
Image Precision Silhouette Edges

Ramesh Raskar* Michael Cohen+

* University of North Carolina at Chapel Hill
+ Microsoft Research

Abstract

Finding and displaying silhouette edges is important in
applications ranging from computer vision to nonphotorealistic
rendering. To render visible silhouette edges of a polygonal
object in a scene from a given viewpoint, we must first find all
silhouette edges, i.e. boundaries between adjacent front facing
and back-facing surfaces. This is followed by solving the partial
visibility problem so that only those parts of silhouette edges,
which are not occluded by interior of any front facing surface,
are rendered. The scene may optionally be rendered with a
lighting model. This paper describes a simple general-purpose ’
method to combine all three operations for any scene composed
of objects that can be scan-converted. Using a depth buffer, the
rendering process computes the intersection of adjacent front
facing and back-facing surfaces in image space at interactive
rates. All operations are performed in image-precision and
hence special care is taken for the limited numerical precision
of the depth buffer. A solution is suggested using view-
dependent modification of polygonal objects. The method does
not require any preprocessing or adjacency information and
hence is applicable for dynamic scenes.

1. INTRODUCTION

Traditional computer graphics, specifically real-time graphics,
usually goes to great lengths to be as photorealistic as possible.
However, a simplified diagram is often preferred when an
image is required to delineate and explain. Silhouette edges are
useful to effectively convey a great deal of information with a
very few strokes using nonphotorealistic rendering (NPR).
Except [Rossignac92][Markosian97] [Zeleznik96] though, NPR
methods have primarily been batch oriented rather than
interactive. Most of the techniques are object precision and rely
on a-priori information about object models such as the
connectivity between surfaces.

raskar@cs.unc.edu, mcohen@microsoft.com
www.cs.unc.edul-raskar/Siiy

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies
are not made or distributed for prolit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise. to republish, to post on servers or to redistribute to lists,
requires prior specific permission andior a fee.

1999 Symposium on Interactive 3D Graphics Atlanta GAUSA
Copyright ACM 1999 l-581 13-082-1/99/04...$5.00

Our method assumes that the scene is made up of orient@
polygons. To render only visible silhouette edges from a given
viewpoint, we must
(a) find all silhouette edges, i.e. boundaries between adjacent

front facing and back-facing polygons, and
(b) solve the partial visibility problem to render only those parts

of silhouette edges, which are not occluded by the interior
of any front facing polygons.

The visible polygon interiors may optionally be rendered with a
lighting model

Our method is based on the observation that only two sets of
primitives are needed to compute silhouette edges, the first and
second layer of polygons from a given viewpoint. In other words,
these include the visible polygons and the layer just behind them
which may be either front facing or back facing. Intersection of
these two sets gives silhouette edges. In this paper we propose a
method specifically for polygonal models but it can be extended
to models in any representation for which these two layers or
their intersection can be computed. In the proposed method the
two nearest layers and their intersection are computed in real
time in image precision. The method is robust, general purpose
and easy to implement. No pre-processing or adjacency
information is required. This allows use of silhouette edges in
dynamic scenes, models with changing topology or in models
with different levels of detail using traditional polygon rendering
pipeline. We also describe how this method can be used to create
interesting effects.

2. PREVIOUS WORK

Silhouette edges can be rendered using hidden line removal
methods [Sutherland74], which are typically batch processes
[Dooley90][Elber90]. The method proposed by Markosian et. al.
[Markosian97] is real time and works on static polyhedral
models with known adjacency information. They use a
probabilistic method to identify silhouette edges. The visibility
of silhouette edges is computed using modified Appel’s hidden-
line algorithm [Appe167] assuming the view is generic. The main
advantage is that the whole scene does not need to be traversed
and hence the silhouette edges of the model can be rendered at a
higher frame rate than the model itself. The connectivity
information is used to trace out entire silhouette curves by
stepping along adjacent silhouette edges. Since the silhouette
edges are identified individually, line segments between two
vertices can be rendered in expressive styles, for example, in a
wobbly, hand-drawn style. Zeleznik’s SKETCH system
[Zeleznik96] makes use of the polygon-rendering pipeline to
highlight edges and boundaries. The method in [Rossignac92] is
image precision and does not need adjacency information. The
depth-buffer is first updated by rendering the scene in white.
Next, after translating backwards, the scene is rendered in thick

135

wireframe mode in black. It does not address the issue of
aliasing in the depth-buffer. The work described here is a
generalization of the methods outlined in [Rossignac92].

