
Vision Sensors for Entomologically-inspired Micro Aerial Vehicles

Dan Black, in collaboration with Professor Reid Harrison

Insect Inspired

Two kinds of vehicles:

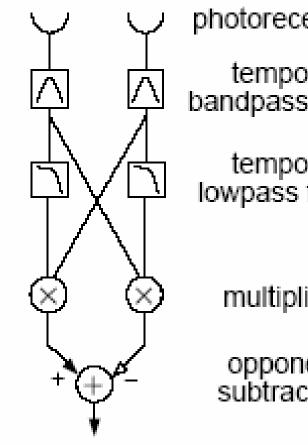
- Micro Hovering Aerial Vehicles (MHAVs)
 - ~50cm diameter
 - Larger, but smarter
- Micromechanical Flying Insects (MFIs)
 - Very small, ~.1g
 - Smaller, able to accomplish specific, simple tasks
- Both need to be autonomous

Motivation

- It's really cool.
- Building Clearing (points of entry, mapping)
- Situation Assessment (earthquakes, terrorism, etc.)
- Data Acquisition Perch and Move
- Anything else the Government can come up with.

Who's involved?

- University of California
- California Institute of Technology
- Stanford University
- Boston University
- University of Utah
 - Vision Sensors

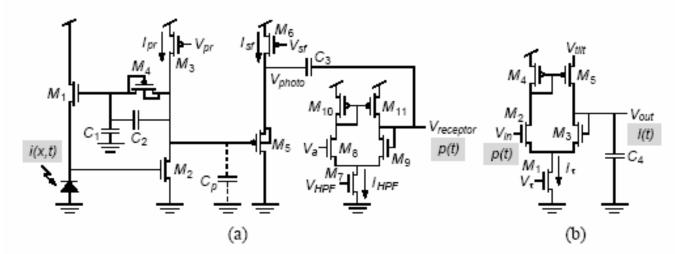

Autonomous

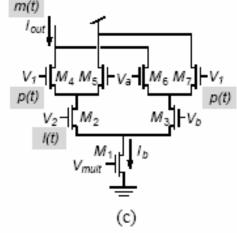
- Keeps itself upright
- Doesn't wander
- Compensates for wind currents, etc.
 - So user doesn't have to
- Doesn't run into walls, other objects (obstacle avoidance)
- All of these will depend on vision sensors

Version One: both dumb and smart

- Integrate CMOS imager and "smart" imager
 - Smart pixels already developed by Harrison
 - Gives directional information in x and y directions
 - Output is a differential current, for easy adding
 - "Dumb" CMOS imager in center with smart pixels on the outside

photoreceptors

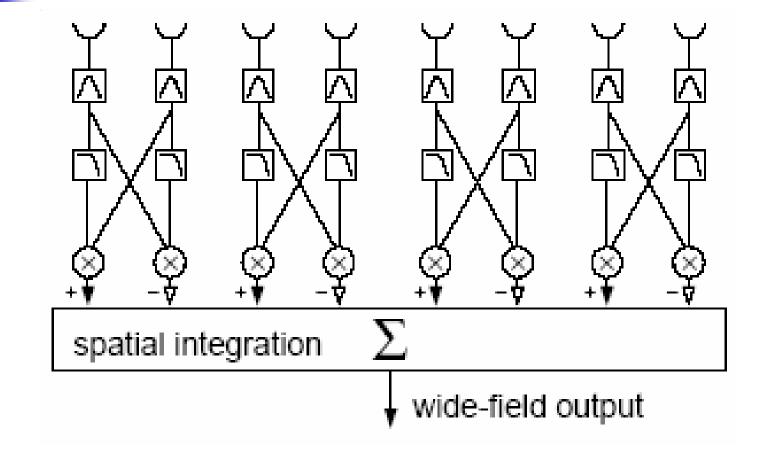

temporal bandpass filters


temporal lowpass filters

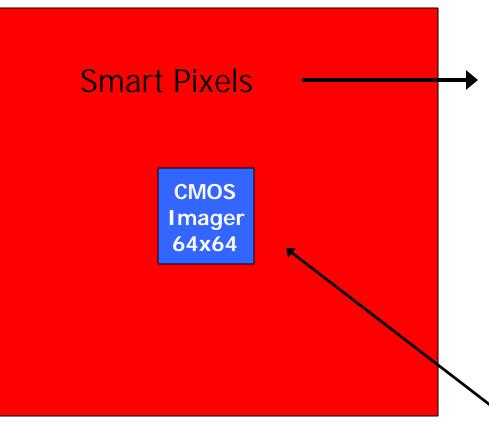
multipliers

opponent subtraction

"Smart" Pixel Details



Photoreceptor and Filtering


Low-Pass Filter (Phase Lag)

Multiplier

Combining Pixel Information

Each pixel outputs both an x and y analog directional output.

General Idea

These are combined for overall directional information.

CMOS Imager is a Separate System.

Testing

- Adjust design to output individual pixel information
- Develop Method of extracting this information
 - Microcontroller, external hardware
- Develop Matlab program for meaningful analysis
 - While waiting for chip to be fabricated

Integration

- Sensor must be integrated into MFI
 - Design with this in mind
 - Find out requirements, expected outputs
- Integration primarily at UC Berkeley
 - I will likely go there to help with integration

Communication Plan

- Meet with Dr. Harrison each week
 - Discuss Progress
 - Resolve Questions
 - More Often as necessary
- Presentations at milestones to Harrison and Grad Students
- Collaboration as needed with team members at other Universities

Design V1 chip with optical flow and CMOS imager	Y0.5	WP
Benchtop testing of V1 chip	Y1.0	proto
Flight testing of V1 chip (at Berkeley, data collection	Y1.5	WP
Design of V2 sensor chip	Y1.5	WP
V2 sensor for integration with MFI	Y2.0	proto
V3 sensor design with roll/pitch/yaw detection+ocelli	Y2.5	WP
Benchtop testing of V3 chip	Y3.0	proto
V4 sensor design with collision avoidance	Y4.0	proto

Tasks	Sep			Oct				Nov			Dec					
Learn Lab Tools																
Research Previous Work																
Preliminary Design																
Design Simulation																
Determine Testing Strategy																
Design Modifications																
VLSI Layout																
Submit for Fabrication																
Implement Testing Strategy																
Documentation																

Schedule Tasks (cont.)

Tasks	Jan			Feb				Mar				Apr		
Implement Testing Strategy														
Develop Analysis Tools														
Receive Fabricated Chip														
Test Chip and Analyze Performance														
Prepare for Thesis Presentation														
Present Senior Thesis														
Documentation														

Risks, Difficulties

- \$\$\$ No grant, no project
 - Backup plan involves neural recording
- Low power, small area
 - Layout will be a challenge
- Testing will be tough
- Simultaneous data for collision, flow, rotation info

