
Parallelism and Performance

Ideal parallel world:

• Sequential runs in Ts

• P processors run in Tp =
Ts

P

Today: Why that usually does’t happen

1-2

Measuring Performance

Obstacle: Non-Parallelism

Obstacle: Overhead

3

Measuring Performance

Latency: time to complete a task

This is normally what we want to reduce through
parallelism

4

Measuring Performance

Speedup: ratio of latencies =
Ts

Tp

• Linear speedup: speedup approximates P

• Sublinear speedup: speedup less than P

• Superlinear speedup: speedup more than P !

Superlinear speedup happens when the algorithm
or machine changes

5-7

Superlinear Speedup

Machine change:

Sequential
L2 Cache

Processor

Parallel
L2 Cache

Processor

L2 Cache

Processor

8

Superlinear Speedup

Algorithm change:

Sequential

Parallel

9

Measuring Performance

Throughput: work
Tp

Higher throughput doesn’t imply lower latency

10

Measuring Performance

Efficiency: effective use of processors =
Speedup

P

11

Measuring Performance

FLOPS: floating-point operations per second

IOPS: integer operations per second

12

Measuring Performance

Performance measurement don'ts:

• use different machines

• disable compiler optimizations

• equate “sequential” with a single parallel process

• ignore cold start

• ignore devices

Do measure multiple P and multiple problem sizes

13

Measuring Performance

Obstacle: Non-Parallelism

Obstacle: Overhead

14

Inherent Non-Parallelism

Amdahl's Law

1
S

 of program is inherently sequential ⇒

Speedup < S

• 50% sequential ⇒ maximum speedup of 2

• 90% sequential ⇒ maximum speedup of 1.1

• 10% sequential ⇒ maximum speedup of 10

and yet lots of processors help for some
computations, because it’s easy and useful to scale

the problem size
15-16

Dependencies

Flow Dependence: write followed by read

sum = a+1; /* << */
first_term = sum*scale1; /* << */
sum = sum+b;
second_term = sum*scale2;

This is a true dependence

17-18

Dependencies

Anti Dependence: read followed by write

sum = a+1;
first_term = sum*scale1; /* << */
sum=b+1; /* << */
second_term=sum*scale2;

This is a false dependence

Rewrite:

sum = a+1;
first_term = sum*scale1;
sum2 = b+1;
second_term = sum2*scale2;

19-21

Dependencies

Output Dependence: write followed by write

sum = a+1; /* << */
first_term = sum*scale1;
sum=b+1; /* << */
second_term=sum*scale2;

This is a false dependence

Rewrite:

sum = a+1;
first_term = sum*scale1;
sum2 = b+1;
second_term = sum2*scale2;

22-24

Avoiding Dependencies

Sometimes, you can change the algorithm

25

Lack of Dependencies

A task that spends all its time on many mutually
independent computations is

embarassingly parallel

26

Other Non-Parallelism

Other kinds of non-parallelism:

• Memory-bound computation

• I/O-bound computation

• Load imbalance

27

Measuring Performance

Obstacle: Non-Parallelism

Obstacle: Overhead

28

Overhead

29

Overhead

Sources of overhead:

• Communication and synchronization

• Contention

• Extra computation

• Extra memory

30

Overhead

Reducing communication and contention overhead:

• Larger granularity, so that per-message
overhead is less costly

Example: pass whole array section instead of
individual elements

• Improve locality, so that less communication is
needed

Example: compute sums where data already
resides

• Recompute instead of communicating

Example: recompute pseudo-random
sequences instead of centralizing

31

Overhead

Trade-offs:

• Communication versus computation

• Memory versus parallelism

• Overhead versus parallelism

32