3. METHOD

We describe an algorithm to render silhouette edges for
polyhedral models in image space. An important observation is
that only two sets of polygons are needed to compute visible
silhouette edges for a given viewpoint. These two sets are PI,
the layer of visible polygons nearest the viewpoint, and P2, the
second layer of polygons from that viewpoint. Front facing as
well as back-facing polygons are considered in determining
these two sets. The intersection of PI and P2 gives silhouette
edges in object space. The first layer of visible polygons can be
computed using any visibility algorithm. For a collection of
polygonal models of closed objects, this layer is made up of
front facing polygons that are completely visible (e.g. front-

3.1. Wireframe Rendering

The basic method can be slightly modified to render edges of
back-facing polygons instead of filled back-facing polygons.
Front facing polygons are rendered as before, but back-facing
polygons are rendered in wireframe mode and the depth function
is Less than or Equal’. In [Rossignac92], all the polygons are
rendered in wireframe mode after translating them backwards. If
desired, the width and color of the edges of any back-facing
polygon can be modified according to, say, the distance and
orientation with respect to the camera (or the light source),
relative importance or size of image. The line segment in the
framebuffer is usually rendered with constant thickness and at
the same depth value as that of the corresponding polygon edge.
This creates visible silhouette edges with constant thickness.
This method is very easy to implement and works well when the

Figure 1. The first layer, PI, for scene (a) is made up of parts of nearest front facing polygons (b), The second layer,
P2, is made up of parts of back facing polygons (c). The interesection of these two layers in image space creates

silhouette edges (d).

facing polygons of Ti in Figure 1 .b) or visible sub-parts of front
facing polygons that are partially visible (e.g. sub-parts of front-
facing polygons of T2 in Figure 1.b). The second layer can be
computed using the same visibility algorithm as the first after
subtracting the polygons in the first layer from the set of all
polygons. This second layer, for closed objects, is made up of
the back-facing polygons behind the visible surfaces (Figure
1 .c). If we assume the viewpoint is not inside any closed object
and interiors of polygons do not intersect, the intersection of P1
and P2 gives the desired silhouettes (Figure 1 .d).

We can render the silhouette edges by computing the projection
of P1, P2 and P1 n P2 using a depth buffer (i.e. Z-buffer)
directly in image space. The locations where depth values due
to PI and P2 are equal correspond to the projection of the set
P1 n P2. The following is a pseudo-code to render silhouette
edges in black on white background. (When the depth function
is x a pixel with depth di overwrites the current pixel in the
frame buffer with depth d2, iff f(d,,d& = true.)

Draw background with white color
Enable back face culling, set depth function to ‘Less Than’
Render (front facing) polygons in white
Enable front face culling, set depth function ‘Equal To’
Draw (back-facing) polygons in black
Repeat for a new viewpoint

This basic method, however, has many limitations. Due to pixel
sampling and Z-buffer quantization it is possible that the depth
values in the framebuffer due to P1 and P2 may never agree
thus pixels closest to the silhouette may be missed. Further, the
created silhouette edges will be at most one pixel wide.

dihedral angles between adjacent front facing and back-facing
polygons are not large. Boundary edges (edges that belong to
only one polygon) or any pre-determined edges (such as sharp
edges) can be specified separately and rendered along with the
edges of back-facing polygons.

As the line width increases, however, one begins to see gaps
between silhouette edges made up of neighboring polygons.
Because two different types of primitives are involved, polygons
and lines, this method also has restrictions when implemented
with traditional polygon rendering pipeline.

