
ZPL

• No explicit threads

no operation like omp_get_thread_num or
Ti.thisProc

• Only way to use an array is in a parallel operation

a : [0..N] integer;
sum : integer;

[0..N] a := a + 1;
[0..N] sum := +<<a;

1

Sortof like...

... OpenMP, in that the programmer declares places
for automatic parallelism

ZPL “declarations” are much more fine grained, with
more kinds of operators

... Titanium, in that communication is implicit
through shared objects

ZPL automatically localizes data and has a different
way of describing costs

... APL, in that good programs need to use the right
operators

ZPL has fewer operators targeted just as
parallelism 2

Regions

region
 R = [1..n,1..n];

The following slides are based on the ZPL “comic”

3

Regions

region
 IntR = [2..n-1,2..n-1];

4

Regions

region
 Left = [1..n,1];

5

Directions

direction
 north = [-1, 0];
 south = [1, 0];
 east = [0, 1];
 west = [0,-1];

 nw = [-1,-1];
 ne = [-1, 1];
 sw = [1,-1];
 se = [1, 1];

6

Region Operators

region
 Left = west in R;

7

Region Operators

region
 SmallLeft = west of IntR;

8

Region Operators

region
 IntRLeft = IntR at west;

9

Region Operators

direction
 step = [1,2];

region
 SR = R by step;

10

Declaring Arrays

var
 A, B : [R] double;
 C : [IntR] double;

11

Regions Control Statements

[IntR] A := B;

12

Regions Control Statements

[IntR] C := A + B;

+

13

Regions Control Statements

[IntR] C := A@west;

14

Reduction

[IntR] sum := +<< A;

sum +

15

Partial Reduction

[2..n-1,i] C := +<<[IntR] A;

+

16

Remap

[R] B := A#[Index2, Index1]

17

Cost Model

18

