

Project Levitate

Leif Andersen Daniel Blakemore Jon Parker

Introduction

- Introduction
- Project Description
- Tasks
- Schedule
- Bill of Materials
- Conclusion

Project Description

Quadrotor Hardware Architecture

Quadrotor Software Architecture

The University of Utah

5

Tasks

Range Finders/Collision Avoidance

- Daniel Blakemore
- Risks:
 - False Positives, False Negatives
 - Additional instrumentation

Camera/Image Processing

- Jon Parker
- Risks:
 - No experience with camera drivers
 - Start Early
 - Use BeagleBoard-xM
 - Memory
 - Decrease resolution
 - Store Grayscale Image
 - Fidelity
 - Flexile Parameters

Image Processing

• Blob algorithm

Image source: http://geekblog.nl/entry/24

The University of Utah

9

AI

- Leif Andersen
- Risks:
 - Board is too slow
 - BeagleBoard-xM
 - TI ARM Cortex A8 Processor
 - Bugs
 - Simulation
 - Mathematics requires time to understand
 - Find knowledgable advisor

The University of Utah

11

Verification and Simulation

- Leif Andersen
- Mitigates Larger Risks
- Risks:
 - Time Spent on it
 - Simplify Simulation
 - Do without
 - Simulation Inaccurate
 - Still aid in debugging
 - Oohs and Awes

Schedule

Range Finders/Collision Avoidance

14

- Initial Interfacing
 - May
- Hardware Interface
 - June
- Software Interface
 - August September
- Mounting
 - October
- Post Mount Troubleshooting
- November-December The University of Utah

Camera/Image Processing

- Initial Interfacing
 - May
- Hardware Interface
 - June
- Software Interface
 - August September
- Mounting
 - October
- Post Mount Troubleshooting

15

• November-December The University of Utah

AI

- Writing Al
 - July

• Tightening Constraints

- August
- Porting to more powerful processor (if needed)
 - September

Verification and Simulation

- Create Simulation Environment
 - May
- Simulate Image Processing Code
 - June
- Simulate AI code
 - July
- Verification of setup
 - Ongoing

Bill of Materials

Basic Quadrotor Platform

- Designed and built in CS/ECE 5780/6780
- Capable of automatic stabilization
- Built on SmartFusion AF2 Eval Kit

- Quantity: 1
- Provider: ECE 5780 Senior Project
- Cost: \$377

Image source: <u>http://bit.ly/z8CIC1</u>

Range Finders - Maxbotix LV-EZ1

- Ultrasonic Range finder
- Range: 0-255 inches
- 2mA current draw
- RS232, PWM, or Analog output
- Quantity: 4
- Provider: Sparkfun
- Const: \$25.95

Image source: http://www.sparkfun.com/products/639

Camera - TCM8230MD

- CMOS Image sensor and lens
- Resolution: 640x480
- Small and Light
- I2C Communication
- Quantity: 1 + 1 (replacement)
- Provider: Sparkfun
- Cost: \$9.95

Image source: http://www.sparkfun.com/products/8667

Cost

- Basic Quadrotor Platform
 - 1 x \$377
- Range Finders
 - 4 x \$26
- TCM8230MD
 - 2 x \$9.95

Total: ~\$500

Power

- Available Power
 - o 24.4 Wh
- Power Draw
 - Electronics: 1.65 W
 - Motors: 165 W

Image source: http://www.hobbyking.com/hobbyking/store/__9394__Turnigy_2200mAh_3

The University of Utah

24

Weight

- Quadcopter Platform
 - 600g
- Electronics
 - **50g**
- Target
 - **800g**

Conclusion

Questions?