0 0 0 0

11 XC3S400TQ144 0 0 0 0 8 8 0 0 0 0 0

12 XC3S1000FG320 8 8 8 8 24 24 0 0 0 16 16

13 XC3S1000FG456 16 16 16 16 48 48 8 8 8 32 32

14 XC3S1000FG676 24 24 24 24 48 48 8 8 8 32 32

15 XC3S1000FT256 8 8 8 8 16 16 0 0 0 8 8

16 XC3S1500FG320 8 8 8 8 24 24 0 0 0 16 16

17 XC3S1500FG456 16 16 16 16 48 48 8 8 8 40 40

18 XC3S1500FG676 32 32 32 32 72 72 16 16 16 48 48

19 XC3S2000FG456 16 16 16 16 48 48 8 8 8 32 32

20 XC3S2000FG676 32 32 32 32 72 72 16 16 16 56 56

21 XC3S2000FG900 32 32 32 40 72 72 24 24 24 64 64

22 XC3S4000FG676 24 32 32 32 72 72 16 16 16 56 48

23 XC3S4000FG900 40 40 40 40 72 72 32 32 32 72 72

24 XC3S4000FG1156 48 48 48 48 72 72 32 32 32 72 72

25 XC3S5000FG676 24 24 24 32 64 64 16 16 16 48 48

http://www.xilinx.com

MIG User Guide www.xilinx.com 289
UG086 (v2.2) March 3, 2008

Supported Devices
R

26 XC3S5000FGG676 24 24 24 32 64 64 16 16 16 48 48

27 XC3S5000FG900 40 40 40 40 72 72 32 32 32 72 72

28 XC3S5000FG1156 56 56 48 56 72 72 40 40 40 72 72

Table 8-17: Spartan-3 FPGA Maximum Data Width for DDR and DDR2 Memories (Continued)

Serial
Number

FPGA

Maximum Data Width when Data, Address, and Control are Allocated in...

...Different Banks ...the Same Bank

Bank
2

Bank
3

Bank
6

Bank
7

Left Right
Bank

2
Bank

3
Banks

6/7
Left Right

Table 8-18: Spartan-3E FPGA Maximum Data Width for DDR SDRAMs

Serial
Number

FPGA

Maximum Data Width when Data, Address, and
Control are Allocated in...

...Different Banks ...the Same Bank

Left Right Left/Right

1 XC3S100ECP132 8 8 0

2 XC3S100ETQ144 8 8 0

3 XC3S250ECP132 8 0 0

4 XC3S250EFT256 16 16 0

5 XC3S250EPQ208 16 16 0

6 XC3S250ETQ144 8 8 0

7 XC3S500ECP132 8 0 0

8 XC3S500EFG320 24 24 8

9 XC3S500EFT256 16 16 8

10 XC3S500EPQ208 8 8 0

11 XC3S1200EFG320 16 16 16

12 XC3S1200EFG400 32 32 16

13 XC3S1200EFT256 16 8 8

14 XC3S1600EFG320 16 16 8

15 XC3S1600EFG400 24 32 16

16 XC3S1600EFG484 48 40 32

http://www.xilinx.com

290 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 8: Implementing DDR2 SDRAM Controllers
R

Table 8-19: Spartan-3E FPGA Differential DQS Maximum Data Width for DDR
SDRAMs (Differential DQS Enabled)

Serial
Number

FPGA

Maximum Data Width When Data, Address, and
Control are Allocated in Different Banks

Left Right

1 XC3S100ECP132 0 0

2 XC3S100ETQ144 0 0

3 XC3S250ECP132 0 0

4 XC3S250ETQ144 0 0

5 XC3S250EPQ208 8 16

6 XC3S250EFT256 8 16

7 XC3S500ECP132 0 0

8 XC3S500EPQ208 0 8

9 XC3S500EFT256 0 8

10 XC3S500EFG320 8 16

11 XC3S1200EFT256 0 8

12 XC3S1200EFG320 8 16

13 XC3S1200EFG400 32 32

14 XC3S1600EFG320 8 16

15 XC3S1600EFG400 16 16

16 XC3S1600EFG484 40 40

Table 8-20: Spartan-3E FPGA Single-Ended DQS Maximum Data Width for DDR
SDRAMs (Differential DQS Disabled)

Serial
Number

FPGA

Maximum Data Width When Data, Address, and
Control are Allocated in Different Banks

Left Right

1 XC3S100ECP132 8 8

2 XC3S100ETQ144 8 8

3 XC3S250ECP132 8 0

4 XC3S250ETQ144 8 8

5 XC3S250EPQ208 16 16

6 XC3S250EFT256 16 16

7 XC3S500ECP132 8 0

8 XC3S500EPQ208 8 8

9 XC3S500EFT256 16 16

http://www.xilinx.com

MIG User Guide www.xilinx.com 291
UG086 (v2.2) March 3, 2008

Supported Devices
R

10 XC3S500EFG320 24 24

11 XC3S1200EFT256 8 16

12 XC3S1200EFG320 16 16

13 XC3S1200EFG400 32 32

14 XC3S1600EFG320 16 16

15 XC3S1600EFG400 32 24

16 XC3S1600EFG484 40 48

Table 8-21: Spartan-3A FPGA Single-Ended DQS Maximum Data Width
(Differential DQS Disabled)

Serial
Number

FPGA

Maximum Data Width when Data, Address, and
Control are Allocated in...

...Different Banks ...the Same Bank

Left/Right Left Right

1 XC3S50ATQ144 8 0 0

2 XC3S50AFT256 8 0 0

3 XC3S200AFT256 16/24 8 8

4 XC3S400AFT256 16 8 8

5 XC3S200AFG320 16 8 16

6 XC3S400AFG320 24 8 16

7 XC3S400AFG400 32 16 16

8 XC3S700AFG400 32 16 16

9 XC3S700AFG484 40 24 32

10 XC3S1400AFG484 40 24 32

11 XC3S1400AFG676 72 48 48

Table 8-20: Spartan-3E FPGA Single-Ended DQS Maximum Data Width for DDR
SDRAMs (Differential DQS Disabled) (Continued)

Serial
Number

FPGA

Maximum Data Width When Data, Address, and
Control are Allocated in Different Banks

Left Right

http://www.xilinx.com

292 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 8: Implementing DDR2 SDRAM Controllers
R

Table 8-22: Spartan-3A FPGA Differential DQS Maximum Data Width
(Differential DQS Enabled)

Serial
Number

FPGA

Maximum Data Width when Data, Address, and
Control are Allocated in...

...Different Banks ...the Same Bank

Left Right Left Right

1 XC3S50ATQ144 8 8 0 0

2 XC3S200AFG320 24 24 8 16

3 XC3S200AFT256 16 24 8 8

4 XC3S400AFG320 24 24 8 16

5 XC3S400AFG400 32 32 16 16

6 XC3S400AFT256 16 16 8 8

7 XC3S700AFG400 24 32 16 16

8 XC3S700AFG484 40 40 24 32

9 XC3S1400AFG484 40 40 24 32

10 XC3S1400AFG676 64 64 48 48

11 XC3S50AFT256 8 8 0 0

Table 8-23: Spartan-3AN FPGA DQS Maximum Data Width
(Single/Differential DQS Enabled)

Serial
Number

FPGA

Maximum Data Width when Data, Address, and
Control are Allocated in...

...Different Banks ...the Same Bank

Left Right Left Right

1 XC3S50ANTQG144 8 8 0 0

2 XC3S50ANFTG256 8 8 0 0

3 XC3S200ANFTG256 16 24 8 8

4 XC3S400ANFGG400 32 32 16 16

5 XC3S700ANFGG484 40 40 24 32

6 XC3S1400ANFGG676(1) 64 64 48 48

Notes:
1. For the XC3S1400ANFGG676 part, MIG can generate 72-bit single-ended DQS RDIMM with address

and data on different banks.

http://www.xilinx.com

MIG User Guide www.xilinx.com 293
UG086 (v2.2) March 3, 2008

Supported Devices
R

DIMM Support for Spartan-3 Generation Devices

Table 8-24: Spartan-3A DSP FPGA DQS Maximum Data Width (Single/Differential
DQS Enabled)

Serial
Number

FPGA

Maximum Data Width when Data, Address, and
Control are Allocated in...

...Different Banks ...the Same Bank

Left Right Left Right

1 XC3SD1800A-CS484 32 32 16 16

2 XC3SD3400A-CS484 32 32 16 16

3 XC3SD1800A-FG676 64 64 48 48

4 XC3SD3400A-FG676 64 64 48 48

Table 8-25: DIMM Support for Spartan-3 Devices

Serial
Number

FPGA
64-bit DIMM 72-bit DIMM

x4 x8 x16 x4 x8 x16

1 XC3S1500FG676 No Yes Yes No Yes Yes

2 XC3S2000FG676 No Yes Yes No Yes Yes

3 XC3S4000FG676 No Yes Yes No Yes Yes

4 XC3S5000FG676 No Yes Yes No No No

5 XC3S2000FG900 Yes Yes Yes Yes Yes Yes

6 XC3S4000FG900 Yes Yes Yes Yes Yes Yes

7 XC3S5000FG900 Yes Yes Yes Yes Yes Yes

8 XC3S4000FG1156 Yes Yes Yes Yes Yes Yes

9 XC3S5000FG1156 Yes Yes Yes Yes Yes Yes

10 XC3S1500LFG676 No Yes Yes No Yes Yes

11 XC3S4000LFG900 Yes Yes Yes Yes Yes Yes

Table 8-26: DIMM Support for Spartan-3A and Spartan-3AN Devices

Serial
Number

FPGA
64-bit DIMM 72-bit RDIMM

x4 x8 x16 x4 x8 x16

1 XC3S1400AFG676 No Yes Yes No Yes Yes

2 XC3S1400ANFGG676 No Yes Yes No Yes Yes

http://www.xilinx.com

294 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 8: Implementing DDR2 SDRAM Controllers
R

Note: Spartan-3E devices do not support 64-bit or 72-bit DIMMs.

Design Frequency Range in MHz for Spartan-3 Generation Devices

Note: NS = Not Supported.

Table 8-27: DIMM Support for Spartan-3A DSP Devices

Serial
Number

FPGA
64-bit DIMM 72-bit RDIMM

x4 x8 x16 x4 x8 x16

1 XC3SD1800AFG676 No Yes Yes No No No

2 XC3SD3400AFG676 No Yes Yes No No No

Table 8-28: Spartan-3 Generation Component Controllers

FPGA Family
DDR SDRAM DDR2 SDRAM

≤ 32-bit > 32-bit ≤ 32-bit > 32-bit

Spartan-3A/3AN/3A DSP 166 166 166 166

Spartan-3E 166 166 166 166

Spartan-3 166 133 166 133

Table 8-29: Spartan-3 Generation DIMM Controllers

FPGA Family DDR SDRAM DDR2 SDRAM

Spartan-3A/3AN/3A DSP 166 166 166 166

Spartan-3E NS NS NS NS

Spartan-3 133 133 133 133

http://www.xilinx.com

MIG User Guide www.xilinx.com 295
UG086 (v2.2) March 3, 2008

Hardware Tested Configurations
R

Hardware Tested Configurations
The frequencies shown in Table 8-30 were achieved on the Spartan-3A FPGA Starter Kit
under nominal conditions. This frequency should not be used to determine the maximum
design frequency. The maximum design frequency supported in the MIG wizard is based
on a combination of the TRCE results for fabric timing on multiple device/package
combinations and I/O timing analysis using FPGA and memory timing parameters for a
64-bit interface.

The frequency shown in Table 8-31 was achieved on the Spartan-3A DSP 3400A
Development Board under nominal conditions. This frequency should not be used to
determine the design frequency. The maximum design frequency supported in the MIG
wizard is based a combination of the TRCE results for fabric timing on multiple
device/package combinations and I/O timing analysis using FPGA and memory timing
parameters for a 64-bit interface.

Table 8-30: Hardware Tested Configurations for Spartan-3A FPGA DDR2 SDRAM
Designs

Synthesis Tools XST

HDL Verilog and VHDL

FPGA Device XC3S700AFG484-4

Burst Lengths 4 and 8

CAS Latency (CL) 3

16-bit Design Tested on 16-bit Component “MT47H32M16XX-5E”

Frequency Range 25 MHz to 225 MHz

Table 8-31: Hardware Tested Configurations for Spartan-3A DSP FPGA DDR2 SDRAM
Designs

Synthesis Tools XST

HDL Verilog and VHDL

FPGA Device XC3SD3400AFG676-4

Burst Lengths 4 and 8

CAS Latency (CL) 3

32-bit Design Tested on 64-bit SO DIMM “MT4HTF6464HY-667”

Frequency 133 MHz

http://www.xilinx.com

296 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 8: Implementing DDR2 SDRAM Controllers
R

http://www.xilinx.com

MIG User Guide www.xilinx.com 297
UG086 (v2.2) March 3, 2008

R

Section IV: Virtex-5 FPGA to Memory Interfaces

Chapter 9, “Implementing DDR2 SDRAM Controllers”

Chapter 10, “Implementing QDRII SRAM Controllers”

Chapter 11, “Implementing DDR SDRAM Controllers”

http://www.xilinx.com

298 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Virtex-5 FPGA to Memory Interfaces
R

http://www.xilinx.com

MIG User Guide www.xilinx.com 299
UG086 (v2.2) March 3, 2008

R

Chapter 9

Implementing DDR2 SDRAM Controllers

This chapter describes how to implement DDR2 SDRAM interfaces for Virtex™-5 FPGAs
generated by MIG. The DDR2 SDRAM design supports frequencies up to 333 MHz. This
design is based on XAPP858 [Ref 26].

Interface Model
DDR2 SDRAM interfaces are source-synchronous and double data rate. They transfer data
on both edges of the clock cycle. A memory interface can be modularly represented as
shown in Figure 9-1. A modular interface has many advantages. It allows designs to be
ported easily and also makes it possible to share parts of the design across different types
of memory interfaces.

Figure 9-1: Modular Memory Interface Representation

Application Interface Layer

Xilinx FPGA

Physical Layer

Control Layer

UG086_c9_01_061606

Memories

http://www.xilinx.com

300 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 9: Implementing DDR2 SDRAM Controllers
R

Feature Summary
This section summarizes the supported and unsupported features of the DDR2 SDRAM
controller design.

Supported Features
The DDR2 SDRAM controller design supports:

• Burst lengths of four and eight
• Sequential and interleaved burst types
• CAS latencies of 3, 4, and 5
• Additive latencies of 0, 1, 2, 3, and 4
• Differential DQS
• ODT
• Verilog and VHDL
• Byte wise data masking
• Precharge and auto refresh
• Bank management
• Linear addressing
• ECC
• Different memories (density/speed)
• Memory components, registered DIMMs, unbuffered DIMMs, and SODIMMs
• With and without a testbench
• With and without a DCM

The supported features are described in more detail in “Architecture.”

Design Frequency Ranges

Unsupported Features
The DDR2 SDRAM controller design does not support:

• Dual-rank DIMMs
• Single-ended DQS

Table 9-1: Design Frequency Range in MHz

Memory

FPGA Speed Grade

-1 -2 -3

Min Max Min Max Min Max

Component 125 266 125 300 125 333

RDIMM 125 266 125 300 125 333

UDIMM or SODIMM(1) 125 266 125 266 125 266

Notes:
1. It is possible to go faster than 266 MHz, but it requires care and IBIS simulations and possibly using

the parameter to send the CS out earlier depending on the load. For more details, see XAPP858
[Ref 26].

http://www.xilinx.com

MIG User Guide www.xilinx.com 301
UG086 (v2.2) March 3, 2008

Architecture
R

• Redundant DQS (RDQS)
• Deep memories
• Multicontrollers

Architecture

Implemented Features
This section provides details on the supported features of the DDR2 SDRAM controller.

Burst Length

The DDR2 SDRAM controller supports burst lengths of four and eight. Through the “Set
mode register(s)” option, the burst length can be selected. For a design without a testbench
(user_design), the user has to provide bursts of the input data based on the chosen burst
length. Bits M2:M0 of the Mode Register define the burst length, and bit M3 indicates the
burst type (see the Micron data sheet). Read and write accesses to the DDR2 SDRAM are
burst-oriented. It determines the maximum number of column locations accessed for a
given READ or WRITE command.

CAS Latency

The DDR2 SDRAM controller supports CAS latencies of 3, 4, and 5. The CAS latency (CL)
can be selected in the “Set mode register(s)” option. CL is implemented in the phy_write
module. During data write operations, the generation of the dqs_oe_n and dqs_rst_n
signals varies according to the CL in the phy_write module. During read data operations,
the generation of the ctrl_rden signal varies according to the CL in the ctrl module. Bits
M4:M6 of the Mode Register define the CL (see the Micron data sheet). CL is the delay in
clock cycles between the registration of a READ command and the availability of the first
bit of output data.

Additive Latency

DDR2 SDRAM devices support a feature called posted CAS additive latency (AL). The
DDR2 SDRAM supports ALs of 0, 1, 2, 3, and 4. AL can be selected in the “Set mode
register(s)” option. AL is implemented in the DDR2 SDRAM ctrl module. The ctrl module
issues READ/WRITE commands prior to tRCD (minimum) depending on the user-selected
AL value in the Extended Mode Register. This feature allows the READ command to be
issued prior to tRCD (minimum) by delaying the internal command to the DDR2 SDRAM
by AL clocks. Posted CAS AL makes the command and data bus efficient for sustainable
bandwidths in DDR2 SDRAM. Bits E3:E5 of the Extended Mode Register define the value
of AL (see the Micron data sheet).

Data Masking

DDR2 SDRAM design supports data masking per byte. Masking per nibble is not
supported due to the limitation of the internal block RAM based FIFOs. So, the masking of
data can be done on per byte basis. The mask data is stored in the Data FIFO along with the
actual data.

http://www.xilinx.com

302 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 9: Implementing DDR2 SDRAM Controllers
R

Precharge

The PRECHARGE command is used to close the open row in a bank if there is a command
to be issued in the same bank. The DDR2 Virtex-5 controller issues a PRECHARGE
command only if there is already an open row in the particular bank where a read or write
command is to be issued, thus increasing the efficiency of the design. The auto precharge
function is not supported in this design. The design ties the A10 bit Low during normal
reads and writes.

Auto Refresh

The auto refresh command is issued to the memory at specified intervals of time. The
memory issues an auto refresh command to refresh the charge to retain the data.

Bank Management

A Virtex-5 DDR2 SDRAM controller design supports bank management that increases the
efficiency of the design. The controller keeps track of whether the bank being accessed
already has an open row or not and also decides whether a PRECHARGE command
should be issued or not to that bank. When bank management is enabled via the
MULTI_BANK_EN parameter, a maximum of four banks/rows can open at any one time.
A least recently used (LRU) algorithm is employed to keep the three most recently used
banks and to close the least recently used bank when a new bank/row location needs to be
accessed. The bank management feature can also be disabled by clearing
MULTI_BANK_EN.

Linear Addressing

The DDR2 SDRAM controller supports linear addressing. Linear addressing refers to the
way the user provides the address of the memory to be accessed. For Virtex-5 DDR2
SDRAM controllers, the user provides the address information through the app_af_addr
signal. As the densities of the memory devices vary, the number of column address bits
and row address bits also change. In any case, the row address bits in the app_af_addr
signal always start from the next higher bit, where the column address ends. This feature
increases the number of devices that can be supported with the design.

Different Memories (Density/Speed)

The DDR2 SDRAM controller supports different densities. For DDR2 components shown
in MIG, densities vary from 256 Mb to 2 Gb, and the DIMM densities vary from 256 Mb to
2 Gb. The user can select the various configurations from the “Create new memory part”
option. The supported maximum column address is 13, the maximum row address is 15,
and the maximum bank address is 3. The design can decode write and read addresses from
the user in the DDR2 SDRAM ctrl module. The user address consists of column, row, and
bank addresses.

On-Die Termination

The DDR2 SDRAM controller supports on-die termination (ODT). Through the “Set mode
register(s)” option from the GUI, the user can disable ODT or can choose 75, 150, or 50.
ODT can turn the termination on and off as needed to improves signal integrity in the
system.

ODT is only enabled on writes to DDR2 memory. It is disabled on read operations.

http://www.xilinx.com

MIG User Guide www.xilinx.com 303
UG086 (v2.2) March 3, 2008

Architecture
R

Note: The Virtex-5 DDR2 interface requires that if parallel termination is used at the memory
end, it must be ODT rather than external termination resistor(s). This is a requirement of the read
capture scheme used.

Generic Parameters
The DDR2 SDRAM design is a generic design that works for most of the features
mentioned above. User input parameters are defined as parameters for Verilog and
generics in VHDL in the design modules and are passed down the hierarchy. For example,
if the user selects a burst length of 4, then it is defined as follows in the <top_module>
module:

parameter BURST_LEN = 4, // burst length (in doublewords)

The user can change this parameter in <top_module> for various burst lengths to get the
desired output. Same concept holds for all the other parameters listed in the
<top_module> module. Table 9-2 lists the details of all parameters.

http://www.xilinx.com

304 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 9: Implementing DDR2 SDRAM Controllers
R

Table 9-2: Parameterization of DDR2 SDRAM Virtex-5 Design

Category Parameter Name Description Other Notes Value Restrictions

Memory
Width

BANK_WIDTH Number of memory bank address
bits

CKE_WIDTH Number of memory clock enable
outputs

CLK_WIDTH Number of differential clock outputs
Determined by the number of
components/modules (one pair per
component)

COL_WIDTH Number of memory column bits

CS_BITS log2(CS_NUM)
Used for chip-select related address
decode. See notes for CS_NUM and
CS_WIDTH.

CS_NUM Number of separate chip selects

Different from CS_WIDTH. For
example, for a 32-bit data bus
consisting of 2 x16 parts, CS_NUM =
1, but CS_WIDTH = 2 (that is, a
single chip select drives two
separate outputs, one for each
component)

CS_WIDTH /
CS_NUM = integer

CS_WIDTH Number of memory chip selects
Determined by the number of
components/modules (one per
component)

CS_WIDTH /
CS_NUM = integer

DM_WIDTH Number of data mask bits
Can be different value than
DQS_WIDTH if x4 components are
used

(DQS_WIDTH *
DQ_PER_DQS)/8

DQ_BITS log2(DQS_WIDTH*DQ_PER_DQS) Used for data bus calibration decode (DQ_WIDTH)/
Number of data bits

DQ_WIDTH Number of data bits

Must set to DQS_WIDTH *
DQ_PER_DQS. Equal to total
number of data bits, including ECC
bits.

DQS_WIDTH *
DQ_PER_DQS

DQ_PER_DQS Number of memory DQ data bits per
strobe

DQS_BITS log2(DQS_WIDTH)

DQS_WIDTH Number of memory DQS strobes

ODT_WIDTH Number of ODT control outputs
Determined by the number of
components/modules (one per
component)

ROW_WIDTH Number of memory address bits

APPDATA_WIDTH Number of data bits at user backend
interface

If ECC Disabled:
2*(DQ_WIDTH)
If ECC Enabled:
2*(DQ_WIDTH –
8*(DQ_WIDTH/72))

http://www.xilinx.com

MIG User Guide www.xilinx.com 305
UG086 (v2.2) March 3, 2008

Architecture
R

Memory
Options

ADDITIVE_LAT Additive latency (0,1,2,3,4)

BURST_LEN Burst length (4,8) for DDR2,
(2,4,8) for DDR

BURST_TYPE burst type (0: sequential, 1:
interleaved) (0,1)

CAS_LAT CAS latency (equal to 6 for CL = 2.5) (3,4,5) for DDR2,
(2,3,6) for DDR

ECC_ENABLE Enable ECC Set to 0

MULTI_BANK_EN Bank management enable
If enabled, up to 4 banks are kept
open; otherwise, one bank is kept
open

(0,1)

ODT_TYPE ODT termination value

0: ODT disabled
1: 75 Ω
2: 150 Ω
3: 50 Ω)

(0,1,2,3)

REDUCE_DRV
Reduced strength memory I/O
enable. Set (1) for reduced I/O drive
strength.

Not supported for all DDR/DDR2
widths (0,1)

REG_ENABLE Set for registered memory module
Accounts for an extra clock cycle
delay on address/control for
registered module

(0,1)

TWO_T_TIME_EN Enable “2T” timing for
control/address signals

0: Disable 2T timing
1: Enable 2T timing (0,1)

Memory
Timing

TREFI_NS Auto refresh interval (in ns) Take directly from memory
datasheet

TRAS Active to precharge delay (in ps) Take directly from memory
datasheet

TRCD Active to read/write delay (in ps) Take directly from memory
datasheet

TRFC
Refresh to refresh, refresh to active
delay (in ps)

Take directly from memory
datasheet

TRP Precharge to command delay (in ps) Take directly from memory
datasheet

TRTP Read to precharge delay (in ps) Take directly from memory
datasheet

TWR
Used to determine write to
precharge (in ps)

Take directly from memory
datasheet

TWTR Write to read (in ps) Take directly from memory
datasheet

Table 9-2: Parameterization of DDR2 SDRAM Virtex-5 Design (Continued)

Category Parameter Name Description Other Notes Value Restrictions

http://www.xilinx.com

306 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 9: Implementing DDR2 SDRAM Controllers
R

Hierarchy
Figure 9-2 shows the hierarchical structure of the DDR2 SDRAM design generated by MIG
with a testbench and a DCM.

Miscellan-
eous

CLK_PERIOD Memory clock period (in ps) Used for PHY calibration and DCM
(if applicable) setting

DLL_FREQ_MODE DCM Frequency Mode
Determined by CLK_PERIOD.
Needed only if the DCM option is
selected.

(“LOW”, “HIGH”)

DDR2_TYPE Select either DDR or DDR2 interface

0: DDR
1: DDR2
Provided from the mem_if_top level
and below

(0,1)

SIM_ONLY

Enable to bypass initial 200 μs
power-on delay. Abbreviated
calibration sequence (only one bit for
Stage 1, one strobe for Stages 2–4).

(0,1)

RST_ACT_LOW Indicates the polarity of input reset
signal (sys_rst_n)

1: Reset is active Low.
0: Reset is active High. (0,1)

DQS_IO_COL
Placement parameter specifying I/O
column locations for each DQS in
interface

For each DQS, set to:
00: Left
01: Center
10: Right

Array size = 2 *
DQS_WIDTH. Each
array element must
be = (00, 01, 10)

DQ_IO_MS
Placement parameter specifying
master/slave I/O placement for
each DQ in interface

For each DQ, set to:
0: Slave I/O used
1: Master I/O used

Array size =
DQ_WIDTH. Each
array element must
be = (0, 1)

DEBUG_EN Enable Calibration Debug Port See Appendix D for details (0,1)

Table 9-2: Parameterization of DDR2 SDRAM Virtex-5 Design (Continued)

Category Parameter Name Description Other Notes Value Restrictions

Figure 9-2: Hierarchical Structure of the Virtex-5 DDR2 Design

<top_
module>

ddr2_
top

idelay_
ctrl

tb_top

mem_if_
top

phy_top ctrl usr_top

infrastructure

phy_ctl_
io

phy_io phy_
write

phy_init

phy_calib
Design Modules

phy_dqs_
iob

phy_dm_
iob

phy_dq_
iob

usr_rd usr_wr
usr_addr_

fifo

UG086_c9_02_091407

tb_test_
gen

tb_test_
cmp

tb_test_
addr_gen

tb_test_
data_gen

Test Bench Modules

Clocks and Reset Generation Modules

http://www.xilinx.com

MIG User Guide www.xilinx.com 307
UG086 (v2.2) March 3, 2008

Architecture
R

The modules are classified as follows:

• Design modules

• Testbench modules

• Clocks and reset generation modules

MIG can generate four different DDR2 SDRAM designs:

• With a testbench and a DCM

• Without a testbench and with a DCM

• With a testbench and without a DCM

• Without a testbench and without a DCM

For a design without a testbench (user_design), the shaded modules in Figure 9-2 are not
present in the design. The <top_module> module has the user interface signals for designs
without a testbench. The list of user interface signals is provided in Table 9-5.

Design clocks and resets are generated in the infrastructure module. The DCM is
instantiated in infrastructure module when selected by MIG. The inputs to this module are
the differential design clock and a 200 MHz differential clock for the IDELAYCTRL
module. A user reset is also input to this module. Using the input clocks and reset signals,
system clocks and system reset are generated in this module which is used in the design.

The DCM primitive is not instantiated in this module if the No DCM option is selected. So,
the system operates on the user-provided clocks. The system reset is generated in the
infrastructure module using the dcm_lock input signal.

Constraints
The Virtex-5 FPGA DDR2 design uses a combination of the IOB flop (IDDR) and fabric-
based flops for read data capture. This requires the use of pinout-dependent directed-
routing and location constraints. For more details, see Appendix B, “Required UCF and
HDL Modifications for Pinout Changes.”

http://www.xilinx.com

308 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 9: Implementing DDR2 SDRAM Controllers
R

MIG Tool Design Options
MIG provides various options to generate the design with or without a testbench or with
or without a DCM. This section provides detailed descriptions of the type of design
generated by the user using various options.

Figure 9-3 shows a top-level block diagram of a DDR2 SDRAM design with a DCM and a
testbench. sys_clk_p and sys_clk_n are differential input system clocks. The DCM is
instantiated in the infrastructure module that generates the required design clocks.
clk200_p and clk200_n are used for the idelay_ctrl element. sys_rst_n is an active-Low
system reset signal. All design resets are generated using it. The error output signal
indicates whether the case passes or fails. The testbench module does writes and reads,
and also compares the read data with written data. The error signal is driven High on data
mismatches. The phy_init_done signal indicates the completion of initialization and
calibration of the design.

Figure 9-3: Top-Level Block Diagram of the DDR2 SDRAM Design with a DCM and a Testbench

ddr2_top

tb_top

idelay_ctrl_rdy

clk200

Memory
Device

UG086_c9_03_091007

Status
Signals

System
Clocks

and Reset

idelay_ctrl

Infrastructure

rst200

clk90

clk0

rst90

clk200_p

clk200_n

sys_clk_p

sys_clk_n

sys_rst_n
rst0

ddr2_ras_n

ddr2_cas_n

ddr2_we_n

ddr2_cs_n

ddr2_cke

ddr2_dm

ddr2_ba

ddr2_a

ddr2_ck

ddr2_ck_n

ddr2_dq

ddr2_dqs

ddr2_odt

ddr2_reset_n

ddr2_dqs_nphy_init_done

error

http://www.xilinx.com

MIG User Guide www.xilinx.com 309
UG086 (v2.2) March 3, 2008

Architecture
R

Figure 9-4 shows a top-level block diagram of a DDR2 SDRAM design with a DCM but
without a testbench. The sys_clk_p and sys_clk_n signals are differential input system
clocks. The DCM is instantiated in the infrastructure module that generates the required
design clocks. The clk200_p and clk200_n signals are used for the idelay_ctrl element. The
sys_rst_n signal is the active-Low system reset signal. All design resets are gated by the
dcm_lock signal. The user has to drive the user application signals. The design provides
the clk_tb and reset_tb signals to the user in order to synchronize with the design. The
phy_init_done signal indicates the completion of initialization and calibration of the
design.

Figure 9-4: Top-Level Block Diagram of the DDR2 SDRAM Design with a DCM but without a Testbench

ddr2_top

idelay_ctrl_rdy

clk200

Memory
Device

UG086_c9_04_091007

User
Application

System
Clocks

and Reset

idelay_ctrl

Infrastructure

rst200

clk90

clk0

rst0

clk200_p

clk200_n

sys_clk_p

sys_clk_n

sys_rst_n

app_af_addr

app_af_wren

app_wdf_data

app_wdf_mask_data

app_wdf_wren

app_wdf_afull

app_af_afull

rd_data_valid

rd_data_fifo_out

clk0_tb

rst90 ddr2_ras_n

ddr2_cas_n

ddr2_we_n

ddr2_cs_n

ddr2_odt

ddr2_dm

ddr2_ba

ddr2_a

ddr2_ck

ddr2_ck_n

ddr2_dq

ddr2_dqs

ddr2_cke

ddr2_reset_n

ddr2_dqs_n

app_af_cmd

rst0_tb

phy_init_done

http://www.xilinx.com

310 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 9: Implementing DDR2 SDRAM Controllers
R

Figure 9-5 shows a top-level block diagram of a DDR2 SDRAM design without a DCM or
a testbench. The user should provide all the clocks and the dcm_lock signal. These clocks
should be single-ended. The sys_rst_n signal is the active-Low system reset signal. All
design resets are gated by the dcm_lock signal. The user application must have a DCM
primitive instantiated in the design, and all user clocks should be driven through BUFGs.
The user has to drive the user application signals. The design provides the clk_tb and
reset_tb signals to the user in order to synchronize with the design. The phy_init_done
signal indicates the completion of initialization and calibration of the design.

Figure 9-5: Top-Level Block Diagram of the DDR2 SDRAM Design without a DCM or a Testbench

ddr2_top

idelay_ctrl_rdy

Memory
Device

UG086_c9_05_091007

System
Reset

and
User DCM

idelay_ctrl

Infrastructure

rst200

rst0

rst90

clk_0

clk_200

clk_90

sys_rst_n

dcm_lock ddr2_ras_n

ddr2_cas_n

ddr2_we_n

ddr2_cs_n

ddr2_cke

ddr2_odt

ddr2_dm

ddr2_ba

ddr2_a

ddr2_ck

ddr2_ck_n

ddr2_reset_n

ddr2_dq

ddr2_dqs

ddr2_dqs_n

User
Application

app_af_addr

app_af_wren

app_wdf_data

app_wdf_mask_data

app_wdf_wren

app_wdf_afull

app_af_afull

rd_data_valid

rd_data_fifo_out

clk0_tb

rst0_tb

phy_init_done

app_af_cmd

http://www.xilinx.com

MIG User Guide www.xilinx.com 311
UG086 (v2.2) March 3, 2008

Architecture
R

Figure 9-6 shows a top-level block diagram of a DDR2 SDRAM design without a DCM but
with a testbench. The user should provide all the clocks and the dcm_lock signal. These
clocks should be single-ended. sys_rst_n is the active-Low system reset signal. All design
resets are gated by the dcm_lock signal. The user application must have a DCM primitive
instantiated in the design, and all user clocks should be driven through BUFGs. The error
output signal indicates whether the case passes or fails. The testbench module does writes
and reads, and also compares the read data with the written data. The error signal is driven
High on data mismatches. The phy_init_done signal indicates the completion of
initialization and calibration of the design.

Figure 9-6: Top-Level Block Diagram of the DDR2 SDRAM Design without a DCM but with a Testbench

ddr2_top

tb_top

idelay_ctrl_rdy

clk200

Memory
Device

UG086_c9_06_013107

Status
Signals

System
Clocks

and Reset

idelay_ctrl

Infrastructure

rst200

rst90

clk200

clk0

clk90

sys_rst_n

dcm_lock

rst0 ddr2_ras_n

ddr2_cas_n

ddr2_we_n

ddr2_cs_n

ddr2_cke

ddr2_dm

ddr2_ba

ddr2_a

ddr2_ck

ddr2_ck_n

ddr2_dq

ddr2_dqs

ddr2_odt

ddr2_reset_n

ddr2_dqs_nphy_init_done

error

http://www.xilinx.com

312 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 9: Implementing DDR2 SDRAM Controllers
R

DDR2 Controller Submodules
Figure 9-7 is a detailed block diagram of the DDR2 SDRAM controller. The design top
module is expanded to show various internal blocks. The functions of these blocks are
explained in the subsections following the figure.

Infrastructure

The infrastructure module generates the clock and reset signals for the design. The user
clocks and user reset are input to this module. In designs generated with a DCM, the input
clocks are differential. There are clocks for design use and also a 200 MHz clock for the
idelayctrl primitive. These differential clocks are first passed through the buffers, and the
single-ended output of the buffers is used. The single-ended output of sys_clk_p and
sys_clk_n is then given to the DCM input. The clock outputs of the DCM are clk0 and
clk90. After the DCM is locked, the design is in the reset state for at least 25 clocks.

For designs without a DCM, the user application must have a DCM primitive instantiated
in the design, and all user clocks should be driven through BUFGs.

Figure 9-7: DDR2 Memory Controller Block Diagram

ctrl

Control
Signals

write_data

ddr2_top/mem_if_top

read_data

Control
Signals

idelay_ctrl_rdy

clk200

Memory
Device

UG086_c9_07_091007

System
Clocks

and Reset

idelay_ctrl

Infrastructure

rst200

clk90

clk0

rst90

rst0

clk200_p

clk200_n

sys_clk_p

sys_clk_n

sys_rst_n

ddr2_ras_n

ddr2_cas_n

ddr2_we_n

ddr2_cs_n

ddr2_cke

ddr2_dm

ddr2_ba

ddr2_a

ddr2_ck

ddr2_ck_n

ddr2_dq

ddr2_dqs

ddr2_odt

ddr2_reset_n

ddr2_dqs_n

User
Application

app_af_addr

app_af_wren

app_wdf_data

app_wdf_mask_data

app_wdf_wren

app_wdf_afull

app_af_afull

rd_data_valid

rd_data_fifo_out

clk0_tb

app_af_cmd

rst0_tb

phy_init_done

usr_top

phy_top

http://www.xilinx.com

MIG User Guide www.xilinx.com 313
UG086 (v2.2) March 3, 2008

Architecture
R

Idelay_ctrl

This module instantiates the IDELAYCTRL primitive of the Virtex-5 FPGA. The
IDELAYCTRL primitive is used to continuously calibrate the individual delay elements in
its region to reduce the effect of process, temperature, and voltage variations. A 200 MHz
clock has to be fed to this primitive.

Ctrl

The ctrl module is the main controller of the Virtex-5 DDR2 SDRAM controller design. It
generates all the control signals required for the DDR2 memory interface and the user
interface. During the normal operation, this module toggles the memory address and
control signals.

The ctrl module decodes the user command and issues the specified command to the
memory. The app_af_cmd signal is decoded as a write command when it equals 3’b000,
and app_af_cmd is decoded as a read command when it equals 3’b001. The commands and
control signals are generated based on the input burst length and CAS latency. The
controller state machine issues the commands in the correct sequence while determining
the timing requirements of the memory.

In the multi-bank mode (MULTIBANK_EN = 1), the controller has the ability to keep four
banks open at a time. The banks are opened in the order of the commands that are
presented to the controller. In the event that four banks are already opened and an access
arrives to the fifth bank, the least recently used bank is closed and the new bank is opened.
All the banks are closed during auto refresh and are opened as commands are presented to
the controller. Depending on the traffic pattern, the multi-bank enable mode can increase
the efficiency of the design.

In the single-bank mode (MULTIBANK_EN = 0), the controller keeps one bank open at a
time. When there is an access to a different bank or to a different row in the current bank,
the controller closes the current row and bank and opens the new row and bank.

phy_top

The phy_top module is the top level of the physical interface of the design. The physical
layer includes the input/output blocks (IOBs) and other primitives used to read and write
the double data rate signals to and from the memory, such as IDDR and ODDR. This
module also includes the IODELAY elements of the Virtex-5 FPGA. These IODELAY
elements are used to delay the data signals to capture the valid data into the Read Data
FIFO.

The memory control signals, such as RAS_N, CAS_N, and WE_N, are driven from the
buffers in the IOBs. All the input and output signals to and from the memory are
referenced from the IOB to compensate for the routing delays inside the FPGA.

The phy_init module, which is instantiated in the phy_top module, is used to initialize the
DDR2 memory in a predefined sequence according to the JEDEC standard for DDR2
SDRAM.

The phy_calib module calibrates the design to align the strobe signal such that it always
captures the valid data in the FIFO. This calibration is needed to compensate for the trace
delays between the memory and the FPGA devices.

