## Motion Tracking HMD

Nick Sorenson Adam Thompson



### **Accelerometers**

- Mount to Visor
- Measure outputs that match what we'd expect



#### **Microcontroller**

- Take in and perform computations on input signals
- Apply signals to Microcontroller and get the appropriate outputs
- Calibrate Microcontroller output limits with buttons



### • Microcontroller

### Device Driver

### Range of Motion Baseline



# Range of Motion Baseline++



# Range of Motion









### Tripod/Servos

- Bust mounted to tripod
- Servos attached to tripod
- Move the tripod by applying various inputs



#### Integration

- Attach Servos to Microcontroller output
- Move servos by applying various signals to Microcontroller
- Attach Accelerometer to Microcontroller and measure appropriate outputs
- Connect Microcontroller to Computer
- Additional Wow steps
- Test : Test : Test!

# WOW

- Real Device Driver
- Wireless
- Pitch and Yaw
- Re-Centering
- Extra Function Buttons
- Range of Motion

BOM

LCD Glasses-INNOVATEK V-490 Accelerometer-ADXL330 Microcontroller-M68HC11x2 Servos-36G Servo DAC and Misc. Circuitry Power Supply

## Accelerometer Data Sheet

| Table 1.                                           |                    |     |          |     |                |
|----------------------------------------------------|--------------------|-----|----------|-----|----------------|
| Parameter                                          | Conditions         | Min | Тур      | Max | Unit           |
| SENSOR INPUT                                       | Each axis          |     |          |     |                |
| Measurement Range                                  |                    | ±3  | ±3.6     |     | g              |
| Nonlinearity                                       | % of full scale    |     | ±0.3     |     | 96             |
| Package Alignment Error                            |                    |     | ±1       |     | Degrees        |
| Inter-Axis Alignment Error                         |                    |     | ±0.1     |     | Degrees        |
| Cross Axis Sensitivity <sup>1</sup>                |                    |     | ±1       |     | 96             |
| SENSITIVITY (RATIOMETRIC) <sup>2</sup>             | Each axis          |     |          |     |                |
| Sensitivity at Xour, Your, Zour                    | $V_s = 3 V$        | 270 | 300      | 330 | mV/g           |
| Sensitivity Change Due to Temperature <sup>3</sup> | $V_s = 3 V$        |     | ±0.015   |     | %/℃            |
| ZERO g BIAS LEVEL (RATIOMETRIC)                    | Each axis          |     |          |     |                |
| 0 g Voltage at Хоит, Youт, Zouт                    | Vs = 3 V           | 1.2 | 1.5      | 1.8 | v              |
| 0 g Offset vs. Temperature                         |                    |     | ±1       |     | m <i>g/</i> °C |
| NOISE PERFORMANCE                                  |                    |     |          |     |                |
| Noise Density Xout, Yout                           |                    |     | 280      |     | µg/√Hz rms     |
| Noise Density Zour                                 |                    |     | 350      |     | µg/√Hz rms     |
| FREQUENCY RESPONSE <sup>4</sup>                    |                    |     |          |     |                |
| Bandwidth Xour, Your⁵                              | No external filter |     | 1600     |     | Hz             |
| Bandwidth Zour⁵                                    | No external filter |     | 550      |     | Hz             |
| R <sub>FILT</sub> Tolerance                        |                    |     | 32 ± 15% |     | kΩ             |
| Sensor Resonant Frequency                          |                    |     | 5.5      |     | kHz            |
| SELF-TEST <sup>6</sup>                             |                    |     |          |     |                |
| Logic Input Low                                    |                    |     | +0.6     |     | v              |
| Logic Input High                                   |                    |     | +2.4     |     | v              |
| ST Actuation Current                               |                    |     | +60      |     | μΑ             |
| Output Change at Xour                              | Self-test 0 to 1   |     | -150     |     | mV             |
| Output Change at Your                              | Self-test 0 to 1   |     | +150     |     | mV             |
| Output Change at Zour                              | Self-test 0 to 1   |     | -60      |     | mV             |
| OUTPUT AMPLIFIER                                   |                    |     |          |     |                |
| Output Swing Low                                   | No load            |     | 0.1      |     | v              |
| Output Swing High                                  | No load            |     | 2.8      |     | v              |
| POWER SUPPLY                                       |                    |     |          |     |                |
| Operating Voltage Range                            |                    | 2.0 |          | 3.6 | v              |
| Supply Current                                     | $V_s = 3 V$        |     | 320      |     | μΑ             |
| Turn-On Time <sup>7</sup>                          | No external filter |     | 1        |     | ms             |
| TEMPERATURE                                        |                    |     |          |     |                |
| Operating Temperature Range                        |                    | -25 |          | +70 | °C             |



## **Reality Check Dates**

- 31 July; Parts are in, DAC understood and ready; tripod built
- 30 Sept; Parts mounted, hardware check of accelerometers, and microcontroller.
- 31 Oct; Final microcontroller program (either to emulate or to act as separate device)
- End of Class; 🙂

# Questions? Details at http://www.cs.utah.edu/~adamt/hmd.html