Project

One of:

- Pick a sizable parallel problem to implement
 Ok to form a team of 2 students
- Pick a new language and implement past exercises
- Present a new language for parallelism in class

Programming Project Artifacts

- Description of the problem
 - Include an an explanation of expected speedup (i.e., parallel versus inherently sequential)
- What you expected to learn and did learn from the project
 - Must not be so generic that it would apply to any HW
 - Must address *learning* about parallelism
- Implementation
- Measured speedup for implementation
 - Document measurements: platform, P, etc.
 - Speedup must be > 1

Due Dates

Due Friday, December 5:

- Description of the problem
- What you expect to learn from the project

Due Friday, December 12:

 All 4 parts of the completed project — even the parts already submitted

Project Ideas from the Book

Implement existing parallel algorithms

e.g., Batcher's Sort

Re-implement existing parallel benchmarks

Parallelize some useful computation

Chess-End Games Segmented Least-Squares Audio Analysis with a GPU Exact String Matching Kohonen Maps Prime Factorization Data Encryption Ray Casting Sample Sort 3-Satisfiability Problems Video Motion Detection KD-Tree Construction MP3 Fast Fourier Transformation Ray Tracing Rectangular Partitioning Checkers Min/Max Search Julia Sets Traveling Salesman Problem Gene Sequence Alignment A* Path-Finding for Games Image Convolution Boid Simulation Galaxy Simulation Kenser-Ney Smoothing Artificial Neural Nets Constraint Satisfaction Collaborative Filtering