The phy_write module splits the user data into rise data and fall data to be sent to the
memory as a double data rate signal using ODDR. Similarly, while reading the data from
memory, the data from IDDR is combined to get a single vector that is written into the read
FIFO.

http://www.xilinx.com

314 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 9: Implementing DDR2 SDRAM Controllers
R

usr_top

The usr_top module is the user interface block of the design. It receives and stores the user
data, command, and address information in respective FIFOs. The ctrl module generates
the required control signals for this module. During a write operation, the data stored in
the usr_wr_fifo is read and given to the physical layer to output to the memory. Similarly,
during a read operation, the data from the memory is read via IDDR and written into the
FIFOs. This data is given to the user with a valid signal (rd_data_valid), which indicates
valid data on the rd_data_fifo_out signal. Table 9-3 lists the user interface signals.

DDR2 SDRAM Initialization
DDR2 memory is initialized through a specified sequence as per both Micron and JEDEC
specifications. Initialization logic is implemented in the physical layer.

DDR2 SDRAM Design Calibration
Before issuing user read and write commands, the read data path is calibrated to ensure
that correct data is captured into the CLK0 domain of the FPGA. Calibration logic is
implemented in the physical layer of the design. Figure 9-8 shows overall calibration
sequence.

Figure 9-8: Overall Design Calibration Sequence

UG086_c9_08_091707

Write all callibration training
patterns to fixed locations

in memory

Write callibration patterns required
for stage 1, stage 2, and stage 3/4
calibration to memory.

Stage 1:

 DQ-DQS per-bit calibration

 Adjust DQ delay

 Perform once per DQ bit

Stage 4:

 DQS gate control calibration

 Adjust IDELAY for DQS gate control

 Perform once per DQS group

Continuous read back of
stage 1 training pattern

Continuous read back of
stage 2 training pattern

Calibrate all DQ

Calibrate all DQS

Continuous read back of
stage 3/4 training pattern

Read Data Valid calibration
all DQS

Calibration Done

DQS Gate Control
calibration for all DQS

Power-up init sequence
complete

Stage 3:

 Read data valid calibration
(once per DQS group)

 Adjust number of clock cycles to wait
after issuing read command before valid
data arrives in FPGA_CLK domain

 Perform once per DQS group

Stage 2:

 DQS-FPGA CLK calibration

 Use DQ[8*x] to calibrate DQS[x]

 Adjust DQ/DQS IDELAY

 Perform once per DQS group

http://www.xilinx.com

MIG User Guide www.xilinx.com 315
UG086 (v2.2) March 3, 2008

DDR2 SDRAM System and User Interface Signals
R

The first calibration stage is used to position the DQS in the DQ valid window. This
synchronizes the capture of DQ using DQS in the IDDR flop. A training pattern of 1 for rise
and 0 for fall data is written into the memory and is continuously read back. The DQ and
IDELAYs are adjusted depending upon the DQ to DQS relationship. Per-bit deskew is
performed on the DQ bits.

The second calibration stage is between the DQS and the FPGA clock. This synchronizes
the transfer of data between the IDDR flop and flip-flops located in the FPGA fabric. The
DQ and DQS IDELAY taps are incremented together to align to the FPGA clock domain.

The third calibration stage is the read-enable calibration, which is used to generate a read
valid signal. The memory devices do not provide a signal indicating when the read data is
valid. The read data is delayed by CAS latency, additive latency, the PCB trace, and the I/O
buffer delays. The read-enable calibration is used to determine the delay between issuing
a read command and the arrival of the read data.

The fourth calibration stage is used to align the DQS Gate signal from the controller to the
falling edge of DQS. The DQS Gate controls the clock enable to the DQ IDDRs. It is used to
prevent clocking of invalid data into the IDDR after the read postamble. This can happen
because the DQS is 3-stated by the memory at the end of a read. The DQS can then go into
an indeterminate value, causing false clocking of the IDDR.

After initialization and calibration is done, the controller is signaled to start normal
operation of the design. Now, the controller can start issuing user write and read
commands to the memory.

DDR2 SDRAM System and User Interface Signals
Table 9-3 and Table 9-4 describe the system interface signals for designs generated with
and without a DCM, respectively.

Table 9-3: DDR2 SDRAM Controller System Interface Signals (with a DCM)

Signal Name Direction Description

sys_clk_p, sys_clk_n Input Differential input clock to the DCM. The DDR2 controller and
memory operate at this frequency.

clk200_p, clk200_n Input 200 MHz input differential clock for the IDELAYCTRL primitive
of Virtex-5 FPGAs.

sys_rst_n Input Active-Low reset to the DDR2 controller.

Table 9-4: DDR2 SDRAM Controller System Interface Signals (without a DCM)

Signal Direction Description
clk0 Input The DDR2 SDRAM controller and memory operate on this clock.

clk90 Input 90° phase-shifted clock with the same frequency as clk0.

clk200 Input 200 MHz input differential clock for the IDELAYCTRL primitive
of Virtex-5 FPGAs.

sys_rst_n Input Active-Low reset to the DDR2 SDRAM controller. This signal is
used to generate the synchronous system reset.

dcm_lock Input The status signal indicating whether the DCM is locked or not.
This signal is used to generate the synchronous system reset.

http://www.xilinx.com

316 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 9: Implementing DDR2 SDRAM Controllers
R

Table 9-5 describes the user interface signals.

Table 9-5: DDR2 SDRAM Controller User Interface Signals

Signal Direction(1) Description

app_af_cmd[2:0] Input 3-bit command to the Virtex-5 DDR2 SDRAM design.

app_af_cmd = 3’b000 for write command
app_af_cmd = 3’b001 for read command

Other combinations are invalid. Functionality of the controller is
unpredictable for unimplemented commands.

app_af_addr[30:0](2) Input Gives information about the address of the memory location to be
accessed. This bus contains the bank address, the row address, and
the column address.

Column address = app_af_addr[COL_WIDTH-1: 0]

Row address = app_af_addr[ROW_WIDTH+COL_WIDTH–1:
COL_WIDTH]

Bank address =
app_af_addr[BANK_WIDTH+ROW_WIDTH+COL_WIDTH–1:
ROW_WIDTH+COL_WIDTH]

app_af_wren Input Write enable to the User Address FIFO. This signal should be
synchronized with the app_af_addr and app_af_cmd signals.

app_wdf_data[2*DQ_WIDTH–1:0] Input User input data. It should contain the fall data and the rise data.

Rise data = app_wdf_data[DQ_WIDTH–1: 0]
Fall data = app_wdf_data[2*DQ_WIDTH–1: DQ_WIDTH]

app_wdf_mask_data[2*DM_WIDTH–1: 0] Input User mask data. It should contain the masking information for both
rise and fall data.

Rise mask data = app_wdf_mask_data[DM_WIDTH–1: 0]
Fall mask data = app_wdf_mask_data[2*DM_WIDTH–1:
DM_WIDTH]

app_wdf_wren Input Write enable for the User Write FIFO. This signal should be
synchronized with the app_wdf_data and app_wdf_mask_data
signals.

app_af_afull Output Almost Full status of the Address FIFO. When this signal is asserted,
the user can write 12 more locations into the FIFO.

app_wdf_afull Output Almost Full status of the User Write FIFO. When this signal is
asserted, the user can write 12 more locations into the FIFO.

rd_data_valid Output Status signal indicating read data is valid on the read data bus.

rd_data_fifo_out[2*DQ_WIDTH–1: 0] Output Read data from the memory.

phy_init_done Output Indicates the completion of initialization and calibration of the
design.

clk0_tb Output Clock output to the user. All user interface signals must be
synchronized with this clock.

rst0_tb Output Active-High reset for the user interface.

Notes:
1. Direction indicated in the table is referenced from the design perspective. For example, input here indicates that the signal is input to the

design.
2. Addressing in Virtex-5 is linear addressing i.e. the row address immediately follows the column address bits, and the bank address follows

the row address bits, thus supporting more devices.

http://www.xilinx.com

MIG User Guide www.xilinx.com 317
UG086 (v2.2) March 3, 2008

DDR2 SDRAM System and User Interface Signals
R

User Interface Accesses
The user backend logic communicates with the memory controller through a FIFO-based
user interface. This interface consists of three related buses: (1) a command/address FIFO
bus accepts write/read commands as well as the corresponding memory address from the
user, (2) a write data FIFO bus accepts the corresponding write data when the user issues
a write command on the command/address bus, and (3) a read bus on which the
corresponding read data for an issued read command is returned.

The user interface has the following timing and signaling restrictions:

1. When issuing a write command, the first write data word must be written to the Write
Data FIFO either prior to or on the same clock cycle as the when the write command is
issued. In addition, the write data must be written by the user over consecutive clock
cycles; there cannot be a break between words. These restrictions arise from the fact
that the controller assumes write data is available when it receives the write command
from the user.

Write Interface
Figure 9-9 shows the user interface block diagram for write operations.

The following steps describe the architecture of the Address and Write Data FIFOs and
show how to perform a write burst operation to DDR2 SDRAM from the user interface.

1. The user interface consists of an Address FIFO and a Write Data FIFO. The Write Data
FIFO is constructed using the Virtex-5 FIFO36_72 primitive with a 512 x 72
configuration. The 72-bit architecture comprises one 64-bit port and one 8-bit port. For
Write Data FIFOs, the 64-bit port is used for data bits and the 8-bit port is used for
mask bits for ECC-disabled designs. Mask bits are available only when supported by
the memory part and when Data Mask is enabled in the MIG GUI. Some memory
parts, such as Registered DIMMs of x4 parts, do not support mask bits.

Figure 9-9: User Interface Block Diagram for Write Operation

User Interface

Controller

 Address FIFO
(FIFO36)
1024 x 36

af_addr

af_cmd

af_empty

ctrl_af_rden

wdf_rden

app_af_addr

app_af_cmd

app_af_wren

app_wdf_data

app_wdf_mask_data

app_wdf_wren

wdf_data

wdf_mask_data To Phy Layer

app_wdf_afull

app_af_afull
Write Data

FIFO
(FIFO36_72)

512 x 72

Write Data
FIFO

(FIFO36_72)
512 x 72

ug086_c9_11_122007

http://www.xilinx.com

318 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 9: Implementing DDR2 SDRAM Controllers
R

2. In ECC-enabled designs, the 64-bit port is used for data bits and the 8-bit port is used
for ECC data. The attributes passed to the Virtex-5 FIFO36_72 primitive are different
for ECC-enabled designs; attribute EN_ECC_WRITE is set to TRUE for ECC-enabled
designs to enable the generation of ECC data.

3. The Address FIFO is constructed using the Virtex-5 FIFO36 primitive with a 1024 x 36
configuration. The 36-bit architecture comprises one 32-bit port and one 4-bit port. The
32-bit port is used for the address (app_af_addr) and the 4-bit port is used for the
command (app_af_cmd).

4. The Address FIFO is common for both Write and Read commands. It comprises an
address part and a command part. Command bits discriminate between write and
read commands.

5. User interface data width app_wdf_data is twice that of the memory data width. For
an 8-bit memory width, the user interface is 16 bits consisting of rising-edge data and
falling-edge data. There is a mask bit for every 8 bits of data. For 72-bit memory data,
the user interface data width app_wdf_data is 144 bits, and the mask data
app_wdf_mask_data is 18 bits.

6. The minimum configuration of the Write Data FIFO is 512 x 72 for a memory data
width of 8 bits. For an 8-bit memory data width, the least-significant 16 bits of the data
port are used for write data and the least-significant two bits of the 8-bit port are used
for mask bits. The controller internally pads all zeros for the most-significant 48 bits of
the 64-bit port and the most-significant 6 bits of the 8-bit port.

7. Depending on the memory data width, MIG instantiates multiple FIFO36_72s to gain
the required width. For designs using 8-bit to 32-bit data width, one FIFO36_72 is
instantiated; for 72-bit data width, a total of three FIFO36_72s are instantiated. The bit
architecture comprises 32 bits of rising-edge data, 4 bits of rising-edge mask, 32 bits of
falling-edge data, and 4 bits of falling-edge mask, which are all stored in a FIFO36_72.
MIG routes app_wdf_data and app_wdf_mask_data to FIFO36_72s accordingly.

8. The user can initiate a write to memory by writing to the Address FIFO and the Write
Data FIFO when the FIFO full flags are deasserted. Status signal app_af_afull is
asserted when the Address FIFO is full; similarly, app_wdf_afull is asserted when the
Write Data FIFO is full.

9. At power on, both the Address FIFO and Write Data FIFO full flags are deasserted.

10. The user should assert Address FIFO write-enable signal app_af_wren along with
address app_af_addr and command app_af_cmd to store the address and command
into Address FIFO.

11. The user data should be synchronized to the clk_tb clock. The user should assert the
Data FIFO write-enable signal app_wdf_wren along with write data app_wdf_data
and mask data app_wdf_mask_data to store the write data and mask data into the
Write Data FIFOs. The user should provide both rising-edge and falling-edge data
together for each write to the Data FIFO. The Virtex-5 DDR2 SDRAM controller design
supports byte-wise masking of data only.

12. The write command should be given by keeping app_af_cmd = 3'b000 and asserting
app_af_wren. Address information is given on the app_af_addr signal. Address and
command information is written into the User Address FIFO.

13. After the completion of the initialization and calibration process and when the User
Address FIFO empty signal is deasserted, the controller reads the Command and
Address FIFO and issues a write command to the DDR2 SDRAM.

14. The write timing diagram in Figure 9-10 is derived from the MIG-generated test bench
for a burst length of 4. As shown, each write to the Address FIFO should have two

http://www.xilinx.com

MIG User Guide www.xilinx.com 319
UG086 (v2.2) March 3, 2008

DDR2 SDRAM System and User Interface Signals
R

writes to the Data FIFO. The phy_init_done signal indicates memory initialization and
calibration completion.

Figure 9-10: DDR2 SDRAM Write Burst for Four Bursts (BL = 4)

clk_tb

reset_tb

app_wdf_afull

app_af_afull

app_af_wren

app_af_addr

phy_init_done

app_wdf_wren

A0

app_af_cmd 000 000 000 000

app_wdf_data D0D1 D3D2 D5D4 D7D6 D9D8 D11D10 D13D12 D15D14

app_mask_data M0M1 M3M2 M5M4 M7M6 M9M8 M11M10 M13M12 M15M14

A1 A2 A3

UG086_c9_09_122007

http://www.xilinx.com

320 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 9: Implementing DDR2 SDRAM Controllers
R

Read Interface
Figure 9-11 shows the block diagram of the read interface.

The following steps describe the architecture of the Read Data FIFO and show how to
perform a read burst operation from DDR2 SDRAM from user interface.

1. The Read Data FIFOs are constructed using the Virtex-5 FIFO36_72 primitive with a
512 x 72 configuration for ECC-enabled designs. For non-ECC designs, read data is
latched using the flops.

2. In ECC-enabled designs, the 64-bit port is used for data bits and the 8-bit port is used
for ECC data. The Virtex-5 FIFO36_72 performs ECC comparison when the attribute
EN_ECC_READ is set during read operation. MIG instantiates the FIFOs
appropriately for ECC or non-ECC designs.

3. The user can initiate a read to memory by writing to the Address FIFO when the FIFO
full flag app_af_afull is deasserted.

4. To write the read address and read command into the Address FIFO, the user should
issue the Address FIFO write-enable signal app_af_wren along with read address
app_af_addr and app_af_cmd is the command (set to 001 for a read command).

5. The controller reads the Address FIFO and generates the appropriate control signals to
memory. After decoding app_af_cmd, the controller issues a read command to the
memory at the specified address.

6. Prior to the actual read and write commands, the design calibrates the latency in
number of clock cycles from the time the read command is issued to the time the data
is received. Using this precalibrated delay information, the controller stores the read
data in the Read Data FIFOs.

7. The read_data_valid signal is asserted when data is available in the Read Data FIFOs.

8. When the calibration is completed, the controller generates the control signals to
capture the read data from the FIFO according to the CAS latency selected by the user.

Figure 9-11: User Interface Block Diagram for Read Operation

User Interface

Controller
 Address FIFO

(FIFO16)
1024 x 36

af_addr

af_empty

ctrl_af_rden

rd_data_out_rise

rd_data_out_fall From Phy Layer

Read Data
FIFO

ug086_c9_12_122007

app_af_addr

app_af_cmd

app_af_wren

rd_data_fifo_out

rd_data_valid

app_af_afull

wdf_almost_full

http://www.xilinx.com

MIG User Guide www.xilinx.com 321
UG086 (v2.2) March 3, 2008

DDR2 SDRAM System and User Interface Signals
R

The rd_data_valid signal is asserted when the read data is available to the user, and
rd_data_fifo_out is the read data from the memory to the user.

9. Figure 9-12 shows the user interface timing diagram for burst length of four.

Read latency is defined as the time between when the read command is written to the user
interface bus until when the corresponding first piece of data is available on the user
interface bus (see Figure 9-12).

When benchmarking read latencies, it is important to specify the exact conditions under
which the measurement occurs.

Read latency varies based on the following parameters:

• Number of commands already in the FIFO pipeline before the read command is
issued

• Whether an ACTIVATE command needs to be issued to open the new bank/row

• Whether a PRECHARGE command needs to be issued to close a previously opened
bank

• Specific timing parameters for the memory, such as TRAS and TRCD in conjunction
with the bus clock frequency

• Commands can be interrupted, and banks/rows can forcibly be closed when the
periodic AUTO REFRESH command is issued

• CAS latency

• Board-level and chip-level (for both memory and FPGA) propagation delays

Table 9-6 and Table 9-7 show read latencies for the Virtex-5 DDR2 interface for two
different conditions. Table 9-6 shows the case where a row activate is not required prior to
issuing a read command on the DDR bus. This situation is possible, for example, when
bank management is enabled, and the read targets an already opened bank. Table 9-7
shows the case when a read results in a bank/row conflict. In this case, a precharge of the
previous row must be followed by an activation of the new row, which increases read
latency. Other specific conditions are noted in the footnotes for each table.

Figure 9-12: DDR2 SDRAM Read Burst (BL = 4) for Four Bursts

clk_tb

app_af_afull

app_af_wren

app_af_addr

app_af_cmd

rd_data_valid

rd_data_fifo_out

UG086_c9_10_122007

D14D15D10D11D6D7D2D3 D12D13D8D9D4D5D0D1

A0 A1 A2 A3

001 001 001 001

Read Latency

http://www.xilinx.com

322 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 9: Implementing DDR2 SDRAM Controllers
R

Simulating the DDR2 SDRAM Design
After generating the design, MIG creates a sim folder in the specified path. This folder
contains simulation files for a particular design. The sim folder contains the external
testbench, memory model, .do file, and the executable file to simulate the generated
design. The memory model files are currently generated in Verilog only. To learn more
details about the files in the sim folder and to simulate the design, see
simulation_help.chm in the sim folder.

Supported Devices
The design generated out of MIG is independent of memory package, hence the package
part of the memory component is replaced with XX or XXX, where XX or XXX indicates a
don't care condition. The tables below list the components (Table 9-8) and DIMMs

Table 9-6: Read Latency without Precharge and Activate

Parameter Number of Clocks

User READ command to empty signal deassertion (using FIFO36) 1 clock

Empty signal to READ command on DDR2 bus 8.5 clocks

READ command to read valid assertion 8.5 clocks

Total 18 clocks

Notes:
1. Test conditions: Clock frequency = 333 MHz, CAS latency = 5, DDR2 -3E speed grade device.
2. Access conditions: Read to an already open bank/row is issued to an empty control/address FIFO.
3. Some entries have fractional clock cycles because the inverted version of CLK0 is used to drive the

DDR2 memory.
4. The Virtex-5 FPGA DDR2 interface uses a FIFO36 for the address/control FIFO. It is possible to

shorten the READ command to empty signal deassertion latency by implementing the FIFO as a
distributed RAM FIFO or removing the FIFO altogether, as the application requires.

Table 9-7: Read Latency with Precharge and Activate

Parameter Number of Clocks

User READ command to empty signal deassertion (using FIFO36) 1 clock

Empty signal to PRECHARGE command on DDR2 bus 8.5 clocks

PRECHARGE to ACTIVE command to DDR2 memory 4 clocks

ACTIVE to READ command to DDR2 memory 4 clocks

READ command to read valid assertion 8.5 clocks

Total 26 clocks

Notes:
1. Test conditions: Clock frequency = 333 MHz, CAS latency = 5, DDR2 -3E speed grade device.
2. Access conditions: Read that results in a bank/row conflict is issued to an empty control/address

FIFO. This requires that the previous bank/row be closed first.
3. Some entries have fractional clock cycles because the inverted version of CLK0 is used to drive the

DDR2 memory.
4. The Virtex-5 FPGA DDR2 interface uses a FIFO36 for the address/control FIFO. It is possible to

shorten the READ command to empty signal deassertion latency by implementing the FIFO as a
distributed RAM FIFO or removing the FIFO altogether, as the application requires.

http://www.xilinx.com

MIG User Guide www.xilinx.com 323
UG086 (v2.2) March 3, 2008

DDR2 SDRAM System and User Interface Signals
R

(Table 9-9) supported by the tool for the DDR2 design. In supported devices, X in the
components column denotes a single alphanumeric character. For example,
MT47H128M4XX-3 can be either MT47H128M4BP-3 or MT47H128M4B6-3. XX for
Registered DIMMs denotes a single or two alphanumeric characters. For example,
MT9HTF3272XX-667 can be either MT9HTF3272Y-667 or MT9HTF3272DY-667.

Table 9-8: Supported Components for DDR2 SDRAM (Virtex-5 FPGAs)

Components Packages (XX) Components Packages (XX)

MT47H64M4XX-3 BP MT47H128M8XX-3 BT,HQ

MT47H64M4XX-37E BP MT47H128M8XX-37E BT,HQ

MT47H64M4XX-5E BP MT47H128M8XX-5E BT,HQ

MT47H128M4XX-3 B6,CB,GB MT47H256M8XX-3 HG

MT47H128M4XX-37E B6,CB,GB MT47H256M8XX-37E HG

MT47H128M4XX-5E B6,CB,GB MT47H256M8XX-5E HG

MT47H256M4XX-3 BT,HQ MT47H16M16XX-3 BG

MT47H256M4XX-37E BT,HQ MT47H16M16XX-37E BG

MT47H256M4XX-5E BT,HQ MT47H16M16XX-5E BG

MT47H512M4XX-3 HG MT47H32M16XX-3 BN,CC,FN,GC

MT47H512M4XX-37E HG MT47H32M16XX-37E BN,CC,FN,GC

MT47H512M4XX-5E HG MT47H32M16XX-5E BN,CC,FN,GC

MT47H32M8XX-3 BP MT47H64M16XX-3 BT,HR

MT47H32M8XX-37E BP MT47H64M16XX-37E BT,HR

MT47H32M8XX-5E BP MT47H64M16XX-5E BT,HR

MT47H64M8XX-3 B6,CB,F6,GB MT47H128M16XX-3 HG

MT47H64M8XX-37E B6,CB,F6,GB MT47H128M16XX-37E HG

MT47H64M8XX-5E B6,CB,F6,GB MT47H128M16XX-5E --

Table 9-9: Supported Registered DIMMs for DDR2 SDRAM (Virtex-5 FPGAs)

Registered DIMMs Packages (X) Registered DIMMs Packages (X)

MT9HTF3272XX-667 -- MT18HTF6472XX-667 --

MT9HTF3272XX-53E Y MT18HTF6472XX-53E DY,Y

MT9HTF3272XX-40E Y MT18HTF6472XX-40E DY,Y

MT9HTF6472XX-667 PY,Y MT18HTF12872XX-667 DY,PDY,PY,Y

MT9HTF6472XX-53E Y MT18HTF12872XX-53E DY,MY,NDY,
NY,PY,Y

MT9HTF6472XX-40E Y MT18HTF12872XX-40E DY,PY,Y

MT9HTF12872XX-667 PY MT18HTF25672XX-667 PDY,PY,Y

MT9HTF12872XX-53E PY,Y MT18HTF25672XX-53E PDY,PY,Y

MT9HTF12872XX-40E Y MT18HTF25672XX-40E DY,PDY,Y

MT18HTF6472G-53E -- -- --

http://www.xilinx.com

324 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 9: Implementing DDR2 SDRAM Controllers
R

Hardware Tested Configurations
The frequencies shown in Table 9-12 were achieved on the Virtex-5 FPGA ML561 Memory
Interfaces Development Board under nominal conditions. These frequencies should not be
used to determine the maximum design frequency. The maximum design frequency
supported in the MIG wizard is based on a combination of the TRCE results for fabric
timing on multiple device/package combinations and I/O timing analysis using FPGA
and memory timing parameters for a 72-bit wide interface.

Table 9-10: Supported UDIMMs for DDR2 SDRAM (Virtex-5 FPGAs)

MT4HTF1664AY-667 MT8HTF6464AY-53E

MT4HTF1664AY-40E MT8HTF6464AY-40E

MT4HTF3264AY-667 MT8HTF12864AY-667

MT4HTF3264AY-40E MT8HTF12864AY-40E

MT4HTF6464AY-667 MT9HTF3272AY-667

MT4HTF6464AY-40E MT9HTF3272AY-40E

MT8HTF6464AY-667 MT9HTF6472AY-667

Table 9-11: Supported SODIMMs for DDR2 SDRAM (Virtex-5 FPGAs)

MT4HTF1664HY-667 MT8HTF3264HY-667

MT4HTF1664HY-53E MT8HTF3264HY-53E

MT4HTF1664HY-40E MT8HTF3264HY-40E

MT4HTF3264HY-667 MT8HTF6464HY-667

MT4HTF3264HY-53E MT8HTF6464HY-53E

MT4HTF3264HY-40E MT8HTF6464HY-40E

Table 9-12: Hardware Tested Configurations

Synthesis Tools XST and Synplicity

HDL Verilog and VHDL

FPGA Device XC5VLX50T-FF1136-2

Burst Lengths 4, 8

CAS Latency (CL) 3, 4, 5

Additive Latency 0, 1, 2, 3, 4

32-bit Design Tested on 16-bit Component MT47H32M16XX-3

72-bit RDIMM Design Tested on 72-bit DIMM MT9HTF6472XX-667

72-bit UDIMM Design Tested on 72-bit DIMM MT9HTF6472AY-667

ECC verified 72-bit RDIMM and UDIMM design

Component, CL=3, 4, 5 100 MHz to 400 MHz

DIMM, CL=3 100 MHz to 280 MHz

DIMM, CL=4, 5 100 MHz to 400 MHz

http://www.xilinx.com

MIG User Guide www.xilinx.com 325
UG086 (v2.2) March 3, 2008

R

Chapter 10

Implementing QDRII SRAM Controllers

This chapter describes how to implement QDRII SRAM interfaces for Virtex™-5 FPGAs
generated by MIG. This design is based on XAPP853 [Ref 25].

Feature Summary
This section summarizes the supported and unsupported features of the QDRII controller
design.

Supported Features
The QDRII controller design supports the following:

• A maximum frequency of 300 MHz

• 18-bit, 36-bit, and 72-bit data widths

• Burst lengths of four and two

• Implementation using different Virtex-5 devices

• Support for DCI Cascading

• Operation with 18-bit and 36-bit memory components

• Verilog and VHDL

• With and without a testbench

• With and without a DCM

Design Frequency Ranges

Unsupported Features
The QDRII controller design does not support:

• 9-bit data widths

• 9-bit memory components

Table 10-1: Design Frequency Range in MHz

Memory

FPGA Speed Grade

-1 -2 -3

Min Max Min Max Min Max

Component 120 250 120 300 120 300

http://www.xilinx.com

326 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 10: Implementing QDRII SRAM Controllers
R

Architecture
Figure 10-1 shows a top-level block diagram of the QDRII memory controller. One side of
the QDRII memory controller connects to the user interface denoted as User Interface. The
other side of the controller interfaces to QDRII memory. The memory interface data width
is selectable from MIG.

The QDR operation can support double data rated read and write operations through
separate data output and input ports with the same cycle. Memory bandwidth is
maximized because data can be transferred into SRAM on every edge of the clock and
transferred out of SRAM on every edge of the read clock. Independent read and write ports
eliminate the need for high-speed bus turnaround.

Read and write addresses are latched on positive edges of the input clock K. A common
address bus is used to access the addresses for both read and write operations. The key
advantage to QDRII devices is they have separate data buses for reads and writes to
SRAM.

Interface Model
The QDRII memory interface is layered to simplify the design and make the design
modular. Figure 10-2 shows the layered memory interface in the QDRII memory controller.
The two layers are the application layer and the implementation and physical layer.

The application layer creates the user interface, which initiates memory writes and reads
by writing data and memory addresses to the User Interface FIFOs.

The implementation and physical layer comprises:

Figure 10-1: QDRII Memory Controller

QDRII
Memory

Controller

User
Interface

Virtex-5 FPGA

UG086_c10_01_070506

QDRII
Memory

Figure 10-2: Interface Layering Model

User Interface

Implementation and Physical Layer

UG086_c10_02_071206

Clocks and
Reset

Datapath Control

http://www.xilinx.com

MIG User Guide www.xilinx.com 327
UG086 (v2.2) March 3, 2008

Architecture
R

• Clocks and reset generation logic

• Datapath logic

• Control logic

Clocks and reset generation logic constitute a DCM primitive, which derives different
phase-shifted versions of the user-supplied differential clocks (sys_clk_p and sys_clk_n).
These phase-shifted versions of clocks run throughout the controller design. A 200 MHz
user-supplied differential clock is used for the idelay control elements. Reset signals are
generated for different clock domains using the user-supplied reset signal (sys_rst_n), the
dcm_lock signal, and idelay control elements ready signal.

The Datapath logic consists of the memory write clocks, the read clocks, the data write
generation logic, and the read data capturing logic.

The Control logic constitutes read/write command generation logic, depending on the
status signals of the User Interface FIFO.

The above mentioned logic interfaces with memory through IDDRs, ODDRs, OFLOPs,
ISERDES elements, etc., which are associated with the physical layer.

Hierarchy
Figure 10-3 shows the hierarchical structure of the QDRII SRAM design generated by MIG
with a testbench and a DCM.

Figure 10-3: Hierarchical Structure of the Virtex-5 QDRII SRAM Design

<top_
module>

qdr2_
top

idelay_
ctrl

tb_top

top_phy
top_

ctrl_sm
top_user
_interface

infrastructure

phy_addr
_io

phy_
read

phy_
write

phy_clk
_io

phy_bw
_io

phy_d_
io

phy_cq
_io

Design Modules

phy_init
_sm

phy_enphy_q
_io

phy_v5
_q_io

phy_dly
_cal_sm

top_rd_
interface

top_wr_
interface

top_wr_
addr_

interface

top_wr_
data_

interface

UG086_c10_03_091707

top_
wrdata

_fifo

top_
wrdata_
bw_fifo

top_rd_
addr_

interface

test_wr_
rd_sm

test_
addr_gen

test_
data_gen

Test Bench Modules

Clocks and Reset Generation Modules

test_cmp
_data

test_q_
sm

http://www.xilinx.com

328 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 10: Implementing QDRII SRAM Controllers
R

The modules are classified as follows:

• Design modules

• Testbench modules

• Clocks and reset generation modules

MIG can generate four different QDRII SRAM designs:

• With a testbench and a DCM

• Without a testbench and with a DCM

• With a testbench and without a DCM

• Without a testbench and without a DCM

For designs without a testbench (user_design), testbench modules are not present in the
design. The <top_module> (top level) module has the user interface signals for designs
without a testbench. The list of user interface signals is provided in Table 10-4.

Design clocks and resets are generated in the infrastructure module. The DCM clock is
instantiated in the infrastructure module for designs with a DCM. The inputs to this
module are the differential design clock and a 200 MHz differential clock for the
IDELAYCTRL module. A user reset is also input to this module. Using the input clocks and
reset signal, system clocks and system reset signals are generated in this module, which are
used in the design.

The DCM primitive is not instantiated in this module if the “No DCM” option is selected.
So, the system operates on the user-provided clocks. The system reset signals are generated
in the infrastructure module using the dcm_lock input signal, the input reset signal, and
the idelay control element’s ready signal.

The QDRII design is generated in two configurations with and without a testbench
(example_design and user_design respectively). The top-level module with testbench
(example_design) has the design top, testbench, IDELAY control, and clock and reset
modules. Without a testbench (user_design), the mem_test_bench module is removed
from the top-level module. By default, MIG outputs both designs (example_design and
user_design) in two separate RTL folders, and the user can choose the appropriate design.

http://www.xilinx.com

MIG User Guide www.xilinx.com 329
UG086 (v2.2) March 3, 2008

Architecture
R

Figure 10-4 shows a top-level block diagram of a QDRII SRAM design with a DCM and a
testbench. sys_clk_p and sys_clk_n are differential input system clocks. The DCM is
instantiated in the infrastructure module that generates the required design clocks.
dly_clk_200_p and dly_clk_200_n are used for the idelay_ctrl element. sys_rst_n is an
active-Low system reset signal. All design resets are generated using the sys_rst_n signal,
the dcm_locked signal, and the dly_ready signal of the IDELAYCTRL element. The
compare_error output signal indicates whether the design passes or fails. The testbench
module called “tb_top” generates the user interface data, address, and command signals.
The user data bits and address bits are stored in the corresponding User Interface FIFOs.
The compare_error signal is driven High on data mismatches. The cal_done signal
indicates the completion of initialization and calibration of the design.

Figure 10-4: Top-Level Block Diagram of the QDRII SRAM Design with a DCM and a Testbench

qdr2_top

tb_top

idelay_ctrl_rdy
clk200

Memory
Device

UG086_c10_04_091707

Status
Signals

System
Clocks

and Reset

idelay_ctrl

Infrastructure

user_rst_200

clk180

clk270

clk0

user_rst_180

user_rst_0

dly_clk_200_p

dly_clk_200_n

sys_clk_p

sys_clk_n

sys_rst_n

user_rst_270

qdr_r_n

qdr_w_n

qdr_bw_n

qdr_dll_off_n

qdr_sa

qdr_k

qdr_k_n

qdr_c

qdr_c_n

qdr_cq

qdr_q

qdr_d

qdr_cq_n

cal_done

compare_error

http://www.xilinx.com

330 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 10: Implementing QDRII SRAM Controllers
R

Figure 10-5 shows a top-level block diagram of a QDRII SRAM design without a DCM but
with a testbench. The user should provide all the clocks and the dcm_locked signal. These
clocks should be single-ended. sys_rst_n is the active-Low system reset signal. All design
resets are generated using the sys_rst_n signal, the dcm_locked signal, and the dly_ready
signal of the IDELAYCTRL element. The user application must have a DCM primitive
instantiated in the design, and all user clocks should be driven through BUFGs. The
compare_error output signal indicates whether the case passes or fails. The testbench
module called “tb_top” generates the user interface data, address, and command signals.
The user data bits and address bits are stored in the corresponding User Interface FIFOs
The compare_error signal is driven High on data mismatches. The cal_done signal
indicates the completion of initialization and calibration of the design.

Figure 10-5: Top-Level Block Diagram of the QDRII SRAM Design without a DCM but with a Testbench

qdr2_top

tb_top

idelay_ctrl_rdy
clk200

Memory
Device

UG086_c10_05_091707

Status
Signals

User
Clocks and

System
Reset

idelay_ctrl

Infrastructure

user_rst_200

user_rst_180

user_rst_0

clk200

clk0

clk180

clk270

dcm_locked

sys_rst_n

user_rst_270
qdr_r_n

qdr_w_n

qdr_bw_n

qdr_dll_off_n

qdr_sa

qdr_k

qdr_k_n

qdr_c

qdr_c_n

qdr_cq

qdr_d

qdr_cq_n

qdr_q
cal_done

compare_error

http://www.xilinx.com

MIG User Guide www.xilinx.com 331
UG086 (v2.2) March 3, 2008

Architecture
R

Figure 10-6 shows a top-level block diagram of a QDRII SRAM design with a DCM but
without a testbench. sys_clk_p and sys_clk_n are differential input system clocks. The
DCM is instantiated in the infrastructure module that generates the required design clocks.
dly_clk_200_p and dly_clk_200_n are used for the idelay_ctrl element. sys_rst_n is an
active-Low system reset signal, and all design resets are generated using the sys_rst_n
signal, the dcm_locked signal, and the dly_ready signal of the IDELAYCTRL element. The
user has to drive the user application signals. The design provides the clk0_tb and
user_rst_0_tb signals to the user in order to synchronize the user application signals with
the design. The cal_done signal indicates the completion of initialization and calibration of
the design.

Figure 10-6: Top-Level Block Diagram of the QDRII SRAM Design with a DCM but without a Testbench

qdr2_top

idelay_ctrl_rdy
clk200

Memory
Device

UG086_c10_06_091707

User
Interface

Signals

System
Clocks

and Reset

idelay_ctrl

Infrastructure

user_rst_200

clk180

clk270

clk0

user_rst_180

user_rst_0

dly_clk_200_p

dly_clk_200_n

sys_clk_p

sys_clk_n

sys_rst_n

user_rst_270

qdr_r_n

qdr_w_n

qdr_bw_n

qdr_dll_off_n

qdr_sa

qdr_k

qdr_k_n

qdr_c

qdr_c_n

qdr_cq

qdr_q

qdr_d

qdr_cq_n

clk0_tb

user_rst_0_tb

user_wr_full

user_rd_full

user_qr_valid

user_qrl

user_qrh

cal_done

user_ad_w_n

user_d_w_n

user_r_n

user_dwl

user_dwh

user_bwl_n

user_bwh_n

user_ad_wr

user_ad_rd

http://www.xilinx.com

332 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 10: Implementing QDRII SRAM Controllers
R

Figure 10-7 shows a top-level block diagram of a QDRII SRAM design without a DCM or
a testbench. The user should provide all the clocks and the dcm_locked signal. These
clocks should be single-ended. sys_rst_n is the active-Low system reset signal. All design
resets are generated using the sys_rst_n signal, the dcm_locked signal, and the dly_ready
signal of the IDELAYCTRL element. The user application must have a DCM primitive
instantiated in the design, and all user clocks should be driven through BUFGs. The user
has to drive the user application signals. The design provides the clk0_tb and user_rst_0_tb
signals to the user in order to synchronize the user application signals with the design. The
cal_done signal indicates the completion of initialization and calibration of the design.

Figure 10-7: Top-Level Block Diagram of the QDRII SRAM Design without a DCM or a Testbench

qdr2_top

idelay_ctrl_rdy

Memory
Device

UG086_c10_07_091707

User
Clocks and

System
Reset

idelay_ctrl

Infrastructure

user_rst_200

user_rst_180

user_rst_0

clk200

clk0

clk180

clk270

dcm_locked

sys_rst_n

user_rst_270

qdr_r_n

qdr_w_n

qdr_bw_n

qdr_dll_off_n

qdr_sa

qdr_k

qdr_k_n

qdr_c

qdr_c_n

qdr_cq

qdr_d

qdr_cq_n

qdr_q

User
Interface

Signals

clk0_tb

user_rst_0_tb

user_wr_full

user_rd_full

user_qr_valid

user_qrl

user_qrh

cal_done

user_ad_w_n

user_d_w_n

user_r_n

user_dwl

user_dwh

user_bwl_n

user_bwh_n

user_ad_wr

user_ad_rd

http://www.xilinx.com

MIG User Guide www.xilinx.com 333
UG086 (v2.2) March 3, 2008

Architecture
R

QDRII Memory Controller Modules
Figure 10-8 shows a detailed block diagram of the QDRII memory controller.

Controller

The QDRII memory controller initiates alternate WRITE and READ commands to the
memory as long as the User Write Address FIFO and the User Read Address FIFO are not
empty.

The user writes the write data, its corresponding byte write enable, and the Write Address
bits into the User Write Data FIFOs, the User Byte Write FIFO, and the User Write Address
FIFOs, respectively. When the User Write Address FIFO is not empty, the QDRII controller
generates a write-enable signal to the memory. When the write enable is asserted, the write
data, the byte write enable, and the write address bits are transferred to memory from the
User Write Data FIFOs, the User Byte Write FIFO, and the User Write Address FIFO,
respectively.

