
Allocation

Constructor calls are allocation:

; interp : -> void
(define (interp)
 (type-case CFAE fae-reg
 ...
 [cfun (body-expr)

(begin
 (set! v-reg (closureV body-expr sc-reg))
 (continue))]

 ...))

; continue : -> void
(define (continue k v)
 ...
 [addSecondK (r sc k)

(begin
 (set! fae-reg r)
 (set! sc-reg sc)
 (set! k-reg (doAddK v-reg k))
 (interp))]

 ...)

1

Deallocation

Where does free go?

; continue : -> void
(define (continue)
 ...
 [doAddK (v1 k)

(begin
 (set! v-reg (num+ v1 v-reg))
 (free k-reg) ; ???
 (set! k-reg k)
 (continue))]

 ...
 [doAppK (fun-val k)

(begin
 (set! fae-reg (closureV-body fun-val))
 (set! sc-reg (cons v-reg

(closureV-sc fun-val)))
 (set! k-reg k)
 (free fun-val) ; ???
 (interp))]

 ...)

2

Deallocation

[doAddK (v1 k)
(begin
 (set! v-reg (num+ v1 v-reg))
 (free k-reg) ; ???
 (set! k-reg k)
 (continue))]

• Without letcc, this free is fine, because the
continuation can’t be referenced anywhere else

• A continuation record is always freed as
(free k-reg), which is why most languages
use a stack

3

Deallocation

[doAppK (fun-val k)
(begin
 (set! fae-reg (closureV-body fun-val))
 (set! sc-reg (cons v-reg

(closureV-sc fun-val)))
 (set! k-reg k)
 (free fun-val) ; ???
 (interp))]

• This free is not ok, because the closure might be
kept in a substitution somewhere

• Need to free only if no one else is using it...

4

Reference Counting

Reference counting: a way to know whether a
record has other users

• Attatch a count to every record, starting at 0

• When installing a pointer to a record (into a
register or another record), increment its count

• When replacing a pointer to a record, decrement
its count

• When a count is decremented to 0, decrement
counts for other records referenced by the record,
then free it

5-6

Reference Counting

1
1

1

1

2

1
1

Top boxes are the registers
fae-reg, k-reg, etc.

Boxes in the blue area are
allocated with malloc

7

Reference Counting

1
1

0

1

3

1
1

Adjust counts when a pointer
is changed...

8

Reference Counting

1
1

1

2

1
1

... freeing a record if its count
goes to 0

9

Reference Counting

1
1

0

2

1
1

Same if the pointer is in a
register

10

Reference Counting

1
1

2

0
1

Adjust counts after frees, too...

11

Reference Counting

1
1

2

1

... which can trigger more frees

12

Reference Counting in FAE

...
[cfun (body-expr)

(begin
 (ref- v-reg)
 (set! v-reg (closureV body-expr sc-reg))
 (ref+ v-reg)
 (continue))]

...
[doAppK (fun-val k)

(begin
 (set! fae-reg (closureV-body fun-val)) ; code is static
 (ref- sc-reg)
 (set! sc-reg (cons v-reg (closureV-sc fun-val)))
 (ref+ sc-reg) ; => ref+ on v-reg and closure's sc
 (ref+ k)
 (ref- k-reg) ; => ref- on fun-val and k
 (set! k-reg k)
 (interp))]

13

Reference Counting And Cycles

1
1

1

2

1
1

An assignment can create a
cycle...

14

Reference Counting And Cycles

1
1

2

2

1
1

Adding a reference increments
a count

15

Reference Counting And Cycles

1
1

1

2

1
1

Lower-left records are
inaccessible, but not
deallocated

In general, cycles break
reference counting

16

Garbage Collection

Garbage collection: a way to know whether a
record is accessible

• A record referenced by a register is live

• A record referenced by a live record is also live

• A program can only possibly use live records,
because there is no way to get to other records

• A garbage collector frees all records that are not
live

• Allocate until we run out of memory, then run a
garbage collector to get more space

17-19

Garbage Collection Algorithm

• Color all records white

• Color records referenced by registers gray

• Repeat until there are no gray records:

Pick a gray record, r

For each white record that r points to, make it
gray

Color r black

• Deallocate all white records

20

Garbage Collection

All records are marked white

21

Garbage Collection

Mark records referenced by
registers as gray

22

Garbage Collection

Need to pick a gray record

Red arrow indicates the
chosen record

23

Garbage Collection

Mark white records referenced
by chosen record as gray

24

Garbage Collection

Mark chosen record black

25

Garbage Collection

Start again: pick a gray record

26

Garbage Collection

No referenced records; mark
black

27

Garbage Collection

Start again: pick a gray record

28

Garbage Collection

Mark white records referenced
by chosen record as gray

29

Garbage Collection

Mark chosen record black

30

Garbage Collection

Start again: pick a gray record

31

Garbage Collection

No referenced white records;
mark black

32

Garbage Collection

No more gray records;
deallocate white records

Cycles do not break garbage
collection

33

Two-Space Copying Collectors

A two-space copying collector compacts memory
as it collects, making allocation easier.

Allocator:

• Partitions memory into to-space and from-space

• Allocates only in to-space

Collector:

• Starts by swapping to-space and from-space

• Coloring gray ⇒ copy from from-space to
to-space

• Choosing a gray record ⇒ walk once though the
new to-space, update pointers

34

Two-Space Collection

Left = from-space
Right = to-space

35

Two-Space Collection

Mark gray = copy and leave
forward address

36

Two-Space Collection

Choose gray by walking
through to-space

37

Two-Space Collection

Mark referenced as gray

38

Two-Space Collection

Mark black = move
gray-choosing arrow

39

Two-Space Collection

Nothing to color gray;
increment the arrow

40

Two-Space Collection

Color referenced record gray

41

Two-Space Collection

Increment the gray-choosing
arrow

42

Two-Space Collection

Referenced is already copied,
use forwarding address

43

Two-Space Collection

Choosing arrow reaches the
end of to-space: done

44

Two-Space Collection

Right = from-space
Left = to-space

45

Two-Space Collection on Vectors

• Everything is a number:

Some numbers are immediate integers

Some numbers are pointers

• An allocated record in memory starts with a tag,
followed by a sequence of pointers and immediate
integers

The tag describes the shape

46

Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2
registers

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Register 1: 7 Register 2: 0

From: 1 75 2 0 3 2 10 3 2 2 3 1 4

47

Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2
registers

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Register 1: 7 Register 2: 0

From: 1 75 2 0 3 2 10 3 2 2 3 1 4

Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

48

Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2
registers

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Register 1: 7 Register 2: 0

From: 1 75 2 0 3 2 10 3 2 2 3 1 4

Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12
 ^ ^ ^ ^ ^

49

Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2
registers

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Register 1: 7 Register 2: 0

From: 1 75 2 0 3 2 10 3 2 2 3 1 4

Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12
 ^ ^ ^ ^ ^

To: 0 0 0 0 0 0 0 0 0 0 0 0 0
 ^

50

Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2
registers

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Register 1: 0 Register 2: 0

From: 1 75 2 0 3 2 10 99 0 2 3 1 4

Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12
 ^ ^ ^ ^ ^

To: 3 2 2 0 0 0 0 0 0 0 0 0 0
 ^

51

Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2
registers

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Register 1: 0 Register 2: 3

From: 99 3 2 0 3 2 10 99 0 2 3 1 4

Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12
 ^ ^ ^ ^ ^

To: 3 2 2 1 75 0 0 0 0 0 0 0 0
 ^

52

Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2
registers

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Register 1: 0 Register 2: 3

From: 99 3 99 5 3 2 10 99 0 2 3 1 4

Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12
 ^ ^ ^ ^ ^

To: 3 2 5 1 75 2 0 0 0 0 0 0 0
 ^

53

Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2
registers

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Register 1: 0 Register 2: 3

From: 99 3 99 5 3 2 10 99 0 2 3 1 4

Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12
 ^ ^ ^ ^ ^

To: 3 2 5 1 75 2 0 0 0 0 0 0 0
 ^

54

Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2
registers

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Register 1: 0 Register 2: 3

From: 99 3 99 5 3 2 10 99 0 2 3 1 4

Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12
 ^ ^ ^ ^ ^

To: 3 2 5 1 75 2 3 0 0 0 0 0 0
 ^

55