3.2. Translated Back-facing Polygons

To increase the area of intersection, we can render front-facing
polygons as usual and then render (filled) back-facing polygons
pulled slightly forward towards the camera with the depth
function set to ‘Less than or Equal’. A larger part of the back-
facing polygons appear in front of the previously occluding
front-facing polygons and this overcomes the problem of
numerical precision of the depth buffer. This can be done in the
following ways when back-facing polygons are rendered :
. translate back-facing polygons towards the camera by a

fixed amount, t.
. translate back-facing polygons towards the camera by k*z,

where z is the average distance from polygon to the camera
and k is a scaling constant. This is a z-scaled translation
towards the camera and takes care of non-uniform
resolution of depth buffer. We can achieve it by any of the
two methods

.

1. We can scale down (typically by 0.95 to 0.99) the
model with respect to the camera. Back-facing
polygons closer to camera will be translated a smaller
distance and polygons further away will be translated
a greater distance.

2. We can change the depth-range of the view frustum
by moving near or far planes i.e. either move the near
z plane further back or move the far z plane closer.

use an API call such as glPolygonOffset() . This allows not
just z-dependent scaling but also takes into account the
orientation of the polygon with respect to camera. In our
case for example, polygons perpendicular to the camera
need to be translated forward less than polygons that are
viewed almost edge on so that their screen space
contributions remain the same.

If the scaling factor used in translation is sufficiently large, this
method creates smooth and continuous silhouette edges.
Depending on the dihedral angle between adjacent front facing
and back-facing polygons, artistic line drawings with varying
line widths are rendered. This looks tine if dihedral angles
between adjacent faces are similar e.g. in highly tessellated
smooth curved objects. But the width of rendered silhouette
edges can become overly large at sharp edges.

It is easy to see why translation of back-facing polygons will
not create uniform line width silhouettes. The width of the
resulting silhouette is dependent on the orientation of the back-
facing polygon and also the orientation of the corresponding
occluding front facing polygon.

If V is the view direction, and for silhouette edge E, NF is the
normal of the front facing polygon F and Na is the normal for
back-facing polygon B, then the part of B, that will be ‘pushed
in front of the adjacent front facing polygon, F, is dependent on
V*Ns and V*NF, as shown in Fig 2.

~ Nifil back-face visi;+

B Translation

Figure 2. Projection width of visible part of back-face depends
on normal of adjacent front facing polygon and back facing
PolYW~

Depending on taste, the non-uniform width can be considered a
feature or a problem. The non-uniform width may provide a
pleasing hand drawn appearance, and thus the simple translation
approach may be suitable for many applications. On the other
hand, if uniform line width is desired, then adjacency
information is needed to use the translation methods. This is a
requirement we would like to avoid.

3.3. View-dependent Modification of
Back-facing Polygons

projection of extra area in the image plane is of constant width.
The back-facing polygon is fattened by pushing outwards each
edge by a distance proportional to d(V*NB) normal to the edge,
where, z is the distance of the midpoint of the edge from the
camera.

I Part of fattened backface visible

orientations

Figure 3. Fattening is dependent only on the orientation
of back facing polygon

However, the required fattening is also dependent on the
orientation of the edges of the back-facing polygon (i.e.,
fattening is different in different directions for the same
polygon). If E is the edge vector so that cos(a) = Vd? for a back-
facing polygon with normal Ns and distance to the camera z, then
the required fattening for the edge E is proportional to
z*sin(a)/(V*NB) in the direction E XNB. (In general, z and V can
be approximated and calculated only once for the centroid of the
polygon.)

Figure 4. The backfacing polygon in (a) is fattened by
pushing the edges outwards and creating a triangle fan (b).

When rendered in black, they appear as silhouettes (c).

After fattening, an n-sided polygon has Zn vertices connected
with the n original edges and small gaps between the split
vertices. Completing the fattened polygon involves connecting
the shifted vertices and triangulating. The triangulation is
achieved by connecting all the new vertices to the midpoint of
the polygon. Thus a single polygon is subdivided into 2n
triangles in the form of a triangle fan (Figure 4).