The read address from where the data is to be read from the memory is stored by the user
in the User Read Address FIFO. The QDRII memory controller generates a read-enable
signal to the memory when the User Read Address FIFO is not empty. When the read
enable is asserted, the read address from the Read Address FIFO is transferred to memory.
When the read data from the memory corresponding to the read address is captured
correctly, a valid user_qr_valid signal is asserted High. The user can access the read data
corresponding to the read address only when the data valid signal user_qr_valid is
asserted High.

Figure 10-8: QDRII Memory Controller Modules

User Interface

Physical Interface

Read / Write
State Machine

Read / Write Control

Address Path

FIFO Status

QDRII
Memory
Device

clk0
user_rst_0

user_d_w_n
user_r_n

user_ad_wr
user_ad_rd

user_bwh_n
user_dwl
user_dwh

user_qrl
user_qrh

user_wr_full
user_rd_full
user_qr_valid

qdr_r_n
qdr_w_n

qdr_sa

qdr_bw_n
qdr_d

qdr_cq

qdr_k
qdr_k_n

user_rst_0
user_rst_180
user_rst_270

clk0
clk180
clk270

user_ad_w_n

Write Path

Read Path

clk0 qdr_dll_off_n

user_bwl_n

qdr_cq_n

qdr_q

Delay
Calibration

State Machine

UG086_c10_08_091707

Memory Controller

http://www.xilinx.com

334 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 10: Implementing QDRII SRAM Controllers
R

Figure 10-9 shows a state machine of the QDRII memory controller for burst lengths of
four. When calibration is complete (that is, when the cal_done signal is asserted), the state
machine is in the IDLE state. When the User Write Address FIFO is not empty (that is,
when the user has written the write data, the byte write enable, and the write address bits
into their corresponding FIFOs, respectively), the state machine goes to the WRITE state,
initiating a memory write of one burst.

When the User Read Address FIFO is not empty (that is, the user has written read address
bits into the User Read Address FIFO), the state machine goes to the READ state, initiating
a memory read of one burst.

From the IDLE state, the QDRII memory controller can go to either the WRITE or the
READ state depending on the status of the User FIFOs. Writes are given priority. In the
WRITE state, a memory write is initiated, and the User Read Address Not Empty status is
checked in order to transfer into the READ state. When the User Read Address FIFO is
empty, the state machine goes to the IDLE state.

In the READ state, a memory read is initiated, and the User Write Address FIFO Not
Empty status is checked before going to the WRITE state. If the User Address FIFO is
empty, the state machine goes to the IDLE state.

Figure 10-10 shows a state machine of the QDR II memory controller for burst lengths of
two. When calibration is complete, the state machine is in the IDLE state. When the User

Figure 10-9: QDRII Memory Controller State Machine with Burst Lengths of 4

Figure 10-10: QDRII Memory Controller State Machine with Burst Lengths of 2

IDLE

RD

RD

WR

WR WRITE
R_n=1
W_n=0

READ
R_n=0
W_n=1

UG086_c10_09_013107

IDLE

WRITE_
READ
W_n=0
R_n=0

UG086_c10_14_122007

http://www.xilinx.com

MIG User Guide www.xilinx.com 335
UG086 (v2.2) March 3, 2008

Architecture
R

Write Address FIFO is not empty (that is, when the user has written the write data, the byte
write enable, and the write address bits into their corresponding FIFOs), the state machine
goes to the WRITE_READ state, initiating a memory write of one complete burst. When
the User Read Address FIFO is not empty (that is, the user has written read address bits
into the User Read Address FIFO), the state machine goes to the READ_WRITE state,
initiating a memory read of one complete burst.

From the IDLE state, the QDR II memory controller goes to WRITE_READ state if either:

• the User Write Address FIFO is not empty, or

• the User Read Address FIFO is not empty.

In the WRITE_READ state, the User Read Address Not Empty status is checked to initiate
a memory read. To initiate a memory write in the WRITE_READ state, the User Write
Address FIFO not empty status is checked. If both the User Write Address FIFO and the
User Read Address FIFO are empty, the state machine goes to the IDLE state. If either the
User Write Address FIFO or the User Read Address FIFO is not empty, the state machine
remains in the WRITE_READ state to issue memory writes or reads.

Refer to XAPP853 [Ref 25] for data capture techniques and timing analysis of the QDRII
memory controller module.

Infrastructure

The Infrastructure (infrastructure_top) module comprises the reset generation logic and
instantiates a DCM primitive for clock signal generation. Inputs to the infrastructure_top
module are sys_clk_p and sys_clk_n (the differential clock pair from which the design
clocks are generated), dly_clk_200_p and dly_clk_200_n (the differential clock pair for the
IDELAYCTRL elements), and sys_rst_n (the user reset signal). sys_clk_p and sys_clk_n are
used by the DCM primitive to generate the clock, the 180° phase-shifted version of the
clock, and the 270° phase-shifted version of the clock. The QDRII controller works using
these clocks. This module even generates reset signals using the sys_rst_n signal, the
dcm_lock signal, and the ready signal from the idelay control element for different clock
domains that are used by the controller design.

top_phy

This module is the interface between the controller and the memory. It consists of the
following:

• Control logic that generates READ/WRITE commands and address signals to the
memory.

• Write Data logic that associates the write data, the byte enable, and the write address
with the WRITE commands and the read address with the READ commands. It also
generates the write data pattern for calibration purposes.

• Read Data logic that comprises the read data capturing scheme and calibration logic.

DCI Cascading

In Virtex-5 family devices, I/O banks that need DCI reference voltage can be cascaded with
other DCI I/O banks. One set of VRN/VRP pins can be used to provide reference voltage
to several I/O banks. With DCI cascading, one bank (the master bank) must have its
VRN/VRP pins connected to external reference resistors. Other banks in the same column
(slave banks) can use DCI standards with the same impedance as the master bank, without
connecting the VRN/VRP pins on these banks to external resistors. DCI impedance control

http://www.xilinx.com

336 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 10: Implementing QDRII SRAM Controllers
R

in cascaded banks is received from the master bank. This results in more usable pins and in
reduced power usage because fewer VR pins and DCI controllers are used.

The syntax for representing the DCI Cascading in the UCF is:

CONFIG DCI_CASCADE = "<master> <slave1> <slave2> ...";

There are certain rules that need to be followed in order to use DCI Cascade option:

1. The master and slave banks must all reside on the same column (left, center, or right)
on the device.

2. Master and slave banks must have the same VCCO and VREF (if applicable) voltages.

This feature enables placing all 36 bits of read data, as well as the CQ and CQ# clocks, in the
same bank when interfacing with 36-bit QDRII components.

MIG supports DCI Cascading. Following are the possibilities for generating the designs
with DCI support using the DCI Cascade option.

• For x36 component designs, the DCI Cascade option is always enabled. This feature
cannot be disabled if DCI support is needed.

• For x18 component designs, DCI Cascade is optional. DCI support for these designs
can be selected with or without the DCI Cascade selection.

• For x18 component with 18-bit data width designs, the DCI Cascade option is
disabled and cannot be utilized.

When DCI Cascade option is selected, MIG displays the master bank selection box for each
column of the FPGA in the bank selection page.

• If an FPGA has no banks or has only non-DCI banks in a particular column, the
master bank selection box for that column is not displayed.

• All the data read banks are treated as slave banks.

• When a data read bank is selected in a particular column, the master bank selection
box for that particular column is activated and the rest of the master bank selection
boxes for other columns are deactivated.

• In a particular column, when a data read bank is selected and there are no DCI banks
left in that column for master banks selection, then the design cannot be generated.
The data read banks must be moved to the other columns in order to select the master
banks.

• The master bank selection box shows all the bank numbers in that particular column
other than the data read banks and non-DCI banks in that column.

• There can be only one master bank selected for each column of banks.

• MIG utilizes VRN/VRP pins in the slave banks for pin allocation.

• For each master bank, VRN/VRP pins are reserved, and a dummy input pin
masterbank_sel_pin is allocated and assigned the HSTL_I_DCI_18 I/O standard. This
helps to enable the DCI standard for the read data banks. The number of dummy
input pins is equal to the number of master banks allocated by MIG.

• The dummy input pin is required to satisfy the requirement of the master bank. Any
master bank should have at least one input pin to program the DCI option.

• When all the banks in a particular column are allocated with data read pins, MIG
chooses only the required banks for data read pins depending upon the design data
width and leaves rest of the banks for master bank selection.

The center column banks of all the FPGAs are divided into two sections, top-column banks
and bottom-column banks. Top-column banks are the banks available above the 0th bank,

http://www.xilinx.com

MIG User Guide www.xilinx.com 337
UG086 (v2.2) March 3, 2008

Architecture
R

and the bottom column banks are the banks available below 0th bank. Therefore, there are
two master bank selection boxes for the center column.

The VRN/VRP pins for a master bank do not need to be reserved in the reserve pins page.

Once the design is ready with the valid master and slave bank selection, the same master
and slave bank information (along with the DCI Cascading syntax) is provided in the UCF
when the design is generated.

For more information about DCI Cascade, refer to DCI Cascading in the Virtex-5 FPGA
User Guide and the Xilinx Constraints Guide.

CQ/CQ_n Implementation

Controller uses CQ and CQ_n for capturing read data of a 36-bit component. CQ and CQ_n
are placed on the P pins of the clock-capable I/Os. For a 36-bit component, CQ is used to
capture the first 18 bits of the read data, and CQ_n is used to capture the second 18 bits of
the read data. For an 18-bit component, only CQ is used for capturing the read data. CQ_n
is not used, and it is connected to a dummy logic. This dummy logic is used just to retain
CQ_n pin during PAR. Users can use the CQ_n pin if needed.

Pinout Considerations

It is recommended to select banks within the same column in MIG. This helps to avoid the
clock tree skew that the design would incur while crossing from one column to another.

When the Data Read, Data Write, Address, and System Control pins are allocated to
individual banks in a column, then the System Control pins must be allocated in a bank
that is central to the rest of banks allocated. This helps reduce data path and clock path
skew.

For larger FPGAs (for example, FF1738, FF1760, and similar), it is recommended to place
Data Read, Data Write, Address, and System Control pins in the same column to reduce
data path and clock path skew.

User Interface

The user interface has two interfaces: a Read user interface and a Write user interface.

The Read user interface consists of the Read Address interface modules. The Read Address
interface consists of the Read Address FIFO. The user has to write the read address bits of
the memory into this FIFO.

The Write User interface consists of the Write Data interface and the Write Address
interface. The Write Address interface consists of the Write Address FIFO. The user has to
write the write address bits of the memory into this FIFO.

The Write Data interface consists of the Write Data FIFO and the Byte Write FIFO. The
width of the Write Data FIFO depends upon the data width of the controller design. There
are two Write Data FIFOs for every controller: the LSB Write Data FIFO and the MSB Write
Data FIFO. The outputs of these FIFOs are SDR and are later converted to DDR at the
ODDR primitive before transferring to memory.

The Byte Write enable signals are stored in the Byte Write FIFO by the user.

The controller monitors the status signals of these User FIFOs and issues the
READ/WRITE commands to the memory.

The user must wait until the cal_done signal is asserted by the controller, which indicates
completion of calibration prior to writing the user data to the Write Data FIFOs.

http://www.xilinx.com

338 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 10: Implementing QDRII SRAM Controllers
R

Refer to the timing diagrams in “QDRII Controller Interface Signals” for how the user can
access these FIFOs.

QDRII SRAM Initialization and Calibration
QDRII memory is initialized through a specified sequence. Following initialization, the
relationship between the data and the FPGA clock is calculated using the TAP logic. The
calibration logic is explained briefly as follows.

Calibration is done in three stages:

1. The read strobe CQ is edge-aligned with the read data Q from the memory. The read
strobe is a free-running clock from the memory. In the first stage of calibration, the read
strobe CQ is passed through the BUFIO, which delays the strobe by the amount of
delay in the BUFIO. Now the read strobe CQ is out of synchronization with the read
data Q.

A pattern of four bursts of data (with a value of '1' for rise data and '0' for fall data) is
written into a particular location in memory. Continuous read commands are issued to
the same location of the memory and the read data Q is delayed in the ISERDES, until
it is center-aligned with respect to the delayed read strobe CQ.

The q_init_delay_done signal in the phy_read module indicates the status of the first
stage calibration. When q_init_delay_done is asserted High, it indicates the
completion of first-stage calibration. Now the CQ clocks are centered with respect to
the Read Data Q at the input of the ISERDES.

2. In the second stage of calibration, the read data window is center-aligned with respect
to the FPGA clock. Here another pattern of four bursts of data is written into a
particular memory location. It is read back continuously from the same memory
location, and the read data and the delay clock, CQ, are delayed until the registered
read data is center-aligned with the FPGA clock.

When the registered read data is center-aligned with the FPGA clock, the alignment of
the read data Q with respect to the FPGA clock is complete. The dly_cal_done signal in
the phy_read module indicates the status of second-stage calibration.

3. In the third stage of calibration, the controller issues non-consecutive read commands
to the memory. The internal read command signal generated by the controller is then
delayed through a shift register until the delayed read command signal is aligned with
the ISERDES read data output. Then another level of calibration is done to ensure
alignment between the ISERDES data outputs from all the banks used in the interface.

This finishes the calibration of the read data Q, and the cal_done signal is asserted
High.

XAPP853 [Ref 25] provides more information about the calibration architecture.

The user must strictly follow the pattern data and not modify it. The timing diagrams in
“QDRII Controller Interface Signals” explain the user interface commands until the
calibration is finished.

QDRII Controller Interface Signals
Table 10-2 through Table 10-3 describe the QDRII controller system interface signals with
and without a DCM, respectively. Table 10-4 describes the QDRII user interface signals.
Table 10-5 describes the QDRII memory interface signals. In these tables, all signal
directions are with respect to the QDRII memory controller.

http://www.xilinx.com

MIG User Guide www.xilinx.com 339
UG086 (v2.2) March 3, 2008

QDRII Controller Interface Signals
R

Table 10-2: QDRII SRAM System Interface Signals (with a DCM)

Signal Name Direction Description

sys_clk_p, sys_clk_n Input System clock input made up of differential clock pairs. This clock
pair goes to a differential input buffer. The differential buffer output
goes to the DCM input. The DCM generates the required clocks for
the design.

When the Without DCM option is selected, this clock pair is not
present.

dly_clk_200_p, dly_clk_200_n Input 200 MHz differential clock used in the idelay_ctrl logic.

sys_rst_n Input Reset to the QDRII memory controller.

compare_error Output This signal represents the status of comparison of read data when
compared to the corresponding write data.

cal_done Output This signal is asserted when the design initialization and calibration
is complete.

Table 10-3: QDRII SRAM System Interface Signals (without a DCM)

Signal Name Direction Description

clk0 Input Input clock

clk180 Input Input clock with a 180° phase difference

clk270 Input Input clock with a 270° phase difference

clk200 Input 200 MHz clock for Idelayctrl primitives

dcm_locked Input This active-High signal indicates whether the user DCM is locked or
not.

sys_rst_n Input Reset to the QDRII memory controller

compare_error Output This signal represents the status of the comparison between the read
data with the corresponding write data.

cal_done Output This signal is asserted when the design initialization and calibration is
complete.

Table 10-4: QDRII SRAM User Interface Signals (without a Testbench [user_design])

Signal Name Direction Description

user_wr_full Output This signal indicates the User Write FIFO status. It is asserted
when either the User Write Address FIFO or the User Write
Data FIFO is full. When this signal is asserted, any writes to the
User Write Address FIFO and the User Write Data FIFO are
invalid, possibly leading to controller malfunction.

user_rd_full Output This signal indicates the User Read Address FIFO status. It is
asserted when the User Read Address FIFO is full. When this
signal is asserted, any writes to the User Read Address FIFO
are ignored.

http://www.xilinx.com

340 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 10: Implementing QDRII SRAM Controllers
R

user_qr_valid Output This status signal indicates that data read from the memory is
available to the user.

clk0_tb Output All user interface signals are to be synchronized to this clock.

user_rst_0_tb Output This reset is active until the DCM is not locked.

user_dwl [(DATA_WIDTH-1):0] Input Positive-edge data for memory writes. This data bus is valid
when user_d_w_n is asserted.

user_dwh [(DATA_WIDTH-1):0] Input Negative-edge data for memory writes. This data bus is valid
when user_d_w_n is asserted.

user_qrl [(DATA_WIDTH-1):0] Output Positive-edge data read from memory. This data is output
when user_qen_n is asserted.

user_qrh [(DATA_WIDTH-1):0] Output Negative-edge data read from memory. This data is output
when user_qen_n is asserted.

user_bwl_n [(BW_WIDTH-1):0] Input Byte enables for QDRII memory positive-edge write data. The
byte enables are valid when user_d_w_n is asserted.

user_bwh_n [(BW_WIDTH-1):0] Input Byte enables for QDRII memory negative-edge write data. The
byte enables are valid when user_d_w_n is asserted.

user_ad_wr [(ADDR_WIDTH-1):0] Input QDRII memory address for write data. This address is valid
when user_ad_w_n is asserted.

user_ad_rd [(ADDR_WIDTH-1):0] Input QDRII memory address for read data. This address is valid
when user_r_n is asserted.

user_ad_w_n Input This active-Low signal is the write enable for the User Write
Address FIFO.

user_d_w_n Input This active-Low signal is the write enable for the User Write
Data FIFO and Byte Write FIFOs.

user_r_n Input This active-Low signal is the write enable for the User Read
Address FIFO.

Notes:
1. All user interface signal names are prepended with a controller number, for example, cntrl0_qdr_q. QDRII SRAM devices currently

support only one controller.

Table 10-4: QDRII SRAM User Interface Signals (without a Testbench [user_design]) (Continued)

Signal Name Direction Description

Table 10-5: QDRII SRAM Interface Signals

Signal Name Direction Description

qdr_d Output During WRITE commands, the data is sampled on both edges of K.

qdr_q Input During READ commands, the data is sampled on both edges of FPGA
clk.

qdr_bw_n Output Byte enables for QDRII memory write data. These enable signals are
sampled on both edges of the K clock.

qdr_sa Output Address for READ and WRITE operations

qdr_w_n Output This signal represents the WRITE command.

http://www.xilinx.com

MIG User Guide www.xilinx.com 341
UG086 (v2.2) March 3, 2008

QDRII Controller Interface Signals
R

User Interface Accesses

The user backend logic communicates with the memory controller through a FIFO-based
user interface. This interface consists of four related buses:

• A Write Address FIFO bus accepts memory write address from the user

• A Write Data FIFO bus accepts the write data corresponding to the memory write
address

• A Read Address FIFO bus accepts the memory read address from the user

The user interface has the following timing and signaling restrictions:

• The Write/Read Address and Write Data FIFOs cannot be written by the user until
calibration is complete (as indicated by cal_done). In addition, the user_ad_w_n,
user_d_w_n, and user_r_n interface signals need to be held High until calibration is
complete.

• For issuing a write command, the memory write address must be written into the
Read Address FIFO. The first write data word must be written to the Write Data FIFO
on the same clock cycle as the when the write address is written. In addition, the write
data burst must be written over consecutive clock cycles; there cannot be a break
between bursts of data. These restrictions arise from the fact that the controller
assumes write data is available when it receives the write command from the user.

qdr_r_n Output This signal represents the READ command.

qdr_cq, qdr_cq_n Input These signals are the read clocks transmitted by the QDRII SRAM.
Both CQ and CQ_n are used for data capture in this design.

qdr_k, qdr_k_n Output Differential write data clocks

qdr_c, qdr_c_n Output Input clock to memory for the output data

qdr_dll_off_n Output Memory DLL disable when Low

Table 10-5: QDRII SRAM Interface Signals

Signal Name Direction Description

http://www.xilinx.com

342 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 10: Implementing QDRII SRAM Controllers
R

Write Interface

Figure 10-11 illustrates the user interface block diagram for write operations.

The following steps describe the architecture of Address and Write Data FIFOs and how to
perform a write burst operation to QDRII memory from user interface.

1. The user interface consists of an Address FIFO, Data FIFOs, and a Byte Write FIFO.
These FIFOs are built out of Virtex-5 FIFO primitives. The Address FIFO is a FIFO36
primitive with 1K x 36 configuration. The Data FIFO is a FIFO36_72 primitive with
512 x 72 configuration.

2. The Address FIFO is used to store the memory address where the data is to be written
from the user interface. A single instantiation of a FIFO36 constitutes the Address
FIFO.

3. Two separate sets of Data FIFOs are used for storing the rising-edge and falling-edge
data to be written to QDRII memory from the user interface. For 9-bit, 18-bit, and 36-bit
configurations, the controller pads the extra bits of the Data FIFO with 0s.

4. The Byte Write FIFO is used to store the Byte Write signals to QDRII memory from the
user interface. Extra bits are padded with zeros.

5. The user can initiate a write command to memory by writing to the Write Address
FIFO, Write Data FIFO, and Byte Write FIFOs when the FIFO full flags are deasserted
and after the calibration done signal cal_done is asserted. The user should not access
any of these FIFOs until cal_done is asserted. During the calibration process, the

Figure 10-11: Write User Interface Block Diagram

User Interface

Controller

 Address FIFO
(FIFO36)

1024 x 36

 Byte Write FIFO
(FIFO36)

1024 x 36

fifo_wr_empty

wr_init_n

user_ad_wr

user_ad_w_n

user_dwl

user_dwh

user_bwl_n

user_bwh_n

fifo_dwl

fifo_ad_wr

fifo_dwh

fifo_bw_l

fifo_bw_h

To top_phy

user_wr_full

Rise Data FIFO
(FIFO36_72)

512 x 72

Fall Data FIFO
(FIFO36_72)

512 x 72

Data FIFOs

user_d_w_n

ug086_c10_15_122007

http://www.xilinx.com

MIG User Guide www.xilinx.com 343
UG086 (v2.2) March 3, 2008

QDRII Controller Interface Signals
R

controller writes pattern data into the Data FIFOs. The cal_done signal assures that the
clocks are stable, the reset process is completed, and the controller is ready to accept
commands. Status signal user_wr_full is asserted when the Address FIFO, Data FIFOs,
or Byte Write FIFOs are full.

6. When signal user_ad_w_n is asserted, user_ad_wr is stored in the Address FIFO.
When signal user_d_w_n signal is asserted, user_dwl and user_dwh are stored into
the Data FIFO, and user_bwl and user_bwh are stored into the Byte Write FIFOs. For
proper controller functionality, user_ad_w_n and user_d_w_n must be asserted and
deasserted simultaneously.

7. The controller reads the Address, Data, and Byte Write FIFOs when they are not empty
by issuing the wr_init_n signal. The QDRII memory write command is generated from
the wr_init_n signal by properly timing it.

8. Figure 10-12 shows the timing diagram for a write command with a burst length of
four. The address should be asserted for one clock cycle as shown. For BL = 4, each
write to the Address FIFO has two writes to the Data FIFO consisting of two rising-
edge and two falling-edge data.

9. Figure 10-13 shows the timing diagram for a write command with a burst length of
two. For BL = 2, each write to the Address FIFO has one write to Data FIFO, consisting
of one rising-edge and one falling-edge data. Commands can be given in every clock
when BL = 2.

Figure 10-12: Write User Interface Timing Diagram for BL = 4

clk0_tb

cal_done

user_wr_full

user_ad_w_n

user_d_w_n

user_ad_wr

user_dwl

user_dwh

DWL-00 DWL-01 DWL-10 DWL-11 DWL-20 DWL-21

DWH-00 DWH-01 DWH-10 DWH-11 DWH-20 DWH-21

user_bwl_n

iser_bwh_n

BWL-00 BWL-01 BWL-10 BWL-11 BWL-20 BWL-21

BWH-00 BWH-01 BWH-10 BWH-11 BWH-20 BWH-21

UG086_c10_16_122007

A0 A1 A2

http://www.xilinx.com

344 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 10: Implementing QDRII SRAM Controllers
R

Read Interface

Figure 10-14 shows a block diagram for the read interface.

Figure 10-13: Write User Interface Timing Diagram for BL = 2

clk0_tb

cal_done

user_wr_full

user_ad_w_n

user_d_w_n

user_ad_wr

user_dwl

user_dwh

DWL-0 DWL-1 DWL-2 DWL-3 DWL-4

DWH-0 DWH-1 DWH-2 DWH-3 DWH-4

A0 A1 A3A2 A4

user_bwl_n

iser_bwh_n

BWL-0 BWL-1 BWL-2 BWL-3 BWL-4

BWH-0 BWH-1 BWH-2 BWH-3 BWH-4

UG086_c10_17_122007

Figure 10-14: Read User Interface Block Diagram

Controller

fifo_rd_empty

rd_init_n

user_ad_rd

user_r_n

user_qrl

user_qrh

fifo_ad_rd

From top_phy

To top_phy
user_rd_full

user_qr_valid

UG086_c10_18_030308

User Interface

 Address FIFO
(FIFO36)

1024 x 36

http://www.xilinx.com

MIG User Guide www.xilinx.com 345
UG086 (v2.2) March 3, 2008

QDRII Controller Interface Signals
R

The following steps describe the architecture of the read user interface and how to perform
a QDRII SRAM burst read operation.

1. The read user interface consists of an Address FIFO built out of a Virtex-5 FIFO36 of
configuration 1K x 16.

2. To initiate a QDRII read command, the user writes the Address FIFO when the FIFO
full flag user_rd_full is deasserted and the calibration done signal cal_done is asserted.
Writing to the Address FIFO is an indication to the controller that it is a Read
command. The cal_done signal assures that the controller clocks are stable, the internal
reset process is completed, and the controller is ready to accept commands.

3. The user should issue the Address FIFO write-enable signal user_r_n along with read
address user_ad_rd to write the read address to the Address FIFO.

4. The controller reads the Address FIFO when status signal fifo_rd_empty is deasserted
and generates the appropriate control signals to QDRII memory required for a read
command.

5. Prior to the actual read and write commands, the design calibrates the latency in
number of clock cycles from the time the read command is issued to the time the data
is received. Using this precalibrated delay information, the controller generates the
user valid signal user_qr_valid.

6. The High state of the user_qr_valid signal indicates that read data is available.

7. The user must access the read data as soon as user_qr_valid is asserted High.

8. Figure 10-15 and Figure 10-16 show the user interface timing diagrams for BL = 4 and
BL = 2.

9. After the read address is loaded into the Read Address FIFO, it can take a minimum of
14 clock cycles, worst case, for the controller to assert user_qr_valid High.

Figure 10-15: Read User Interface Timing diagram for BL = 4

clk0_tb

cal_done

user_rd_full

user_r_n

user_ad_rd

user_qrl

user_qrh

user_qr_valid

QRL-00 QRL-01 QRL-10 QRL-11 QRL-20 QRL-21

QRH-00 QRH-01 QRH-10 QRH-11 QRH-20 QRH-21

UG086_c10_19_122007

A0 A1 A2

http://www.xilinx.com

346 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 10: Implementing QDRII SRAM Controllers
R

Table 10-6 shows the read latency of the controller.

Table 10-7 shows the list of signals for a QDRII SRAM design allocated in a group from
bank selection check boxes in MIG.

Figure 10-16: Read User Interface Timing diagram for BL = 2

Table 10-6: Maximum Read Latency

Parameter
Number of

Clock Cycles
Description

User read command to Read
Address FIFO empty flag

6 • 2 clock cycles for register stages
• 4 clock cycles for empty flag

deassertion in the FWFT mode

Read empty flag to command to
the memory

2.5 • 1 clock cycle to generate the read
command in the controller state
machine

• 1.5 cycles to transfer the
command to the memory

Memory read command to valid
data available

5.5 • 1.5 clock cycles of memory read
latency

• 3 clock cycles to capture and
transfer read data to the FPGA
clock domain

• 1 clock cycle for aligning all the
read data captured

Total Latency 14

clk0_tb

cal_done

user_rd_full

user_r_n

user_ad_rd

user_qrl

user_qrh

user_qr_valid

QRL-0 QRL-1 QRL-2 QRL-3 QRL-4

QRH-0 QRH-1 QRH-2 QRH-3 QRH-4

A0 A1 A2 A3 A4

UG086_c10_20_122007

http://www.xilinx.com

MIG User Guide www.xilinx.com 347
UG086 (v2.2) March 3, 2008

QDRII Controller Interface Signals
R

MIG shows check boxes for Address, Data_Write, Data_Read, System Control, and
System_Clock when a bank is selected for a QDRII SRAM design.

When the Address box is checked in a bank, the address, qdr_w_n, qdr_r_n, and
qdr_dll_off_n bits are assigned to that particular bank.

When the Data_Write box is checked in a bank, the memory data write, memory byte write
bits, the memory write clocks, and the memory input clock for the output data are assigned
to that particular bank.

When the Data_Read box is checked in a bank, the memory data read and memory read
clocks are assigned to that particular bank.

When the System Control box is checked in a bank, the sys_rst_n, compare_error, and
cal_done bits are assigned to that particular bank.

When the System_Clock box is checked in a bank, the sys_clk_p, sys_clk_n, dly_clk_200_p,
and dly_clk_200_n bits are assigned to that particular bank.

For special cases, such as without a testbench and without a DCM, the corresponding
input and output ports are not assigned to any FPGA pins in the design UCF because the
user can connect these ports to the FPGA pins or can connect to some logic internal to the
same FPGA.

Supported Devices
The design generated out of MIG is independent of the memory package, hence the
package part of the memory component is replaced with X, where X indicates any package.
Table 10-8 shows the list of components supported by MIG.

Table 10-7: QDRII Signal Allocations

Bank Selected Signals Allocated in the Group

Address Memory address and memory control

Data_Write Memory write data, memory byte write, and K and C clocks

Data_Read Memory read data and memory CQ

System Control System reset from the user interface and status signals

System_Clock System clocks from the user interface

Table 10-8: Supported Devices for QDRII SRAM

Virtex-5 FPGA (Verilog and VHDL)

Components Make Configuration

CY7C1314BV18-167BZXC Cypress x36

CY7C1315BV18-250BZC Cypress x36

CY7C1515V18-250BZC Cypress x36

K7R161882B-FC25 Samsung x18

K7R161884B-FC25 Samsung x18

K7R161884B-FC30 Samsung x18

K7R163682B-FC25 Samsung x36

http://www.xilinx.com

348 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 10: Implementing QDRII SRAM Controllers
R

Simulating the QDRII SRAM Design
After generating the design, MIG creates a sim folder in the specified path. This folder
contains simulation files for a particular design. The sim folder contains the external
testbench, memory model, .do file, and the executable file to simulate the generated
design. The memory model files are currently generated in Verilog only. To learn more
details about the files in the sim folder and to simulate the design, see
simulation_help.chm in the sim folder.

Hardware Tested Configurations
The frequencies shown in Table 10-9 were achieved on the Virtex-5 FPGA ML561 Memory
Interface Development Board under nominal conditions. This frequency should not be
used to determine the maximum design frequency. The maximum design frequency
supported in MIG wizard is based on combination of the TRCE results for fabric timing on
multiple device/package combinations and I/O timing analysis using FPGA and memory
timing parameter for a 72-bit wide interface.

K7R163684B-FC25 Samsung x36

K7R321884M-FC25 Samsung x18

K7R321884C-FC25 Samsung x18

K7R323682C-FC30 Samsung x36

K7R323684M-FC25 Samsung x36

K7R323684C-FC25 Samsung x36

K7R641882M-FC25 Samsung x18

K7R641884M-FC25 Samsung x18

K7R641884M-FC30 Samsung x18

K7R643682M-FC25 Samsung x36

K7R643684M-FC30 Samsung x36

Table 10-8: Supported Devices for QDRII SRAM (Continued)

Virtex-5 FPGA (Verilog and VHDL)

Components Make Configuration

Table 10-9: Hardware Tested Configurations

FPGA Device XC5VLX50TFF1136-2

Memory Component K7R643684M-FC30

Data width 72

Burst Length 4

Frequency 100 MHz to 360 MHz

Flow Vendors Synplicity and XST

Design Entry VHDL and Verilog

http://www.xilinx.com

MIG User Guide www.xilinx.com 349
UG086 (v2.2) March 3, 2008

R

Chapter 11

Implementing DDR SDRAM Controllers

This chapter describes how to implement DDR SDRAM interfaces for Virtex™-5 FPGAs
generated by MIG. This design is based on XAPP851 [Ref 24].

Interface Model
DDR SDRAM interfaces are source-synchronous and double data rate. They transfer data
on both edges of the clock cycle. A memory interface can be modularly represented as
shown in Figure 11-1. A modular interface has many advantages. It allows designs to be
ported easily and also makes it possible to share parts of the design across different types
of memory interfaces.

Figure 11-1: Modular Memory Interface Representation

Application Interface Layer

Xilinx FPGA

Physical Layer

Control Layer

UG086_c11_01_012207

Memories

http://www.xilinx.com

350 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 11: Implementing DDR SDRAM Controllers
R

Feature Summary
This section summarizes the supported and unsupported features of DDR SDRAM
controller design.

Supported Features
The DDR SDRAM controller design supports the following:

• Burst lengths of two, four, and eight

• Sequential and interleaved burst types

• DDR SDRAM components and DIMMs

• CAS latencies of 2, 2.5, and 3

• Verilog and VHDL

• With and without a testbench

• Bank management

• Bytewise data masking

• Linear addressing

• With and without a DCM

• Registered DIMMs, Unbuffered DIMMs and SO-DIMMs.

The supported features are described in more detail in “Architecture.”

Design Frequency Ranges

Unsupported Features
The DDR SDRAM controller design does not support:

• Deep memories/dual rank DIMMs

• Multicontrollers

Architecture

Implemented Features
This section provides details on the supported features of the DDR SDRAM controller. The
Virtex-5 FPGA DDR SDRAM design is a generic design that works for most of the features
mentioned above. User input parameters are defined as parameters for Verilog and
generics in VHDL in the design modules and are passed down the hierarchy. For example,

Table 11-1: Design Frequency Range in MHz

Memory

FPGA Speed Grade

-1 -2 -3

Min Max Min Max Min Max

Component 100 200 100 200 100 200

DIMM 100 200 100 200 100 200

http://www.xilinx.com

MIG User Guide www.xilinx.com 351
UG086 (v2.2) March 3, 2008

Architecture
R

if the user selects a burst length of 4, then it is defined as follows in the <top_module>
module:

 parameter BURST_LEN = 4, // burst length (in doublewords)

The user can change this parameter for various burst lengths to get the desired output. The
same concept holds for all the other parameters listed in the <top_module> module.
Table 11-2 lists the details of all parameters.

Table 11-2: Parameterization of DDR SDRAM Virtex-5 FPGA Design

Category Parameter Name Description Other Notes Value Restrictions

Memory
Width

BANK_WIDTH Number of memory bank address bits

CKE_WIDTH Number of memory clock enable outputs

CLK_WIDTH Number of differential clock outputs
Determined by the number
of components/modules
(one pair per component)

COL_WIDTH Number of memory column bits

CS_BITS log2(CS_NUM)

Used for chip-select related
address decode. See notes
for CS_NUM and
CS_WIDTH.

CS_NUM Number of separate chip selects

Different from CS_WIDTH.
For example, for a 32-bit
data bus with 2 x16 parts,
CS_NUM = 1, but
CS_WIDTH = 2 (that is, a
single chip select drives two
separate outputs, one for
each component)

CS_WIDTH /
CS_NUM = integer

CS_WIDTH Number of memory chip selects
Determined by the number
of components/modules
(one per component)

CS_WIDTH /
CS_NUM = integer

DM_WIDTH Number of data mask bits
Can be a different value
from DQS_WIDTH if x4
components are used

(DQ_WIDTH)/8

DQ_BITS log2(DQS_WIDTH*DQ_PER_DQS) Used for data bus
calibration decode

(DQ_WIDTH)/
Number of data bits

DQ_WIDTH Number of data bits

DQ_PER_DQS Number of memory DQ data bits per strobe

DQS_BITS log2(DQS_WIDTH)

DQS_WIDTH Number of memory DQS strobes

ROW_WIDTH Number of memory address bits

Memory
Options

BURST_LEN Burst length (2,4,8)

BURST_TYPE Burst type (0: sequential, 1: interleaved) (0,1)

CAS_LAT CAS latency (equal to 25 for CL = 2.5) (2,25,3)

MULTI_BANK_EN Bank management enable
If enabled, up to four banks
are kept open; otherwise,
one bank is kept open

(0,1)

REDUCE_DRV Reduced strength memory I/O enable. Set
(1) for reduced I/O drive strength.

Not supported for all
DDR/DDR2 widths (0,1)

REG_ENABLE Set (1) for registered memory module

Accounts for an extra clock
cycle delay on address/
control for a registered
module

(0,1)

http://www.xilinx.com

352 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 11: Implementing DDR SDRAM Controllers
R

Burst Length

Bits M0:M3 of the Mode Register define the burst length and burst type. Read and write
accesses to the DDR SDRAM are burst-oriented. The burst length is programmable to
either 2, 4, or 8 through the GUI. The burst length determines the maximum number of
column locations accessed for a given READ or WRITE command. The DDR SDRAM ctrl
module implements a burst length that is programmed.

CAS Latency

Bits M4:M6 of the Mode Register define the CAS latency (CL). CL is the delay in clock
cycles between the registration of a READ command and the availability of the first bit of
output data. CL can be set to 2, 2.5, or 3 clocks through the GUI. CAS latency is
implemented in the ctrl module. For CL = 2.5, the input value is read as “25” in the design.
During read data operations, the generation of the read_en signal varies according to the
CL in the ctrl module.

Precharge

The PRECHARGE command is used to close the open row in a bank if there is a command
to be issued in the same bank. The Virtex-5 DDR controller issues a PRECHARGE
command only if there is already an open row in the particular bank where a read or write
command is to be issued, thus increasing the efficiency of the design. The auto-precharge
function is not supported in this design. This design ties the A10 bit Low during normal
reads and writes.

Memory
Timing

TREFI_NS Auto refresh interval (in ns) Take directly from memory
data sheet

TRAS Active to precharge delay (in ps) Take directly from memory
data sheet

TRCD Active to read/write delay (in ps) Take directly from memory
data sheet

TRFC
Refresh to refresh, refresh to active delay (in
ps)

Take directly from memory
data sheet

TRP Precharge to command delay (in ps) Take directly from memory
data sheet

TWR Used to determine write to precharge (in ps) Take directly from memory
data sheet

TWTR Write to read (in ps) Take directly from memory
data sheet

Miscellaneous

CLK_PERIOD Memory clock period (in ps)
Used for PHY calibration
and DCM (if applicable)
setting

DLL_FREQ_MODE DCM Frequency Mode

Determined by
CLK_PERIOD. Needed
only if the DCM option is
selected.

("LOW", "HIGH")

DDR2_ENABLE Select either DDR or DDR2 interface (equal
to 1 for DDR2)

Provided from the
mem_if_top level and
below

(0,1)

SIM_ONLY Enable bypass of 200 μs power-on delay (0,1)

RST_ACT_LOW Indicates the polarity of the input reset
signal (sys_rst_n)

1: Reset is active Low.
0: Reset is active High. (0,1)

Table 11-2: Parameterization of DDR SDRAM Virtex-5 FPGA Design (Continued)

Category Parameter Name Description Other Notes Value Restrictions

http://www.xilinx.com

MIG User Guide www.xilinx.com 353
UG086 (v2.2) March 3, 2008

Hierarchy
R

Data Masking

Virtex-5 DDR SDRAM controllers support bytewise data masking of the data bits during a
write operation. For x4 components, data masking cannot be done on a per nibble basis
due to an internal block RAM based FIFO limitation. The mask data is stored into the
FIFOs along with the write data.

