
Allocation

Constructor calls are allocation:

; interp : -> void
(define (interp)
  (type-case CFAE fae-reg
  ...
  [cfun (body-expr)

(begin
  (set! v-reg (closureV body-expr sc-reg))
  (continue))]

  ...))
 
; continue : -> void
(define (continue k v)
  ...
  [addSecondK (r sc k)

(begin
  (set! fae-reg r)
  (set! sc-reg sc)
  (set! k-reg (doAddK v-reg k))
  (interp))]

  ...)
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Deallocation

Where does free go?

; continue : -> void
(define (continue)
  ...
  [doAddK (v1 k)

(begin
  (set! v-reg (num+ v1 v-reg))
  (free k-reg) ; ???
  (set! k-reg k)
  (continue))]

  ...
  [doAppK (fun-val k)

(begin
  (set! fae-reg (closureV-body fun-val))
  (set! sc-reg (cons v-reg

(closureV-sc fun-val)))
  (set! k-reg k)
  (free fun-val) ; ???
  (interp))]

  ...)
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Deallocation

[doAddK (v1 k)
(begin
  (set! v-reg (num+ v1 v-reg))
  (free k-reg) ; ???
  (set! k-reg k)
  (continue))]

• Without letcc, this free is fine, because the
continuation can’t be referenced anywhere else

• A continuation record is always freed as
(free k-reg), which is why most languages
use a stack
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Deallocation

[doAppK (fun-val k)
(begin
  (set! fae-reg (closureV-body fun-val))
  (set! sc-reg (cons v-reg

(closureV-sc fun-val)))
  (set! k-reg k)
  (free fun-val) ; ???
  (interp))]

• This free is not ok, because the closure might be
kept in a substitution somewhere

• Need to free only if no one else is using it...
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Reference Counting

Reference counting: a way to know whether a
record has other users

• Attatch a count to every record, starting at 0

• When installing a pointer to a record (into a
register or another record), increment its count

• When replacing a pointer to a record, decrement
its count

• When a count is decremented to 0, decrement
counts for other records referenced by the record,
then free it
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Reference Counting
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Top boxes are the registers
fae-reg, k-reg, etc.

Boxes in the blue area are
allocated with malloc
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Reference Counting
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Adjust counts when a pointer
is changed...
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Reference Counting
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... freeing a record if its count
goes to 0
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Reference Counting
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Same if the pointer is in a
register
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Reference Counting
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Adjust counts after frees, too...
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Reference Counting
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... which can trigger more frees
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Reference Counting in FAE

...
[cfun (body-expr)

(begin
  (ref- v-reg)
  (set! v-reg (closureV body-expr sc-reg))
  (ref+ v-reg)
  (continue))]

...
[doAppK (fun-val k)

(begin
  (set! fae-reg (closureV-body fun-val)) ; code is static
  (ref- sc-reg)
  (set! sc-reg (cons v-reg (closureV-sc fun-val)))
  (ref+ sc-reg) ; => ref+ on v-reg and closure's sc
  (ref+ k)
  (ref- k-reg) ; => ref- on fun-val and k
  (set! k-reg k)
  (interp))]
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Reference Counting And Cycles
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An assignment can create a
cycle...
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Reference Counting And Cycles
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Adding a reference increments
a count
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Reference Counting And Cycles
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Lower-left records are
inaccessible, but not
deallocated

In general, cycles break
reference counting
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Garbage Collection

Garbage collection: a way to know whether a
record is accessible

• A record referenced by a register is live

• A record referenced by a live record is also live

• A program can only possibly use live records,
because there is no way to get to other records

• A garbage collector frees all records that are not
live

• Allocate until we run out of memory, then run a
garbage collector to get more space
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Garbage Collection Algorithm

• Color all records white

• Color records referenced by registers gray

• Repeat until there are no gray records:

Pick a gray record, r

For each white record that r points to, make it
gray

Color r black

• Deallocate all white records
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Garbage Collection

All records are marked white
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Garbage Collection

Mark records referenced by
registers as gray
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Garbage Collection

