Utah School of Computing

> The "Human" Side of HCI: Human Factors Psychology and Assistive Technology

> > Margaret Jelinek Lewis, PhD

Presentation Overview

Three Parts

Fall 2003

- 1. Overview of Human Factors Psychology
- 2. Primer in Cognitive Psychology

Utah School of Computing

3. Introduction to Computer Access and Assistive Technology

What is Human Factors?

- The application of psychological principles to the design of human-machine systems.
- Human factors professionals develop models of human performance that can aid designers of human-machine systems.

Utah School of Computing

Fall 2003

What is Human Factors? 2

• Meister (1989): "The study of how humans accomplish work-related tasks in the context of human-machine system operation, and how behavioral and non-behavioral variables affect that accomplishment"

Utah School of Computing

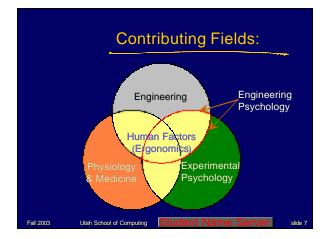
What is Human Factors? 3

• Meister (1989):

Fall 2003

- "behavioral" refers to *psychological* constraints how do humans process information?
- "non-behavioral" refers to *physical* constraints - can a human physically work a control?

Utah School of Computing


What is Human Factors? 4

• Emphasis in Human Factors is on design - how should a system be designed to accommodate a human operator?

Utah School of Computing

Fall 2003

slide 5

How does Human Factors differ from Experimental Psychology?

- Experimental Psychology is the scientific study of mind, brain, and behavior
 - Why do humans think and behave the way they do?

Utah School of Computing

How does Human Factors differ from Experimental Psychology? 2

- Human factors is the study of human behavior in the context of technological systems
 - **How** should we design a system to accommodate the way humans think and behave?

Utah School of Computing

Fall 2003

Fall 2003

History of Human Factors 1

• WWI

Fall 2003

Fall 2003

- Personnel Selection: psychometricians
- WWII and the genesis of Human Factors (or Engineering) Psychology
 - Personnel Selection continued to be emphasized "fit the man to the job"
 - Human Performance: experimental psychologists "fit the job to the man"

Utah School of Computing

History of Human Factors 2

- Post WWII: Formal Human Factors research laboratories established
 - 1945: Air Force establishes the Aero Medical Research Laboratory -"engineering psychology"
 - 1945: Navy establishes psychological research units

Utah School of Computing

History of Human Factors 3

 Post WWII: Formal Human Factors research laboratories established

Utah School of Computing

- 1951: US army establishes the Human Engineering Laboratory
- Many military and civilian scientists return to universities and continue human factors research

- Process control and nuclear power

Utah School of Computing

- Safety

Fall 2003

Fall 2003

History of Human Factors 5

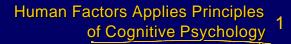
- Other app's emphasized since the mid-'70s
 - Human-computer interaction (HCI)
 - Virtual Environments

Utah School of Computing

- Medical Systems

Fall 2003

Why is Human Factors Important to Computer Science? 1


Human Factors psychology examines the capabilities of humans and how these constraints and abilities affect design.

Utah School of Computing

Why is Human Factors Important to Computer Science?²

- Therefore, it is concerned with cognitive issues and research concerning human interpretation of stimuli and our abilities to deal with certain situations.
- The goal is to design systems with these capabilities and limitations in mind.

Utah School of Computing

- Cognitive issues that must be considered:
 - Memory (span, retrieval, storage capacity)
 - Visual and auditory capabilities/interpretations

Utah School of Computing

Fall 2003

- Attention capacity (selective, focused, divided)

Human Factors Applies Principles of Cognitive Psychology 2

 Cognitive issues that must be considered:

Utah School of Computing

- Judgment of tones, size, loudness, brightness
- Interpretation of coding (traffic lights)

Human Factors Applies Principles of Cognitive Psychology 3

- Cognitive issues that must be considered:
 - Response time to stimuli
 - Problem solving abilities
 - Decision making
 - Language comprehension

Utah School of Computing

- Disabilities

Fall 2003

- Cognitive load

Applied Cognitive Psychology: Design Issues

- Screen/font color
- Menus

Fall 2003

Fall 2003

slide 17

- Form fill-ins
- Special needs of users

Utah School of Computing

Assistive Technology

- A.T. is any device or piece of equipment that helps us as we go about our daily lives.
- In some cases, computers can *provide* (or be) assistive technology, in other cases, users need assistive technology *for* their computers to increase usability.

Utah School of Computing

Fall 2003

Computer Access and Assistive Technology

- Goal is to fit the machine to the person (not vice versa!)
- Particularly relevant for people with disabilities – computers must be adapted for the use and needs of specific individuals

Utah School of Computing

Fall 2003

Human Considerations in Software Design

Consider 5 different users:

Utah School of Computing

- 1. A University of Utah student trying to do research for an HCI paper on the Web.
- 2. An adult on April 13 using tax preparation software (such as Turbo Tax) at home.

Human Considerations in Software Design 2

Consider 5 different users:

Utah School of Computing

- 3. A young woman with Cerebral Palsy who is typing a paper for a class.
- 4. A child playing a computer-video game.
- 5. An octogenarian grandparent sending email to faraway grandchildren.

Rassmussen Classification of Human Error *				
Performance Level	Error Type			
Skilled based (SB)	Slips/Lapses			
Rule based (RB)	RB Mistakes			
Knowledge based (KB)	KB Mistakes			
* James Reason, <i>Human Error</i> , Cambridge U Press, (1990) p96 Fall 2003 Utah School of Computing <mark>Student Name Server</mark> slide 25				

Rassmussen Classification of Human Error *

Type of Activity	Routine	Problem solving activities	Problem solving activities
Focus of Attention	On something other than task	To problem related issues	To problem related issues
Control Mode	Automatic processors (schemata)	Automatic processors (stored rule)	Limited conscious processes

Rassmussen Classification of Human Error *				
Dimension	SB Errors	RB Errors	KB Errors	
Predictability	Predictable (actions)	Predictable (rules)	Variable	
Ratio Error: Opportunities	Many errors; small percentage	Many errors; small %	Few;opportunity ratio high	
Situational Factors Effect	Low to moderate	Low to moderate	Extrinsic factors dominate	
Fall 2003 Utah School of Computing Student Name Server slide 27				

Rassmussen C	lassification of
	Human Error *

Dimension	SB Errors	RB Errors	KB Errors
Ease of Detection	Rapid and effective	Largely Predictable (rules)	Variable
Relationship to Change	Knowledge of change not invoked	When and how change is unknown	Changes not prepared for or anticipated

For More Information 1

Check out the WEB

Fall 2003

- Human Factors and Ergonomics Society: <u>www.hfes.org</u>
- Computer-Human Interaction (SIGCHI): <u>www.sigchi.org</u>

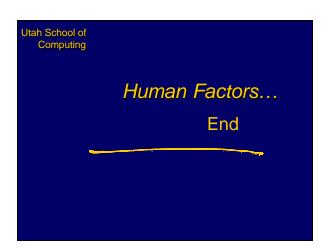
slide 29

Fall 2003

Bobby: <u>www.cast.org/bobby</u>

Utah School of Computing Stu

For More Information 2


Check out the WEB

- Accessibility: <u>www.w3.org/WAI</u> (Web Accessibility Initiative)
- Kids & Computers: <u>www.hcibib.org/kids</u>

slide 30

 Microsoft Accessibility: <u>www.microsoft.com/enable</u>

Utah School of Computing