Auto Refresh

An AUTO REFRESH command is issued to the DDR memory at specified intervals of time
to refresh the charge to retain the data.

Bank Management

Bank management is done by the Virtex-5 DDR SDRAM controller design to increase the
efficiency of the design. The controller keeps track of whether the bank being accessed
already has an open row or not, and also decides whether a PRECHARGE command
should be issued or not to that bank. When bank management is enabled via the
MULTI_BANK_EN parameter, a maximum of four banks/rows can open at any one time.
A least-recently-used (LRU) algorithm is employed to keep the three banks most recently
used. It closes the bank least recently used when a new bank/row location needs to be
accessed. The bank management feature can also be disabled by clearing
MULTI_BANK_EN. In this case, only one bank is kept open at any one time.

Linear Addressing

Linear addressing refers to the way the user provides the address of the memory to be
accessed. For Virtex-5 DDR SDRAM controllers, the user provides the address information
through the app_af_addr signal. As the densities of the memory devices vary, the number
of column address bits and row address bits also change. In any case, the row address bits
in the app_af_addr signal always start from the next higher bit where the column address
ends. This feature increases the coverage of more devices that can be supported with the
design.

Different Memories (Density/Speed)

The DDR SDRAM controller supports different densities. For DDR components shown in
MIG, densities can vary from 128 Mb to 1 Gb. The user can select the various
configurations from the “Create custom part” option; the supported maximum column
address is 13, the maximum row address is 15, and the maximum bank address is 2. The
design can decode write and read addresses from the user in the DDR SDRAM ctrl
module. The user address consists of column, row, and bank addresses.

Hierarchy
Figure 11-2 shows the hierarchical structure of the design generated by MIG with a DCM
and a testbench.

http://www.xilinx.com

354 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 11: Implementing DDR SDRAM Controllers
R

The modules are classified in three types:

• Design modules

• Testbench modules

• Clock and reset generation modules

For designs without a testbench, the correspondingly shaded modules are not present. In
this case, the user interface signals appear in the <top_module> module. Table 11-3,
page 361 provides a list of these signals.

The infrastructure module generates the clock and reset signals for the design. It
instantiates a DCM when MIG generates a design with a DCM. The inputs to this module
are the differential design clock and a 200 MHz differential clock for the IDELAYCTRL
module. A user reset is also input to this module. Using the input clocks and reset signals,
the system clocks and the system reset are generated in this module, which is used in the
design.

If the design has no DCM, the DCM primitive is not instantiated in the module. Instead,
the system operates on the user-provided clocks. A system reset is also generated in the
infrastructure module using the input DCM_LOCK signal.

Figure 11-2: Hierarchical Structure of Virtex-5 DDR SDRAM Design

<top_
module>

ddr1_
top

idelay_
ctrl

tb_top

mem_if_
top

phy_top ctrl usr_top

infrastructure

phy_ctl_
io

phy_io phy_
write

phy_init

phy_calib

Design Modules

phy_dqs_
iob

phy_dm_
iob

phy_dq_
iob

usr_rd
usr_

backend_
fifo

usr_addr_
fifo

usr_wr_
fifo

UG086_c11_02_091707

tb_test_
gen

tb_test_
cmp

tb_test_
addr_gen

tb_test_
data_gen

usr_rd_
fifo

usr_ram_
d

Test Bench Modules

Clocks and Reset Generation Modules

http://www.xilinx.com

MIG User Guide www.xilinx.com 355
UG086 (v2.2) March 3, 2008

MIG Design Options
R

MIG Design Options
MIG provides various options to generate the design with or without a testbench or with
or without a DCM. This section provides detailed descriptions of the different types of
designs the user can generate using the MIG options.

Figure 11-3 shows a block diagram representation of the top-level module for a design
with a DCM and a testbench. The inputs consist of differential clocks for the design and
Idelayctrl modules and the user reset. The error output signal indicates whether the case
passes or fails. The phy_init_done signal indicates the completion of initialization and
calibration of the design. Because the DCM is instantiated in the infrastructure module, it
generates the required clocks and reset signals for the design.

Figure 11-4 shows a block diagram representation of the top-level module for a design
with a testbench but without a DCM. The inputs consist of user clocks for the design and
Idelayctrl modules and the user reset. The design uses the user input clocks. These clocks
should be single-ended. The infrastructure module uses the input reset and dcm_lock
signals to reset the design. The user application must have a DCM primitive instantiated in
the design. The error output signal indicates whether the case passes or fails. The
phy_init_done signal indicates the completion of initialization and calibration of the
design.

Figure 11-3: Top-Level Block Diagram of the DDR SDRAM Design with a DCM and a Testbench

ddr1_top

tb_top

idelay_ctrl_rdy

clk200

Memory
Device

UG086_c11_03_091007

Status
Signals

System
Clocks

and Reset

idelay_ctrl

Infrastructure

rst200

clk90

clk0

rst90

clk200_p

clk200_n

sys_clk_p

sys_clk_n

sys_rst_n
rst0

ddr_ras_n

ddr_cas_n

ddr_we_n

ddr_cs_n

ddr_cke

ddr_dm

ddr_ba

ddr_a

ddr_ck

ddr_ck_n

ddr_dq

ddr_dqs

ddr_reset_n

phy_init_done

error

http://www.xilinx.com

356 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 11: Implementing DDR SDRAM Controllers
R

Figure 11-4: Top-Level Block Diagram of the DDR SDRAM Design with a Testbench but without a DCM

ddr1_top

tb_top

idelay_ctrl_rdy

Memory
Device

UG086_c11_04_091007

Status
Signals

System
Reset and
User DCM

Clocks

idelay_ctrl

Infrastructure

rst200

rst0

clk200

clk0

clk90

sys_rst_n

dcm_lock
rst90 ddr_ras_n

ddr_cas_n

ddr_we_n

ddr_cs_n

ddr_cke

ddr_dm

ddr_ba

ddr_a

ddr_ck

ddr_ck_n

ddr_dq

ddr_dqs

ddr_reset_n

phy_init_done

error

http://www.xilinx.com

MIG User Guide www.xilinx.com 357
UG086 (v2.2) March 3, 2008

MIG Design Options
R

Figure 11-5 shows a block diagram representation of the top-level module for a design
with a DCM but without a testbench. The phy_init_done signal indicates the completion of
initialization and calibration of the design. The user interface signals are also listed in the
<top_module> module. The design provides the clk_tb and reset_tb signals to the user to
synchronize with the design. Because the DCM is instantiated in the infrastructure
module, it generates the required clock and reset signals for the design.

Figure 11-5: Top-Level Block Diagram of the DDR SDRAM Design with a DCM but without a Testbench

ddr1_top

idelay_ctrl_rdy

clk200

Memory
Device

UG086_c11_05_091007

User
Application
and Status

Signal

System
Clocks

and Reset

idelay_ctrl

Infrastructure

rst200

clk90

clk0

rst0

clk200_p

clk200_n

sys_clk_p

sys_clk_n

sys_rst_n

app_af_addr

app_wdf_data

app_wdf_mask_data

app_wdf_wren

app_wdf_afull

rst90
ddr_ras_n

ddr_cas_n

ddr_we_n

ddr_cs_n

ddr_dm

ddr_ba

ddr_a

ddr_ck

ddr_ck_n

ddr_dq

ddr_dqs

ddr_cke

ddr_reset_n

app_af_wren

app_af_afull

rd_data_valid

rd_data_fifo_out

clk0_tb

app_af_cmd

rst0_tb

phy_init_done

http://www.xilinx.com

358 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 11: Implementing DDR SDRAM Controllers
R

Figure 11-6 shows a block diagram representation of the top-level module for designs
without a DCM or a testbench. The inputs consist of user clocks for the design and
Idelayctrl modules and the user reset. The design uses the user input clocks. These clocks
should be single-ended. To reset the design, the signals are generated using the input reset
and the dcm_lock signals in the infrastructure module. The user application must have a
DCM primitive instantiated in the design. The phy_init_done signal indicates the
completion of initialization and calibration of the design. The user interface signals are also
listed in the <top_module> module. The design provides the clk_tb and reset_tb signals to
the user to synchronize with the design.

Figure 11-6: Top-Level Block Diagram of the DDR SDRAM Design without a DCM or a Testbench

ddr1_top

idelay_ctrl_rdy

Memory
Device

UG086_c11_06_091007

System
Reset

and
User DCM

idelay_ctrl

Infrastructure

rst200

rst0

rst90

clk_0

clk_200

clk_90

sys_rst_n

dcm_lock

ddr_ras_n

ddr_cas_n

ddr_we_n

ddr_cs_n

ddr_cke

ddr_dm

ddr_ba

ddr_a

ddr_ck

ddr_ck_n

ddr_reset_n

ddr_dq

ddr_dqs

User
Application
and Status

Signal

app_af_addr

app_af_wren

app_wdf_data

app_wdf_mask_data

app_wdf_wren

app_wdf_afull

app_af_cmd

rd_data_valid

rd_data_fifo_out

clk0_tb

rst0_tb

phy_init_done

app_af_afull

http://www.xilinx.com

MIG User Guide www.xilinx.com 359
UG086 (v2.2) March 3, 2008

MIG Design Options
R

Figure 11-7 shows an expanded block diagram of the design. The design’s top module is
expanded to show various internal blocks. The functions of these blocks are explained in
following subsections.

Infrastructure

The infrastructure module generates the clock and reset signals for the design. The user
clocks and user reset are input to this module. In designs generated with a DCM, the input
clocks are differential. There are clocks for design use and also a 200 MHz clock for the
idelayctrl primitive. These differential clocks are first passed through the buffers, and the
single-ended output of the buffers is used. The single-ended output of sys_clk_p and
sys_clk_n is then given to the DCM input. The clock outputs of the DCM are clk0 and
clk90. The dcm_lock signal and user reset input are used to generate the synchronous
system resets for the design. After the DCM is locked, the design is in the reset state for at
least 25 clocks.

When the user chooses the no DCM option in the GUI, the design does not use any DCM
primitives. Instead it works on the clocks provided by the user. The input clocks in this

Figure 11-7: Detailed Block Diagram of the DDR SDRAM Design with a DCM but without a Testbench

ctrl

Control
Signals

write_data

ddr1_top/mem_if_top

read_data

Control
Signals

idelay_ctrl_rdy

clk200

Memory
Device

UG086_c11_07_091007

System
Clocks

and Reset

idelay_ctrl

Infrastructure

rst200

clk90

clk0

rst90

rst0

clk200_p

clk200_n

sys_clk_p

sys_clk_n

sys_rst_n

ddr_ras_n

ddr_cas_n

ddr_we_n

ddr_cs_n

ddr_cke

ddr_dm

ddr_ba

ddr_a

ddr_ck

ddr_ck_n

ddr_dq

ddr_dqs

ddr_reset_n

User
Application
and Status

Signal

app_af_addr

app_af_wren

app_wdf_data

app_wdf_mask_data

app_wdf_wren

app_wdf_afull

app_af_afull

rd_data_valid

rd_data_fifo_out

clk0_tb

app_af_cmd

rst0_tb

phy_init_done

usr_top

phy_top

http://www.xilinx.com

360 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 11: Implementing DDR SDRAM Controllers
R

case have to be single-ended. The dcm_lock status and user input reset signals are the
inputs to the module when there is no DCM. These signals are used to generate the
synchronous system resets for the design.

idelay_ctrl

This module instantiates the IDELAYCTRL primitive of the Virtex-5 FPGA. The
IDELAYCTRL primitive is used to continuously calibrate the individual delay elements in
its region to reduce the effect of process, temperature, and voltage variations. A 200 MHz
clock has to be fed to this primitive.

ctrl

The ctrl module is the main controller of the Virtex-5 DDR SDRAM controller design. It
generates all the control signals required for the DDR memory interface and the user
interface. This module signals the FIFOs instantiated in the user interface to output the fed
data in it and also signals the physical layer to output the data on the IOBs during a write
operation. During a read operation, the data read from the memory is taken from the
physical layer and written into the user interface FIFOs using the control signals generated
by the ctrl module.

The ctrl module decodes the user command and issues the specified command to the
memory. The app_af_cmd signal is decoded as a write command when it equals 3’b000,
and app_af_cmd is decoded as a read command when it equals 3’b001. The commands
and control signals are generated based on the input burst length and CAS latency. If the
multi-bank option is enabled, the ctrl module also takes care of bank management, so as to
increase the efficiency of the design. At a given point of time, a maximum of four banks can
be open. The controller issues a PRECHARGE command to the bank only if there is already
an open row in that bank and the next command is to be issued to a different row. An
ACTIVE command is generated to open the row in that particular bank. Thus the efficiency
is increased.

phy_top

The phy_top module is the top level of the physical interface of the design. The physical
layer includes the input/output blocks (IOBs) and other primitives used to read and write
the double data rate signals to and from the memory, such as IDDR and ODDR. This
module also includes the IODELAY elements of the Virtex-5 FPGA. These IODELAY
elements are used to delay the input strobe and data signals to capture the valid data into
the Read Data FIFO.

The memory control signals, such as RAS_N, CAS_N, and WE_N, are driven from the
buffers in the IOBs. All the input and output signals to and from the memory are
referenced from the IOB to compensate for the routing delays inside the FPGA.

The phy_init module, which is instantiated in the phy_top module, is used to initialize the
DDR memory in a predefined sequence according to the JEDEC standard for DDR
SDRAM.

The phy_calib module calibrates the design to align the strobe signal such that it always
captures the valid data in the FIFO. This calibration is needed to compensate for the trace
delays between the memory and the FPGA devices.

The phy_write module splits the user data into rise data and fall data to be sent to the
memory as a double data rate signal using ODDR. Similarly, while reading the data from
memory, the data from IDDR is combined to get a single vector that is written into the read
FIFO.

http://www.xilinx.com

MIG User Guide www.xilinx.com 361
UG086 (v2.2) March 3, 2008

MIG Design Options
R

usr_top

The usr_top module is the user interface block of the design. It receives and stores the user
data, command, and address information in respective FIFOs. The ctrl module generates
the required control signals for this module. During a write operation, the data stored in
the usr_wr_fifo is read and given to the physical layer to output to the memory. Similarly,
during a read operation, the data from the memory is read via IDDR and written into the
FIFOs. This data is given to the user with a valid signal (rd_data_valid), which indicates
valid data on the rd_data_fifo_out signal. See “User Interface Accesses,” page 365 for
required timing requirements and restrictions for user interface signals.

Table 11-3 lists the user interface signals.

Table 11-3: User Interface Signals

Signal Direction (1) Description

app_af_cmd[2:0](2) Input 3-bit command to the Virtex-5 DDR SDRAM design.
app_af_cmd = 3’b000 for write commands
app_af_cmd = 3’b001 for read commands

Operation is not guaranteed if the user gives values other than the specified
ones.

app_af_addr[30:0](2, 3) Input Provides the address, row address, and column address of the memory
location to be accessed.

Column address = app_af_addr[COL_WIDTH-1: 0]
Row address = app_af_addr[ROW_WIDTH+COL_WIDTH -1:
COL_WIDTH]
Bank address =
app_af_addr[BANK_WIDTH+ROW_WIDTH+COL_WIDTH-1:
ROW_WIDTH+COL_WIDTH]

app_af_wren(2) Input Write enable to the user address FIFO. This signal should be synchronized
with the app_af_addr and app_af_cmd signals.

app_wdf_data[2*DQ_WIDTH-1:0](2) Input User input data. It should have the fall data and the rise data.
Rise data = app_wdf_data[DQ_WIDTH-1: 0]
Fall data = app_wdf_data[2*DQ_WIDTH-1: DQ_WIDTH]

app_wdf_wren(2) Input Write enable for the user write FIFO. This signal should be synchronized
with the app_wdf_data and app_wdf_mask_data signals.

app_wdf_mask_data[2*DM_WIDTH-1: 0](2) Input User mask data. It should contain the masking information for both rise and
fall data.

Rise mask data = app_wdf_mask_data[DM_WIDTH-1: 0]
Fall mask data = app_wdf_mask_data[2*DM_WIDTH-1: DM_WIDTH]

app_af_afull(2) Output Almost Full status of the address FIFO. The user can write 12 more locations
into the FIFO after app_af_afull is asserted.

app_wdf_afull(2) Output Almost Full status of the user write FIFO. The user can write 12 more
locations into the FIFO after app_wdf_afull is asserted.

rd_data_fifo_out[2*DQ_WIDTH-1: 0](2) Output Read data from the memory. Read data is stored in the user write FIFO.

rd_data_valid(2) Output Status signal indicating that data read from the memory is available to the
user.

clk0_tb Output Clock output to the user. All the user input data and commands must be
synchronized with this clock.

rst0_tb Output Active-High reset for the user interface.

Notes:
1. The direction indicated in this table is referenced from the design perspective. For example, input indicates that the signal is input to the

design and output for the user.
2. See “User Interface Accesses,” page 365 for required timing requirements and restrictions for the user interface signals.
3. Addressing in the Virtex-5 FPGA is linear. That is, the row address bits immediately follow the column address bits, and the bank address

bits follow the row address bits, thus supporting more devices.

http://www.xilinx.com

362 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 11: Implementing DDR SDRAM Controllers
R

System Interface Signals

Table 11-5 and Table 11-6 shows the system interface signals for designs with and without
a DCM, respectively.

Table 11-4: Design Status Signals

Signal Direction Description

phy_init_done Output Indicates the completion of initialization and calibration of the design.

Table 11-5: System Interface Signals with a DCM

Signal Direction Description

sys_clk_p, sys_clk_n Input Differential input clocks to the DCM. The DDR
SDRAM controller and memory operate on this
clock.

sys_rst_n Input Active-Low reset to the DDR SDRAM controller.

clk200_p, clk200_n Input 200 MHz input differential clock for the
IDELAYCTRL primitive of Virtex-5 FPGA.

Table 11-6: System Interface Signals without a DCM

Signal Direction Description

clk0 Input The DDR SDRAM controller and memory
operate on this clock.

sys_rst_n Input Active-Low reset to the DDR SDRAM controller.
This signal is used to generate a synchronous
system reset.

clk90 Input 90° phase-shifted clock with the same frequency
as clk0.

clk200 Input 200 MHz input differential clock for the
IDELAYCTRL primitive of the Virtex-5 FPGA.

dcm_lock Input The status signal indicating whether the DCM is
locked or not. This signal is used to generate a
synchronous system reset.

http://www.xilinx.com

MIG User Guide www.xilinx.com 363
UG086 (v2.2) March 3, 2008

DDR SDRAM Initialization
R

DDR SDRAM Initialization
DDR memory is initialized through a specified sequence as shown in Figure 11-8. This
initialization sequence is in accordance with JEDEC specifications for DDR SDRAMs. The
initialization logic is implemented in the physical layer.

Figure 11-8: DDR SDRAM Initialization

UG086_c11_08_021307

Wait 200 μs

Wait > 200 clock cycles

Wait 45 clock cycles

Wait 45 clock cycles

Wait 45 clock cycles

Wait 45 clock cycles

Wait 45 clock cycles

Wait 45 clock cycles

Precharge all banks

Wait > 200 clock cycles
(249 clock cycles)

Precharge all banks

Load Mode EMR with
A0 = 0 (enable DLL). Also

select drive strength.

Load Mode MR with
A[12:8] = 0x01 (reset DLL).
Also select other operating

parameters.

Bank Activate at BA = 0x0,
Row = 0x0 (for first
calibration stage)

Load Mode MR with
A[12:8] = 0x00 (deactivate

DLL reset). Also select other
operating parameters.

System Reset

Auto Refresh

Auto Refresh

Initialization complete.
Continue calibration.

http://www.xilinx.com

364 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 11: Implementing DDR SDRAM Controllers
R

DDR SDRAM Design Calibration
Before issuing user read and write commands, the design is calibrated to ensure that
correct data is captured in the ISERDES primitives of Virtex-5 FPGAs. Calibration logic is
implemented in the physical layer of the design. Figure 11-9 shows the overall calibration
sequence. For more details on the calibration algorithm for the Virtex-5 DDR interface, see
XAPP851 [Ref 24].

The first calibration stage sets the IDELAY value for each DQ (IDELAY for DQS remains at
0 during this time), and is performed even before a phase relationship between DQS and
FPGA_CLK has been established. A training pattern of “10” (1 = rising, 0 = falling) is used
to calibrate DQ.

The second calibration stage includes calibration between the DQS and the FPGA clock.

Figure 11-9: Overall Design Calibration Sequence

UG086_c9_08_020507

Write all callibration training
patterns to fixed locations

in memory

Write callibration patterns
required for stage 1, stage 2,
and stage 3/4 calibration to memory.

Stage 1:

 DQ-DQS per bit calibration.

 Adjust DQ IDELAY.

 Perform once per DQ bit.

Continuous readback of
stage 1 training pattern

Continuous readback of
stage 2 training pattern

Calibrate all DQ

Calibrate all DQS

Continuous readback of
stage 3/4 training pattern

Read Data Valid calibration
all DQS

Calibration Done

DQS Gate Control
calibration for all DQS

Power-up init sequence
complete

Stage 3:

 Read data valid calibration (once per
DQS group).

 Adjust number of clock cycles to wait
after issuing read command before valid
data arrives in FPGA_CLK domain.

 Perform once per DQS group.

Stage 4:

 DQS gate control calibration.

 Adjust IDELAY for DQS gate control.

 Perform once per DQS group.

Stage 2:

 DQS-FPGA CLK calibration (use
DQ [8 * x] to calibrate DQS [x]);

 Adjust DQ/DQS IDELAY.

 Perform once per DQS group.

http://www.xilinx.com

MIG User Guide www.xilinx.com 365
UG086 (v2.2) March 3, 2008

User Interface Accesses
R

The third calibration stage is read-enable calibration, which compensates for the round-
trip delay between when the read command is issued by the controller, and the captured
read data is valid at the outputs of the ISERDES.

The fourth stage includes calibration of a squelch circuit that gates the input DQS to avoid
the glitch that propagates to the second rank of flops in the ISERDES. The glitch occurs
when DQS goes from the Low state to the 3-state level after the last edge of the DQS, which
might cause a “false” rising and/or falling edge on the DQS input to the FPGA. Unless the
DQS glitch is gated after the last DQS falling edge of a read burst, the data registered in the
ISERDES might change prematurely. During calibration, an auto-refresh command is
issued to memory at intervals depending on the stage of calibration.

After initialization and calibration is done, the controller is signaled to start normal
operation of the design. Now, the controller can start issuing user write and read
commands to the memory.

User Interface Accesses
The user backend logic communicates with the memory controller through a synchronous
FIFO-based user interface. This interface consists of three related buses:

• a command/address FIFO bus accepts write/read commands as well as the
corresponding memory address from the user

• a Write Data FIFO bus that accepts the corresponding write data when the user issues
a write command on the command/address bus

• a read bus on which the corresponding read data for an issued read command is
returned

The user interface has the following timing and signaling restrictions:

1. Commands and write data cannot be written by the user until calibration is complete
(as indicated by phy_init_done). In addition, the following interface signals need to be
held Low until calibration is complete: app_af_wren, app_wdf_wren, app_wdf_data[].
app_wdf_mask_data[]. Failure to hold these signals Low causes errors during
calibration. This restriction arises from the fact that the Write Data FIFO is also used
during calibration to hold the training patterns for the various stages of calibration.

2. When issuing a write command, the first write data word must be written to the Write
Data FIFO either prior to, or on the same clock cycle as the when the write command
is issued. In addition, the write data must be written by the user over consecutively
clock cycles, there cannot be a break in between words. These restrictions arise from
the fact that the controller assumes write data is available when it receives the write
command from the user.

3. The output of the Read Data FIFO (specifically, the rd_data_fifo_out and
rd_data_valid signals) are synchronous to clk90, and not to clk0. The user might need
to insert an extra pipeline stage to resynchronize the data to clk0 if place-and-route
timing cannot be met on these 3/4 cycle paths.

http://www.xilinx.com

366 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 11: Implementing DDR SDRAM Controllers
R

Write Interface
Figure 11-10 shows the user interface block diagram for write operations.

The following steps describe the architecture of the Address and Write Data FIFOs and
show how to perform a write burst operation to DDR SDRAM from the user interface.

1. The user interface consists of an Address FIFO and a Write Data FIFO. The Write Data
FIFO is constructed using Virtex-5 FIFO36_72 primitive with a 512 x 72 configuration.
The 72-bit architecture comprises one 64-bit port and one 8-bit port. For Write Data
FIFOs, the 64-bit port is used for data bits and the 8-bit port is used for mask bits. Mask
bits are available only when supported by the memory part and when the Data Mask
is enabled in the MIG GUI. Some memory parts, such as Registered DIMMs of x4 parts,
do not support mask bits.

2. The Address FIFO is constructed using Virtex-5 FIFO36 primitive with a 1024 x 36
configuration. The 36-bit architecture comprises one 32-bit port and one 4-bit port. The
32-bit port is used for addresses (app_af_addr), and the 4-bit port is used for
commands (app_af_cmd).

3. The Address FIFO is common for both Write and Read commands. It comprises an
address part and the command part. Command bits discriminate between write and
read commands.

4. The user interface data width app_wdf_data is twice that of the memory data width.
For an 8-bit memory width, the user interface is 16 bits consisting of rising edge data
and falling edge data. For every 8 bits of data, there is a mask bit. For 72-bit memory
data, the user interface data width app_wdf_data is 144 bits, and the mask data
app_wdf_mask_data is 18 bits.

5. The minimum configuration of the Write Data FIFO is 512 x 72 for a memory data
width of 8 bits. For an 8-bit memory data width, the least-significant 16 bits of the data
port are used for write data and the least-significant two bits of the 8-bit port are used

Figure 11-10: User Interface Block Diagram for Write Operations

User Interface

Controller

 Address FIFO
(FIFO36)
1024 x 36

af_addr

af_cmd

af_empty

ctrl_af_rden

wdf_rden

app_af_addr

app_af_cmd

app_af_wren

app_wdf_data

app_wdf_mask_data

app_wdf_wren

wdf_data

wdf_mask_data To Phy Layer

app_wdf_afull

app_af_afull
Write Data

FIFO
(FIFO36_72)

512 x 72

Write Data
FIFO

(FIFO36_72)
512 x 72

ug086_c11_12_122007

http://www.xilinx.com

MIG User Guide www.xilinx.com 367
UG086 (v2.2) March 3, 2008

Write Interface
R

for mask bits. The controller internally pads all zeros for the most-significant 48 bits of
the 64-bit port and the most-significant six bits of the 8-bit port.

6. Depending on the memory data width, MIG instantiates multiple FIFO36_72s to gain
the required width. For designs using 8-bit to 32-bit data width, one FIFO36_72 is
instantiated; for 72-bit data width, a total of three FIFO36_72s are instantiated. The bit
architecture comprises 32 bits of rising-edge data, 4 bits of rising-edge mask, 32 bits of
falling-edge data, and 4 bits of falling-edge mask, which are all stored in a FIFO36_72.
MIG routes the app_wdf_data and app_wdf_mask_data to FIFO36_72s accordingly.

7. The user can initiate a write to memory by writing to the Address FIFO and the Write
Data FIFO when FIFO full flags are deasserted. Status signal app_af_afull is asserted
when the Address FIFO is full; similarly, app_wdf_afull is asserted when Write Data
FIFO is full.

8. At power-on, both Address FIFO and Write Data FIFO full flags are deasserted.

9. The user should assert Address FIFO write enable signal app_af_wren along with
address app_af_addr and command app_af_cmd to store the address and command
into Address FIFO.

10. The user data should be synchronized to the clk_tb clock. Data FIFO write-enable
signal app_wdf_wren should be asserted to store write data app_wdf_data and mask
data app_wdf_mask_data into the Write Data FIFOs. Rising-edge and falling-edge
data should be provided together for each write to the Data FIFO. The Virtex-5 DDR
SDRAM controller design supports byte-wise masking of data only.

11. The write command should be given by keeping app_af_cmd = 3'b000 and asserting
app_af_wren. Address information is given on the app_af_addr signal. Address and
command information is written into the User Address FIFO.

12. After the completion of the initialization and calibration process and when the User
Address FIFO empty signal is deasserted, the controller reads the command and
address FIFO and issues a write command to the DDR SDRAM.

http://www.xilinx.com

368 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 11: Implementing DDR SDRAM Controllers
R

13. The write timing diagram in Figure 11-11 is derived from the MIG-generated test
bench for a burst length of four (BL = 4). As shown, each write to Address FIFO should
have two writes to the Data FIFO. The phy_init_done signal indicates memory
initialization and calibration completion.

Figure 11-11: DDR SDRAM Write Burst for Four Bursts (BL = 4)

clk_tb

reset_tb

app_wdf_afull

app_af_afull

app_af_wren

app_af_addr

phy_init_done

app_wdf_wren

A0

app_af_cmd 000 000 000 000

app_wdf_data D0D1 D3D2 D5D4 D7D6 D9D8 D11D10 D13D12 D15D14

app_mask_data M0M1 M3M2 M5M4 M7M6 M9M8 M11M10 M13M12 M15M14

A1 A2 A3

UG086_c11_10_020507

http://www.xilinx.com

MIG User Guide www.xilinx.com 369
UG086 (v2.2) March 3, 2008

Read Interface
R

Read Interface
Figure 11-12 shows the block diagram of the read interface.

The following steps describe the architecture of the Read Data FIFO and show how to
perform a read burst operation from DDR SDRAM from the user interface.

1. The read user interface consists of an Address FIFO and a Read Data FIFO. The
Address FIFO is common between reads and writes. The Read Data FIFO is built out of
Distributed RAMs of 16 x 1 configuration. MIG instantiates the number of RAM16Ds
depending on the data width. For example, for 8-bit data width, MIG instantiates a
total of 16 RAM16X1Ds, 8 for rising-edge data and 8 for falling-edge data. Similarly, for
72-bit data width, MIG instantiates a total of 144 RAM16Ds, 72 for rising-edge data
and 72 for falling-edge data.

2. The user can initiate a read to memory by writing to the Address FIFO when the FIFO
full flag app_af_afull is deasserted.

3. To write the read address and read command into the Address FIFO, the Address FIFO
write enable signal app_af_wren should be issued, along with the memory read
address app_af_addr and app_af_cmd commands (set to 001 for a read command).

4. The controller reads the Address FIFO and generates the appropriate control signals to
memory. After decoding app_af_cmd, the controller issues a read command to the
memory at the specified address.

5. Prior to the actual read and write commands, the design calibrates the latency in
number of clock cycles from the time the read command is issued to the time the data
is received. Using this precalibrated delay information, the controller stores the read
data in Read Data FIFOs.

6. The read_data_valid signal is asserted when data is available in the Read Data FIFOs.

7. When calibration is completed, the controller generates the control signals to capture
the read data from the FIFO according to the CAS latency selected by the user. The

Figure 11-12: User Interface Block Diagram for Read Operation

User Interface

Controller
 Address FIFO

(FIFO36)
1024 x 36

af_addr

af_empty

ctrl_af_rden

rd_data_out_rise

rd_data_out_fall From Phy Layer

Read Data
FIFO

(RAM 16 x 1D)

Read Data
FIFO

(RAM 16 x 1D)

ug086_c11_13_122007

app_af_addr

app_af_cmd

app_af_wren

rd_data_fifo_out

rd_data_valid

app_af_afull

wdf_almost_full

http://www.xilinx.com

370 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 11: Implementing DDR SDRAM Controllers
R

rd_data_valid signal is asserted when the read data is available to the user, and
rd_data_fifo_out is the read data from the memory to the user.

8. Figure 11-13 shows the user interface timing diagram for a read command, burst
length of four.

Read latency is defined as the time between when the read command is written to the user
interface bus until when the corresponding first piece of data is available on the user
interface bus (see Figure 11-13).

When benchmarking read latencies, it is important to specify the exact conditions under
which the measurement occurs.

Read latency varies based on the following parameters:

• Number of commands already in the FIFO pipeline before the read command is
issued

• Whether an ACTIVATE command needs to be issued to open the new bank/row

• Whether a PRECHARGE command needs to be issued to close a previously opened
bank

• Specific timing parameters for the memory, such as TRAS and TRCD in conjunction
with the bus clock frequency

• Commands can be interrupted, and banks/rows can forcibly be closed when the
periodic AUTO REFRESH command is issued

• CAS latency

• Board-level and chip-level (for both memory and FPGA) propagation delays

Table 11-7 and Table 11-8 show read latencies for the Virtex-5 FPGA DDR interface for two
different conditions. Table 11-7 shows the case where a row activate is not required prior to
issuing a read command on the DDR bus. This situation is possible, for example, when
bank management is enabled, and the read targets an already opened bank. Table 11-8
shows the case when a read results in a bank/row conflict. In this case, a precharge of the
previous row must be followed by an activation of the new row, which increases read
latency. Other specific conditions are noted in the footnotes for each table.

Figure 11-13: DDR SDRAM Read Burst for Four Bursts (BL = 4)

clk_tb

app_af_afull

app_af_wren

app_af_addr

app_af_cmd

rd_data_valid

rd_data_fifo_out

UG086_c11_11_031407

D14D15D10D11D6D7D2D3 D12D13D8D9D4D5D0D1

A0 A1 A2 A3

001 001 001 001

Read Latency

http://www.xilinx.com

MIG User Guide www.xilinx.com 371
UG086 (v2.2) March 3, 2008

Read Interface
R

Table 11-7: Read Latency without Precharge and Activate

Parameter
Number of Clock

Cycles

User READ command to empty signal deassertion (using FIFO36) 5 clocks

Empty signal to READ command on DDR bus 4.5 clocks

READ command to read valid assertion 11.5 clocks

Total 21 clocks

Notes:
1. Test conditions: Clock frequency = 200 MHz, CAS latency = 3, DDR -5 speed grade device.
2. Access conditions: Read to an already open bank/row is issued to an empty control/address FIFO.
3. Some entries have fractional clock cycles because the inverted version of CLK0 is used to drive the

DDR memory.
4. The Virtex-5 DDR interface uses a FIFO36 for the address/control FIFO. It is possible to shorten the

READ command to empty signal deassertion latency by implementing the FIFO as a distributed RAM
FIFO or removing the FIFO altogether, as the application requires.

Table 11-8: Read Latency with Precharge and Activate

Parameter
Number of Clock

Cycles

User READ command to empty signal deassertion (using FIFO36) 5 clocks

Empty signal to PRECHARGE command on DDR bus 4.5 clocks

PRECHARGE to ACTIVE command to DDR memory 3 clocks

ACTIVE to READ command to DDR memory 4 clocks

READ command to read valid assertion 11.5 clocks

Total 28 clocks

Notes:
1. Test conditions: Clock frequency = 200 MHz, CAS latency = 3, DDR -5 speed grade device.
2. Access conditions: Read that results in a bank/row conflict is issued to an empty control/address

FIFO. This requires that the previous bank/row be closed first.
3. Some entries have fractional clock cycles because the inverted version of CLK0 is used to drive the

DDR memory.
4. The Virtex-5 DDR interface uses a FIFO36 for the address/control FIFO. It is possible to shorten the

READ command to empty signal deassertion latency by implementing the FIFO as a distributed RAM
FIFO or removing the FIFO altogether, as the application requires.

http://www.xilinx.com

372 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 11: Implementing DDR SDRAM Controllers
R

Supported Devices
The design generated by MIG is independent of the memory package; therefore, the
package part of the memory component is replaced with XX, where XX indicates a “don't
care” condition. The tables below list the components (Table 11-9) and DIMMs (Table 11-10
through Table 11-12) supported by MIG for DDR SDRAM.

Table 11-9: Supported Components for DDR SDRAM (Virtex-5 FPGAs)

Components Packages (XX) Components Packages (XX)

MT46V32M4XX-75 P,TG MT46V32M4XX-5B -

MT46V64M4XX-75 FG,P,TG MT46V64M4XX-5B BG,FG,P,TG

MT46V128M4XX-75 BN,FN,P,TG MT46V128M4XX-5B BN,FN,P,TG

MT46V256M4XX-75 P,TG MT46V256M4XX-5B P,TG

MT46V16M8XX-75 P,TG MT46V16M8XX-5B TG,P

MT46V32M8XX-75 FG,P,TG MT46V32M8XX-5B BG,FG,P,TG

MT46V64M8XX-75 BN,FN,P,TG MT46V64M8XX-5B BN,FN,P,TG

MT46V128M8XX-75 P,TG MT46V128M8XX-5B -

MT46V8M16XX-75 P,TG MT46V8M16XX-5B TG,P

MT46V16M16XX-75 BG,FG,P,TG MT46V16M16XX-5B BG,FG,P,TG

MT46V32M16XX-75 - MT46V32M16XX-5B BN,FN,P,TG

MT46V64M16XX-75 P,TG MT46V64M16XX-5B -

Table 11-10: Supported Unbuffered DIMMs for DDR SDRAM (Virtex-5 FPGAs)

Unbuffered DIMMs Packages (X) Unbuffered DIMMs Packages (X)

MT4VDDT1664AX-40B G,Y MT8VDDT3264AX-40B G,Y

MT4VDDT3264AX-40B G,Y MT9VDDT3272AX-40B Y

Table 11-11: Supported Registered DIMMs for DDR SDRAM (Virtex-5 FPGAs)

Registered DIMMs Packages (X) Registered DIMMs Packages (X)

MT9VDDF3272X-40B G,Y MT18VDDF6472X-40B D,G,Y

MT9VDDF6472X-40B G,Y MT18VDDF12872X-40B DY,G,Y

Table 11-12: Supported SODIMMs for DDR SDRAM (Virtex-5 FPGAs)

SODIMMs Packages (X) SODIMMs Packages (X)

MT4VDDT3264HX-40B G,Y MT9VDDT3272HX-40B -

MT4VDDT1664HX-40B Y MT9VDDT6472HX-40B G,Y

MT8VDDT3264HX-40B - MT9VDDT12872HX-40B -

MT8VDDT6464HX-40B DG,DY,G,Y

http://www.xilinx.com

MIG User Guide www.xilinx.com 373
UG086 (v2.2) March 3, 2008

Simulating a DDR SDRAM Design
R

Simulating a DDR SDRAM Design
After generating the design, MIG creates a sim folder in the specified path. This folder
contains simulation files for a particular design. The sim folder contains the external
testbench, memory model, .do file, and the executable file to simulate the generated
design. The memory model files are currently generated in Verilog only. To learn more
details about the files in sim folder and to simulate the design, refer to
simulation_help.chm in the sim folder.

Hardware Tested Configurations
The frequencies shown in Table 11-13 were achieved on the Virtex-5 FPGA ML561 Memory
Interfaces Development Board under nominal conditions. This frequency should not be
used to determine the maximum design frequency. The maximum design frequency
supported in the MIG wizard is based a combination of the TRCE results for fabric timing
on multiple device/package combinations and I/O timing analysis using FPGA and
memory timing parameters for a 64-bit wide interface.

Table 11-13: Hardware Tested Configurations

Synthesis Tools XST and Synplicity

HDL Verilog and VHDL

FPGA Device XC5VLX50T-FF1136-2

Burst Lengths 2, 4, 8

CAS Latency (CL) 2, 2.5, 3

32-bit Design Tested on 16-bit Component “MT46V32M16XX-5B”

Component, CL=2 110 MHz to 170 MHz

Component, CL=2.5 110 MHz to 210 MHz

Component, CL=3 110 MHz to 250 MHz

http://www.xilinx.com

374 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 11: Implementing DDR SDRAM Controllers
R

http://www.xilinx.com

MIG User Guide www.xilinx.com 375
UG086 (v2.2) March 3, 2008

R

Section V: DDR2 Debug Guide

Chapter 12, “Debugging MIG DDR2 Designs”

http://www.xilinx.com

376 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

DDR2 Debug Guide
R

http://www.xilinx.com

MIG User Guide www.xilinx.com 377
UG086 (v2.2) March 3, 2008

R

Chapter 12

Debugging MIG DDR2 Designs

Introduction
Debugging problems encountered during hardware testing of MIG-generated memory
interfaces can be challenging. Because of the complexity involved in designing with
memory interfaces, it is necessary to have a debugging process to narrow down to the root
cause of the problem to then be able to focus on the required resolution.