Need to pick a gray record

Red arrow indicates the
chosen record
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Garbage Collection

Mark white records referenced
by chosen record as gray
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Garbage Collection

Mark chosen record black
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Garbage Collection

Start again: pick a gray record
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Garbage Collection

No referenced records; mark
black
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Garbage Collection

Start again: pick a gray record
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Garbage Collection

Mark white records referenced
by chosen record as gray
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Garbage Collection

Mark chosen record black
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Garbage Collection

Start again: pick a gray record
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Garbage Collection

No referenced white records;
mark black
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Garbage Collection

No more gray records;
deallocate white records

Cycles do not break garbage
collection
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Two-Space Copying Collectors

A two-space copying collector compacts memory
as it collects, making allocation easier.

Allocator:

• Partitions memory into to-space and from-space

• Allocates only in to-space

Collector:

• Starts by swapping to-space and from-space

• Coloring gray ⇒  copy from from-space to
to-space

• Choosing a gray record ⇒  walk once though the
new to-space, update pointers
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Two-Space Collection

Left = from-space
Right = to-space
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Two-Space Collection

Mark gray = copy and leave
forward address
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Two-Space Collection

Choose gray by walking
through to-space
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Two-Space Collection

Mark referenced as gray
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Two-Space Collection

Mark black = move
gray-choosing arrow
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Two-Space Collection

Nothing to color gray;
increment the arrow
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Two-Space Collection

Color referenced record gray
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Two-Space Collection

Increment the gray-choosing
arrow
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Two-Space Collection

Referenced is already copied,
use forwarding address
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Two-Space Collection

Choosing arrow reaches the
end of to-space: done
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Two-Space Collection

Right = from-space
Left = to-space
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Two-Space Collection on Vectors

• Everything is a number:

Some numbers are immediate integers

Some numbers are pointers

• An allocated record in memory starts with a tag,
followed by a sequence of pointers and immediate
integers

The tag describes the shape
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Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2
registers

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Register 1: 7  Register 2: 0

From:  1 75  2  0  3  2 10  3  2  2  3  1  4
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Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2
registers

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Register 1: 7  Register 2: 0

From:  1 75  2  0  3  2 10  3  2  2  3  1  4

Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12
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Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2
registers

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Register 1: 7  Register 2: 0

From:  1 75  2  0  3  2 10  3  2  2  3  1  4

Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12
 ^     ^     ^        ^        ^      
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Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2
registers

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Register 1: 7  Register 2: 0

From:  1 75  2  0  3  2 10  3  2  2  3  1  4

Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12
 ^     ^     ^        ^        ^      

To:  0  0  0  0  0  0  0  0  0  0  0  0  0
 ^
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Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2
registers

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Register 1: 0  Register 2: 0

From:  1 75  2  0  3  2 10 99  0  2  3  1  4

Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12
 ^     ^     ^        ^        ^      

To:  3  2  2  0  0  0  0  0  0  0  0  0  0
 ^
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Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2
registers

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Register 1: 0  Register 2: 3

From: 99  3  2  0  3  2 10 99  0  2  3  1  4

Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12
 ^     ^     ^        ^        ^      

To:  3  2  2  1 75  0  0  0  0  0  0  0  0
 ^
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Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2
registers

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Register 1: 0  Register 2: 3

From: 99  3 99  5  3  2 10 99  0  2  3  1  4

Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12
 ^     ^     ^        ^        ^      

To:  3  2  5  1 75  2  0  0  0  0  0  0  0
          ^
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Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2
registers

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Register 1: 0  Register 2: 3

From: 99  3 99  5  3  2 10 99  0  2  3  1  4

Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12
 ^     ^     ^        ^        ^      

To:  3  2  5  1 75  2  0  0  0  0  0  0  0
                ^
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Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2
registers

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Register 1: 0  Register 2: 3

From: 99  3 99  5  3  2 10 99  0  2  3  1  4

Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12
 ^     ^     ^        ^        ^      

To:  3  2  5  1 75  2  3  0  0  0  0  0  0
                      ^
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