Assuming polygons are convex, constant width silhouette edges
can be drawn using ‘fat’ back-facing polygons so that the

137

To fatten a polygon at run time involves shifting the vertices of
the polygon for every new view. Further, the silhouette edge is
drawn outside the projection of front facing polygon, instead of
on top of existing edges.

This method produces better results than the wireframe method
because the rendering involves only polygons. No adjacency
information is required. There are no gaps between silhouette
edges of neighboring polygons. This method also allows us to
use anti-aliasing, transparency and other traditional effects. The
silhouette edges can be rendered at different widths using a
parameter to control fattening of back-facing triangles.
Interesting patterns of silhouette edges can be rendered using
texture mapping for back-facing polygons.

4. MODIFICATIONS

The fattening method uses traditional polygon rendering
process and can be extended to create many interesting effects.
Figure 7 and 8 show a charcoal-like rendering. When the
models are finely tessellated, front facing polygons with normal
almost perpendicular to the view direction (0 c V*N c 0.1) are
also fattened. These fattened parts appear in front of the
neighboring front facing polygons creating charcoal-like
strokes. The colors are manipulated using a simple lighting
method. A gray color I = (1 + VeN)/3 in [0,0.66] is assigned for
a vertex with normal N. The nonphotorealistic lighting model
suggested by [Gooch98] can also be used for front-facing
polygons.

Many applications do not create polygonal models with
consistent order of vertices to indicate front-facing or back-
facing polygons. In such cases, the polygons in the nearest layer
are found by rendering all polygons with a color id and then
reading back the framebuffer. Next, all the pixels are set to
white without clearing the depth buffer. To render black
silhouette edges, it is sufficient to simply render all the
remaining polygons in black using any of the methods above.
The additional cost of computing the first layer by reading back
the framebuffer is dependent only on the size of the framebuffer
and independent of scene complexity.

Although, we have focused primarily on rendering visible
silhouette edges of polygonal models, the concepts can be
extended to other models that can be represented by multiple
primitives such as image samples (layered depth images) or
analytically defined surfaces for which the two nearest layers
can be computed.

5. PERFORMANCE

We tested the three algorithms on polygonal models with a
renderer written in OpenGL running on SGI Indigo2 with
MaxImpact. The Venus model shown in Figure 9,10 and 11 has
5672 triangles. Without silhouette edges, the rendering frame
rate was 66 frames/second (fps). When it is rendered with
silhouette edges, the frame rates were: for wireframe method 40
fps, z-scaled translation method 50 fps and with view dependent
fattening method 11.5 fps. The face model has 13408 triangles.
Without silhouette edges, the rendering frame rate was 30 fps.
For charcoal-like fattened polygon rendering, the frame rate
was 5 fps. For polygon fattening method the reduction of
performance factor is large because each back-facing triangle is

subdivided into six new triangles. The performance values above
include the time to subdivide the triangles.

The auxiliary machine room (arm) model (Figure 5 and 6) has
252,000 triangles. It was rendered at 6 fps using SGI
InfiniteReality graphics board. When silhouette edges were
rendered using wireframe method, the frame rate drops to 4.2
fps. On an average, a factor of two reduction in performance is
noticed. More pictures and image-sequences are available at
http://www.cs.unc.edu/-raskar/SiU

6. CONCLUSION

We have described a robust real time technique to render
silhouette edges using a traditional polygonal rendering setup.
Once a depth buffer has been filled, silhouette edges can be
rendered by simply drawing the back-facing polygons in wire-
frame mode or by translating the back-facing polygons towards
the camera. A more sophisticated method has been described,
which allows more flexibility with view-dependent fattening of
back-facing edges. None of the methods require pre-processing
or adjacency information and hence are ideally suited for
dynamic scenes. If the models respond to level-of-detail changes,
the silhouette rendering will continue to operate without changes.
The method is also robust to inconsistencies in vertex ordering.
Shading can also be included with the silhouette rendering to
enhance the final look of the model.

There are a few limitations in the silhouette rendering methods
discussed. A complete scene traversal is necessary, so all the
primitives are processed. The number of back-facing polygons
rendered in the case of static models can be reduced by either (a)
finding potential silhouette edges using more efficient method
such as tracing out silhouette curves [Markosian97] or (b) using
normal masks suggested by [Zhang97] to eliminate large number
of pairs of polygons that are both front-facing or both back-
facing.