This chapter provides a step-by-step process for debugging designs that use MIG-
generated memory interfaces. It provides details on board layout verification, design
implementation verification, usage of the physical layer of MIG controllers to debug
board-level issues, and general board-level debug techniques. The information in this
chapter is specific to DDR2 SDRAM designs. However, the techniques covered can be
applied to other memory interfaces. The overall flow for debugging problems encountered
in hardware for MIG-based memory interface designs is shown in Figure 12-1:

The following sections go into detail on each of these important debugging steps to aid in
providing resolution to calibration failures and data corruptions or errors.

Figure 12-1: MIG Debug Flowchart

Symptoms in Hardware

Verify Board Layout Guidelines

- Calibration Failure
- Data Bit/Byte Corruption/Errors

General Software Debug

Physical Layer Debug

General Board Level Debug

UG086_01_122107

http://www.xilinx.com

378 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 12: Debugging MIG DDR2 Designs
R

Verifying Board Layout

Introduction
There are three main steps in verifying the board layout for a memory interface, as shown
in Figure 12-2.

Memory Implementation Guidelines
See Appendix A, “Memory Implementation Guidelines” for specifications on pinout
guidelines, termination, I/O standards, trace matching, and loading. The guidelines
provided are specific to both memory technologies as well as MIG output designs. It is
very important to verify that these guidelines have been read and considered during
board-layout. Failure to follow these guidelines can result in problematic behavior in
hardware, which is detailed throughout this chapter.

Calculate WASSO
It is important to take into consideration Weighted Average Simultaneously Switching Output
(WASSO) limits when generating a MIG pinout. The FPGA data sheets define the SSO
limits for each bank. WASSO calculations take this into account along with design-specific
parameters, such as board-level inductance, input logic-low threshold, input undershoot
voltage, and output loading capacitance. WASSO ensures even distribution of fast/strong
drivers across the package, that the number of simultaneously switching outputs does not
exceed the per-bank limit and that the chip does not generate excessive ground bounce.

WASSO Calculators for Virtex™-4 devices [Ref 30] or Virtex-5 devices [Ref 31] should be
used to find WASSO limits based on board-specific parameters.

These calculations should be run during both pre-board layout and post-board layout. The
results found can then be entered in the Bank Selection page of the MIG GUI. (Refer to
“Bank Selection,” page 47.) MIG follows these WASSO Limits when generating the pinout.
Please see Appendix C, “WASSO Limit Implementation Guidelines” for further
information.

Figure 12-2: Verify Board Layout Guidelines

Symptoms in Hardware

Verify Board Layout Guidelines

- Calibration Failure
- Data Bit/Byte Corruption/Errors

Verify Board Layout Guidelines

General Software Debug

Physical Layer Debug

Calculate WASSO

Verify Memory Implementation
Guidlines Such as Pin-out,

Termination, and Trace Matching
are Properly Followed

Run SI Simulation Using IBIS

General Board Level Debug
UG086_c12_02_122107

http://www.xilinx.com

MIG User Guide www.xilinx.com 379
UG086 (v2.2) March 3, 2008

Verifying Design Implementation
R

Run SI Simulation Using IBIS
The final critical step in verifying board layout guidelines have been followed is to run
signal integrity simulations using IBIS. These simulations should always be run both pre-
board layout and post-board layout. The purpose of running these simulations is to
confirm the signal integrity on the board.

The ML561 Hardware-Simulation Correlation chapter of the ML561 User Guide [Ref 13]
can be used as a guideline. This chapter provides a detailed look at signal integrity
correlation results for the ML561 board and can be used as an example for what to look at
and what is good to see. It also provides steps to create a design specific IBIS model to aid
in setting up the simulations.

Verifying Design Implementation

Introduction
There are four main steps in verifying the design implementation of a MIG output as
shown in Figure 12-3:

Behavioral Simulation
Running behavioral simulation verifies the functionality of the design. Both the
example_design and user_design provided with the MIG DDR2 controllers include a
complete environment which allows the user to simulate the reference design and view the
outputs. Scripts are provided to run behavioral simulation.

• For Virtex-4 family designs, see “Simulating the DDR2 SDRAM Design” in Chapter 3.

• For Spartan™-3/3E/3A/3AN/3A DSP family designs, see “Tool Output” in Chapter 8.
• For Virtex-5 family designs, see “Simulating the DDR2 SDRAM Design” in Chapter 9.

Figure 12-3: Verify Design Implementation

Symptoms in Hardware

Verify Board Layout Guidelines

- Calibration Failure
- Data Bit/Byte Corruption/Errors

Verify Design Implementation

General Software Debug

Physical Layer Debug

Verify Design Successfully
Completes MAP/PAR and Follows

MIG Routing Constraints

Run MIG Design Through
Behavioral Simulation

Verify any Modifications to the
MIG Output

Verify MIG Design Timing in TRACE
General Board Level Debug

UG086_03_122107

http://www.xilinx.com

380 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 12: Debugging MIG DDR2 Designs
R

The Xilinx UNISIM libraries must be mapped into the simulator. If the UNISIM libraries
are not set up for your environment, go to the COMPXLIB chapter of the Development
Systems Reference Guide section for assistance compiling Xilinx simulation models and
setting up the simulator environment. This guide can be found in the ISE™ Software
Manuals.

Verify Modifications to MIG Output
There are three modifications to the MIG output that are commonly made:

1. Changing the pinout in the provided output UCF

2. Changing design parameters defined in the output source code

3. Migrating the MIG output design into an ISE project

Each of these changes can cause problems with the implemented design that are not
always visible to the user.

Changing the Pinout Provided in the Output UCF

MIG allows users to select the desired banks rather then the exact pin locations for the
memory interface. This is because specific pin assignment guidelines must be followed.
See Appendix A, “Memory Implementation Guidelines” for detailed pin assignment
guidelines.

Following these pin assignment guidelines when making changes to the output pinout
ensures proper pin placement. However, design implementation problems can still occur.
The Virtex-5 and Spartan-3 DDR2 designs require specific placement constraints outside of
the pin locations. These constraint values are dependent on the pinout and so the
constraints output with the MIG UCF are not correct if the pin locations are changed. The
Spartan-3 and Virtex-5 architecture specific sections of this debug guide provide detailed
information on these constraints and how changes cause problems.

It is always recommended to use the MIG pinout. If specific pins in the selected banks
cannot be used for the memory interface, use the Reserve Pins feature of the MIG tool.
(Refer to section “Reserve Pins” in Chapter 1.) If changes are made to the Virtex-4 or
Virtex-5 pinout, the Verify UCF feature should always be used to test the changes against
the pin assignment guidelines. (Refer to section “Verify UCF File” in Chapter 1.)

Changing Design Parameters

Often users need to change specific design parameters such as address/data widths, DDR2
memory parameters, and clock period after generating the DDR2 design. These
modifications often require multiple changes to the MIG source code that are not always
visible to the user. It is always recommended to re-run MIG when making any design
parameter change.

For Spartan-3 and Virtex-4 family MIG designs, design parameters are defined through
`defines. In some cases, changing one design parameter requires changing multiple
`defines and/or portions of the source code. As an example, when changing the address or
data bus widths, the source code replicates multiple instances that depend on the bus
width. In this case, it is necessary to instantiate additional elements for new bits manually.
Because of required modifications such as this, MIG should always be re-run when a
design parameter change is required.

http://www.xilinx.com

MIG User Guide www.xilinx.com 381
UG086 (v2.2) March 3, 2008

Verifying Design Implementation
R

For Virtex-5 FPGA MIG designs, design parameters are defined using top-level parameters
and generate statements. Changes to the code are no longer necessary. However, it is still
recommended to re-run MIG when making design parameter modifications.

Migrating MIG Output into ISE Project

Currently, MIG can only be generated through a stand-alone CORE Generator™ project.
A batch file (ise_flow) is provided in the par directory of the output reference design to
implement the MIG output design through the backend ISE tools. If the user needs to
migrate the MIG reference design into an ISE project, there are two options:

1. Create a new ISE project with the MIG reference design

2. Add the MIG reference design to an existing ISE project

In order to create a new ISE project with the MIG reference design, the create_ise script
file has been provided in the par directory of the output reference design. This script
creates an .ise project file which includes the MIG source code, UCF, and appropriate
synthesis and implementation project options. This script file is only available when XST is
set as the synthesis option.

If the MIG reference design needs to be added to an existing ISE project, the source files
must be manually added and the implementation options manually copied to the project.
The ise_flow script file should be opened to view the necessary synthesis and
implementation project options to copy into the ISE project.

When migrating a Spartan-3 Generation FPGA MIG design into an ISE project, the
environment variable XIL_ROUTE_ENABLE_DATA_CAPTURE must be set. This variable
is required to enable a needed template router and is discussed in detail in the Spartan-3
debug section below.

Verify Successful Placement and Routing
In order to ensure proper timing of address/control or writes to the memory, specific flip-
flops must be pushed into IOBs. These flip-flops include address, control and data 3-state
output. To ensure proper timing, the flip-flops must be located within the IOBs. The MIG
source code provides attributes to push these flip-flops into their respective IOBs. The
attributes however, are specific to the synthesis tool selected in the CORE Generator
project options. If XST is selected, the attributes are specific only to XST. Ensure the
synthesis tool selected in the CORE Generator project options is used.

Once the design has successfully complete Place and Route, FPGA Editor can then be used
to verify the correct placement of these flip-flops in the IOBs. Search for the address,
control, and data IOBs in the 'List1' window under 'All Components.' Individually open
each of these IOB components to verify the flip-flop is properly packed in the IOB. If the
flops are not properly packed, ensure the synthesis attributes were picked up when
running XST or Synplify Pro.

Verify IDELAYCTRL Instantiation for Virtex-4 and Virtex-5 FPGA Designs
Virtex-4 and Virtex-5 FPGA designs require instantiation of the IDELAYCTRL module in
the HDL in order to support the use of the IDELAY ChipSync elements for read data
capture.

MIG uses the “Automatic” method for IDELAYCTRL instantiation: specifically, the MIG
HDL only instantiates a single IDELAYCTRL for the entire design. No location (LOC)
constraints are included in the MIG-generated UCF. This method relies on the ISE tools to

http://www.xilinx.com

382 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 12: Debugging MIG DDR2 Designs
R

replicate and place as many IDELAYCTRLs (for example, one per clock region that use
IDELAYs) as needed. In addition, the tool logically ANDs the RDY signal of each of the
replicated IDELAYCTRL blocks.

The alternate method to instantiating IDELAYCTRLs is to manually instantiate as many as
are needed in the design, and use LOC constraints in the UCF to fix their location. Each
IDELAYCTRL must be individually location constrained. This method becomes necessary
to use with a MIG design in the following cases:

• Multiple memory interfaces are used on the same device.

• The MIG design is used with other IP cores or user designs that also require the use of
IDELAYCTRL and IDELAYs.

• Previous ISE tool releases 8.2.03i and 9.1i had an issue with IDELAYCTRL block
replication and trimming. When using these revisions of the tool, the user must
instantiate and constrain the location of each IDELAYCTRL individually.

See the Virtex-4 User Guide [Ref 7] and Virtex-5 FPGA User Guide [Ref 10] for more
information on the requirements of IDELAYCTRL placement.

Verify TRACE Timing
As a final check of proper software implementation of the MIG design, verify that all MIG
provided timing constraints have completed successfully. There should be no failed timing
paths in the provided MIG constraints. If the design was run in batch mode using the
ise_flow script file, the TRACE output <design_name>.twr file can be opened. If the
design was ran using the ISE tools, select the Analyze Post-Place and Route Static Timing
option located under the Processes tab.

Debugging the Spartan-3 FPGA Design

Introduction
For a detailed discussion of the Spartan-3 FPGA DDR2 interface design, see application
notes XAPP454 [Ref 14] and XAPP768c [Ref 23].

Read Data Capture
Read data capture is executed using LUT based delay circuits to delay the DQS and
loopback signals. The delayed DQS is then used to capture data into LUT RAM based
FIFOs with the delayed loopback used as the write enable.

There are four main steps in debugging this data capture implementation as shown in
Figure 12-4.

http://www.xilinx.com

MIG User Guide www.xilinx.com 383
UG086 (v2.2) March 3, 2008

Debugging the Spartan-3 FPGA Design
R

Verify Placement and Routing
The proper implementation of the data capture algorithm requires specific pinout and
placement constraints which include PIN, LUT, BEL, and MAXDELAY, as well as usage of
template routes during Place and Route.

MIG creates the appropriate UCF for the banks selected and should always be used. If
changes are made to the pinout, the remaining placement constraints are no longer correct
because these are based on the pin locations. Information on the specific guidelines used in
creating Spartan-3 Generation FPGA UCFs are provided in Appendix A, “Memory
Implementation Guidelines.” If these constraints are not followed, the data capture
algorithm is not implemented properly and the results in hardware might not be as
expected.

When the appropriate UCF is implemented, all related components are placed properly.
This correct placement and usage of the XIL_ROUTE_ENABLE_DATA_CAPTURE
environment variable forces specific routing algorithms (template routes) to be used
during implementation of the PAR tools. There are two specific routing algorithms that are
used:

• Routing DQ bits from a PAD to a Distributed Memory component
♦ Requires the environment variable XIL_ROUTE_ENABLE_DATA_CAPTURE to

be enabled during PAR implementation. This environment variable is set in the
implementation script file (ise_flow.bat) provided in the /par MIG output
directory.

• Routing delayed DQS strobe signals using Local Clocking resources
♦ The PAR tools automatically treats Local Clocks as template routes and locks

down the routes correctly without using the environment variable.

DQ Routing

The template router set through the environment variable ensures the data bits are routed
from a PAD to a Distributed Memory to capture the data in an Asynchronous FIFO using
the Local Clock to write the data, and a Global Clock to read the data. These routes require
a template to guarantee that the delay remains constant between all data bits.

Figure 12-4: Spartan-3 FPGA Physical Layer Debug

Symptoms in Hardware

Verify Board Layout Guidelines

- Calibration Failure
- Data Bit/Byte Corruption/Errors

- Insert ChipScope
- Add MIG Signals to Isolate Failure
- Vary LUT Taps as Required

Spartan-3 Physical Layer Debug

General Software Debug

Physical Layer Debug

Verify Placement and Routing

Debug Physical Layer in Hardware

Proceed to Board-level Debug

General Board Level Debug
UG086_c12_04_122107

http://www.xilinx.com

384 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 12: Debugging MIG DDR2 Designs
R

Once the design is implemented, load the resultant .ncd and .pcf files into FPGA Editor
to visually verify the template routes for the data bits, as follows:

1. Open the design in FPGA Editor by selecting Start → Programs → Xilinx ISE 10.1i →
Accessories → FPGA Editor, or load through the View/Edit Routed Design (FPGA
Editor) option in the Processes tab of an ISE project.

2. In some cases, turning Stub Trimming off provides a better picture of the route. To do
this, select File → Main Properties and turn off Stub Trimming in the General tab.
When Stub Trimming is enabled, FPGA Editor does not display the entire route. If Stub
Trimming is disabled, you can see the entire length of the routing segment. Stub
Trimming is enabled in Figure 12-5 and Figure 12-6.

3. Search within the List1 window for *dq* under the All Nets pull-down. Select all of the
DQ data bit nets (e.g., main_00/top0/dq(0)) within the window and highlight these
nets by clicking the Hilite button in the right-hand column. This allows for visual
inspection of the delay routes. Zoom into the area with the highlighted nets and verify
that the placement looks like Figure 12-5 or Figure 12-6.

Figure 12-5: DQ Placement (Top/Bottom)

Figure 12-6: DQ Placement (Left/Right)

UG086_05_122107

UG086_06_122107

http://www.xilinx.com

MIG User Guide www.xilinx.com 385
UG086 (v2.2) March 3, 2008

Debugging the Spartan-3 FPGA Design
R

4. Next, verify that the delays on the nets are consistent. Again, select all of the DQ data
bit nets in the List1 window. This time click on the Delay button located in the right-
hand column. This lists the worst-case delay for the DQ bits. Using this delay
information, inconsistent routing can be quickly identified. There should be less than
75 ps of skew (ideally less then 50 ps) between the data nets. The delay values depend
on the device speed grade and Top/Bottom versus Left/Right implementation but
have been observed to range between 300–700 ps.

If preferred, export the delay information to view the report in an Excel spreadsheet. Select
File → Export to export the delay information to a .csv file.

DQS Routing

The delayed strobes (dqs*_delayed_col*) need to use the local clocking resources available
in the device for the clock routing. The local routing resources used depend on the pin
placement specified during generation in the MIG tool. Full hex lines that have low skew
are located throughout the device. Left and right implementations use Vertical Full Hex
(VFULLHEX) lines for local clock routing. Top and bottom implementations use VLONG,
VFULLHEX, and HFULLHEX lines for local clock routing.

PAR routes from the Local Clock PAD to a series of LUTs to implement the scheme
explained in detail in XAPP768c. From the output of the final LUT delay, the delayed
strobe/Local Clock (dqs*_delayed_col*) routes to all of the FIFO bits.

To verify the pinout and usage of the template router, the net skew and max delay on the
local clock (dqs*_delayed_col*) must be within spec. To verify these values, open the PAR
report (.par file) and scroll to the Clock Report section. For most Spartan-3 families, the
Net Skew is less than 40 ps, and the Max Delay is approximately 550 ps. For Spartan-3A
and Spartan-3A DSP devices, the Net Skew is less then 65 ps, and the Max Delay is
approximately 400 ps.

The FPGA Editor can then be used to view the local clock placement. To view the template
routes for the delayed strobes, search in the List1 window for *dqs*_delayed_col* in the All
Nets pull-down. Select all the nets (e.g., main_00/top0/data_path0/dqs0_delayed_col0)
and select Hilite from the right-hand column. This command highlights the nets of interest.
Then zoom into this range of highlighted signals to view the placement. If local clocking is
used, one of the two structures shown in Figure 12-7 and Figure 12-8 is seen.

Figure 12-7: Local Clock (Top/Bottom) for dqs*_delayed_col* LUT Delay Elements

UG086_08_122107

http://www.xilinx.com

386 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 12: Debugging MIG DDR2 Designs
R

If the skew and delays are within spec and the layout for the Local Clock and Data bits
match the above figures, the template routes for DQS have been properly implemented.

If the DQ or delayed DQS signals do not verify properly, ensure the environment variable
XIL_ROUTE_ENABLE_DATA_CAPTURE was set and that the UCF follows the guidelines
specified in Appendix A.

Debugging Physical Layer in Hardware
If problems are seen in hardware after verifying the correct implementation of the
Spartan-3 Generation FPGA design, there are two common issues that cause problems
with the data capture algorithm:

• Incorrect Loopback timing
• Incorrect delay on DQS for read capture

Figure 12-8: Local Clock (Left/Right) for dqs*_delayed_col* LUT Delay Elements

UG086_07_122107

http://www.xilinx.com

MIG User Guide www.xilinx.com 387
UG086 (v2.2) March 3, 2008

Debugging the Spartan-3 FPGA Design
R

Loopback Timing

The timing on the loopback signal is critical to the proper implementation of the data
capture algorithm because the delayed loopback signal generates the write enable for the
read data FIFOs. The causes for incorrect loopback timing are:

• Incorrect route delay on the loopback signal
♦ The loopback signal must be delayed by the sum of the FPGA forward clock and

the DQS trace length. This is most commonly implemented through a physical
board trace.

• Changes to the MIG pinout after generation
The symptoms of incorrect loopback timing are:
• The first data in a burst is usually corrupted
• Depending on trace delays, only certain bits in the bus exhibit the problem

Incorrect DQS Delay

The appropriate delay on the DQS strobe signals is required for proper implementation of
the Spartan-3 Generation FPGA data capture algorithm. Common causes for incorrect
DQS delay are:

• Mismatch in trace lengths for DQ and DQS
• Changes to the MIG pinout after generation
• Frequency changes without reimplementation of the design

If the delay on DQS is incorrect, the following symptoms can be seen in hardware:

• Incorrect data is seen intermittently
• Incorrect data is always seen

To debug either incorrect Loopback timing or incorrect DQS delay, insert a ChipScope™
Pro Virtual Input Output (VIO) core into the MIG design. The tapfordqs1 signal located in
the cal_ctl.v/.vhd source file should be added to the ChipScope VIO to view the
number of taps in the delay paths. Use the VIO to increase or decrease the number of LUTs
in the delay path while examining the resultant behavior in hardware. The number of taps
increases/decreases for both the Loopback delay path and the DQS delay path. Once the
appropriate number of LUT delays is found so the data corruption no longer occurs, the
number of delays can then be changed within the source code. Changing the number of
LUTs in the delay path can compensate for the incorrect loopback timing and incorrect
DQS delay. See the ChipScope Pro User Guide [Ref 6] for detailed information on using
ChipScope VIO.

Proceed to General Board-Level Debug
If the above verification of design implementation and debug of the data capture
algorithm did not resolve the issues seen in hardware, there could be a problem on the
board itself. Proceed to the“General Board-Level Debug” section for further guidance.

http://www.xilinx.com

388 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 12: Debugging MIG DDR2 Designs
R

Debugging the Virtex-4 FPGA Direct Clocking Design

Introduction
This section discusses internal signals to observe in order to assist in isolating problems
that could occur during read data timing calibration in the Virtex-4 FPGA DDR2 Direct
Clocking design. For more information on the calibration algorithm used in this design,
refer to application note XAPP702. [Ref 18]

Read Data Capture Timing Calibration
Read data timing calibration is executed over two stages:

• Stage 1: Aligning output of IDDR to internal (FPGA) clock

• Stage 2: Read Data Valid Calibration

The calibration logic is parallel, in that multiple calibration units are instantiated, one for
each DQS group (e.g., each calibration unit handles 4 or 8 DQ bits).

What can break during calibration?

• Stage 2 calibration checks for a specific sequence of data back from the memory

• Data bit issues (e.g., stuck-at-bit, PCB trace open/short) causes calibration to hang
during Stage 2

♦ Each calibration unit must be checked individually to pinpoint exactly which
bit(s) failed and/or DQS groups failed

The overall calibration state machine flow diagram is shown in Figure 12-9.

http://www.xilinx.com

MIG User Guide www.xilinx.com 389
UG086 (v2.2) March 3, 2008

Debugging the Virtex-4 FPGA Direct Clocking Design
R

Signals of Interest
The status signals shown in Table 12-1 can be used to help determine where the failure
occurs:

Figure 12-9: Virtex-4 DDR2 Direct Clocking Overall Calibration Flowchart

Start Calibration

Write Training Patterns
{0xFF, 0x00}, {0xA5, 0x96}

to Memory

calib_done_dqs [0] = 1

Stage 1: DQ-to-FPGA
Clock Calibration for

DQS [0] Group

All DQ Bits
Calibrated?

Stage 1: DQ-to-FPGA
Clock Calibration for

DQS [x] Group

Stage 2: Read FIFO Write
Enable Calibration for

DQS[0]

Stage 2: Read FIFO Write
Enable Calibration for

DQS[0]

All DQ Bits
Calibrated?

tap_sel_done = 1

Calibration Done
init_done = 1

calib_done_dqs [x] = 1

comp_done_int [0] = 1 comp_done_int [x] = 1

NN

Y Y

UG086_09_122107

Table 12-1: Virtex-4 Direct Clocking Status Signals

Signal Description

calib_done_dqs[x:0] Asserted when individual Stage 1 calibration units have finished
(one per DQS group)

tap_sel_done Asserted when all Stage 1 calibration units have completed

comp_done_int[x:0] Asserted when individual Stage 2 calibration units have finished
(one per DQS group)

init_done Asserted when all calibration stages successfully completed

http://www.xilinx.com

390 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 12: Debugging MIG DDR2 Designs
R

Proceed to General Board-Level Debug
If the above verification of design implementation and debug of the data capture
algorithm does not resolve the issues seen in hardware, there could be a problem on the
board itself. Proceed to the “General Board-Level Debug” section for further guidance.

Debugging the Virtex-4 FPGA SerDes Design

Introduction
This section discusses internal signals to observe in order to assist in isolating problems
that could occur during read data timing calibration in the Virtex-4 FPGA DDR2 SerDes
design. For more information on the calibration algorithm used in this design, refer to
application note XAPP721. [Ref 22]

Read Data Capture Timing Calibration
Read data timing calibration is executed over three stages:

• Stage 1: Aligning output of the first stage of the ISERDES to the FPGA clock

• Stage 2: Fine adjustment of Data-to-Strobe (DQ-to-DQS) capture timing into first stage
of ISERDES

• Stage 3: Read data valid calibration

The calibration logic is parallel, in that multiple calibration units are instantiated, one for
each DQS group (e.g., each calibration unit handles 4 or 8 DQ bits).

What can break during calibration?

• Calibration can hang at any of the stages. All stages look for a specific training pattern
back from the memory. If it is not received, calibration sticks in an infinite loop
reading back the data.

• Data bit issues (e.g., stuck-at-bit, PCB trace open/short) can cause calibration to hang

♦ Each calibration unit must be checked individually to pinpoint exactly which
bit(s) failed and/or DQS groups failed

The overall calibration state machine flow diagram is shown in Figure 12-10.

http://www.xilinx.com

MIG User Guide www.xilinx.com 391
UG086 (v2.2) March 3, 2008

Debugging the Virtex-4 FPGA SerDes Design
R

Signals of Interest
The status signals shown in Table 12-2 can be used to help determine where the failure
occurs:

Figure 12-10: Virtex-4 DDR2 SerDes Overall Calibration Flowchart

Start Calibration

Write Training Patterns
0xFF, 0x00, 0xAA, 0x55

to Memory

Stage 1: DQS
[0]-to-FPGA

Clock Calibration

All DQ/DQS Bits
Calibrated?

Stage 1: DQS
[x]-to-FPGA

Clock Calibration

Calibration Done
dp_dly_slct_done =1

UG086_10_122107

Stage 2: DQS
[0]-to-DQ [7:0] Fine

Adjustment Calibration

Stage 2: DQS
[x]-to-DQ Fine

Adjustment Calibration

Stage 3: Read FIFO
Write Enable Calibration

for DQS [0]

Stage 3: Read FIFO
Write Enable Calibration

for DQS [x]

dq 1 to 7_calib_done [0] = 1 dq 1 to 7_calib_done [x] = 1

Table 12-2: Virtex-4 FPGA SerDes Status Signals

Signal Description

calib_done_dqs[x:0] Asserted when individual Stage 1 calibration units have finished
(one per DQS group)

tap_sel_done Asserted when all Stage 1 calibration units have completed

comp_done_int[x:0] Asserted when individual Stage 2 calibration units have finished
(one per DQS group)

init_done Asserted when all calibration stages successfully completed

http://www.xilinx.com

392 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 12: Debugging MIG DDR2 Designs
R

Proceed to General Board-Level Debug
If the above verification of design implementation and debug of the data capture
algorithm did not resolve the issues seen in hardware, there could be a problem on the
board itself. Proceed to the “General Board-Level Debug” section for further guidance.

Debugging the Virtex-5 FPGA Design

Introduction
This section discusses internal signals to observe in order to assist in isolating problems
that could occur during read data timing calibration in the Virtex-5 FPGA DDR2 design.
Additional UCF and other parameter requirements of this design are also discussed. For
more information on this design, refer to application note XAPP858 [Ref 26].

Verify Placement and Routing
Historically, unlike the MIG Spartan-3 FPGA interface designs, most MIG Virtex-4 and
Virtex-5 FPGA designs have had only pin location (LOC) and clock (PERIOD) constraints
in the UCF. In some cases AREA_GROUP constraints were included to assist with meeting
timing. The MIG Virtex-5 FPGA DDR design does require location and internal timing
constraints for specific read data capture related circuits.

The MIG Virtex-5 FPGA DDR2 adds a number of additional constraints to the design. This
design requires properly setting both top-level parameters in HDL and constraints in the
UCF that are pinout-dependent. The additional constraints in the UCF consists of location
constrains for certain fabric-based resources, and internal timing (MAXDELAY)
constraints. These constraints arise from changes to the read-capture path from previous
revisions of MIG Virtex-5 FPGA DDR2 designs.

When creating a design in MIG, MIG automatically generates the proper HDL and UCF
constraint values. However, if it becomes necessary to make changes to the MIG-generated
pinout, these constraints must be manually modified. The procedure for doing so is
discussed in Appendix B, “Required UCF and HDL Modifications for Pinout Changes.”

Signals of Interest
The module PHY_CALIB_0.V/VHD contains the read capture timing calibration state
machine.

The status signals shown in Table 12-3 can be used to help determine where the failure
occurs.

Table 12-3: Virtex-5 FPGA SerDes Status Signals

Signal Description

phy_init_done Asserted when both initialization of memory and read capture
timing calibration has completed

calib_start[3:0] Pulsed for one clock cycle as each calibration stage is entered

calib_done[3:0] Driven to a static 1 as each calibration stage is finished

rd_data_rise Captured (synchronized) rising edge read data from DDR2

http://www.xilinx.com

MIG User Guide www.xilinx.com 393
UG086 (v2.2) March 3, 2008

General Board-Level Debug
R

Physical Layer Debug Port
The Virtex-5 DDR2 design HDL contains an optional port to allow the user to observe and
control the IDELAY tap values for the DQ, DQS, and DQS Gate signals after read capture
timing calibration. This is described in Appendix D.

Proceed to General Board-Level Debug
If the above verification of design implementation and debug of the data capture
algorithm does not resolve the issues seen in hardware, there could be a problem on the
board itself. Proceed to the “General Board-Level Debug” section for further guidance.

General Board-Level Debug

Overall Flow
The flowchart shown in Figure 12-11 documents recommended steps to try during board-
level debug.

rd_data_fall Captured (synchronized) falling edge read data from DDR2

cal1_dq_count Binary value indicating the current DQ bit being calibrated
during Stage 1

cal2_dq_count Binary value indicate the current DQS group being calibrated
during Stage 2

Table 12-3: Virtex-5 FPGA SerDes Status Signals (Continued)

Signal Description

Figure 12-11: General Board-Level Debug Flowchart

Symptoms in Hardware

Verify Board Layout Guidelines

- Calibration Failure
- Data Bit Corruption/Errors

- Measure Signal Integrity
- Measure Supply & Vref Voltages
- Measure Bus Timing

General Board Level Debug

General Software Debug

Physical Layer Debug

Isolate Bit Errors

Run Synthesizable Testbench

Board Measurements

Check Clocking/Run Interface
at Slower Frequency

Vary Taps

General Board Level Debug

UG086_11_122107

http://www.xilinx.com

394 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 12: Debugging MIG DDR2 Designs
R

Isolating Bit Errors
In this step, the user stays in the HDL domain and tries to isolate when/where the bit
errors are occurring.

When are the error(s) occurring?

• Data belonging to certain DQS groups?

• On accesses to certain addresses, banks, or ranks of memory?

♦ For example, on designs that can support multiple varieties of DIMM modules,
make sure to support all possible address and bank bit combinations

• Only occur for certain data patterns or sequences?

♦ This can indicate a shorted or open connection on the PCB

♦ This can also indicate an SSO or cross-talk issue

• Does the design use multiple DIMM sockets?

♦ All MIG designs that support multiple DIMM sockets (“deep” configurations)
calibrate only on the first DIMM socket, and the maximum frequency is reduced
from the maximum achievable if only one rank of memory is used. This was done
to account for both the additional loading and the fact that there are no inherent,
process-related timing differences between the DIMM sockets. Factors that cause
the timing to be different between the DIMMs—for example, PCB trace routing
differences between the FPGA and each of the DIMMs—can result in read failures
on all but the very first DIMM.

It might also be necessary to determine whether the data corruption is due to writes or
reads. This can be difficult to determine because, if the writes are the issue, readback of the
data appears corrupted as well. In addition, issues with control/address timing affect both
writes and reads. Some experiments that can be tried to isolate the issue:

• If the errors are intermittent, have the controller issue a small initial number of writes,
followed by continuous reads from those locations. Do the reads intermittently yield
bad data? If so, this might point to a read problem.

• Check/vary the control and address timing:

♦ For a heavily loaded control/address bus (as is the case for an unregistered or
SO-DIMM), it might be necessary to use 2T timing to allow for more setup and
hold time for the control/address signals.

♦ Note that the chip select (CS_N) signal to the memory remains a 1T signal, even
though it can also have a heavy load. In this case, it might be necessary to advance
the assertion of CS_N by a quarter of a clock cycle. This requires changing the
code for the CS_N output flop to use CLK90 instead of CLK0.

• Check/Vary only write timing:

♦ If on-die termination is used, check that the correct value is enabled in the DDR2
device and that the timing on the ODT signal relative to the write burst is correct.

♦ For Virtex-5 designs, it is possible to use ODELAY to vary the phase of DQ
relative to DQS. In addition, a PLL (rather than a DCM) can be used to generate
CLK0 and CLK90 used for the write output timing. The phase outputs of a PLL
can be fine-tuned, and in this way the phase between DQ and DQS can be varied.

• Vary only read timing:

♦ Vary the LUT or IDELAY taps after calibration for the bits that are returning bad
data. This affects only the read capture timing.

http://www.xilinx.com

MIG User Guide www.xilinx.com 395
UG086 (v2.2) March 3, 2008

General Board-Level Debug
R

♦ For Virtex-4 and Virtex-5 FPGA designs, check the IDELAY values after
calibration. (For the Virtex-5 DDR2 design, the PHY layer debug port can be
used.) Look for variations between IDELAY values. IDELAY values should be
very similar for DQs in the same DQS group.

Board Measurements
Refer to the HW-Simulation Correlation Section in the ML561 User Guide [Ref 13] as a
guide for expected bus signal integrity.

Supply Voltage Measurements
Check the reference voltage levels:

• For I/O:

♦ 1.8V: VCCO, DDR2 VDDQ

♦ 0.9V: VREF

♦ 0.9V: VTT Termination

• Internal:

♦ 1.8V: DDR2 VDD, DDR2 VDDL

♦ 2.5V: FPGA VCCAUX

♦ 1.0V or 1.2V: VCCINT

Make sure to check these levels when the bus is active. It is possible these levels are correct
when the bus is idle but droop when the bus is active.

Clocking
If the memory interface is having issues running at the target speed, try running the
interface at a lower speed.

• Unfortunately, not all designs can accommodate this, as it is dependent on the clock
generation scheme used.

• Running at a lower speed increases marginal setup time and/or hold time due to PCB
trace mismatch, poor SI, and excessive loading.

If excessive input/system clock jitter might be an issue, the onboard PLL can be used in
Virtex-5 FPGA designs to filter input clock jitter.

Synthesizable Testbench
MIG provides a “synthesizable testbench” containing a simple state machine. The state
machine takes the place of the user-specific backend logic and issues a simple repeating
write-read memory test. This can be used as an alternative to the user's backend logic to
provide a test of the memory interface during initial hardware bring-up. The advantage of
using the synthesizable testbench is that it rules out any issues with the user's backend
logic interfacing with the MIG User Interface block.

The testbench has limitations. It only checks a limited number of memory locations, and
the data pattern is a repeating pattern. The user can change the testbench code to expand
its capabilities.

http://www.xilinx.com

396 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Chapter 12: Debugging MIG DDR2 Designs
R

Varying Read Capture Timing
For Virtex-4 and Virtex-5 FPGA designs, the IDELAY values for DQ and DQS can be varied
post-calibration. The user can determine the extent of the read valid window in this way.
The customer can also use this feature for margin testing. This feature is supported in HDL
in the Virtex-5 FPGA DDR2 design. In other designs, the user must modify the HDL to add
the hooks to vary the IDELAY taps.

For Spartan-3 FPGA designs, LUTs are used to delay the DQS and the loopback signal. The
user can modify the code to use a different number of LUT delays to change the DQ-DQS
timing. but there is a much larger granularity (approximately 250–600 ps) than with the
IDELAY element of Virtex-4 and Virtex-5 FPGAs.

http://www.xilinx.com

MIG User Guide www.xilinx.com 397
UG086 (v2.2) March 3, 2008

R

Section VI: Appendices

Appendix A, “Memory Implementation Guidelines”

Appendix B, “Required UCF and HDL Modifications for Pinout
Changes”

Appendix C, “WASSO Limit Implementation Guidelines”

Appendix D, “Debug Port”

http://www.xilinx.com

398 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Appendices
R

http://www.xilinx.com

MIG User Guide www.xilinx.com 399
UG086 (v2.2) March 3, 2008

R

Appendix A

Memory Implementation Guidelines

This appendix provides rules for designing reference design boards generated by the MIG
tool. It is organized into two sections:

• “Generic Memory Interface Guidelines”

The rules in this section apply to all memory interfaces discussed in this document.

• “Memory-Specific Guidelines”

The rules in this section relate to specific memories:

♦ DDR/DDR2 SDRAM

♦ QDRII SRAM

♦ RLDRAM II

UG079 [Ref 9] and UG199 [Ref 13] provide more detailed analysis. UG072 [Ref 8] and
UG203 [Ref 11] provide additional information on how to obtain maximum performance
for high-speed interfaces.

Generic Memory Interface Guidelines
This section specifies rules common to all memory interfaces. The “Memory-Specific
Guidelines” section provides exceptions or additions to any and all guidelines in this
section.

Figure A-1 illustrates a typical FPGA bank used to capture read data.

Figure A-1: FPGA Bank with Data, Strobes, and PCB Loopback

FPGA
Bank

I/O
PCB Loopback(1)

Strobe_P

I/O

I/O

CC I/O P
CC I/O N Strobe_N

Data associated
with strobe

UG086_A_01_091707

rst_dqs_div_out

rst_dqs_div_in

Notes:
1. Only Spartan FPGA designs require the loopback signal.

http://www.xilinx.com

400 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Appendix A: Memory Implementation Guidelines
R

Timing Analysis
MIG generates timing analysis spreadsheets for all designs of Virtex-5, Virtex-4, and
Spartan families under the docs folder. Each design has different timing analysis
spreadsheets for read_data_timing, write_data_timing, and addr_cntrl_timing.

Evaluation of the PERIOD constraint by the static timing analyzer is not sufficient to
determine if the memory interface is functional at a particular frequency. The PERIOD
constraint covers the internal timing between synchronous elements. These spreadsheets
cover the concept of timing budgets for the interface between the FPGA and memory
device.

The spreadsheets provide information about the data valid window and the margins
available at the selected frequency. They also provide information about different
uncertainty parameters that are to be considered for timing analysis.

Pin Assignments
MIG generates pin assignments for a memory interface based on certain rules depending
on the design technique, but does not provide the best possible pin assignment for every
board implementation. During layout it might be necessary to swap pin locations
depending on the number of layers available and the interface topology. The best way to
change the pin assignment is to first apply changes on a byte basis then swap bits within a
byte. Calculate the PCB loopback length, if required, after pin swapping and trace
matching. The following rules of thumb are provided to help designers determine how
pins can be swapped.

Any changes to the pin assignments require modifications to the UCF provided by MIG
and might require changes to the source code depending on the changes made.

For all MIG Virtex™ and Spartan™ FPGA designs, the address and control pins can be
swapped with each other as needed to avoid crossing of the nets on the printed circuit
board.

Spartan-3/3E/3A/3A DSP FPGA Memory Implementation Guidelines for
DDR/DDR2 SDRAM Interfaces

This section outlines general pin assignment guidelines for DDR/DDR2 SDRAM
implementation. However, additional guidelines should be followed when targeting
Spartan-3/-3E/-3A/-3A DSP devices.

MIG generates a UCF that follows the guidelines listed below. Xilinx recommends using
the pinout created by MIG. Follow the guidelines below if the MIG pinout is modified.

