PCI Coprocessor Expansion Card

Alex Barabanov
Shawn Crabb
Thomas Gongaware
David Palchak

Overview

Embed a microprocessor on a PCI expansion card

Allow the host system to offload repetitive computations

Specialize embedded tasks for maximum performance

Allow for easy task reconfiguration

Hardware Components

Intel 960 HA MIPS processor
PLX Technologies 9030-RDK
prototyping board
Flash ROM (1MB) for firmware
Dual port SRAM (4 MB) for data
buffers
33 Mhz 32-bit PCI interface

Software Components

Linux 2.4 kernel driver for hardware/software interaction
Modified libcrypto.so, libssl.so
Embedded subroutines to perform
MD5, RSA algorithms
EEPROM reprogramming utility

Details I - Hardware

PCI/Processor synchronized using interrupts

SRAM used for data storage Dual ported

Address segment multiplexing
Handled by 9030 PCI controller
Reconfigurable via dedicated
EEPROM

Details II - Firmware

Stores power-on initialization code

Contains driver interaction routines

Synchronizes with PCI controller

Manages memory

Marshalls processor interrupts

Schedules worker thread execution

Requires documented hardware interface

Details III – User Code

Embedded optimized subroutines for specific tasks

Modular exponentiation

Bit parity

Operates on buffered data blocks

Code must be reentrant (thread-safe)

Potentially performance critical

PCI Interface

Handled by on-board PLX 9030 controller

DMA based data transfer/control signaling

Supports burst block transfers

Provides a generic interface to hardware on card

Hardware/Driver Interface

Most difficult aspect of project

Indirect interface (through PCI controller)

Provide set of common control tasks

Task Examples:

Status Query

Receive data/Request data

Begin/Pause/End task execution

Write to EEPROM

Firmware Interface

Firmware invokes embedded routines

Need predefined assembly conventions

Argument passing/Return values

Caller/Callee saved registers

Independent control threads

Memory Manager

Thread scheduler

EEPROM programmer

Status Monitor

Power-On Initialization Routine

User Process API

Hardware access routines used by library functions

EEPROM control routines for firmware update utility

Primary hardware abstraction

DMA based data transfer/control

General purpose routines

Multithreaded

Object-oriented API

Resource Access Policies

Obstacles

Hardware

Mounting SMT parts on PCB

Swapping out SRAM chips for higher capacity parts

Formalizing interaction between 9030 I/O controller and microprocessor

Software

Linux driver development

PCI / DMA protocols

MIPS cross-compiling

Bill of Materials - I

Bill of Materials - II

Basic Schedule - I

Summer

Save \$\$\$ and purchase parts
Acquire documentation and literature

September

Build the PCI card (Alex, Dave)
Write Linux driver

October

Write firmware
Write and simulate cryptography assembly (Shawn, Tom)

Basic Schedule - II

November

Modify Linux libraries to export work Integration, testing, debugging

December

Integration, testing, debugging Presentation

Questions?