As objects move away from the camera, the density of silhouette
edges will increase. This may result in a lot of clutter. This can
be ameliorated by scaling the fattening according to the average
distance of the object from the camera.

The methods outlined above can provide much more meaningful
illustrations of complex models than can traditional polygon
renderings. The efficiency of the techniques allows them to be
seamlessly blended with current methods. This should prove
very useful for 3D technical illustration fly-throughs and to
create non-photorealistic animations.

Acknowledgements

The authors would like to thank those who provided the
geometric models from Stanford University and Electric Boat.
We would also like to thank our colleagues at Microsoft
Research, in particular Rick Szeliski and John Snyder for helpful
discussions.

138

From top left: Figure 5 and 6 show machine room with and without silhouette edges. Using polygon fattening method
charcoal-like rendering shown in Figure 7 and 8 can be achieved. Figure 9,10 and 11 show results of wireframe, z-scaled

translation and polygon fattening methods.

139

References
[Appe167] A. Appel. The notion of quantitative invisibility and
the machine rendering of solids. In Proceedings of ACM
National Conference, pp.387-393, 1967.

[Dooley90] D. Dooley and M. Cohen. Automatic illustration of
3d geometric models: Lines. In Proceedings ofthe 1990
Symposium on Interactive 30 Graphics, pp.77-82, March 1990

[ElbeBO] G. Elber and E. Cohen. Hidden curve removal for
free form surfaces. In Proceedings of SIGGRAPH ‘90, pp. 95-
104, August 1990.

[Gooch98] Amy Gooch, Bruce Gooch, Peter Shirley, Elaine
Cohen. A Non-Photorealistic Lighting Model For Automatic
Technical Illustration, Computer Graphics (Proceedings of
SIGGRAPH ‘98), August, 1998.

[Haeberli 901 Paul Haeberli. Paint By Numbers: Abstract Image
Representation. In SIGGRAPH 90 Conference Proceedings,
August 1990.

[Markosian97] Lee Markosian, Michael A. Kowalski, Samuel J.
Trychin, Lubomir D. Bourdev, Daniel Goldstein, and John F.
Hughes. Real-Time Nonphotorealistic Rendering, Computer
Graphics (Proceedings of SIGGRAPH ‘97), August, 1997.

[Rossignac92] Jareck Rossignac, Maarten van Emmerik.
Hidden Contours on a Framebuffer. Proceedings of the 7’h
Workshop on Computer Graphics Hardware, Eurographics
Sept. 1992.

[Saito90] Saito T, Takahashi T, “Comprehensible Rendering of
3-D Shapes,” In SIGGRAPH 1990 Conference Proceedings,
August 1990.

[Segal92] Mark Segal, Carl Korobkin, Rolf van Widenfelt, Jim
Foran, and Paul E. Haeberli. 1992. “Fast Shadows and Lighting
Effects using Texture Mapping,” In SIGGRAPH 1992
Conference Proceedings, July 1992.

[Siggraph98] Advanced OpenGL Course Notes.
http://www.sgi.comlsoftwarelopengYadvanced98/notes/node25
2.html

[Sutherland741 I. Sutherland, R. Sproull, and R. Schumacker. A
characterization of ten hidden-surface algorithms. Computing
Surveys, 6(1): l-55, March 1974.

[Zeleznik96] R. Zeleznik, K. Hemdon, and J. F. Hughes.
Sketch: An interface for sketching 3d scenes. In Proceedings of
SIGGRAPH ‘96, August 1996.

[Zhang97] Hansong Zhang, Kenny Hoff. Fast Backface Culling
Using Normal Mask, In Symposium on Interactive 30
Graphics, 1997.

140

charcoal-like rendering shown in Figure 7 and 8 can be achieved. Figure 9, 10 and 11 show results of wireframe, z-scaled
From top left: Figure 5 and 6 show machine room with and without silhouette edges. Using polygon fattening method

translation and polygon fattening methods.

231