The IOBs for DQ bits must be placed five tiles above or six tiles below the IOB tile for the
associated DQS bit. This is necessary because the MIG design uses low-skew routing
resources to route DQS to the data capture FIFOs corresponding to that DQS. See
XAPP768c [Ref 23] for more information on the Spartan-3 FPGA data capture technique.
This application note can be downloaded from the web age entitled Memory Interfaces:
Resources for Registered Users located at:

http://www.xilinx.com/support/software/memory/protected/index.htm

http://www.xilinx.com
http://www.xilinx.com/support/software/memory/protected/index.htm

MIG User Guide www.xilinx.com 401
UG086 (v2.2) March 3, 2008

Generic Memory Interface Guidelines
R

Example:

If DQS is placed in either W3 or W4 (these two IOBs share a tile) in an XC3S1500-FG676, the
following +5 tiles can be used for DQ placement:

W1/W2
U7/V7
V4/V5
V2/V3
U5/U6

The following –6 tiles can be used for DQ placement:

W5/V6
W6/W7
Y1/Y2
AA1/AA2
Y4/Y5
AA3/AA4

Caution! Unbonded tiles (even though they cannot be used) count toward this +5/–6 guideline.
Consequently, it is possible that a pinout that meets the above requirements for a specific bus
width cannot be supported on a larger device in the same package (even though the package is
“pinout compatible”). MIG can be used to generate a pinout compatible design for multiple
devices in the same package.

To verify the pin placement of the DQ and DQS bits, you can check the net skew and delay
values in FPGA Editor and the “Clock Report” section of the design's PAR report (.par file).
See the Debug section of the ug086 for steps to verify the DQ and DQS skew and delay
values.

• The rst_dqs_div_in and rst_dqs_div_out IOBs must be placed in the center of the DQ
bits. As an example, if the data bus is 64 bits wide, rst_dqs_div_in and
rst_dqs_div_out should be placed between DQ[31] and DQ[32]. If this is not done, the
data capture might not be reliable. This is necessary because the MIG design uses the
RST_DQS_DIV feedback loop to generate a write enable to all the data capture FIFOs.
See XAPP768c [Ref 23] for further information on the Spartan-3 FPGA design.

• Spartan-3 FPGA architectures only have two FIFOs per CLB. Because each bit of data
requires two FIFOs (one for rising edge data and one for falling edge data), the MIG
designs use two columns of CLBs. One CLB column is dedicated for the odd
numbered bits and one is dedicated for the even numbered bits. Due to Spartan-3
routing restrictions, pad0 (top) must be assigned to the first column CLBs and pad 1
(bottom) assigned to second column of CLBs. With this routing implementation, the
DQ lines from both pads has the same route delay.

• The CK/CK_N, address, RAS_N, CAS_N, WE_N, CS_N, and ODT must be placed
together in banks that are on the same side of the device. This helps to avoid clock
skew on these signals that are registered on the rising edge of CK.

For memory interfaces that do not provide a signal to indicate when the read data is valid,
a data-valid signal must be provided on the PCB. This loopback is used as a write-enable
signal for the Read Data FIFOs. A strobe is used to latch the data. Two pins are needed per
design: one to output the signal and one to input the return signal. The length of the
loopback is defined as:

PCB loopback = CLK delay to memory + strobe delay

Spartan-3/3E/3A/3A DSP FPGA designs have specific pin placement rules that are
followed by MIG to generate the pin assignments. A byte can be swapped with another

http://www.xilinx.com

402 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Appendix A: Memory Implementation Guidelines
R

byte as long as all the necessary signals associated with that byte are changed (strobe, data,
and data mask). Within a byte, only even-numbered bits can be swapped with other even-
numbered bits (with the same rule applying for odd-numbered bits) because two copies of
the DQS strobe are internally generated: one copy for even-numbered bits and one for odd-
numbered bits. Each copy is delayed a specific amount relative to the placement of the
even (or odd) Read Data FIFOs. As an example, in a byte bits 0 and 2 can be swapped but
bits 0 and 1 cannot be swapped. The UCF provided by MIG contains LOC constraints that
must be changed to match the swapped pin assignments.

XIL_ROUTE_ENABLE_DATA_CAPTURE

The local clocking scheme used to capture data in all MIG Spartan-3 Generation FPGA
memory designs requires place and route (PAR) template routes to properly place the
delayed strobe and data bits. Template routing is required to properly route the delayed
strobe (dqs*_delayed_col*), as well as the data (dq bits) in MIG Spartan-3 Generation
FPGA DDR and DDR2 SDRAM designs. For the data bits to be routed properly, the
environment variable XIL_ROUTE_ENABLE_DATA_CAPTURE must be enabled when
PAR is run. This environment variable is set in the implementation script file
ise_flow.bat provided in the /par MIG output directory. The user must set this
environment variable when running the design using the GUI mode from
create_ise.bat.

Virtex-4 FPGA Direct Clocking Pins

1. For flexibility of design techniques, it is recommended that all strobe signals be placed
on clock-capable inputs (such as DQS, CQ, and QK) with P connected to the P side and
N connected to the N side of the pair. If only single-ended strobes are provided, the
signal is placed on the P input of the clock-capable I/O pair.

2. Data lines used to read data from a memory are placed in the same bank as their
associated strobe. Data is captured with an internal FPGA clock. Data is delayed
through the IDELAY element to make it center-aligned with the FPGA clock. The
strobe is used to find the data delay with respect to the FPGA clock.

3. Address and control signals are to be placed together in the same bank (see “Memory-
Specific Guidelines,” page 405 for exceptions) or placed in banks near each other to
minimize the route delays for these signals inside the FPGA.

4. DDRII SRAM ONLY: For memory interfaces that do not provide a data valid signal to
indicate when the read data is valid, a data valid signal is to be provided on the PCB.
This loopback is used as a write-enable signal for the Read Data FIFOs. A strobe is
used to latch the data. Two pins are needed per bank: one to output the signal and one
to input the return signal. The length of the loopback is:

PCB loopback = CLK delay to memory + strobe delay

Virtex-4 FPGA Direct clocking designs that place the strobe on clock-capable I/O should
follow the pin-swapping recommendations for the Virtex-4 SerDes and Virtex-5 FPGA
designs. If the strobe is not placed on clock-capable I/O, an entire DQS group (containing
data, strobe, and data mask) can be swapped with any other DQS group in same bank. The
initial pinout that MIG selects also affects the amount of calibration logic MIG generates.
MIG generates one calibration unit for each bank that contains data bits. Therefore, a DQS
group cannot be swapped with other byte groups on different banks without appropriate
modification to the source code. Within a DQS group, data bits can be swapped with other
data bits, and the data signals should be placed on pins near the associated DQS strobe.

http://www.xilinx.com

MIG User Guide www.xilinx.com 403
UG086 (v2.2) March 3, 2008

Generic Memory Interface Guidelines
R

Virtex-4 FPGA SerDes Clocking and Virtex-5 FPGA Pins

1. All strobe signals must be placed on clock-capable inputs (such as DQS, CQ, and QK)
with P connected to the P side and N connected to the N side of the pair. If only single-
ended strobes are provided, the signal is placed on the P input of the clock-capable I/O
pair.

2. Data lines used to read data from a memory are placed in the same bank as their
associated strobe. Data is captured in the ISERDES block using the strobe signal. The
strobe is passed through the BUFIO to delay it with respect to the data input.

3. Address and control signals are to be placed together in the same bank (see “Memory-
Specific Guidelines,” page 405 for exceptions) or placed in banks near each other to
minimize the route delays for these signals inside the FPGA.

Virtex-4 SerDes clocking and Virtex-5 FPGA designs must place the strobe on clock-
capable I/O with the data for the said strobe placed in the same bank. A byte can be
swapped with another byte as long as all the necessary signals associated with that byte
(strobe, data, and data mask) are located in the same bank. Within a bank, strobes can be
swapped with other strobes while the rest of the pins in a bank can be swapped as needed.

The Virtex-5 FPGA DDR2 design uses a combination of the IOB flop (IDDR) and fabric-
based flops for read data capture. This requires the use of pinout-dependent directed-
routing and location constraints. If pinouts are changed manually, the UCF must be
modified. Refer to Appendix B, “Required UCF and HDL Modifications for Pinout
Changes” for details.

Termination
These rules apply to termination:

1. IBIS simulation is highly recommended for all high-speed interfaces.

2. Single-ended signals are to be terminated with a pull-up of 50Ω to VTT at the load (see
Figure A-2). A split 100Ω termination to VCCO and 100Ω termination to GND can be
used (see Figure A-3), but takes more power. For bidirectional signals, the termination
is needed at both ends of the signal (DCI/ODT or external termination).

Figure A-2: 50Ω Termination to VTT

 UG086_aA_02_022208

ZQ =
50Ω

RT =
50Ω

VTT

LoadSource

http://www.xilinx.com

404 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Appendix A: Memory Implementation Guidelines
R

3. Differential signals are to be terminated with a 100Ω differential termination at the load
(see Figure A-4). For bidirectional signals, termination is needed at both ends of the
signal (DCI/ODT or external termination).

4. All termination must be placed as close to the load as possible. The termination can be
placed before or after the load provided that the termination is placed within one inch
of the load pin.

5. DCI can be used at the FPGA as long as the DCI rules are followed (such as
VRN/VRP).

I/O Standards

These rules apply to the I/O standard selection for DDR SDRAMs:

• MIG-generated designs use the SSTL2 CLASS I I/O standard by default for memory
address and control signals, and use the SSTL2 CLASS II I/O standard for memory
data, data-mask, and data-strobe signals. When DCI is selected in MIG, DCI for SSTL2
CLASS I can be applied only to memory interface signals that are inputs to the FPGA.

• The user can select CLASS II or CLASS I I/O standards from MIG. When SSTL2
CLASS II is selected in MIG, it is applied to all the memory interface signals.

• When DCI is selected in MIG, the DCI I/O standard is applied to all the memory
interface signals.

These rules apply to the I/O standard selection for DDR2 SDRAMs:

• MIG-generated designs use the SSTL18 CLASS II I/O standard by default for all
memory interface signals. When DCI is selected in MIG, DCI for SSTL18 CLASS II is
applied on input, output, and in-out memory interface signals.

• The user can select between CLASS II or CLASS I I/O standards from MIG. When
SSTL18 CLASS I is selected in MIG, the I/O standard for bidirectional signals remains
SSTL18 CLASS II.

Figure A-3: 100Ω Split Termination to VCCO and GND

Figure A-4: 100Ω Differential Termination

UG086_aA_03_022208

ZQ =
50Ω

2 * ZQ =
100Ω

2 * ZQ =
100Ω

VCCO

LoadSource

UG086_aA_04_020406

ZQ =
50Ω

2 * ZQ =
100Ω

Load_PSource_P

ZQ =
50Ω Load_NSource_N

http://www.xilinx.com

MIG User Guide www.xilinx.com 405
UG086 (v2.2) March 3, 2008

Memory-Specific Guidelines
R

• When DCI is selected in MIG for SSTL18 CLASS I, the DCI I/O standard is applied
only to memory interface signals that are inputs or in-outs to the FPGA.

Trace Lengths
Trace length matching must also include the package delay information. The PARTGen
utility [Ref 29] generates a .pkg file that contains the package trace length in microns for
every pin of the device under consideration.

For example, to obtain the package delay information for a Virtex-5 LX50T-FF1136 device
used on an ML561 board, issue the following command within a DOS command shell:

partgen -v xc5vlx50tff1136

This generates an xc5vlx50tff1136.pkg file in the current directory with package trace
length information for each pin (unit: micron or µm). Use the typical 6.5 fs per micron
(6.5 ps per millimeter) conversion formula to obtain the corresponding electrical
propagation delay. While applying specific trace-matching guidelines for each of the
memory interfaces as described below, consider this additional package delay term for the
overall electrical propagation delay.

Memory-Specific Guidelines
Each memory interface has three sections:

• Pin assignments

• Termination

• Trace lengths

Trace lengths given are for high-speed operation and can be relaxed depending on the
applications target bandwidth requirements. Be sure to include the package delay when
determining the effective trace length. These internal delays can be found through the
PACE tool.

DDR/DDR2 SDRAM

Pin Assignments

These rules apply to pin assignments for DDR and DDR2 SDRAM:

1. The DQ and DM bits of a byte are to be placed in the same bank as the associated DQS.

The DQ bits must be kept close together for better routing.

2. Address and control signals are to be placed in the same bank or placed in banks near
each other.

If all control signals cannot fit in one bank, CK, ODT, and CKE should be selected first
for placement in another bank.

3. Each bank that contains DQ/DQS/DM signals needs a loopback signal.

If a bank is pin-limited and there is a need to free up a few pins, the following actions are
to be considered:

1. The loopback signals can be eliminated in Virtex-4 FPGA MIG designs because they
are no longer required. Other device families require significant user modifications to
the MIG design to eliminate the PCB loopback.

http://www.xilinx.com

406 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Appendix A: Memory Implementation Guidelines
R

2. The CKE signals can be tied together for multiple devices.

3. For DIMMs, non-critical features need not be implemented, such as
PAR_IN/PAR_OUT and the SPD interface (SA, SPD, SCL).

The loading of address (A, BA), command (RAS_N, CAS_N, WE_N), and control (CS_N,
ODT) signals depends on various factors, such as speed requirements, termination
topology, use of unbuffered DIMMs, and multiple rank DIMMs.

The address and command signals should be implemented with 2T clocking, i.e., asserted
for two cycles, so these signals can handle higher loading without impacting the timing
budget. Virtex-4 FPGA SerDes designs and Virtex-5 FPGA DDR2 designs are implemented
with 2T clocking of address and command signals.

The control signals (CS_N and ODT) have 1T clocking, and so their replication is
recommended when the loading is higher. If the application is pin-limited to implement
lighter loading on critical clock signals going to memory, it might be necessary to use an
external PLL to generate multiple copies of the clock signals.

For descriptions of 1T and 2T clocking, refer to Micron technical note TN-47-01[Ref 32].

Termination

These rules apply to termination for DDR/DDR2 SDRAM:

1. For DIMMs, the CK signals are to be terminated by a 5 pF capacitor between the two
legs of the differential signal instead of the 100Ω resistor termination, because these
signals are already terminated on each DIMM.

2. The ODT and CKE signals are not terminated. These signals are required to be pulled
down during memory initialization with a 4.7 kΩ resistor connected to GND.

3. ODT, which terminates a signal at the memory, applies to the DQ/DQS/DM signals
only. If ODT is used, the Mode register must be set appropriately in the RTL design.

4. The Virtex-5 DDR2 interface requires that if parallel termination is used at the memory
end, it must be ODT rather than external termination resistor(s). This is a requirement
of the read capture scheme used.

To save board space, DCI at the FPGA and ODT at the memory can be used to minimize the
number of external resistors on the board.

Trace Lengths

These rules indicate the maximum electrical delays between DDR/DDR2 SDRAM signals
at 333 MHz:

1. ± 25 ps maximum electrical delay between any DQ and its associated DQS/DQS#

2. ± 50 ps maximum electrical delay between any address and control signals and the
corresponding CK/CK#

3. ± 100 ps maximum electrical delay between any DQS/DQS# and CK/CK#

Figure A-5: 5 pF Differential Termination on Clocks

UG086_aA_05_020406

ZQ =
50Ω

5 pF

Load_PCK_P

ZQ =
50Ω Load_NCK_N

http://www.xilinx.com

MIG User Guide www.xilinx.com 407
UG086 (v2.2) March 3, 2008

Memory-Specific Guidelines
R

QDRII SRAM

Pin Assignments

These rules apply to pin assignments for QDRII SRAM:

1. All CQ signals are placed on clock-capable I/O pairs, if the Use CC option is selected;
otherwise any I/O pin is used. P is connected to the P side and N is connected to the N
side of the pair.

2. The Q bits of a byte are placed in the same bank as its associated CQ.

The Q bits must be kept close together for optimal routing.

If a bank is pin-limited and there is a need to free up a few pins, the following actions are
to be considered:

1. If QDRII+ memory is to be considered, either CK_P is connected or CK_P and CK_N
are left out.

Termination

These rules apply to termination of QDRII SRAM signals:

1. No termination is used for the DLL_OFF signal because this signal is required to be
pulled down during memory initialization. The signal should be pulled down with a
4.7 kΩ resistor connected to GND.

2. DCI can also be used on CK for QDRII+ support (QVLD signal from memory to
FPGA).

To save board space, DCI is to be used at the FPGA to minimize the number of external
resistors on the board.

I/O Standards

These rules apply to the I/O Standard selection for QDRII SRAM.

• MIG-generated designs use the HSTL CLASS I I/O standard by default for all
memory interface signals.

• When DCI is selected in MIG, the DCI standard for HSTL CLASS I is applied only to
memory interface signals that are inputs to FPGA.

Trace Lengths

These rules provide the maximum electrical delays between QDRII SRAM signals:

1. ± 25 ps maximum electrical delay between data and its associated CQ.

2. ± 50 ps maximum electrical delay between address and control signals.

3. ± 100 ps maximum electrical delay between address/control and data.

http://www.xilinx.com

408 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Appendix A: Memory Implementation Guidelines
R

RLDRAM II

Pin Assignments

These rules apply to pin assignments for RLDRAM II:

1. All QK signals are to be placed on Clock-Capable I/O pairs if the Use CC option is
selected in the tool; otherwise normal I/O pins are used. P is connected to the P side
and N is connected to the N side of the pair.

2. The DQ bits of a byte are placed in the same bank as the associated QK.

The DQ bits must be kept as close as possible for optimal routing.

3. The loopback signal is not required because RLDRAM II provides a data valid signal
for capturing the read data.

If the design is pin constrained, only common I/O (CIO) can use a bidirectional DQ data
bus.

Termination

This rule applies to termination of RLDRAM II signals:

1. DCI can be used on DQ/QK at the FPGA provided that DCI rules are followed (such
as VRN/VRP).

To save board space, use DCI at the FPGA and ODT at the memory to minimize the
number of external resistors on the board.

I/O Standards

These rules apply to the I/O Standard selection for RLDRAM II:

• MIG-generated designs use the HSTL CLASS II I/O standard by default for all
memory interface signals. When DCI is selected in MIG, DCI for HSTL CLASS II is
applied on input, output, and in-out memory interface signals.

• The user can change the I/O standard to HSTL CLASS I. When DCI is selected in
MIG, DCI for HSTL CLASS I is applied only to the memory interface signals that are
inputs to the FPGA.

• To have HSTL CLASS I on the required pins, the user must manually edit the UCF
constraint file for the corresponding design generated.

Trace Lengths

These rules provide the maximum electrical delays between RLDRAM II signals:

1. ± 25 ps maximum electrical delay between data and its associated QK.

2. ± 50 ps maximum electrical delay between address and control signals.

3. ± 100 ps maximum electrical delay between address/control and data.

http://www.xilinx.com

MIG User Guide www.xilinx.com 409
UG086 (v2.2) March 3, 2008

R

Appendix B

Required UCF and HDL Modifications
for Pinout Changes

Introduction
The Virtex™-5 FPGA DDR2 design generated by MIG 2.0 (or later) requires a large number
of UCF constraints whose values are dependent on the specific pinout of the DQ and DQS
bits. In addition, there are two top-level HDL parameters whose values are also pinout
dependent. These UCF constraints and HDL parameters are not present for designs
generated with MIG 1.73 or earlier.

MIG generates a user constraints file (UCF) and HDL code with the correct constraints and
top-level parameters based on the pinout, and in this case, the user does not need to know
the specific rules and procedures for generating these constraints. However, it is necessary
for the user to manually generate these constraints if any of these three conditions exist:

• The user has a pinout based on a DDR2 design generated using an older version of
MIG (for example, MIG 1.7), and it is desired to up-rev the design to the MIG 2.0 (or
later) version of the DDR2 interface.

♦ The older MIG-generated pinout is compatible with the MIG 2.0 (or later) version
of the design, but, the user must generate the additional constraints required by
MIG 2.0.

♦ MIG 2.0 (or later) has a slightly different algorithm for selecting the DQ and DM
(data mask) sites, choosing different pins for the DM and some of the
corresponding DQ pins. Therefore, running MIG 2.0 or later with the same bank
pinout selection setting used for the original pre-MIG 2.0 design could result in a
UCF and HDL top-level file with some incorrect constraints and parameters, such
as DQ and DM being allocated to different pins. However, the user can use the
MIG 2.0 or later UCF as a baseline for modifications.

• The user has generated a design using MIG 2.0 (or later), but needs to make
modifications to the pinout (for example, swapping DQ bit locations).

• The user has generated a pinout independent of MIG.

Caution! This is not recommended. MIG should be used to generate the pinout. If an
independently generated pinout must be used, a UCF should be generated using MIG and used
as a baseline for constraint modifications.

These additional constraints are required because of changes to the read data capture
architecture used in this design: specifically, a combination of the IOB-based IDDR flop
and flops located in the FPGA fabric is used instead of the ISERDES to capture read data.
A circuit to gate a glitch on the DQS strobe at the end of read bursts added with the MIG 2.0
or later design also requires additional constraints.

http://www.xilinx.com

410 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Appendix B: Required UCF and HDL Modifications for Pinout Changes
R

UCF / HDL Constraint Generation Procedure
The following is a step-by-step procedure required to generate the additional UCF
constraints and HDL parameters required for the Virtex-5 MIG 2.0 or later versions of MIG
design. The specific reasons why these changes need to be made are discussed later in this
section.

1. Use MIG 2.0 or later versions of MIG to generate a UCF using the same parameters as
were used to generate the original pre-MIG 2.0 DDR2 design; in particular, the clock
frequency and data width must be the same. Substitute the location (LOC) constraints
for the existing user pinout into this UCF. This file is used as a baseline for further
modifications. (It is also possible to start with a pre-MIG 2.0 design and add the
constraints.)

2. Use the Xilinx ISE utility PARTGEN to generate a package file for the specific target
device. This is used to determine correct (pinout-specific) values for many of the UCF
constraints:

partgen -v <part number> (e.g. partgen -v xc5vlx330tff1738)

3. UCF constraints must be modified to match the user-specific pinout:

a. Verify (no modification required for this step) in the UCF the presence of FROM-
TO constraints that define multi-cycle paths. These are generated by 2.0 or later
versions of MIG, and their values are not pinout dependent. These constraints
help meet internal (fabric) timing at the higher frequencies that MIG supports. At
lower frequencies of operation, these multi-cycle path constraints might not be
required to meet internal timing and can be removed. One of these multi-cycle
path constraints is shown below:

NET "clk0" TNM = FFS "TNM_CLK0";
NET "clk90" TNM = FFS "TNM_CLK90";
MUX Select for either rising/falling CLK0 for 2nd stage

read capture
INST "*/u_phy_calib_0/gen_rd_data_sel*.u_ff_rd_data_sel"

TNM = "TNM_RD_DATA_SEL";
TIMESPEC "TS_MC_RD_DATA_SEL" = FROM "TNM_RD_DATA_SEL"

TO "TNM_CLK0" "TS_SYS_CLK" * 4;

b. Modify the UCF to set site locations for DQS Gate IDDR and IODELAY LOC
constraints based on the user pinout. This process must be repeated for each DQS
group:

i. In the PARTGEN package file, locate the line in which the “pin name” column
value corresponds to the pin location of the DDR2_DQS_N[x] pin (that is, the
“N” side of the differential strobe).

ii. Use the XY-location in the “pad name” column on that line, and substitute this
for the LOC = ILOGIC_xxxx and LOC = IODELAY_xxxx constraints for that
DQS group.

iii. For example, for a design using an XC5VLX50T-FF1136, if DDR2_DQS_N[0] is
on pin N30, the corresponding pin name (IOB) XY-location is X0Y176. The
correct values for the DQS Gate circuit IDDR and IODELAY LOC constraints
are:

INST "*/gen_dqs[0].u_iob_dqs/u_iddr_dq_ce
"LOC = "ILOGIC_X0Y176";

INST "*/gen_dqs[0].u_iob_dqs/u_iodelay_dq_ce
LOC = "IODELAY_X0Y176";

http://www.xilinx.com

MIG User Guide www.xilinx.com 411
UG086 (v2.2) March 3, 2008

UCF / HDL Constraint Generation Procedure
R

c. Modify UCF to set the correct site location for a fabric flop driving the DQS gate
signal. This flop must be placed close to the corresponding DQS gate IODELAY.
This process below must be repeated for each DQS group:

i. To determine the IDDR and IODELAY locations, locate in the PARTGEN
package file the line in which the “pin name” column value corresponds to the
pin location of the DDR2_DQS_N[x] pin (that is, the “N” side of the
differential strobe).

ii. Use the XY-coordinate in the “nearest CLB” column on that line, and
substitute this for the LOC = SLICE_xxxx constraint for that DQS group.

iii. For example, for a design using an XC5VLX50T-FF1136, if DDR2_DQS_N[0] is
on pin N30, the corresponding “nearest CLB” is X0Y88. The correct value for
the DQS Gate circuit fabric flop LOC constraint is:

INST "*/u_phy_calib_0/gen_gate[0].u_en_dqs_ff"
LOC = SLICE_X0Y88;

d. (NOTE: No modification required for this step.) Verify the MAXDELAY constraints
that limit the length of nets associated with the DQS Gate control signal. This
constrains the path for all DQS groups:

NET "*/u_phy_io_0/en_dqs*" MAXDELAY = 600 ps;
NET "*/u_phy_io_0/gen_dqs*.u_iob_dqs/en_dqs_sync"

MAXDELAY = 850 ps;

e. (NOTE: No modification required for this step.) Verify the FROM-TO constraint that
defines the path between the DQS Gate driving IDDR and the clock enable inputs
to each of the data (DQ) capture IDDRs in that DQS Group. Note that this value is
frequency dependent and is automatically calculated by MIG based on the
memory bus clock frequency. An example for 333 MHz is shown below:

INST "*/gen_dqs[*].u_iob_dqs/u_iddr_dq_ce"
TNM = "TNM_DQ_CE_IDDR";

INST "*/gen_dq[*].u_iob_dq/gen_stg2_*.u_iddr_dq"
TNM = "TNM_DQS_FLOPS";

TIMESPEC "TS_DQ_CE" = FROM "TNM_DQ_CE_IDDR"
TO "TNM_DQS_FLOPS" 1.60 ns;

f. Modify RPM origin (RLOC_ORIGIN) constraints for each DQ I/O. Part of the read
data capture occurs in the fabric, and the relative placement of the flip-flops is
fixed using a relationally placed macro (RPM) defined in the HDL. Each DQ has a
read capture RPM associated with it, and each one must be placed correctly
relative to the DQ I/O pin. This process must be repeated for each DQ data bit:

i. Locate the correct line in the package file for the DQ of interest based on its pin
number.

ii. Note the value in the “pad name” column. The X-coordinate of this entry is
used to determine which I/O column (left = 0, center = 1, or right = 2) the DQ
pin is located on.

iii. Note the value in the “diff pair” column. This determines whether the DQ pin
is located on the slave or master site of a differential I/O pair. If the value ends
in an “S”, that site is a slave site.

iv. If that site is a slave site, refer to the corresponding master site. This is the
adjacent line whose “diff pair” entry has the same numeric value, but ends in
“M” for the next step in this process (determining “nearest CLB” value). For
example, for a design using an XC5VLX50T-FF1136, if DDR2_DQ[0] is on pin
T6, the “diff pair” entry for this location is 67S, which indicates it is a slave
location. For the purposes of determining the “nearest CLB” location in the

http://www.xilinx.com

412 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Appendix B: Required UCF and HDL Modifications for Pinout Changes
R

next step, refer to the line above it, corresponding to location R6 (“diff pair” =
67M).

v. Refer to the “nearest CLB” value. (Again, if this is a slave site, refer to the
“nearest CLB” value for the corresponding master site.)

If the DQ site is on the left column, use this value directly in the
RLOC_ORIGIN constraint. For example, on an XC5VLX50T-FF1136, for a DQ
pin at U25, the “nearest CLB” is X0Y80. The RLOC_ORIGIN is:

INST "*/gen_dq[0].u_iob_dq/gen_stg2_*.u_ff_stg2a_rise"
RLOC_ORIGIN = X0Y80;

If the DQ site is on the center or right column, subtract 4 from the X-coordinate
indicated by the “nearest CLB” value, and use this as the RLOC_ORIGIN. For
example, on an XC5VLX50T-FF1136, for a DQ located at F13, the “nearest
CLB” is X52Y100. Subtracting 4 from the X-coordinate yields X48Y100. The
RLOC_ORIGIN is:

INST "*/gen_dq[0].u_iob_dq/gen_stg2_*.u_ff_stg2a_rise"
RLOC_ORIGIN = X48Y100;

4. The values of two top-level HDL parameters/generics—DQS_IO_COL and
DQ_IO_MS—must be modified to reflect the user's specific pinout. These must be
properly set in order for the HDL to correctly choose which RPMs and directed routing
constraints to instantiate for each DQ read capture circuit:

a. Modify the value for DQS_IO_COL. This parameter is an array indicating the I/O
column location of each of the DQS I/Os.

i. The length of this parameter is = 2 * (# of DQS I/Os) = 2 * DQS_WIDTH.

ii. Determine which column each DQS I/O is located on. As in previous steps,
this can be determined from the PARTGEN package file. Locate the correct line
in the package file for the DQS of interest based on its pin number. The
X-coordinate of this entry is used to determine which I/O column (left = 0,
center = 1, or right = 2).

iii. Each element of the parameter consists of two bits which indicate the I/O
column location of each DQS. Set the entry to 00 for the left column, 01 for the
center column, or 10 for the right column. 11 is a reserved value and must not
be used. The least significant two elements of the array correspond to DQS[0].

For example, for a 32-bit, 4-strobe design with DQS[0,1] located in the left I/O
column, DQS[2] located in the center I/O column, and DQS[3] located in the
right I/O column, DQS_IO_COL is 8 bits long, and must be set to 10010000.

Note: This configuration is not recommended; it is used here for illustrative purposes
only.

b. Modify value for DQ_IO_MS. This parameter is an array indicating whether each
DQ pin occupies a master or slave I/O location.

i. The length of this parameter = # of DQ I/O = DQ_WIDTH

ii. Determine whether each DQ is located on a master or on a slave site. This can
be determined from the “diff pair” column in the PARTGEN package file.

iii. Each element of the parameter is one bit, and indicates whether the
corresponding DQ occupies a master or slave I/O location. Set to 0 for slave,
and to 1 for master. The least significant element of the array corresponds to
DQ[0].

http://www.xilinx.com

MIG User Guide www.xilinx.com 413
UG086 (v2.2) March 3, 2008

Read Data Capture Block Diagram
R

For example, for an 8-bit, 2-strobe design with DQ[0,2,4,6,7] on master I/O
locations and the other DQs on slave I/O locations, DQ_IO_MS is 8 bits long,
and must be set to 11010101.

c. Modify the values assigned to DQ_IO_MS and DQS_IO_COL
parameters/generics in the top-level MIG (VHDL or Verilog) module based on the
results of the above steps.

The remainder of this appendix describes the reasons why these additional constraints are
required.

Read Data Capture Block Diagram
The read capture path used for the MIG 2.0 or later versions of MIG Virtex-5 DDR2
interface consists of the following sub-blocks:

• DQ is initially captured using DQS in the IOB using the IDELAY and IDDR elements

• Data is transferred to the FPGA (CLK0) clock domain using a series of flops located in
the fabric. The location of these flops, and the routes between the IDDR and fabric
flops, must be carefully defined.

• For each DQS, a circuit is added to disable the clock enable (CE) pin to each of the
corresponding DQ capture IDDRs at the end of a read burst (“DQS Gate”).

Figure B-1 shows the read capture path architecture for the MIG 2.0 or later versions of
Virtex-5 DDR2 design, as well as the various portions of the capture path that are affected
by the additional UCF constraints and top-level HDL parameters.

Figure B-1: Virtex-5 DDR2 Read Capture Path, MIG 2.0 or Later

DQS Gate

QD

QD

Q1

Q2

D

IDDR

CE

QD

QD

QD QD

IDELAY

IDELAY

DQ

DQS
BUFIO

Read
Data

Transfer
Logic

DQS Gate

Specify locations for components used for DQS Gate circuit

FPGA Clock

Define/constrain fabric flop location using UCF RLOC_ORIGIN,
HDL parameters, and directed routing constraints

IDELAY
DR

IDDR

F DQ

PHY
control
logic

UG086_aB_01_122407

http://www.xilinx.com

414 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Appendix B: Required UCF and HDL Modifications for Pinout Changes
R

UCF / HDL Changes Overview
If the user needs to modify a MIG-generated pinout, the areas where specific constraints
and parameters need to be modified are:

• HDL code top-level parameters:

♦ The parameters DQS_IO_COL and DQ_IO_MS must be set according to the pin
locations chosen for the DQS, and DQ IOB respectively. The rules for determining
this value are outlined in section “Setting HDL Code Top-Level Placement
Parameters.”

• User constraints file (UCF):

♦ For each DQ pin, an RLOC_ORIGIN must be specified. This sets the origin of the
RPM for the read-capture path logic immediately next to the DQ IOB. The value
of the RLOC_ORIGIN is determined by the pin location for the corresponding DQ
IOB. The rules for determining this value are outlined in section “Setting UCF
Constraints,” page 416.

♦ For each DQS pin:

- a location constraint pair for an IDELAY (input delay element) and IDDR
(input DDR flip-flop) must be specified. These two elements are used in the
DQS Gate circuit, of which there is one per DQS group. The value of the LOC
constraint for the IDELAY and IDDR are determined by the pin location for
the corresponding DQS IOB. The rules for determining this value are outlined
in section “Setting UCF Constraints.”

- a location constraint for a single fabric flop must be specified. This locks the
flop used to drive the DQS Gate signal close to its corresponding IDELAY.
This is required to reduce the total net delay on this route, and therefore the
delay fluctuations on this line due to voltage/temperature. The rules for
determining this value are outlined in section “Setting UCF Constraints.”

Setting HDL Code Top-Level Placement Parameters
The read capture path consists of dedicated circuit elements (the IDDR flop and IDELAY)
embedded in the IOB, along with several flip-flops in the FPGA fabric. The placement of
these fabric flip-flops is critical to providing maximum timing margin for read data
capture. These flip-flops must be placed in close proximity both to each other and to the
IOB. In addition, the route delays from the IOB to these fabric flip-flops must kept as short
as possible to reduce the absolute delay of each route, as well as to reduce the skew
between routes from the IOB to different fabric flip-flops.

Relationally placed macros (RPMs) are defined within the Virtex-5 DDR2 interface HDL code.
RPMs allow fixed relative placement of basic logic elements (for example, flip-flops) with
respect to each other. In addition, directed routing constraints (also known as “DIRT
strings”) are embedded in the code to specify the exact routing resources used for the
routes from the IOB to the fabric flip-flops. RPMs and directed routing constraints are
portable between different device and package combinations in the same FPGA family (for
example, between XC5VLX50T-FF1136 and XC5VLX330-FG1760). There are several factors
that determine RPMs and DIRT strings, which are discussed below.

There are different sets of RPM and directed routing constraints embedded in the HDL
code because one set cannot account for all possible routing conditions across all pins of a
device. Choosing which RPM set to enable is done on a DQ-by-DQ basis, and is
determined by each DQ and DQS pin location.

http://www.xilinx.com

MIG User Guide www.xilinx.com 415
UG086 (v2.2) March 3, 2008

Setting HDL Code Top-Level Placement Parameters
R

In particular, the following conditions determine which set of RPM and directed routing
constraints is selected for each DQ:

• The I/O column location for the entire DQS group strobe: Each Virtex-5 device has
its IOBs arranged into three (left, center, right) columns. Each DQS group, consisting
of DQ, DQS, and DM pins, must be located on the same I/O bank. (This means they
must also be located on the same I/O column.) The location of fabric slice sites near
the IOBs differs between the three I/O columns; therefore, different RPM sets must be
supported, depending on the I/O column used.

Note that different DQS groups could be located on I/O banks in different I/O
columns. Although this is allowed strictly according to I/O-placement rules, placing
DQS groups in different I/O columns might make it harder for the tools to meet
internal PERIOD timing. For example, internal nets need to be routed further to access
DQ/DQS pins spread out across different columns.

• Whether the DQ pin is located on a master or slave I/O: Virtex-5 FPGA I/Os are
arranged in pairs to allow for their possible use as differential pairs. The pin
descriptions given in the Virtex-5 device pinout tables [Ref 12] indicate whether an
I/O is the slave or master I/O for that pair. For example, on an LX50T-FF1136, pins
AE22 and AD23 form an I/O pair. AE22 (IO_L5P_17) is the master I/O, and AD23
(IO_L5N_17) is the slave I/O. The status of the IOB as either a master or a slave site
determines which fabric slices it uses for the read capture logic.

The following top-level parameters must be properly set in order for the code to correctly
choose which RPMs and directed routing constraints to use for each DQ:

• DQS_IO_COL: This parameter is an array indicating the I/O column location of each
of the DQS I/Os:

♦ Length of parameter = 2 * (# of DQS I/O) = 2 * DQS_WIDTH

♦ Each element of the parameter consists of two bits that indicate the I/O column
location of each DQS. Set the entry to 00 for the left column, 01 for the center
column, or 10 for the right column. The 11 setting is a reserved value and must
not be used. Column directionality is determined by the view as seen by FPGA
Editor.

Note: This is the opposite of the view shown in the bank selection pane of the MIG 2.0 (or
later) version of Wizard.

♦ The least significant element of the array corresponds to DQS[0].

♦ For example, for a 32-bit, 4-strobe design with DQS[0,1] located in the left I/O
column, DQS[2] located in the center I/O column, and DQS[3] located in the right
I/O column (a configuration that is not recommended, but is given here for
illustrative purposes), DQS_IO_COL is 8 bits long and must be set to 10010000.

• DQ_IO_MS: This parameter is an array indicating whether each DQ pin occupies a
master or slave I/O location.

♦ Length of parameter = # of DQ I/O = DQ_WIDTH

♦ Each element of the parameter is one bit, and indicates whether the
corresponding DQ occupies a master or slave I/O location. Set to 0 for slave and
1 for master.

♦ The least significant element of the array corresponds to DQ[0].

♦ For example, for an 8-bit, 2-strobe design, with DQ[0,2,4,6,7] on master I/O
locations and the other DQs on slave I/O locations, DQ_IO_MS is 8 bits long and
must be set to 11010101.

http://www.xilinx.com

416 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Appendix B: Required UCF and HDL Modifications for Pinout Changes
R

Setting UCF Constraints
Beyond the typical constraints found in a UCF (for example, PERIOD timing constraint,
pinout LOC and IOSTANDARD constraints for I/O), the Virtex-5 FPGA DDR2 interface
also requires that four other classes of constraints be added to the UCF:

1. Location (LOC) constraints for the IDELAY and IDDR blocks used for every DQS
Gate circuit. There is one DQS Gate circuit per DQS I/O.

2. RPM origin (RLOC_ORIGIN) constraints for each DQ I/O. These constraints exactly
locate each RPM and directed routing set (as mentioned in “Setting HDL Code Top-
Level Placement Parameters”) by the corresponding DQ IOB.

3. MAXDELAY constraints to limit the delay timing-critical paths related to IOB timing.
This is not required to meet any specific cycle-to-cycle timing requirement, but rather
to limit any post-calibration voltage/temperature related changes in the net delay.
Voltage/temperature variations on a particular net increases as the total net delay
increases.

It is critical to reduce the delay on the DQS gate control input. This signal is generated in the
CLK0 clock domain and synchronized via an IDELAY to the DQS domain. The
synchronization between the CLK0 and DQS domains on this control net is established
once during initial calibration, which accounts for the static delay component of these
nets. However, post-calibration changes in net delay are not accounted for, and must
be minimized.

