

Thesis

slide 2

- HCI intrinsically involves design
 - "Design an interface to ..."

Fall 2003

Fall 2003

slide 3

• What does this observation entail?

Utah School of Computing Student Name Server

Whereas...

- Design is as old as creativity
- · Intensively studied subject

Utah School of Computing

Much is known

Fall 2003

• Let's tap this understanding and experience!

Design is Ubiquitous

- Nearly *all* human activities involve design
 - Novels, airplanes, murals...
 - Rescue missions, ascents...

Utah School of Computing

- Algorithms, software, interfaces

Design Approaches

Top down

Fall 2003

- Mechanical linkages, compilers, software system
- Airplane, eg: mission, configuration, weight
- Recursive refinement technique
- Particular as an instance of General

Utah School of Computing Student Name Se

- Parametric design

Design Approaches (2)

- Bottom up
 - Prototype, gain experience
 - Abstract principles
 - Scale up; begin slow
- Infer General from Particular

Utah School of Computing Student Name Server

slide 6

- Linguistics

Fall 2003

slide 5

Note: Bottom_Up ↔ Top_Down

Design Challenges

- Economics
 - Make it good and cheap
 - "Better, faster, cheaper"

Utah School of Computing

Constraints

Fall 2003

- Not design without constraints

Critical Choices

- · Design involves making wise "trade-off"
 - Form v. function
 - Weight v. durability
 - Specific and focused v. general and diffuse
 Paint v PhotoShop

Utah School of Computing Student Name Server

slide 9

- Etc. ...

Fall 2003

Fall 2003

Design Integrity

Clear purpose

- Understand the role
 - Who is user and what is her profile?
- Good functional spec
 - Tasks to accomplish?
 - Who is user?
 - Budgets?

Fall 2003 Utah School of Computing Student Name Server slide 10

Design Discipline

- Maintain focus and charge
 - Refer to specs often
- · Creeping "feature-ism"

Utah School of Computing

- "Wheel of re-incarnation" (IES)
 - Compact cars, portable models, basic models, etc.
 - Features are NOT free!

Design Discipline (2)

- Sunset the lifecycle
- Expanded spec
- New technologies change "design equations"
- "Just shoot it"

Utah School of Computing

- Start over!

Fall 2003

slide 11

Design Phases/Stages

- Conceptual
 - Show that idea can work
- Preliminary
 - Sufficient to understand, cost, etc

Utah School of Computing Student Name Server

slide 13

Fall 2003

Detail

Fall 2003

- The "whole enchilada"
- Adequate for contracting

"Design Intent"

- Why did the designer do this?
- What is the function of this component?

Utah School of Computing Student Name Server

slide 14

slide 16

- What was the designer thinking?
- What are the implications if this is modified?

Design History

- Better at design than documentation
- Not sensitive to capturing the past
- Important for the future of a product
- Need better tools

Utah School of Computing

Fall 2003

• Record the history as well as final result!

Documentation

- Should not be a post-process
- Capture at time of creation
- Hard problem, actually

Utah School of Computing

- Who should do it?
- How should it be accomplished?
- Expensive

Fall 2003

slide 15

- Not always part of deliverable!

Design Conventions

- · Use standards for components
- Use standards for style

Fall 2003

Fall 2003

- Don't re-invent terms, tech, tools, etc.
- Make it as straightforward as possible for others who work with you

Utah School of Computing Student Name Server

slide 17

Fall 2003

Fall 2003

slide 19

Variant Design

- Most designs are not really new from the bottom up!
- *Redesign* is far more common as an activity than design, actually
- Make use of the past
- Use templates, components, previous knowledge, catalogs, etc.

Utah School of Computing Student Name Server

slide 18

slide 20

Lifecycle Design

- · Consider the entire life of a product
 - Cradle to grave (incl disposal)
 - Look at lifecycle cost!
 - Who will maintain?
 - How long will product live?
 - What tools are appropriate?
 - Situations change!

Utah School of Computing

Design for Change

- The only sure thing about a design is that its requirements will evolve and may change dramatically
- Build it flexibly, modularly, clearly wrt to intent, etc

Utah School of Computing

Design Spiral

slide 21

slide 23

· Iterate repeatedly

Fall 2003

Fall 2003

- Budget for interaction
- Throw away early attempts as learning exercises
 - Steve Coons "I know what to throw out."

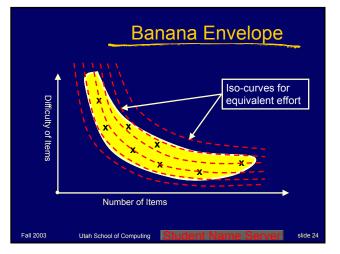
Utah School of Computing Student Name Serv

"ilities" of Design

Utah School of Computing Student Name Server

slide 22

- Maintainability
- Portability
- Readability
- Flexibility
- Testability
- Etc, etc....


Fall 2003

Complexity "Banana"

- Complexity space often is shaped like a banana:
 - Many simple instances

Utah School of Computing

- Few complicated instances

Design "Reuse"

- Try to make the parts re-usable for other things or future renovations
- Use existing parts if available and of adequate quality

Utah School of Computing Student Name Server

slide 25

Fall 2003

Fall 2003

Fall 2003

Design is "team sport"

- Most designs involve more than one
- Interfaces are critical, not just components
- Communications, small granularity exchanges, important
- Negotiation, compromise part of deal

Utah School of Computing Student Name Server

slide 26

slide 28

Design Views

- Components may serve different functions
 - Different designers see different views
 - Pockets v. Ribs

Utah School of Computing

Manufacture v. Structures

Testing and Validation

- Important stuff!
- Expensive phase
- Underdone activity

Utah School of Computing

- Alpha testing
- Beta testing

Fall 2003

Design Review

• Take stock of progress periodically

Utah School of Computing Student Name Server

slide 29

Fall 2003

Fall 2003

slide 31

• Is design on track?

Fall 2003

Fall 2003

• Have it critiqued by a group

Design Evaluation

- How well does design perform?
 - Consider all aspects and costs

Utah School of Computing Student Name Server

slide 30

- Were the trade-offs wise?

Debugging Discipline

- Early is better: easier and cheaper
- Product recall is the ultimate
 "debugging," and the most expensive, incl product liability

Utah School of Computing

Design Safety

Consider failure modes

Utah School of Computing

- What are the consequences of failure?
- Have they been adequately explored and mitigated?

Design is a Creative Process

· Respect its needs

Fall 2003

Fall 2003

- Time and patience
- Concentration, protracted focus
- Freedom to explore new ways

Utah School of Computing Student Na

- Liberation from past
- Individual encouragement and support
 Most ideas are not "keepers"

Consider Multiple Solutions

- Competing prototypes
 - Learn more about merits and liabilities

Utah School of Computing Student Name Server

slide 34

- Gain experience
- "American way (free market)..."
 - Can help evoke "best effort"

Msg: Recognize Design Activity

- Encourage good design practice
- Nurture good design through better understanding of its nature
 - Establish and protect a conducive environment
- You are designers! Do it well!

Utah School of Computing

Utah School of Computing

Fall 2003

slide 33

