
Threads in Java

To put code in a thread, extend the built-in Thread
class and override run:

class HelloThread extends Thread {
 public void run() {
 System.out.println("hello");
 }
} Copy

1

Threads in Java

To run a thread, instantiate the class and call
start (not run!):

Thread t1, t2;
t1 = new HelloThread();
t2 = new HelloThread();
t1.start();
t2.start();
try {
 t1.join();
 t2.join();
} catch (InterruptedException i) {
 System.exit(1);
} Copy

2

Thread-Local Data

Use fields in the Thread class for thread-local data:

class HelloThread extends Thread {
 int id;
 HelloThread(int id) { this.id = id; }
 public void run() {
 System.out.println("hello from " + id);
 }
}

...
 t1 = new HelloThread(0);
 t2 = new HelloThread(1);
... Copy

3

Concurrent Modification

Modifying a variable from multiple threads is as
wrong in Java as in C:

int counter = 0;

class CountThread extends Thread {
 public void run() {
 counter++; // unpredictable!
 }
} Copy

4

Synchronization

Java’s synchronized is similar to Peril-L’s
exclusive, but mutual exclusion is based on an
object instead of a statement:

Integer counter = 0;

class CountThread extends Thread {
 public void run() {
 synchronized (counter) { // ok
 counter++;
 }
 }
} Copy

5

Synchronization

Java’s synchronized is similar to Peril-L’s
exclusive, but mutual exclusion is based on an
object instead of a statement:

Object thing = new Object();
int counter = 0;

class CountThread extends Thread {
 public void run() {
 synchronized (thing) { // ok
 counter++;
 }
 }
} Copy

6

Synchronization

Java’s synchronized is similar to Peril-L’s
exclusive, but mutual exclusion is based on an
object instead of a statement:

int counter = 0;

class CountThread extends Thread {
 public void run() {
 synchronized (this) { // wrong!
 counter++;
 }
 }
} Copy

7

Synchronization

If a method has the synchronized attribute, then
each call is implicitly wrapped with synchronized:

class Thing {
 int counter;
 public synchronized void inc() {
 counter++;
 }
}
...
Thing t = new Thing();
...
sychronized (t) { t.inc() }
t.inc(); // equivalent to previous line
... Copy

If a method has arguments, however, the argument expressions
are not included in the implicit synchronized

8

Synchronization

Some standar classes, such as Vector, have only
synchronized methods.

Vector counter = new Vector();
LinkedList counter2 = new LinkedList();

class CountThread extends Thread {
 public void run() {
 counter.add(this); // ok
 counter2.add(this); // not ok!
 }
} Copy

9

Synchronization

Using only synchronized methods does not
mean that your code is thread-safe:

Vector v = new Vector();

class CountThread extends Thread {
 public void run() {
 v.set(0, 1 + (Integer)v.get(0)); // wrong
 }
} Copy

10

Synchronization

Using only synchronized methods does not
mean that your code is thread-safe:

Vector v = new Vector();

class CountThread extends Thread {
 public void run() {
 v.set(0, 1 + (Integer)v.get(0)); // wrong
 }
} Copy

11

Communicating Between Threads

Sometimes you need to get a value from one thread
to another:

class PutThread extends Thread {
 public void run() {
 int v = new Random().nextInt();
 ... v ...; // send v
 System.out.println("sent " + v);
 }
}

class GetThread extends Thread {
 public void run() {
 int v = ...; // receive v
 System.out.println("got " + v);
 }
} Copy

12

Communicating Between Threads

Use synchronized?

Integer box;

class PutThread extends Thread {
 ...
 synchronized (box) { box = v; }
 ...
}

class GetThread extends Thread {
 ...
 synchronized (box) { v = box; }
 ...
} Copy

Doesn’t ensure put before get!
13-14

Communicating Between Threads

Typical newbie “solution”:

boolean ready;
int box;

class PutThread extends Thread {
 ...
 box = v; ready = true;
 ...
}

class GetThread extends Thread {
 ...
 while (!ready) { Thread.sleep(10); }
 v = box;
 ...
} Copy

15

Communicating Between Threads

Typical newbie “solution”:

boolean ready;
int box;

class PutThread extends Thread {
 ...
 box = v; ready = true;
 ...
}

class GetThread extends Thread {
 ...
 while (!ready) { Thread.sleep(10); }
 v = box;
 ...
} Copy

not sync'ed

16

Communicating Between Threads

Typical newbie “solution”:

boolean ready;
int box;

class PutThread extends Thread {
 ...
 box = v; ready = true;
 ...
}

class GetThread extends Thread {
 ...
 while (!ready) { Thread.sleep(10); }
 v = box;
 ...
} Copy

wasted cycles,
increased latencynot sync'ed

17

Communicating Between Threads

Java includes lots of data structures to solve these
kinds of problems:

SynchronousQueue q;

class PutThread extends Thread {
 ...
 q.add(v);
 ...
}

class GetThread extends Thread {
 ...
 v = (Integer)q.take();
 ...
} Copy

18

Communicating Between Threads

From scratch, analogous to POSIX support:

boolean ready;
int box;
Lock lock = new ReentrantLock();
Condition nowReady = lock.newCondition();

class PutThread extends Thread {
 ...
 lock.lock();
 box = v;
 ready = true;
 nowReady.signal();
 lock.unlock();
 ...
} Copy

19

Communicating Between Threads

From scratch, continued:

class GetThread extends Thread {
 ...
 lock.lock();
 while (!ready) {
 nowReady.await();
 }
 v = box;
 lock.unlock();
 ...
} Copy

20