4. FROM-TO constraints:

a. One FROM-TO constraint limits the DQS Gate path from the IDDR to the DQ CE
pins to approximately one-half clock cycle. This ensures that the DQ clock enables
are deasserted before any possible DQS glitch at the end of the read postamble can
arrive at the input to the IDDR. This value is clock-frequency dependent:

INST "*/gen_dqs*.u_iob_dqs/u_iddr_dq_ce"
TNM = "TNM_DQ_CE_IDDR";

INST "*/gen_dq*.u_iob_dq/gen_stg2_*.u_iddr_dq"
TNM = "TNM_DQS_FLOPS";

TIMESPEC "TS_DQ_CE" = FROM "TNM_DQ_CE_IDDR"
TO "TNM_DQS_FLOPS" 1.6 ns;

b. Additional FROM-TO constraints define multi-cycle paths in the design. These are
added to help meet internal (fabric) timing at the higher supported frequencies. At
lower frequencies of operation, these multi-cycle path constraints might not be
required and can be removed.

Constraint classes (1) and (2) mentioned in this section is discussed. Classes (3) and (4) is
not discussed; their values do not need to change if the pinout is modified.

Determining FPGA Element Site Locations
Setting the correct UCF constraints requires that the user have knowledge of the correct
site location to use. For example, setting the correct location constraint for the IDELAY for
a DQS Gate circuit requires that the user know the site name for the location where the
corresponding DQS_N pin is placed. For example, on an XC5VLX50T-FF1136, if DQS_N[0]
is located on pin C13, the user must know that the site name for this I/O is IOB_X2Y216, so
that the correct LOC constraint can be set to:

INST “*/gen_dqs[0].u_iob_dqs/u_iodelay_dq_ce” LOC = "IODELAY_X2Y216";

There are two ways in which the correct site name can be determined:

http://www.xilinx.com

MIG User Guide www.xilinx.com 417
UG086 (v2.2) March 3, 2008

Setting UCF Constraints
R

• Use FPGA Editor to graphically determine the correct site name.

• Use PARTGEN to generate a package file in text format. From the package file, the
correct site name can be extracted. PARTGEN can be invoked to generate package
files for a specific device/package combination using the following command:

partgen -v <part number> (e.g. partgen -v xc5vlx330tff1738)

Once the package file is created, the user can search the appropriate file for the site of
interest.

Setting DQS Gate Circuit Location Constraints
Each DQS Gate circuit requires the use of an IDELAY and IDDR flip-flop in addition to
fabric-based slice resources. The IDELAY and IDDR for each DQS Gate circuit, as well as
the fabric flop driving the IDELAY, must be manually located in the UCF. There are three
constraints for every DQS in the design.

The IDELAY and IDDR must be taken from an IOB site where these resources are available,
specifically an IOB site that is used only as an output or is totally unused. This can be one
of the following:

• The DQS_N negative-side I/O site of the DQS differential I/O pair of the
corresponding DQS group. A differential I/O pair does not use the input-side
resources on the N-side leg of the pair.

• The DM output site for the corresponding DQS group. The DM is an output-only site,
and its input-side resources are available for use by the DQS Gate circuit.

• Any IOB site that is either output-only, or unused.

The best site to use is the site that is closest in proximity on the FPGA die to the four or
eight DQ I/O sites in that DQS group. This reduces the routing delay on the clock enable
control from the DQS Gate circuit to its corresponding DQ sites. At higher frequencies, this
can often be the critical timing path, as there is only about half a clock cycle for this path.
MIG always chooses to place the IDELAY and IDDR on the DQS_N site for the
corresponding DQS group. However, depending on the particular user pinout, there might
be a better site available. The user might have to relocate the DQS Gate location(s) to other
sites in order to meet timing.

The IDELAY and IDDR for a given DQS Gate circuit must be placed at the same site. They
cannot be placed on different sites.

The following are the constraints used for locating the IDELAY and IDDR:

INST "*/gen_dqs[<x>].u_iob_dqs/u_iddr_dq_ce" LOC = "ILOGIC_<SITE>";
INST "*/gen_dqs[<x>].u_iob_dqs/u_iodelay_dq_ce" LOC = "IODELAY_<SITE>";

where <x> denotes the DQS group number, and <SITE> denotes the I/O site name.

For example, on an XC5VLX50T-FF1136, if DQS_N[0] is placed on pin K9 and this site is
chosen to locate IDELAY and IDDR for the DQS Gate circuit for DQS[0], the constraints
are:

INST "*/gen_dqs[0].u_iob_dqs/u_iddr_dq_ce" LOC = "ILOGIC_X2Y218";
INST "*/gen_dqs[0].u_iob_dqs/u_iodelay_dq_ce" LOC = "IODELAY_X2Y218";

The fabric flop driving the IDELAY with the DQS Gate control pulse must also be location-
constrained to be near the corresponding IDELAY/IDDR. The rules for determining this
are:

1. Locate the IOB to where the corresponding IDELAY and IDDR are location
constrained.

http://www.xilinx.com

418 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Appendix B: Required UCF and HDL Modifications for Pinout Changes
R

2. Use the appropriate package file to find the “nearest CLB” (see“Setting
RLOC_ORIGIN Constraints”). Location-constrain this flop to this location.

For example, on an XC5VLX50T-FF1136, if DQS_N[0] is placed on pin N30, the location
constraint for the corresponding DQS Gate fabric flop is:

INST "*/gen_dqs[0].u_iob_dqs/u_iodelay_dq_ce" LOC = "IODELAY_X2Y218";

The reason for this requirement is to minimize the net delay from the output of this flop to
the synchronizing IDELAY. (See the discussion of why MAXDELAY constraints are used in
this design in section “Setting UCF Constraints.”) It is possible to not constrain this flop to
a specific location or to constrain it to a different location as long as the corresponding
MAXDELAY for this net can be met (that is, by allowing MAP to place this flop).

Setting RLOC_ORIGIN Constraints
The RPMs for the fabric-based portion of the read capture path defined in the HDL code
only specify a relative placement for each of the fabric flip-flops. An absolute origin on the
FPGA chip for each RPM must also be specified, and this is done in the UCF via an
RLOC_ORIGIN constraint. There is one RLOC_ORIGIN constraint for every data bit in the
design.

Each RLOC_ORIGIN looks like:

INST "*/gen_dq[<x>].u_iob_dq/gen_stg2_*.u_ff_stg2a_fall"
RLOC_ORIGIN = <SITE>;

where <x> denotes the DQ number and <SITE> denotes the appropriate fabric slice site as
determined below.

The rules for determining the correct RLOC_ORIGIN are based on the assumption that the
user is referencing the appropriate device package file (generated from PARTGEN).
Alternatively, the user can use a tool such as FPGA Editor to locate the correct site
coordinates for each RLOC_ORIGIN constraint.

The output of the package file looks like:

PartGen J.37
pad pin vref vcco function nearest diff tracelength
name name bank bank name CLB pair (um)
pin OPAD_X0Y3 AN4 -1 -1 MGTTXP1_122 N.A. N.A. 15397
pin IPAD_X0Y19 V17 0 0 VN_0 N.A. N.A. 3209
pin IOB_X1Y159 L21 1 1 IO_L0P_A19_1 X28Y79 0M 6760
pin IOB_X1Y158 L20 1 1 IO_L0N_A18_1 X27Y79 0S 6739
pin IOB_X1Y157 L15 1 1 IO_L1P_A17_1 X28Y78 1M 8739
pin IOB_X1Y156 L16 1 1 IO_L1N_A16_1 X27Y78 1S 6258

Each column represents one I/O site. The “pin name” column indicates the pin number for
that site. The other column of interest is “nearest CLB”, which indicates the site
name/coordinates for the nearest fabric slice to that IOB. This determines the correct
RLOC_ORIGIN value.

Unfortunately, the corresponding “nearest CLB” value cannot necessarily be used directly
as the RLOC_ORIGIN for a DQ. Instead, depending upon which I/O column (left, center,
or right) the DQ is located in, an offset might need to be subtracted from the “nearest CLB”
value to determine the RLOC_ORIGIN setting.

The process is as follows:

1. Locate the correct line in the package file for the DQ of interest based on its pin
number.

http://www.xilinx.com

MIG User Guide www.xilinx.com 419
UG086 (v2.2) March 3, 2008

Setting UCF Constraints
R

2. Determine which I/O column (left, center, right) the DQ pin resides on. This can be
determined from the package file (by looking at the “nearest CLB” value and noting its
X-coordinate value), or by other means, such as FPGA Editor.

3. Look in the “diff pair” column to see if the site is a slave or master site. If it is a slave
site, refer to the line in the package file for the corresponding master site for its
“nearest CLB” information. For example, in the above package file, if the DQ is placed
on L20 (a slave site), the line above for L21 (the corresponding master site) is referred
to. This is because the master and slave site for a given I/O pair has the same
RLOC_ORIGIN value.

4. Refer to the “nearest CLB” value:

a. If the DQ site is on the left column, use this value directly in the RLOC_ORIGIN
constraint. For example, on an XC5VLX50T-FF1136, for a DQ pin located at U25,
the “nearest CLB” is X0Y80. The RLOC_ORIGIN is:

INST "*/gen_dq[0].u_iob_dq/gen_stg2_*.u_ff_stg2a_fall"
RLOC_ORIGIN = X0Y80;

Note that the same RLOC_ORIGIN value is used if the DQ is on T25, since T25 is
the slave complement to the master I/O at U25.

b. If the DQ site is on the center or right column, subtract 4 from the X-coordinate
indicated by the “nearest CLB” value, and use this as the RLOC_ORIGIN. For
example, on an XC5VLX50T-FF1136, for a DQ located at F13, the “nearest CLB” is
X52Y100. Subtracting 4 from the X-coordinate yields X48Y100.

INST "*/gen_dq[0].u_iob_dq/gen_stg2_*.u_ff_stg2a_fall"
RLOC_ORIGIN = X48Y100;

The relationship between the “nearest CLB” as indicated by the package file, and the actual
RPM is shown below for left, center, and right columns. Note that the RLOC_ORIGIN
values for center and right columns are calculated in the exact same manner.

Figure B-2, page 420 shows the spatial relationship between the IOBs and the location of
the slices that contain the flip-flops used for read data capture.

http://www.xilinx.com

420 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Appendix B: Required UCF and HDL Modifications for Pinout Changes
R

Figure B-2: Calculation of RLOC_ORIGIN

Slave

Master

Slave

Master

Slave

Master
X(m+1)

Y(n)

X(m+1)
Y(n)

X(m+3)
Y(n)

X(m–3)
Y(n)

X(m–4)
Y(n)

X(m+3)
Y(n)

X(m+2)
Y(n)

X(m–2)
Y(n)

X(m+2)
Y(n)

Left

Center

Right

RLOC_ORIGIN

RLOC_ORIGIN

RLOC_ORIGIN

Legend:

= Nearest CLB
for slave site

= Nearest CLB
for master site

X(m)
Y(n)

X(m)
Y(n)

X(m)
Y(n)

X(m–1)
Y(n)

X(m–1)
Y(n)

X(m+1)
Y(n)

X(m–3)
Y(n)

X(m–4)
Y(n)

X(m+3)
Y(n)

X(m–2)
Y(n)

X(m+2)
Y(n)

X(m)
Y(n)

X(m–1)
Y(n)

SLICELSLICELSLICEL

SLICEL SLICEL

SLICEL

SLICELSLICELSLICEL

SLICEL SLICEL

SLICELSLICEL

SLICEM

SLICEM

SLICEL

SLICEL

SLICEMSLICEM

SLICEMSLICEM

SLICEL

UG086_aB_02_122607

http://www.xilinx.com

MIG User Guide www.xilinx.com 421
UG086 (v2.2) March 3, 2008

Verifying UCF/HDL Modifications
R

Verifying UCF/HDL Modifications
The user can verify that the modifications to the UCF and HDL top-level files are correct
through the following:

• All timing constraints (PERIOD, MAXDELAY, FROM-TO) must be met.

• The Place and Route (PAR) report must be checked to ensure that all directed routing
constraints (DIRT) have been successfully routed.

♦ These directed routing constraints fix the internal net routing between the IDDR
and fabric-based flops. These paths are not covered by timing constraints. The
user must instead verify that these directed routing constraints have been
successfully routed.

♦ There are two directed routing constraints for every data bit. For example, for a
72-bit design, there are 144 directed routing constraints that must be routed. The
relevant PAR report section looks like:

INFO:ParHelpers:199 - All "EXACT" mode Directed Routing
constrained nets successfully routed. The number of
constraints found: 144, number successful: 144

♦ Failure by PAR to route certain directed routing constraints might indicate
incorrect values for the HDL top-level parameters DQ_IO_COL and/or
DQ_IO_MS. Another symptom of incorrect UCF or HDL values is the inadvertent
placement of two RPMs for two different DQ capture circuits in the same SLICE
locations (MAP error message shown below):

ERROR:Place:292 - The components
my_design/u_ddr2_top_0/u_mem_if_top_0/stg3b_out_fall_30 and
my_design/u_ddr2_top_0/u_mem_if_top_0/stg3b_out_fall_17 seem to
be placed / locked to the same site SLICE_X96Y42

http://www.xilinx.com

422 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Appendix B: Required UCF and HDL Modifications for Pinout Changes
R

http://www.xilinx.com

MIG User Guide www.xilinx.com 423
UG086 (v2.2) March 3, 2008

R

Appendix C

WASSO Limit Implementation
Guidelines

This appendix provides information about WASSO (Weighted Average Simultaneous
Switching Output) limit implementation in the bank selection from MIG. The number of
pins selected in a bank should not exceed the WASSO limit. It is recommended to use
WASSO calculator before the number of pins selected in a bank. MIG implements the
WASSO for Virtex™-4 and Virtex-5 designs.

Ground bounce must be controlled to ensure proper operation of high-performance FPGA
devices. Particular attention must be applied to minimizing board-level inductance during
PCB layout.

When multiple output drivers change state at the same time, power supply disturbance
occurs. These disturbances can cause undesired transient behavior in output drivers, input
receivers, or in internal logic. These disturbances are often referred to as Simultaneous-
Switching Output (SSO) noise. The SSO limits govern the number and type of I/O output
drivers that can be switched simultaneously while maintaining a safe level of SSO noise.

SSO of an individual bank is calculated by summing the SSO contributions of the
individual I/O standards in the bank. The SSO contribution is the percentage of full
utilization of any one I/O standard in any one bank. WASSO calculation is the done by
combining the SSO contributions of all I/O in a bank into a single figure.

WASSO calculation differs for Virtex-4 and Virtex-5 devices:

• Virtex-4 User Guide [Ref 7] provides more information on WASSO calculation for
Virtex-4 devices.

• Virtex-5 FPGA User Guide [Ref 10] provides more information on WASSO calculation
for Virtex-5 devices.

A Microsoft Excel-based spreadsheet entitled “WASSO Calculator” is provided to
automate these calculations. The WASSO calculator uses PCB geometry, such as board
thickness, via diameter, and breakout trace width and length, to determine board
inductance. It determines the smallest undershoot and logic-Low threshold voltage among
all input devices, calculates the average output capacitance, and determines the SSO
allowance by taking into account all of the board-level design parameters mentioned in
this document. In addition, the WASSO calculator performs checks to ensure the overall
design does not exceed the SSO allowance.

The Virtex-4 FPGA WASSO Calculator [Ref 30] and the Virtex-5 FPGA WASSO Calculator
[Ref 31] can be downloaded from the Xilinx website.

http://www.xilinx.com

424 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Appendix C: WASSO Limit Implementation Guidelines
R

http://www.xilinx.com

MIG User Guide www.xilinx.com 425
UG086 (v2.2) March 3, 2008

R

Appendix D

Debug Port

Overview
Starting with MIG 2.2, the memory controller interface design HDL for Virtex™-5,
Virtex-4, and Spartan™-3 FPGAs adds ports to the top-level design file to allow debugging
and monitoring of the physical layer read timing calibration logic and timing. This port
consists of signals brought to the top-level HDL from the Read Calibration module (where
the read timing calibration logic resides). These signals provide information for debugging
hardware issues when calibration does not complete or read timing errors are observed in
the system even after calibration completes. For Virtex FPGA designs, these signals also
allow the user to adjust the read capture timing by adjusting the various IDELAY elements
used for data synchronization. Whereas, for Spartan-3 FPGA designs, these signals allow
the user to adjust the read capture timing by adjusting the delays on data_strobe and
rst_dqs_div signals.

Specifically, the Debug port allows the user to:

• Observe calibration status signals.

• Observe current tap values for IDELAYs used for read data synchronization for Virtex
FPGA designs.

• Observe current tap_delay values for Spartan-3 FPGA designs.

• Dynamically vary these tap values. Possible uses of this functionality include:

♦ Debug read data corruption issues

♦ Support periodic readjustment of the read data capture timing by adjusting the
tap values

♦ Use as a tool during product margining to determine actual timing margin
available on read data captures

Enabling the Debug Port
For Virtex-5 FPGA memory controller designs, the Debug port is enabled by setting the
top-level HDL parameter DEBUG_EN to 1. To disable the Debug port, set DEBUG_EN to
0. This prevents the synthesis of additional logic required to support the Debug port (e.g.,
logic to allow dynamic adjustment of the IDELAY taps).

For Virtex-4 FPGA memory controller designs, the Debug port is enabled by setting the
Debug Signals option in MIG.

http://www.xilinx.com

426 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Appendix D: Debug Port
R

Signal Descriptions
The tables in this section provide the Debug port signal descriptions for the various
memory and FPGA combinations. All the signal directions are with respect to the RTL
design.

• Table D-1, “DDR2 SDRAM Signal Descriptions (Virtex-5 FPGAs),” page 426

• Table D-2, “DDR SDRAM Signal Descriptions (Virtex-5 FPGAs),” page 429

• Table D-3, “QDRII SRAM Signal Descriptions (Virtex-5 FPGAs),” page 432

• Table D-4, “DDR SDRAM Signal Descriptions (Virtex-4 FPGAs),” page 436

• Table D-5, “DDRII SRAM Signal Descriptions (Virtex-4 FPGAs),” page 438

• Table D-6, “QDRII SRAM Signal Descriptions (Virtex-4 FPGAs),” page 440

• Table D-7, “RLDRAM II Signal Descriptions (Virtex-4 FPGAs),” page 442

• Table D-8, “DDR/DDR2 SDRAM Signal Descriptions (Spartan-3 FPGAs),” page 443

Virtex-5 FPGA: DDR2 SDRAM
All debug ports signals are clocked using the half-frequency clock (clkdiv). Increment and
decrement control signals (e.g., dbg_idel_up_all) must be provided synchronously with
clkdiv. IDELAY select signals, such as dbg_sel_all_idel_dqs and dbg_sel_idel_dqs can
change asynchronous to clkdiv, but must meet setup and hold requirements on clkdiv on
cycles when the corresponding increment/decrement control signal is asserted.

Table D-1: DDR2 SDRAM Signal Descriptions (Virtex-5 FPGAs)

Bus Name I/O Width Description

dbg_calib_done O 4 Each bit is driven to a static 1 as each stage of
calibration is completed. dbg_calib_done[0]
corresponds to Stage 1.

dbg_calib_dq_tap_cnt O 6*DQ_WIDTH 6-bit tap count for each DQ IDELAY.
dbg_calib_dq_tap_cnt[5:0] corresponds to
DQ[0].

dbg_calib_dqs_tap_cnt O 6*DQS_WIDTH 6-bit tap count for each DQS IDELAY.
dbg_calib_dqs_tap_cnt[5:0] corresponds to
DQS[0].

dbg_calib_gate_tap_cnt O 6*DQS_WIDTH 6-bit tap count for each DQS Gate IDELAY.
dbg_calib_gate_tap_cnt[5:0] corresponds to
the DQS Gate for DQS[0].

dbg_calib_rd_data_sel O DQS_WIDTH Each bit indicates which polarity of the FPGA
clock (clk0) is used to synchronize the
captured read data from the DQ IDDR for a
DQS group.

1: The rising edge of clk0 synchronizes
DDR2 rising edge data. The falling edge of
clk0 synchronizes DDR2 falling edge data.

0: The falling edge of clk0 synchronizes
DDR2 rising edge data. The rising edge of
clk0 synchronizes DDR2 falling edge data.

calib_rd_data_sel[0] corresponds to DQS[0].

http://www.xilinx.com

MIG User Guide www.xilinx.com 427
UG086 (v2.2) March 3, 2008

Signal Descriptions
R

dbg_calib_rden_dly O 5*DQS_WIDTH 5-bit value indicating the number of clk0
clock cycles of delay between when a read
command is issued by the controller and the
synchronization of valid data in the clk0 clock
domain. Each DQS group has its own distinct
value. dbg_calib_rden_dly[4:0] corresponds
to DQS[0].

dbg_calib_gate_dly O 5*DQS_WIDTH 5-bit value indicating the number of clk0
clock cycles of delay between the end of a
read burst and the assertion of DQS Gate.
Each DQS group has its own distinct value.
dbg_calib_gate_dly[4:0] corresponds to
DQS[0].

dbg_calib_err O 2 Asserted when an error is detected during
calibration during stages 3 and/or 4. This
appears as a 4-bit bus in the HDL. However,
only bits [3:2] are used. dbg_calib_err[2]
corresponds to stage 3, and dbg_calib_err[3]
corresponds to stage 4. Stages 1 and 2 do not
have error signals.

dbg_idel_up_all I 1 Increments the tap value for all IDELAYs
(DQ, DQS, and DQS Gate) used for read data
synchronization. Tap values are incremented
by one for every clkdiv cycle that this signal is
held High.

dbg_idel_down_all I 1 Decrements the tap value for all DELAYs
(DQ, DQS, and DQS Gate) used for read data
synchronization. Tap values are decremented
by one for every clkdiv cycle that this signal is
held High.

dbg_sel_all_idel_dq I 1 Selects the functionality for dbg_idel_up_dq
and dbg_idel_down_dq:

1: All DQ IDELAYs are adjusted.

0: Only the IDELAY for the DQ bit
specified by dbg_sel_idel_dq is adjusted.

If neither dbg_idel_up_dq nor
dbg_idel_down_dq is active in a clkdiv cycle,
this signal is a don’t care.

dbg_sel_idel_dq I log2(DQS_WIDTH*DQ_PER_DQS) When dbg_sel_all_idel_dq = 1, determines
the specific DQ IDELAY to vary using
dbg_idel_up_dq or dbg_idel_down_dq.

If neither dbg_idel_up_dq nor
dbg_idel_down_dq is active in a clkdiv cycle,
this signal is a don’t care.

Table D-1: DDR2 SDRAM Signal Descriptions (Virtex-5 FPGAs) (Continued)

Bus Name I/O Width Description

http://www.xilinx.com

428 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Appendix D: Debug Port
R

dbg_idel_up_dq I 1 Increments the tap value for all DQ IDELAYs.
The DQ IDELAY(s) affected are given by
dbg_sel_all_idel_dq and dbg_sel_idel_dq.
Tap value(s) are incremented by one for every
clkdiv cycle that this signal is held High.

dbg_idel_down_dq I 1 Decrements the tap value for all DQ
IDELAYs. The DQ IDELAY(s) affected are
given by dbg_sel_all_idel_dq and
dbg_sel_idel_dq. Tap value(s) are
decremented by one for every clkdiv cycle
that this signal is held High.

dbg_sel_all_idel_dqs I 1 Selects the functionality for dbg_idel_up_dqs
and dbg_idel_down_dqs:

1: All DQS IDELAYs are adjusted.

0: Only the IDELAY for the DQS specified
by dbg_sel_idel_gate is adjusted.

If neither dbg_idel_up_dqs nor
dbg_idel_down_dqs is active in a clkdiv
cycle, this signal is a don’t care.

dbg_sel_idel_dqs I log2(DQS_WIDTH) When dbg_sel_sll_idel_dqs = 1, determines
the specific DQS IDELAY to vary using
dbg_idel_up_dqs or dbg_idel_down_dqs. If
neither dbg_idel_up_dqs nor
dbg_idel_down_dqs is active in a clkdiv
cycle, this signal is a don’t care.

dbg_idel_up_dqs I 1 Increments the tap value for all DQS
IDELAYs. The DQS IDELAY(s) affected are
given by dbg_sel_all_idel_dqs and
dbg_sel_idel_dqs. Tap value(s) are
incremented by one for every clkdiv cycle
that this signal is held High.

dbg_idel_down_dqs I 1 Decrements the tap value for all DQS
IDELAYs. The DQS IDELAY(s) affected are
given by dbg_sel_all_idel_dqs and
dbg_sel_idel_dqs. Tap value(s) are
decremented by one for every clkdiv cycle
that this signal is held High.

dbg_sel_all_idel_gate I 1 Selects the functionality for
dbg_idel_up_gate and dbg_idel_down_gate:

1: All DQS Gate IDELAYs are adjusted.

0: Only the IDELAY for the DQS Gate
specified by dbg_sel_idel_gate is adjusted.

dbg_sel_idel_gate I log2(DQS_WIDTH) When dbg_sel_all_idel_gate = 1, determines
the specific DQS Gate IDELAY to vary using
dbg_idel_up_gate or dbg_idel_down_gate.

Table D-1: DDR2 SDRAM Signal Descriptions (Virtex-5 FPGAs) (Continued)

Bus Name I/O Width Description

http://www.xilinx.com

MIG User Guide www.xilinx.com 429
UG086 (v2.2) March 3, 2008

Signal Descriptions
R

Virtex-5 FPGA: DDR SDRAM
All debug port signals are clocked using the design clock frequency (clk90). Increment and
decrement control signals (e.g., dbg_idel_up_all) must be provided synchronously with
clk90. IDELAY select signals, such as dbg_sel_all_idel_dqs and dbg_sel_idel_dqs, can
change asynchronous to clk90, but must meet setup and hold requirements on clk90 on
cycles when the corresponding increment/decrement control signal is asserted.

dbg_idel_up_gate I 1 Increments the tap value for all DQS Gate
IDELAYs. The DQS Gate IDELAY(s) affected
are given by dbg_sel_all_idel_gate and
dbg_sel_idel_gate.

Tap value(s) are incremented by one for every
clkdiv cycle that this signal is held High. If
neither dbg_idel_up_gate nor
dbg_idel_down_gate is active in a clkdiv
cycle, this signal is a don’t care.

dbg_idel_down_gate I 1 Decrements the tap value for all DQS Gate
IDELAYs. The DQS IDELAY(s) affected are
given by dbg_sel_all_idel_gate and
dbg_sel_idel_gate.

Tap value(s) are decremented by one for
every clkdiv cycle that this signal is held
High. If neither dbg_idel_up_gate nor
dbg_idel_down_gate is active in a clkdiv
cycle, this signal is a don’t care.

Table D-1: DDR2 SDRAM Signal Descriptions (Virtex-5 FPGAs) (Continued)

Bus Name I/O Width Description

Table D-2: DDR SDRAM Signal Descriptions (Virtex-5 FPGAs)

Bus Name I/O Width Description

dbg_calib_done O 4 Each bit is driven to a static 1 as each stage of calibration
is completed. dbg_calib_done[0] corresponds to Stage 1.

dbg_calib_dq_tap_cnt O 6*DQ_WIDTH 6-bit tap count for each DQ IDELAY.
dbg_calib_dq_tap_cnt[5:0] corresponds to DQ[0].

Dbg_calib_dqs_tap_cnt O 6*DQS_WIDTH 6-bit tap count for each DQS IDELAY.
Dbg_calib_dqs_tap_cnt[5:0] corresponds to DQS[0].

Dbg_calib_gate_tap_cnt O 6*DQS_WIDTH 6-bit tap count for each DQS Gate IDELAY.
Dbg_calib_gate_tap_cnt[5:0] corresponds to the DQS
Gate for DQS[0].

dbg_calib_rden_dly O 5*DQS_WIDTH 5-bit value indicating the number of clk90 clock cycles of
delay between when a read command is issued by the
controller and the synchronization of valid data in the
clk90 clock domain. Each DQS group has its own distinct
value. dbg_calib_rden_dly[4:0] corresponds to DQS[0].

dbg_calib_gate_dly O 5*DQS_WIDTH 5-bit value indicating the number of clk90 clock cycles of
delay between the end of a read burst and the assertion
of DQS Gate. Each DQS group has its own distinct value.
dbg_calib_gate_dly[4:0] corresponds to DQS[0].

http://www.xilinx.com

430 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Appendix D: Debug Port
R

dbg_calib_err O 4 Asserted when an error is detected during calibration
during stages 3 and/or 4. This appears as a 4-bit bus in
the HDL. However, only bits [3:2] are used.
dbg_calib_err[2] corresponds to stage 3, and
dbg_calib_err[3] corresponds to stage 4. Stages 1 and 2
do not have error signals.

dbg_idel_up_all I 1 Increments the tap value for all IDELAYs (DQ, DQS, and
DQS Gate) used for read data synchronization. Tap
values are incremented by one for every clk90 cycle that
this signal is held High.

dbg_idel_down_all I 1 Decrements the tap value for all IDELAYs (DQ, DQS,
and DQS Gate) used for read data synchronization. Tap
values are decremented by one for every clk90 cycle that
this signal is held High.

dbg_sel_all_idel_dq I 1 Selects the functionality for dbg_idel_up_dq and
dbg_idel_down_dq:

1: All DQ IDELAYs are adjusted.

0: Only the IDELAY for the DQ bit specified by
dbg_sel_idel_dq is adjusted.

If neither dbg_idel_up_dq nor dbg_idel_down_dq is
active in a clk90 cycle, this signal is a don’t care.

dbg_sel_idel_dq I log2(DQS_WIDTH*
DQ_PER_DQS)

When dbg_sel_add_idel_dq = 1, determines the specific
DQ IDELAY to vary using dbg_idel_up_dq or
dbg_idel_down_dq.

If neither dbg_idel_up_dq nor dbg_idel_down_dq is
active in a clk90 cycle, this signal is a don’t care.

dbg_idel_down_dq I 1 Increments the tap value for all DQ IDELAYs. The DQ
IDELAY(s) affected are given by dbg_sel_all_idel_dq
and dbg_sel_idel_dq.

Tap value(s) are incremented by one for every clk90
cycle that this signal is held High.

dbg_sel_all_idel_dqs I 1 Decrements the tap value for all DQ IDELAYs. The DQ
IDELAY(s) affected are given by dbg_sel_all_idel_dq
and dbg_sel_idel_dq.

Tap value(s) are decremented by one for every clk90
cycle that this signal is held High.

dbg_sel_idel_dqs I 1 Selects the functionality for dbg_idel_up_dqs and
dbg_idel_down_dqs:

1: All DQS IDELAYs are adjusted.

0: Only the IDELAY for the DQS specified by
dbg_sel_idel_gate is adjusted.

If neither dbg_idel_up_dqs nor dbg_idel_down_dqs is
active in a clk90 cycle, this signal is a don’t care.

Table D-2: DDR SDRAM Signal Descriptions (Virtex-5 FPGAs) (Continued)

Bus Name I/O Width Description

http://www.xilinx.com

MIG User Guide www.xilinx.com 431
UG086 (v2.2) March 3, 2008

Signal Descriptions
R

Virtex-5 FPGA: QDRII SRAM
All the debug input port signals are clocked using the design clock frequency (clk0).
Increment and decrement control signals (e.g., dbg_idel_up_all) as well as the IDELAY
select signals must be provided synchronously with clk0.

Note:

1. All Data (Q) in a given calibration group has the same IDELAY tap value.

2. For x36 component designs, calibration group has both CQ and CQ# and their
corresponding Data (Q) calibrated, hence the debug logic is applied to both CQ and
CQ#. For x18 component designs, the calibration group has only CQ and its
corresponding Data (Q) calibrated. Thus the designer must ignore the debug logic
related to CQ# (e.g., dbg_idel_up_cq_n). The synthesis tool prunes the CQ# related
logic anyway.

dbg_idel_up_dqs I log2(DQS_WIDTH) When dbg_sel_add_idel_dqs = 1, determines the specific
DQS IDELAY to vary using dbg_idel_up_dqs or
dbg_idel_down_dqs.

If neither dbg_idel_up_dqs nor dbg_idel_down_dqs is
active in a clk90 cycle, this signal is a don’t care.

dbg_idel_down_dqs I 1 Increments the tap value for all DQS IDELAYs. The DQS
IDELAY(s) affected are given by dbg_sel_all_idel_dqs
and dbg_sel_idel_dqs.

Tap value(s) are incremented by one for every clk90
cycle that this signal is held High.

dbg_sel_all_idel_gate I 1 Decrements the tap value for all DQS IDELAYs. The
DQS IDELAY(s) affected are given by
dbg_sel_all_idel_dqs and dbg_sel_idel_dqs.

Tap value(s) are decremented by one for every clk90
cycle that this signal is held High.

dbg_sel_idel_gate I 1 Selects the functionality for dbg_idel_up_gate and
dbg_idel_down_gate:

1: All DQS Gate IDELAYs are adjusted.

0: Only the IDELAY for the DQS Gate specified by
dbg_sel_idel_gate is adjusted.

dbg_idel_up_gate I log2(DQS_WIDTH) When dbg_sel_add_idel_gate = 1, determines the
specific DQS Gate IDELAY to vary using
dbg_idel_up_gate or dbg_idel_down_gate.

dbg_idel_down_gate I 1 Increments the tap value for all DQS Gate IDELAYs. The
DQS Gate IDELAY(s) affected are given by
dbg_sel_all_idel_gate and dbg_sel_idel_gate.

Tap value(s) are incremented by one for every clk90
cycle that this signal is held High.

If neither dbg_idel_up_gate nor dbg_idel_down_gate is
active in a clk90 cycle, this signal is a don’t care.

Table D-2: DDR SDRAM Signal Descriptions (Virtex-5 FPGAs) (Continued)

Bus Name I/O Width Description

http://www.xilinx.com

432 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Appendix D: Debug Port
R

Table D-3: QDRII SRAM Signal Descriptions (Virtex-5 FPGAs)

Bus Name I/O Width Description

dbg_idel_up_all I 1 Increments the tap value for all IDELAYs (Q, CQ,
CQ#) used for read data synchronization. Tap values
are incremented by one for every clk0 cycle that this
signal is held High.

dbg_idel_down_all I 1 Decrements the tap value for all IDELAYs (Q, CQ,
CQ#) used for read data synchronization. Tap values
are decremented by one for every clk0 cycle that this
signal is held High.

dbg_sel_all_idel_cq I 1 Selects the functionality for dbg_idel_up_cq and
dbg_idel_down_cq:

1: All CQ IDELAYs are adjusted.

0: Only the IDELAY for the CQ specified by
dbg_sel_idel_cq is adjusted.

If neither dbg_idel_up_cq nor dbg_idel_down_cq is
active in the clk0 cycle, this signal is a don’t care.

dbg_sel_idel_cq I CQ_WIDTH When any dbg_sel_idel_cq bit is set to 1, it
determines the specific CQ IDELAY to vary using
dbg_idel_up_cq or dbg_idel_down_cq.

If neither dbg_idel_up_cq nor dbg_idel_down_cq is
active in the clk0 cycle, this signal is a don’t care.

dbg_idel_up_cq I 1 Increments the tap value for all CQ IDELAYs. The
CQ IDELAY(s) affected are given by
dbg_sel_all_idel_cq and dbg_sel_idel_cq.

Tap value(s) are incremented by one for every clk0
cycle that this signal is held High.

dbg_idel_down_cq I 1 Decrements the tap value for all CQ IDELAYs. The
CQ IDELAY(s) affected are given by
dbg_sel_all_idel_cq and dbg_sel_idel_cq.

Tap value(s) are decremented by one for every clk0
cycle that this signal is held High.

dbg_sel_all_idel_cq_n I 1 Selects the functionality for dbg_idel_up_cq_n and
dbg_idel_down_cq_n:

1: All CQ# IDELAYs are adjusted.

0: Only the IDELAY for the CQ# specified by
dbg_sel_idel_cq_n is adjusted.

If neither dbg_idel_up_cq_n nor
dbg_idel_down_cq_n is active in the clk0 cycle, this
signal is a don’t care.

dbg_sel_idel_cq_n I CQ_WIDTH When any dbg_sel_idel_cq_n bit is set to 1, it
determines the specific CQ# IDELAY to vary using
dbg_idel_up_cq_n or dbg_idel_down_cq_n.

If neither dbg_idel_up_cq_n nor
dbg_idel_down_cq_n is active in the clk0 cycle, this
signal is a don’t care.

http://www.xilinx.com

MIG User Guide www.xilinx.com 433
UG086 (v2.2) March 3, 2008

Signal Descriptions
R

dbg_idel_up_cq_n I 1 Increments the tap value for all CQ# IDELAYs. The
CQ# IDELAY(s) affected are given by
dbg_sel_all_idel_cq_n and dbg_sel_idel_cq_n.

Tap value(s) are incremented by one for every clk0
cycle that this signal is held High.

dbg_idel_down_cq_n I 1 Decrements the tap value for all CQ# IDELAYs. The
CQ# IDELAY(s) affected are given by
dbg_sel_all_idel_cq_n and dbg_sel_idel_cq_n.

Tap value(s) are decremented by one for every clk0
cycle that this signal is held High.

dbg_sel_all_idel_q_cq I 1 Selects the functionality for dbg_idel_up_q_cq and
dbg_idel_down_q_cq:

1: All Data (Q) IDELAYs are adjusted.

0: Only the IDELAYs for Data (Q) in the
calibration group of CQ specified by
dbg_sel_idel_q_cq are adjusted.

If neither dbg_idel_up_q_cq nor
dbg_idel_down_q_cq is active in the clk0 cycle, this
signal is a don’t care.

dbg_sel_idel_q_cq I CQ_WIDTH When any dbg_sel_idel_q_cq bit is set to 1, it
determines all the Data (Q) IDELAYs in the
calibration group of CQ to vary using
dbg_idel_up_q_cq or dbg_idel_down_q_cq.

If neither dbg_idel_up_q_cq nor
dbg_idel_down_q_cq is active in the clk0 cycle, this
signal is a don’t care.

dbg_idel_up_q_cq I 1 Increments the tap value for all Data (Q) IDELAYs in
the calibration group of CQ. The Data (Q) IDELAYs
in the calibration group that is affected are given by
dbg_sel_all_idel_q_cq and dbg_sel_idel_q_cq.

Tap value(s) are incremented by one for every clk0
cycle that this signal is held High.

dbg_idel_down_q_cq I 1 Decrements the tap value of all Data (Q) IDELAYs in
the calibration group of CQ. The Data (Q) IDELAYs
in the calibration group of CQ that is affected are
given by dbg_sel_all_idel_q_cq and
dbg_sel_idel_q_cq.

Tap value(s) are decremented by one for every clk0
cycle that this signal is held High.

Table D-3: QDRII SRAM Signal Descriptions (Virtex-5 FPGAs) (Continued)

Bus Name I/O Width Description

http://www.xilinx.com

434 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Appendix D: Debug Port
R

dbg_sel_all_idel_q_cq_n I 1 Selects the functionality for dbg_idel_up_q_cq_n
and dbg_idel_down_q_cq_n:

1: All Data (Q) IDELAYs are adjusted.

0: Only the IDELAYs of all Data (Q) in the
calibration group of CQ# specified by
dbg_sel_idel_q_cq_n are adjusted.

If neither dbg_idel_up_q_cq_n nor
dbg_idel_down_q_cq_n is active in the clk0 cycle,
this signal is a don’t care.

dbg_sel_idel_q_cq_n I CQ_WIDTH When any dbg_sel_idel_q_cq_n bit is set to 1, it
determines all the Data (Q) IDELAYs in the
calibration group of CQ# to vary using
dbg_idel_up_q_cq_n or dbg_idel_down_q_cq_n.

