Project WEAVER Wi-Fi Enabled Active Video Experimental Rover

> Senior Project by: Amber Blake Janos Opra Tyler Lloyd

Project Tasks

Hardware

- Obstacle Detection and Avoidance
- Wireless Interface
- Power Regulation
- Video Interface
- DSP Processor
- Motors and Interfaces
 H-Bridge Motor Driver
- PCB Design and Verification
- Assembly

Software

- Obstacle Avoidance
- PC Wireless
 Implementation
- PC Video Stream Viewer
- DSP Video Pre-Processing
- PC Movement Control
- Rover Wireless
 Implementation
- DSP Movement Control
- GUI Wrapper
- Schedule
 - Hardware
 - Software

Block Diagram

Obstacle Detection and Avoidance

Two Components – Hardware and Software Hardware on Car – IR LEDs, receivers, and resistors IR receivers create a signal when the

reflected IR signal is detected

Input from HPWM on DSP

Duty cycle controls power level to LEDs which changes the sensitivity

 Output to a general purpose I/O pin Receiver signal sent back to DSP

Wireless Communication Link

On the Car

- Hardware

The Plan: PC card, connectors, and bus to the DSP. Back-up: Wireless Flash or chip set Reference Design

– Software on the DSP

Power Regulation

Sources

- 9.6V Ni-Cad rechargeable (Motors)
- 9V alkaline 6 AA cells in series (Digital)

Power sequencing

- Digital power is available first
- Motor driver power after H-Bridge is initialized
 Single switch disables all voltage sources
 Digital voltage regulation
 - DSP
 - Camera
 - Wireless card
 - Obstacle avoidance

Video Interface

CCD Camera

– Toshiba TW10794V Digital Camera

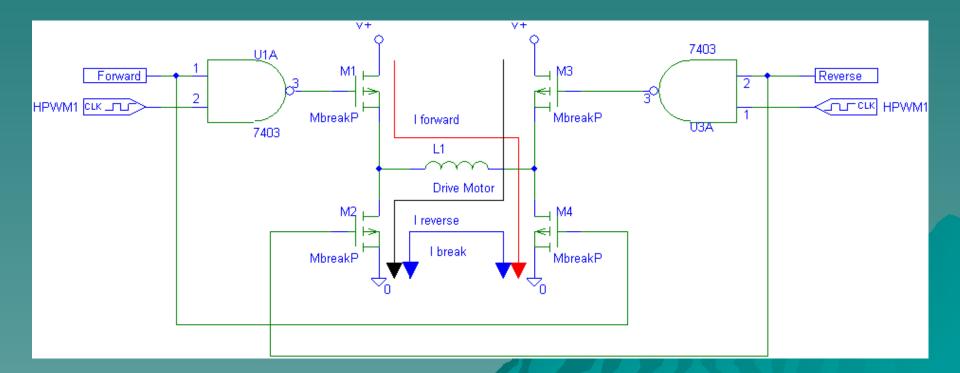
– Ribbon Cable Input/Output and Power MPEG Codec

NEC µPD61051 MPEG2 Hardware Encoder
 208 pin TQFP (Thin Quad Flat Pack) package
 2.5 and 3.3 V requirements
 Samples en route

- Native Streaming Video Output
- Mounting Hardware
 - Nuts and Bolts.

Embedded Processor

- Digital Signal Processor (DSP)
 - Motorola DSP56F807
 - On chip interfaces
 - SPI
 - UART
 - CAN
 - SCI
 - JTAG
 - External Memory interface port
 - 16bit data 16 bit address
 - We have a development kit for the 801 version
 - We have samples of the 805 and 807 versions


Motors and Interfaces

One motor for forward and reverse One motor for left and right One motor for High and Low gear Hardware Pulse Width Modulator (HPWM) to apply the signals to move HPWM duty cycle will determine speed. - Duty Cycle range 0% - 100% - Provides maximum motor speed

Rotation is proportional to the current passing through it

H-Bridge Motor Driver

Allows bidirectional operation with minimal control signals Provide a "break" to stop the rotation of the motor requires one HPWM and either 2 or 4 IO pins

PCB Design and Verification

Protel 99se schematic and layout environment

Output Gerber files

Verification, Review

- Schematic prior to PCB production
- Analyze current requirements to size traces
- Component footprints
- PCB trace paths

Circuit Graphics PCB fabrication

Assembly

Populate the PCB in phases to check power regulation and control **Complete PCB** Mount modules to the Rover - PCB - Camera - Wireless Card Power all systems and verify power capacity

Obstacle Detection and Avoidance

Software on DSP

- Sensor Control
 - Input Approximate speed from Motor Control Software (duty-cycle of the HPWM)
 - Output Duty cycle of the HPWM input to IR LEDs
- Evasive Action
 - Input Output of the IR sensors
 - Output Communication to Motor Control Software to avoid the object
 - Obstacles avoided by either turning the car, applying the motor breaks, or both
- Allow this feature to be disabled from the PC

PC Wireless Implementation

802.11g wireless network (54 Mbps) Hardware – PC card

Software – Write to and read from as a socket

- Wireless input Video sent from the Rover
- Socket output Relay Video to the PC
- Socket Input Command Codes sent from the PC
- Wireless output Relay Commands to the Rover

UDP transfer protocol

There will also be a wireless access point that will act as a network switch

PC Video Stream Viewer

Video stream viewer

- Input MPEG video stream from the car received through Wireless Communication Software
- Output Streaming video display on the monitor

 Decode using Windows Media Player or similar
 Create a viewer in a reserved section of the GUI

DSP Video Interface

Initialize CCD Camera Send configuration op-codes Frame-rate, Resolution, Etc. Initialize MPEG encoder - Define input characteristics (Digital) - Set compression type (MPEG2) - Set output to real-time stream Receive stream into DSP from encoder Make stream available for wireless transmission

PC Motion Control

Input Keyboard Explore joystick option - Variable speeds Forward/Reverse Left/Right Decode into hardware commands Send to wireless link Design a GUI for motion control

Rover Wireless Implementation

Hardware – PC card in a connector mounted to the PCB

- Software level1
 - Interface
 - IDE
 - Card Bus

Software Level2

- Write to and read from as a socket

Wireless input - Command Codes sent from the PC Socket output - Relay Commands to the Rover

Socket Input – Video sent from the Rover

Wireless output – Relay Video to the PC

UDP transfer protocol

DSP Movement Control

Receive Command message from the PC

Decode message

Respond to the message

 Change the duty cycle of one or more HPWMs

- Apply the break

Change direction Forward/Reverse
 Stop if wireless connection is lost

Hardware Schedule

			May June					July					August				
Tasks	point- person	1 4	21	28		1 1	1 8	25	:	!	16	23	30	6	13	20	27
Power regulation	Janos																
DSP circuitry	Tyler																
ireless transmission circuitry	mber																
Camera interface circuitry	Janos																
Collision avoidance circuitry	Amber																
Motor driver	Tyler																
P CB design	All																
PCB build																	
Part acquisition	All																
Basic assembly	All																

Software Schedule

		eptembęr ₂					Octob	November 2				ес			
asks	point-person		0	7	4	1	8	15	22	9	5	2	9	6	3
DSP Wireless communication	Tyler														
	Tyler														
SP Motor control DSP Video interface	Janos														
DSP Sensor processing and collision avoidance	Amber														
PC laptop Wireless communication	Amber														
PC laptop Motor control	Janos														
C laptop Video interface	Amber														
Software PC laptop GUI wrapper	All														
Documentation															