
Sample Mid-Term Exam 2

CS 5510, Fall 2013

November 13

Name:

Instructions: You have eighty minutes to complete this open-book, open-note, closed-interpreter exam.
Please write all answers in the provided space, plus the back of the exam if necessary. provided space, plus
the back of the exam if necessary.

1) Which of the following produce different results in a eager language and a lazy language? Both produce
the same result if they both produce the same number or they both produce a procedure (even if the
procedure doesn’t behave exactly the same when applied), but they can differ in errors reported.

a) {{lambda {y} 12} {1 2}}

b) {lambda {x} {{lambda {y} 12} {1 2}}}

c) {+ 1 {lambda {y} 12}}

d) {+ 1 {{lambda {x} {+ 1 13}} {+ 1 {lambda {z} 12}}}}

e) {+ 1 {{lambda {x} {+ x 13}} {+ 1 {lambda {z} 12}}}}

1



2) Given the type rules

[. . .x← τ . . .] ` x : τ Γ ` 1 : num
Γ ` e1 : num Γ ` e2 : num

Γ ` {+ e1 e2} : num

Γ[x← τ1] ` e : τ2
Γ ` {lambda {[x : τ1]} e} : (τ1 → τ2)

Γ ` e1 : (τ1 → τ2) Γ ` e2 : τ1
Γ ` {e1 e2} : τ2

in one of the following expressions, the ____ can be filled in with a type so that the resulting expression
has a type in the enmpty environment, while there is no type for the ____ that causes the other to
have a type. Pick the right expression and show a derivation tree (which is a trace of typecheck that’s
written in the style as the type rules above) demonstrating that the chosen expression has a type.

{{lambda {[x : ____}} {+ x 1}} x}

{lambda {[x : ____}} {+ {x 1} 1}}

Note that your answer should not include symbols like Γ, τ , or e, except when used as designated
abbreviations, since those are meta-variables that are replaced by concrete environments, types, and
expressions in the derivation tree.

2



3) Given the following expression:

{{lambda {x} {x x}}

{lambda {y} 12}}

Describe a trace of the evalaution in terms of arguments to interp and continue functions for every
call of each in the lambda-k.rkt interpreter. (There will be 7 calls to interp and 5 calls to continue.)
The interp function takes three arguments — an expression, an environment, and a continuation —
so show all three for each interp call. The continue function takes two arguments — a continuation
and a value — so show both for each continue call. Represent continuations using records.

3



Answers

1) a and d.

2)
Γ1 ` x : (num→ num) Γ1 ` 1 : num

Γ1 ` {x 1} : num Γ1 ` 1 : num
Γ1 = [x← (num→ num)] ` {+ {x 1} 1} : num

∅ ` {lambda {[x : (num→ num))}} {+ {x 1} 1}} : ((num→ num)→ num)

3)

interp expr = {{lambda {x} {x x}} {lambda {y} 12}}
env = mt-env

k = (doneK)

interp expr = {lambda {x} {x x}}
env = mt-env

k = (appArgK {lambda {y} 12} mt-env (doneK))

cont k = (appArgK {lambda {y} 12} mt-env (doneK))

val = (closV ’x {x x} mt-env) = v1

interp expr = {lambda {y} 12}
env = mt-env

k = (doAppK v1 (doneK))

cont k = (doAppK v1 (doneK))

val = (closV ’y 12 mt-env) = v2

interp expr = {x x}
env = (extend-env (bind ’x v2) mt-env) = e1
k = (doneK)

interp expr = x

env = e1
k = (appArgk x e1 (doneK))

cont k = (appArgK x e1 (doneK))

val = v2

interp expr = x

env = e1
k = (doAppK v2 (doneK))

cont k = (doAppK v2 (doneK))

val = v2

interp expr = 12

4



env = (extend-env (bind ’y v2) mt-env)

k = (doneK)

cont k = (doneK)

val = (numV 12)

5