If neither dbg_idel_up_q_cq_n nor
dbg_idel_down_q_cq_n is active in the clk0 cycle,
this signal is a don’t care.

dbg_idel_up_q_cq_n I 1 Increments the tap value of all Data (Q) IDELAYs in
the calibration group of CQ#. The Data (Q) IDELAYs
in the calibration group of CQ# that is affected are
given by dbg_sel_all_idel_q_cq_n and
dbg_sel_idel_q_cq_n.

Tap value(s) are incremented by one for every clk0
cycle that this signal is held High.

dbg_idel_down_q_cq_n I 1 Decrements the tap value of all Data (Q) IDELAYs in
the calibration group of CQ#. The Data (Q) IDELAYs
in the calibration group of CQ# that is affected are
given by dbg_sel_all_idel_q_cq_n and
dbg_sel_idel_q_cq_n.

Tap value(s) are decremented by one for every clk0
cycle that this signal is held High.

dbg_init_count_done O 1 When set to 1, indicates the completion of memory
initialization.

dbg_q_cq_init_delay_done O CQ_WIDTH When set to 1, indicates the completion of the first
stage calibration with respect to CQ.

dbg_q_cq_init_delay_done_tap_count O 6*CQ_WIDTH A 6-bit tap count for each group of Data (Q) bits
IDELAY associated with CQ.
dbg_q_cq_init_delay_done_tap_count[5:0]
corresponds to CQ[0].

dbg_q_cq_n_init_delay_done O CQ_WIDTH When set to 1, indicates the completion of the first
stage calibration with respect to CQ#.

dbg_q_cq_n_init_delay_done_tap_count O 6*CQ_WIDTH A 6-bit tap count for each group of Data (Q) bits
IDELAY associated with CQ#.
dbg_q_cq_n_init_delay_done_tap_count[5:0]
corresponds to CQ#[0].

Table D-3: QDRII SRAM Signal Descriptions (Virtex-5 FPGAs) (Continued)

Bus Name I/O Width Description

http://www.xilinx.com

MIG User Guide www.xilinx.com 435
UG086 (v2.2) March 3, 2008

Signal Descriptions
R

Virtex-4 FPGA: DDR SDRAM
All the debug input port signals are clocked using the design clock frequency (clk).
Increment and decrement control signals (e.g., dbg_idel_up_all) as well as the IDELAY
select signals must be provided synchronously with clk.

Note:

1. All Read Data (DQ) in a given calibration group has the same IDELAY tap value.

2. The READENABLE value is determined by the number of banks used for the
allocation of data and strobe signals.

3. A calibration group is determined by the number of Data (DQ) and corresponding
Strobes (DQS) together in a single bank.

dbg_cq_cal_done O CQ_WIDTH When set to 1, indicates the completion of the second
stage calibration with respect to CQ.

dbg_cq_cal_tap_count O 6*CQ_WIDTH A 6-bit tap count for each CQ IDELAY.
dbg_cq_cal_tap_count[5:0] corresponds to CQ[0].

dbg_cq_n_cal_done O CQ_WIDTH When set to 1, indicates the completion of the second
stage calibration with respect to CQ#.

dbg_cq_n_cal_tap_count O 6*CQ_WIDTH A 6-bit tap count for each CQ# IDELAY.
dbg_cq_n_cal_tap_count[5:0] corresponds to
CQ#[0].

dbg_we_cal_done_cq O CQ_WIDTH When set to 1, indicates the completion of the read
enable calibration of the Data (Q) in the calibration
group of each CQ.

dbg_we_cal_done_cq_n O CQ_WIDTH When set to 1, indicates the completion of the read
enable calibration of the Data (Q) in the calibration
group of CQ#.

dbg_cq_q_data_valid O CQ_WIDTH When set to 1, indicates the data valid signal for the
Data (Q) in the calibration group of each CQ.

dbg_cq_n_q_data_valid O CQ_WIDTH When set to 1, indicates the data valid signal for the
Data (Q) in the calibration group of each CQ#.

dbg_cal_done O 1 When set to 1, indicates the completion of the Data
(Q) calibration process.

dbg_data_valid O 1 When set to 1, indicates the data valid signal for the
Read Data (Q) after calibration.

Table D-3: QDRII SRAM Signal Descriptions (Virtex-5 FPGAs) (Continued)

Bus Name I/O Width Description

http://www.xilinx.com

436 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Appendix D: Debug Port
R

Table D-4: DDR SDRAM Signal Descriptions (Virtex-4 FPGAs)

Bus Name I/O Width Description

dbg_idel_up_all I 1 Increments the tap value for all Read Data (DQ)
IDELAYs used for data synchronization. Tap values
are incremented by one for every clk cycle that this
signal is held High.

dbg_idel_down_all I 1 Decrements the tap value for all Read Data (DQ)
IDELAYs used for data synchronization. Tap values
are decremented by one for every clk cycle that this
signal is held High.

dbg_sel_all_idel_dq I 1 Selects the functionality for dbg_idel_up_dq and
dbg_idel_down_dq:

1: All Read Data (DQ) IDELAYs are adjusted.

0: Only the IDELAY for the Read Data (DQ)
specified by dbg_sel_idel_dq is adjusted.

If neither dbg_idel_up_dq nor dbg_idel_down_dq is
active in the clk cycle, this signal is a don’t care.

dbg_sel_idel_dq I READENABLE When any dbg_sel_idel_dq bit is set to 1, it determines
the specific set of Read Data (DQ) IDELAYs in the
calibration group to vary using dbg_idel_up_dq or
dbg_idel_down_dq.

If neither dbg_idel_up_dq nor dbg_idel_down_dq is
active in the clk cycle, this signal is a don’t care.

dbg_idel_up_dq I 1 Increments the tap value for all Read Data (DQ)
IDELAYs in the calibration group. The Read Data
(DQ) IDELAYs in the calibration group, which are
affected, are given by dbg_sel_all_idel_dq and
dbg_sel_idel_dq.

Tap value(s) are incremented by one for every clk
cycle that this signal is held High.

dbg_idel_down_dq I 1 Decrements the tap value for all Read Data (DQ)
IDELAYs in the calibration group. The Read Data
(DQ) IDELAYs in the calibration group, which are
affected, are given by dbg_sel_all_idel_dq and
dbg_sel_idel_dq.

Tap value(s) are decremented by one for every clk
cycle that this signal is held High.

dbg_dqs_first_edge_detect O READENABLE When set to 1, indicates the detection of the first edge
of DQS in each calibration group.

dbg_dqs_first_edge_tap_count O 6*READENABLE A 6-bit tap count for each DQS IDELAY in each
calibration group. This value determines the number
of IDELAY taps incremented for first edge detection of
DQS.

dbg_dqs_second_edge_detect O READENABLE When set to 1, indicates the detection of the second
edge of DQS in each calibration group.

http://www.xilinx.com

MIG User Guide www.xilinx.com 437
UG086 (v2.2) March 3, 2008

Signal Descriptions
R

Virtex-4 FPGA: DDRII SRAM
All the debug input port signals are clocked using the design clock frequency (clk_0).
Increment and decrement control signals (e.g., dbg_idel_up_all) as well as the IDELAY
select signals must be provided synchronously with clk_0.

Note:

1. All Data (DQ) in a given calibration group has the same IDELAY tap value.

2. A calibration group is determined by the number of Data (DQ) associated with each
CQ.

dbg_dqs_second_edge_tap_count O 6*READENABLE A 6-bit tap count for each DQS IDELAY in each
calibration group. This value determines the number
of IDELAY taps incremented for second edge
detection.

dbg_dqs_tap_sel_done O READENABLE When set to 1, indicates that the calibration process of
the center-aligning DQS with respect to clk in each
calibration group is complete.

dbg_dqs_tap_count O 6*READENABLE A 6-bit tap count for DQS IDELAY in each calibration
group. This value determines the number of IDELAY
taps incremented. The maximum counter value
cannot be more than 64, since the maximum taps that
an IDELAY element can be incremented is only 64
taps.

dbg_data_tap_count O 6*READENABLE A 6-bit tap count for each group of Read Data (DQ)
IDELAYs in each calibration group. The counter value
indicates the number of tap delays that are to be
applied on group of Read Data (DQ) IDELAYs.

dbg_data_tap_sel_done O READENABLE When set to 1, indicates the completion of delaying the
group of Read Data (DQ) IDELAYs in each calibration
group. The number of taps that are to be delayed is
determined by dbg_data_tap_count.

dbg_first_rising O READENABLE 1: The first edge detected is rising edge.

0: The first edge detected is falling edge.

dbg_ctrl_dummyread_start O 1 When set to 1, indicates that the read data calibration
is in progress.

Table D-4: DDR SDRAM Signal Descriptions (Virtex-4 FPGAs) (Continued)

Bus Name I/O Width Description

http://www.xilinx.com

438 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Appendix D: Debug Port
R

Table D-5: DDRII SRAM Signal Descriptions (Virtex-4 FPGAs)

Bus Name I/O Width Description

dbg_idel_up_all I 1 Increments the tap value for all Read Data (DQ)
IDELAYs used for data synchronization. Tap values are
incremented by one for every clk_0 cycle that this signal
is held High.

dbg_idel_down_all I 1 Decrements the tap value for all Read Data (DQ)
IDELAYs used for data synchronization. Tap values are
decremented by one for every clk_0 cycle that this signal
is held High.

dbg_sel_all_idel_data_cq I 1 Selects the functionality for dbg_idel_up_data_cq and
dbg_idel_down_data_cq:

1: All DQ IDELAYs are adjusted.

0: Only the IDELAY for all the DQ IDELAYs in the
calibration group specified by dbg_sel_idel_data_cq
is adjusted.

If neither dbg_idel_up_data_cq nor
dbg_idel_down_data_cq is active in the clk_0 cycle, this
signal is a don’t care.

dbg_sel_idel_data_cq I CQ_WIDTH When any dbg_sel_idel_data_cq bit is set to 1, it
determines all the Read Data (DQ) IDELAYs in a
calibration group to vary using dbg_idel_up_data_cq or
dbg_idel_down_data_cq.

If neither dbg_idel_up_data_cq nor
dbg_idel_down_data_cq is active in the clk_0 cycle, this
signal is a don’t care.

dbg_idel_up_data_cq I 1 Increments the tap value for all Read Data (DQ)
IDELAYs in a calibration group. The Read Data (DQ)
IDELAYs in a calibration group which are affected are
given by dbg_sel_all_idel_data_cq and
dbg_sel_idel_data_cq.

Tap value(s) are incremented by one for every clk_0
cycle, this signal is held High.

dbg_idel_down_data_cq I 1 Decrements the tap value for all Read Data (DQ)
IDELAYs in a calibration group. The Read Data (DQ)
IDELAYs in a calibration group, which are affected, are
given by dbg_sel_all_idel_data_cq and
dbg_sel_idel_data_cq.

Tap value(s) are decremented by one for every clk_0
cycle, this signal is held High.

dbg_cq_first_edge_detect O CQ_WIDTH When set to 1, indicates the detection of the first edge of
CQ in each calibration group.

dbg_cq_first_edge_tap_count O 6*CQ_WIDTH A 6-bit tap count for CQ IDELAY in each calibration
group. This value determines the number of IDELAY
taps incremented for first edge detection.
dbg_cq_first_edge_tap_count[5:0] corresponds to CQ[0]

dbg_cq_second_edge_detect O CQ_WIDTH When set to 1, indicates the detection of the second edge
of CQ in each calibration group.

http://www.xilinx.com

MIG User Guide www.xilinx.com 439
UG086 (v2.2) March 3, 2008

Signal Descriptions
R

Virtex-4 FPGA: QDRII SRAM
All the debug input port signals are clocked using the design clock frequency (clk_0).
Increment and decrement control signals (e.g., dbg_idel_up_all) as well as the IDELAY
select signals must be provided synchronously with clk_0.

Note:

1. All Data (Q) in a given calibration group has the same IDELAY tap value.

2. A calibration group is determined by the number of Data (Q) associated with each CQ.

dbg_cq_second_edge_tap_count O 6*CQ_WIDTH A 6-bit tap count for CQ IDELAY in each calibration
group. This value determines the number of IDELAY
taps incremented for second edge detection.
dbg_cq_second_edge_tap_count[5:0] corresponds to
CQ[0].

dbg_cq_tap_sel_done O CQ_WIDTH When set to 1, indicates that the calibration process of
the center-aligning CQ with respect to clk_0 in each
calibration group is completed.

dbg_cq_tap_count O 6*CQ_WIDTH A 6-bit tap count for CQ IDELAY in each calibration
group. This value determines the number of IDELAY
taps incremented. The maximum counter value cannot
be more than 64, since the maximum taps that an
IDELAY element can be incremented is only 64 taps.

dbg_data_tap_count O 6*CQ_WIDTH A 6-bit tap count for all Read Data (DQ) IDELAYs in
each calibration group. The counter value indicates the
number of tap delays that are to be applied on all Read
Data (DQ) IDELAYs in each calibration group.

dbg_data_tap_sel_done O CQ_WIDTH When set to 1, indicates the completion of delaying all
the Read Data (DQ) IDELAYs in each calibration group.
The number of taps that are to be delayed is determined
by dbg_data_tap_count.

dbg_first_rising O CQ_WIDTH 1: The first edge detected is rising edge.

0: The first edge detected is falling edge.

dbg_rdcmd2valid_cnt O 5*CQ_WIDTH A 5-bit counter to calculate number of clocks from
controller read command to data valid for group of Read
Data (DQ) associated with specific CQ.

dbg_dly_cal_done O 1 When set to 1, indicates the completion of the Read Data
(DQ) calibration process.

Table D-5: DDRII SRAM Signal Descriptions (Virtex-4 FPGAs) (Continued)

Bus Name I/O Width Description

http://www.xilinx.com

440 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Appendix D: Debug Port
R

Table D-6: QDRII SRAM Signal Descriptions (Virtex-4 FPGAs)

Bus Name I/O Width Description

dbg_idel_up_all I 1 Increments the tap value for all Data (Q) IDELAYs used
for data synchronization. Tap values are incremented by
one for every clk_0 cycle that this signal is held High.

dbg_idel_down_all I 1 Decrements the tap value for all Data (Q) IDELAYs used
for data synchronization. Tap values are decremented by
one for every clk_0 cycle that this signal is held High.

dbg_sel_all_idel_data_cq I 1 Selects the functionality for dbg_idel_up_data_cq and
dbg_idel_down_data_cq:

1: All Q IDELAYs are adjusted.

0: Only the IDELAY for all Data (Q) in the calibration
specified by dbg_sel_idel_data_cq is adjusted.

If neither dbg_idel_up_data_cq nor
dbg_idel_down_data_cq is active in the clk_0 cycle, this
signal is a don’t care.

dbg_sel_idel_data_cq I CQ_WIDTH When any dbg_sel_idel_data_cq bit is set to 1, it
determines all the Data (Q) IDELAYs in the calibration
group to vary using dbg_idel_up_data_cq or
dbg_idel_down_data_cq.

If neither dbg_idel_up_data_cq nor
dbg_idel_down_data_cq is active in the clk_0 cycle, this
signal is a don’t care.

dbg_idel_up_data_cq I 1 Increments the tap value for all Data (Q) IDELAYs in the
calibration group. The Data (Q) IDELAYs in the
calibration group which are affected are given by
dbg_sel_all_idel_data_cq and dbg_sel_idel_data_cq.

Tap value(s) are incremented by one for every clk_0 cycle
that this signal is held High.

dbg_idel_down_data_cq I 1 Decrements the tap value for all Data (Q) IDELAYs in the
calibration group The Data (Q) IDELAYs in the
calibration group, which are affected, are given by
dbg_sel_all_idel_data_cq and dbg_sel_idel_data_cq.

Tap value(s) are decremented by one for every clk_0 cycle
that this signal is held High.

dbg_cq_first_edge_detect O CQ_WIDTH When set to 1, indicates the detection of the first edge of
CQ in each calibration group.

dbg_cq_first_edge_tap_count O 6*CQ_WIDTH A 6-bit tap count for CQ IDELAY in each calibration
group. This value determines the number of IDELAY taps
incremented for first edge detection.
dbg_cq_first_edge_tap_count[5:0] corresponds to CQ[0].

dbg_cq_second_edge_detect O CQ_WIDTH When set to 1, indicates the detection of the second edge
of CQ in each calibration group.

http://www.xilinx.com

MIG User Guide www.xilinx.com 441
UG086 (v2.2) March 3, 2008

Signal Descriptions
R

Virtex-4 FPGA: RLDRAM II
All the debug input port signals are clocked using the design clock frequency (clkglob).
Increment and decrement control signals (e.g., dbg_idel_up_all) as well as the IDELAY
select signals must be provided synchronously with clkglob.

Note:

1. All Read Data (DQ) in a given calibration group has the same IDELAY tap value.

2. A calibration group is determined by the number of Read Data (DQ) associated with
each QK.

dbg_cq_second_edge_tap_count O 6*CQ_WIDTH A 6-bit tap count for CQ IDELAY in each calibration
group. This value determines the number of IDELAY taps
incremented for second edge detection.
dbg_cq_second_edge_tap_count[5:0] corresponds to
CQ[0].

dbg_cq_tap_sel_done O CQ_WIDTH When set to 1, indicates that the calibration process of the
center-aligning CQ with respect to clk_0 in each
calibration group.

dbg_cq_tap_count O 6*CQ_WIDTH A 6-bit tap count for CQ IDELAY in each calibration
group. This value determines the number of IDELAY taps
incremented. The maximum counter value cannot be
more than 64; since the maximum taps that an IDELAY
element can be incremented is only 64 taps.

dbg_data_tap_count O 6*CQ_WIDTH A 6-bit tap count for all Data (Q) IDELAYs in each
calibration group. The counter value indicates the
number of tap delays that are to be applied on all Data (Q)
IDELAYs in each calibration group.

dbg_data_tap_sel_done O CQ_WIDTH When set to 1, indicates the completion of delaying all the
Data (Q) IDELAYs in the calibration group. The number
of taps that are to be delayed is determined by
dbg_data_tap_count.

dbg_first_rising O CQ_WIDTH 1: The first edge detected is rising edge.

0: The first edge detected is falling edge.

dbg_rdcmd2valid_cnt O 5*CQ_WIDTH A 5-bit counter to calculate number of clocks from
controller read command to data valid for group of Data
(Q) associated with specific CQ.

dbg_dly_cal_done O 1 When set to 1, indicates the completion of the Data (Q)
calibration process.

Table D-6: QDRII SRAM Signal Descriptions (Virtex-4 FPGAs) (Continued)

Bus Name I/O Width Description

http://www.xilinx.com

442 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Appendix D: Debug Port
R

Table D-7: RLDRAM II Signal Descriptions (Virtex-4 FPGAs)

Bus Name I/O Width Description

dbg_idel_up_all I 1 Increments the tap value for all Read Data (DQ) IDELAYs
used for read data synchronization. Tap values are
incremented by one for every clkglob cycle that this
signal is held High.

dbg_idel_down_all I 1 Decrements the tap value for all Read Data (DQ)
IDELAYs used for read data synchronization. Tap values
are decremented by one for every clkglob cycle that this
signal is held High.

dbg_sel_all_idel_data_qk I 1 Selects the functionality for dbg_idel_up_data_qk and
dbg_idel_down_data_qk:

1: All Read Data (DQ) IDELAYs are adjusted.

0: Only the IDELAYs for all the Read Data (DQ) in a
calibration group specified by dbg_sel_idel_data_qk
is adjusted.

If neither dbg_idel_up_data_qk nor
dbg_idel_down_data_qk is active in the clkglob cycle,
this signal is a don’t care.

dbg_sel_idel_data_qk I QK_WIDTH When any dbg_sel_idel_data_qk bit is set to 1, it
determines all the Data (DQ) IDELAYs in a calibration
group to vary using dbg_idel_up_data_qk or
dbg_idel_down_data_qk.

If neither dbg_idel_up_data_qk nor
dbg_idel_down_data_qk is active in the clkglob cycle,
this signal is a don’t care.

dbg_idel_up_data_qk I 1 Increments the tap value for all Data (DQ) IDELAYs in a
calibration group. The Data (DQ) IDELAYs in a
calibration group, which are affected, are given by
dbg_sel_all_idel_data_qk and dbg_sel_idel_data_qk.

Tap value(s) are incremented by one for every clkglob
cycle that this signal is held High.

dbg_idel_down_data_qk I 1 Decrements the tap value for all Data (DQ) IDELAYs in a
calibration group. The Data (DQ) IDELAYs in a
calibration group, which are affected, are given by
dbg_sel_all_idel_data_qk and dbg_sel_idel_data_qk.

Tap value(s) are decremented by one for every clkglob
cycle that this signal is held High.

dbg_qk_first_edge O QK_WIDTH When set to 1, indicates the detection of the first edge of
QK in a calibration group.

dbg_qk_first_edge_tap_count O 6*QK_WIDTH A 6-bit tap count for QK IDELAY in each calibration
group. This value determines the number of IDELAY
taps incremented for first edge detection.
dbg_qk_first_edge_tap_count[5:0] corresponds to QK[0].

dbg_qk_second_edge O QK_WIDTH When set to 1, indicates the detection of the second edge
of QK in a calibration group.

http://www.xilinx.com

MIG User Guide www.xilinx.com 443
UG086 (v2.2) March 3, 2008

Signal Descriptions
R

Spartan-3 FPGA: DDR/DDR2 SDRAMs

dbg_qk_second_edge_tap_count O 6*QK_WIDTH A 6-bit tap count for QK IDELAY in each calibration
group. This value determines the number of IDELAY
taps incremented for second edge detection.
dbg_qk_second_edge_tap_count[5:0] corresponds to
QK[0].

dbg_qk_tap_count O 6*QK_WIDTH A 6-bit counter for QK IDELAY in each calibration group.
This value determines the number of IDELAY taps
incremented. The maximum counter value cannot be
more than 64, since the maximum taps that an IDELAY
element can be incremented is only 64 taps.

dbg_first_rising O QK_WIDTH 1: Indicates that the first edge detected is rising edge.

0: Indicates that the first edge detected is falling edge.

dbg_qk_tap_sel_done O QK_WIDTH When set to 1, indicates that the calibration process of the
center-aligning clkglob with respect to that particular QK
is complete.

dbg_data_tap_count O 6*QK_WIDTH A 6-bit tap count for all the Read Data (DQ) IDELAYs in
a calibration group. The counter value indicates the
number of tap delays that are to be applied on group of
Read Data (DQ) IDELAYs.

dbg_data_tap_sel_done O QK_WIDTH When set to 1, indicates the completion of delaying the all
the Read Data (DQ) IDELAYs in a calibration group. The
number of taps that are to be delayed is determined by
dbg_data_tap_count.

Table D-7: RLDRAM II Signal Descriptions (Virtex-4 FPGAs) (Continued)

Bus Name I/O Width Description

Table D-8: DDR/DDR2 SDRAM Signal Descriptions (Spartan-3 FPGAs)

Signal Name I/O Width Description

dbg_delay_sel O 5 Tap value from the calibration logic used to delay the strobe and rst_dqs_div.

dbg_rst_calib O 1 Used to stop new tap_values from calibration logic to strobe and rst_dqs_div
during memory read operations.

dbg_phase_cnt O 5 Phase count gives the number of LUTs in the clock phase.

dbg_cnt O 6 Counter used in the calibration logic.

dbg_trans_onedtct O 1 Asserted when the first transition is detected.

dbg_trans_twodtct O 1 Asserted when the second transition is detected.

dbg_enb_trans_two_dtct O 1 Enable signal for dbg_trans_twodtct.

vio_out_dqs_en I 1 Enable signal for strobe tap selection.

vio_out_dqs I 5 Used to change the tap values for strobes.

vio_out_rst_dqs_div_en I 1 Enable signal for rst_dqs_div tap selection.

vio_out_rst_dqs_div I 5 Used to change the tap values for rst_dqs_div.

http://www.xilinx.com

444 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Appendix D: Debug Port
R

Adjusting the Tap Delays
The Debug port can be used for dynamic adjustment of tap delays. This can be initiated
either through a Xilinx Virtual I/O (VIO) module or through other custom control logic.

Virtex FPGA Designs
This section describes the procedure for adjusting the IDELAY taps for the DDR2 SDRAM
Virtex-5 FPGA design. This tap adjusting procedure is applicable for DDR2 SDRAM and
DDR SDRAM Virtex-5 FPGA designs only.

1. If all IDELAY taps used in the DDR2 interface (for all DQ, DQS, and DQS Gate) must
be adjusted at once:

a. Assert either dbg_sel_idel_up_all or dbg_sel_idel_down_all. For every clkdiv
cycle where one or the other of these two signals is asserted, the IDELAY taps are
incremented or decremented by 1.

b. To exactly control the amount of adjustment when using VIO to control these
signals, the user should make sure these control signals are set to generate a single
pulse one clock cycle wide when selected.

2. If all DQ IDELAYs must be adjusted at once:

a. Set dbg_sel_all_idel_gate = 1.

b. Use dbg_idel_up_dq or dbg_idel_down_dq to either increment or decrement all
DQ IDELAYs at once. As is the case with dbg_sel_idel_up_all, these control signals
increment or decrement the IDELAY tap count by 1 for every clkdiv cycle they are
asserted.

3. If only a specific DQ IDELAY must be adjusted:

a. Set dbg_sel_all_idel_dq = 0.

b. Set dbg_sel_idel_dq to indicate the specific DQ IDELAY to be adjusted. For
example, for a 32-bit DDR2 interface where DQ[10] must be adjusted, the user sets
dbg_sel_idel_dq[4:0] = 01010.

c. Use dbg_idel_up_dq or dbg_idel_down_dq to either increment or decrement the
specified DQ IDELAY.

4. The procedure for adjusting all or individual DQS or DQS Gate IDELAY tap values is
the same as outlined in step 2 and step 3, except that separate ports are provided for
DQS and DQS Gate IDELAY adjustment.

This next procedure is for the QDRII SRAM Virtex-5 FPGA design:

1. If all IDELAY taps used in the QDRII interface (for all Read Data (Q) and Strobes (CQ,
CQ#)) must be adjusted at once:

a. Assert either dbg_sel_idel_up_all or dbg_sel_idel_down_all. For every clk0 cycle
where one or the other of these two signals is asserted, the IDELAY taps are
incremented or decremented by 1.

b. To exactly control the amount of adjustment when using VIO to control these
signals, the user should make sure these control signals are set to generate a single
pulse one clock cycle wide when selected.

2. If all CQ or CQ# IDELAYs must be adjusted at once:

a. Use dbg_idel_up_cq or dbg_idel_down_cq to either increment or decrement all
CQ IDELAYs at once, when dbg_sel_all_idel_cq is set to 1.

http://www.xilinx.com

MIG User Guide www.xilinx.com 445
UG086 (v2.2) March 3, 2008

Adjusting the Tap Delays
R

b. Use dbg_idel_up_cq_n or dbg_idel_down_cq_n to either increment or decrement
all CQ# IDELAYs at once, when dbg_sel_all_idel_cq_n is set to 1.

As is the case with dbg_sel_idel_up_all or dbg_sel_idel_down_all, these control
signals increment or decrement the IDELAY tap count by 1 for every clk0 cycle
they are asserted.

3. If only a specific CQ or CQ# IDELAY must be adjusted:

a. Set dbg_sel_all_idel_cq = 0 and set dbg_sel_idel_cq to indicate the specific CQ
IDELAY to be adjusted. For example, for a x36 QDRII component interface with a
72-bit data width where CQ[1] must be adjusted, the user sets
dbg_sel_idel_cq[1:0] = 10.

b. Set dbg_sel_all_idel_cq_n = 0 and set dbg_sel_idel_cq_n to indicate the specific
CQ# IDELAY to be adjusted. For example, for a x36 QDRII component interface
with a 72-bit data width where CQ#[1] must be adjusted, the user sets
dbg_sel_idel_cq_n[1:0]= 10.

c. Use dbg_idel_up_cq or dbg_idel_down_cq to either increment or decrement the
specified CQ IDELAY.

4. The procedure for adjusting all or calibration group Read Data (Q) IDELAY tap values
is the same as outlined in step 2 and step 3, except that separate ports are provided for
Read Data (Q) IDELAY adjustment.

The above mentioned tap adjustment procedure is applicable for QDRII SRAM Virtex-5
FPGA designs and DDR SDRAM, DDRII SRAM, RLDRAM II, QDRII SRAM Virtex-4
FPGA designs.

Spartan-3 FPGA Designs
The procedure for adjusting the tap delay values is as follows:

1. Adjust the tap delay values for all the strobes (DQS):

a. Set vio_out_dqs_en = 1.

b. Use vio_out_dqs[4:0] to change the tap values (see Table D-9).

2. Adjust the tap delay values for rst_dqs_div (loopback signal):

a. Set vio_out_rst_dqs_div_en = 1.

b. Use vio_out_rst_dqs_div[4:0] to change the tap values (see Table D-10).

Table D-9: Tap Values for Strobes

vio_out_dqs[4:0] Tap Value

01111 (0x0F) Tap 1

10111 (0x17) Tap 2

11011 (0x1B) Tap 3

11101 (0x1D) Tap 4

11110 (0x1E) Tap 5

11111 (0x1F) Tap 6

http://www.xilinx.com

446 www.xilinx.com MIG User Guide
UG086 (v2.2) March 3, 2008

Appendix D: Debug Port
R

3. Adjust the tap delay values for all the strobes (DQS) and rst_dqs_div:

a. Set vio_out_dqs_en = 1.

b. Set vio_out_rst_dqs_div_en = 1.

c. Set the tap values for rst_dqs_div and all the strobes from Table D-9 and
Table D-10 by changing vio_out_dqs[4:0] and vio_out_rst_dqs_div[4:0].

Sample Control/Monitoring of the Debug Port
HDL code for the Spartan-3, Virtex-4, and Virtex-5 FPGA Debug ports can be generated
from MIG by selecting the Debug Signals option. Spartan-3 FPGA designs use VIO, ILA,
and ICON cores generated using the ChipScope™ Pro tool to monitor the calibration
signals and tap values, as well as allow dynamic adjustment of the tap delay values.
Virtex-4 and Virtex-5 FPGA designs use VIO cores generated using the ChipScope Pro tool
to monitor both calibration status and IDELAY tap values, as well as allow dynamic
adjustment of the IDELAY tap values.

Table D-10: Tap Values for Loopback Signal

vio_out_rst_dqs_div[4:0] Tap Value

01111 (0x0F) Tap 1

10111 (0x17) Tap 2

11011 (0x1B) Tap 3

11101 (0x1D) Tap 4

11110 (0x1E) Tap 5

11111 (0x1F) Tap 6

http://www.xilinx.com

	Xilinx Memory Interface Generator (MIG) User Guide
	Revision History
	About This Guide
	Guide Contents
	References
	Additional Resources
	Typographical Conventions
	Type Case of Port and Signal Names

	Section I: Introduction
	Using MIG
	MIG 2.2 Changes from MIG 2.1
	MIG 2.1 Changes from MIG 2.0
	MIG 2.0 Changes from MIG 1.73
	MIG 1.73 Changes from MIG 1.72
	MIG 1.72 Changes from MIG 1.7
	MIG 1.7 Changes from MIG 1.6
	MIG 1.6 Changes from MIG 1.5
	MIG 1.5 Changes from MIG 1.4
	Tool Features
	Design Tools
	Installation
	Getting Started
	MIG User Interface
	Getting Help
	Version Information
	CORE Generator Options
	MIG Output Options
	Spartan-3A FPGA DDR2 SDRAM 200 MHz Design

	Using MIG in Batch Mode
	XCO File
	MIG.prj File
	Running in Batch Mode

	Section II: Virtex-4 FPGA to Memory Interfaces
	Implementing DDR SDRAM Controllers
	Feature Summary
	Supported Features
	Design Frequency Ranges
	Unsupported Features

	Architecture
	Interface Model
	Implemented Features
	Hierarchy

	DDR SDRAM Initialization and Calibration
	DDR SDRAM System and User Interface Signals
	User Interface Accesses
	Write Interface
	Correlation between the Address and Data FIFOs
	Read Interface

	Simulating the DDR SDRAM Design
	Changing the Refresh Rate

	Supported Devices
	Hardware Tested Configurations

	Implementing DDR2 SDRAM Controllers
	Interface Model
	Direct Clocking Interface
	Feature Summary
	Architecture
	DDR2 SDRAM Initialization and Calibration
	DDR2 SDRAM System and User Interface Signals
	Deep Memory Configurations
	Simulating the DDR2 SDRAM Design
	Supported Devices
	Hardware Tested Configurations

	SerDes Clocking Interface
	Feature Summary
	Architecture
	DDR2 SDRAM Initialization and Calibration
	DDR2 SDRAM System and User Interface Signals
	Simulating the DDR2 SDRAM Design
	Supported Devices
	Hardware Tested Configurations

	Implementing QDRII SRAM Controllers
	Feature Summary
	Design Frequency Range
	Limitations

	Architecture
	Interface Model
	Hierarchy
	QDRII Memory Controller Modules

	QDRII SRAM Initialization and Calibration
	QDRII Controller System and User Interface Signals
	Write Interface
	Read Interface
	Supported Devices

	Simulating the QDRII SRAM Design
	Hardware Tested Configurations

	Implementing DDRII SRAM Controllers
	Feature Summary
	Supported Features
	Design Frequency Range
	Unsupported Features

	Architecture
	Interface Model
	Hierarchy
	DDRII SRAM Controller Modules

	DDRII SRAM Initialization and Calibration
	User Interface
	DDRII SRAM Controller Interface Signals
	Write Interface
	Read Interface
	Supported Devices

	Simulating the DDRII SRAM Design
	Hardware Tested Configurations

	Implementing RLDRAM II Controllers
	Feature Summary
	Supported Features
	Design Frequency Range
	Unsupported Features
	Supported RLDRAM II Devices

	Architecture
	Implemented Features
	Block Diagram Description

	RLDRAM II Interface Signals
	User Command Interface
	User Interface Accesses
	Write Interface
	Read Interface
	Refresh Commands

	Simulating the RLDRAM II Design
	Hardware Tested Configurations

	Section III: Spartan-3/3E/3A/3AN/3A DSP FPGA to Memory Interfaces
	Implementing DDR SDRAM Controllers
	Feature Summary
	Design Frequency Ranges

	Controller Architecture
	DDR SDRAM Interface
	Hierarchy
	Controller
	Datapath
	Data Read Controller
	Data Read
	Data Write
	Infrastructure_top
	IOBs

	Interface Signals
	Resource Utilization
	DDR SDRAM Initialization
	DDR SDRAM Write and Read Operations
	Auto Refresh
	Changing the Refresh Rate
	Load Mode
	UCF Constraints

	I/O Banking Rules
	Design Notes
	Spartan-3/3E/3A/3AN/3A DSP Pin Allocation Rules

	Supported Devices
	Simulating the Spartan-3/3E/3A/3AN/3A DSP FPGA Design
	Hardware Tested Configurations

	Implementing DDR2 SDRAM Controllers
	Feature Summary
	Design Frequency Ranges

	Controller Architecture
	DDR2 SDRAM Interface
	Hierarchy
	Controller
	Datapath
	Data Read Controller
	Data Read
	Data Write
	Infrastructure_top
	IOBs

	Interface Signals
	Resource Utilization
	DDR2 SDRAM Initialization
	Write
	Read
	Auto Refresh
	Load Mode
	UCF Constraints

	I/O Banking Rules
	Design Notes
	Tool Output
	Supported Devices
	Maximum Data Widths
	DIMM Support for Spartan-3 Generation Devices
	Design Frequency Range in MHz for Spartan-3 Generation Devices

	Hardware Tested Configurations

	Section IV: Virtex-5 FPGA to Memory Interfaces
	Implementing DDR2 SDRAM Controllers
	Interface Model
	Feature Summary
	Supported Features
	Design Frequency Ranges
	Unsupported Features

	Architecture
	Implemented Features
	Generic Parameters
	Hierarchy
	Constraints
	MIG Tool Design Options
	DDR2 Controller Submodules

	DDR2 SDRAM Initialization
	DDR2 SDRAM Design Calibration
	DDR2 SDRAM System and User Interface Signals
	User Interface Accesses
	Write Interface
	Read Interface
	Simulating the DDR2 SDRAM Design
	Supported Devices

	Hardware Tested Configurations

	Implementing QDRII SRAM Controllers
	Feature Summary
	Supported Features
	Design Frequency Ranges
	Unsupported Features

	Architecture
	Interface Model
	Hierarchy
	QDRII Memory Controller Modules

	QDRII SRAM Initialization and Calibration
	QDRII Controller Interface Signals
	Supported Devices

	Simulating the QDRII SRAM Design
	Hardware Tested Configurations

	Implementing DDR SDRAM Controllers
	Interface Model
	Feature Summary
	Supported Features
	Design Frequency Ranges
	Unsupported Features

	Architecture
	Implemented Features

	Hierarchy
	MIG Design Options
	DDR SDRAM Initialization
	DDR SDRAM Design Calibration
	User Interface Accesses
	Write Interface
	Read Interface
	Supported Devices
	Simulating a DDR SDRAM Design
	Hardware Tested Configurations

	Section V: DDR2 Debug Guide
	Debugging MIG DDR2 Designs
	Introduction
	Verifying Board Layout
	Introduction
	Memory Implementation Guidelines
	Calculate WASSO
	Run SI Simulation Using IBIS

	Verifying Design Implementation
	Introduction
	Behavioral Simulation
	Verify Modifications to MIG Output
	Verify Successful Placement and Routing
	Verify IDELAYCTRL Instantiation for Virtex-4 and Virtex-5 FPGA Designs
	Verify TRACE Timing

	Debugging the Spartan-3 FPGA Design
	Introduction
	Read Data Capture
	Verify Placement and Routing
	Debugging Physical Layer in Hardware
	Proceed to General Board-Level Debug

	Debugging the Virtex-4 FPGA Direct Clocking Design
	Introduction
	Read Data Capture Timing Calibration
	Signals of Interest
	Proceed to General Board-Level Debug

	Debugging the Virtex-4 FPGA SerDes Design
	Introduction
	Read Data Capture Timing Calibration
	Signals of Interest
	Proceed to General Board-Level Debug

	Debugging the Virtex-5 FPGA Design
	Introduction
	Verify Placement and Routing
	Signals of Interest
	Physical Layer Debug Port
	Proceed to General Board-Level Debug

	General Board-Level Debug
	Overall Flow
	Isolating Bit Errors
	Board Measurements
	Supply Voltage Measurements
	Clocking
	Synthesizable Testbench
	Varying Read Capture Timing

	Section VI: Appendices
	Memory Implementation Guidelines
	Generic Memory Interface Guidelines
	Timing Analysis
	Pin Assignments
	Termination
	Trace Lengths

	Memory-Specific Guidelines
	DDR/DDR2 SDRAM
	QDRII SRAM
	RLDRAM II

	Required UCF and HDL Modifications for Pinout Changes
	Introduction
	UCF / HDL Constraint Generation Procedure
	Read Data Capture Block Diagram
	UCF / HDL Changes Overview
	Setting HDL Code Top-Level Placement Parameters
	Setting UCF Constraints
	Determining FPGA Element Site Locations
	Setting DQS Gate Circuit Location Constraints
	Setting RLOC_ORIGIN Constraints

	Verifying UCF/HDL Modifications

	WASSO Limit Implementation Guidelines
	Debug Port
	Overview
	Enabling the Debug Port
	Signal Descriptions
	Virtex-5 FPGA: DDR2 SDRAM
	Virtex-5 FPGA: DDR SDRAM
	Virtex-5 FPGA: QDRII SRAM
	Virtex-4 FPGA: DDR SDRAM
	Virtex-4 FPGA: DDRII SRAM
	Virtex-4 FPGA: QDRII SRAM
	Virtex-4 FPGA: RLDRAM II
	Spartan-3 FPGA: DDR/DDR2 SDRAMs

	Adjusting the Tap Delays
	Virtex FPGA Designs
	Spartan-3 FPGA Designs

	Sample Control/Monitoring of the Debug Port

