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Abstract 

Finding and displaying silhouette edges is important in 
applications ranging from computer vision to nonphotorealistic 
rendering. To render visible silhouette edges of a polygonal 
object in a scene from a given viewpoint, we must first find all 
silhouette edges, i.e. boundaries between adjacent front facing 
and back-facing surfaces. This is followed by solving the partial 
visibility problem so that only those parts of silhouette edges, 
which are not occluded by interior of any front facing surface, 
are rendered. The scene may optionally be rendered with a 
lighting model. This paper describes a simple general-purpose ’ 
method to combine all three operations for any scene composed 
of objects that can be scan-converted. Using a depth buffer, the 
rendering process computes the intersection of adjacent front 
facing and back-facing surfaces in image space at interactive 
rates. All operations are performed in image-precision and 
hence special care is taken for the limited numerical precision 
of the depth buffer. A solution is suggested using view- 
dependent modification of polygonal objects. The method does 
not require any preprocessing or adjacency information and 
hence is applicable for dynamic scenes. 

1. INTRODUCTION 

Traditional computer graphics, specifically real-time graphics, 
usually goes to great lengths to be as photorealistic as possible. 
However, a simplified diagram is often preferred when an 
image is required to delineate and explain. Silhouette edges are 
useful to effectively convey a great deal of information with a 
very few strokes using nonphotorealistic rendering (NPR). 
Except [Rossignac92][Markosian97] [Zeleznik96] though, NPR 
methods have primarily been batch oriented rather than 
interactive. Most of the techniques are object precision and rely 
on a-priori information about object models such as the 
connectivity between surfaces. 
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Our method assumes that the scene is made up of orient@ 
polygons. To render only visible silhouette edges from a given 
viewpoint, we must 
(a) find all silhouette edges, i.e. boundaries between adjacent 

front facing and back-facing polygons, and 
(b) solve the partial visibility problem to render only those parts 

of silhouette edges, which are not occluded by the interior 
of any front facing polygons. 

The visible polygon interiors may optionally be rendered with a 
lighting model 

Our method is based on the observation that only two sets of 
primitives are needed to compute silhouette edges, the first and 
second layer of polygons from a given viewpoint. In other words, 
these include the visible polygons and the layer just behind them 
which may be either front facing or back facing. Intersection of 
these two sets gives silhouette edges. In this paper we propose a 
method specifically for polygonal models but it can be extended 
to models in any representation for which these two layers or 
their intersection can be computed. In the proposed method the 
two nearest layers and their intersection are computed in real 
time in image precision. The method is robust, general purpose 
and easy to implement. No pre-processing or adjacency 
information is required. This allows use of silhouette edges in 
dynamic scenes, models with changing topology or in models 
with different levels of detail using traditional polygon rendering 
pipeline. We also describe how this method can be used to create 
interesting effects. 

2. PREVIOUS WORK 

Silhouette edges can be rendered using hidden line removal 
methods [Sutherland74], which are typically batch processes 
[Dooley90][Elber90]. The method proposed by Markosian et. al. 
[Markosian97] is real time and works on static polyhedral 
models with known adjacency information. They use a 
probabilistic method to identify silhouette edges. The visibility 
of silhouette edges is computed using modified Appel’s hidden- 
line algorithm [Appe167] assuming the view is generic. The main 
advantage is that the whole scene does not need to be traversed 
and hence the silhouette edges of the model can be rendered at a 
higher frame rate than the model itself. The connectivity 
information is used to trace out entire silhouette curves by 
stepping along adjacent silhouette edges. Since the silhouette 
edges are identified individually, line segments between two 
vertices can be rendered in expressive styles, for example, in a 
wobbly, hand-drawn style. Zeleznik’s SKETCH system 
[Zeleznik96] makes use of the polygon-rendering pipeline to 
highlight edges and boundaries. The method in [Rossignac92] is 
image precision and does not need adjacency information. The 
depth-buffer is first updated by rendering the scene in white. 
Next, after translating backwards, the scene is rendered in thick 
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wireframe mode in black. It does not address the issue of
aliasing in the depth-buffer. The work described here is a
generalization of the methods outlined in [Rossignac92].

3. METHOD

We describe an algorithm to render silhouette edges for
polyhedral models in image space. An important observation is
that only two sets of polygons are needed to compute visible
silhouette edges for a given viewpoint. These two sets are PI,
the layer of visible polygons nearest the viewpoint, and P2, the
second layer of polygons from that viewpoint. Front facing as
well as back-facing polygons are considered in determining
these two sets. The intersection of PI and P2 gives silhouette
edges in object space. The first layer of visible polygons can be
computed using any visibility algorithm. For a collection of
polygonal models of closed objects, this layer is made up of
front facing polygons that are completely visible (e.g. front-

3.1. Wireframe Rendering

The basic method can be slightly modified to render edges of
back-facing polygons instead of filled back-facing polygons.
Front facing polygons are rendered as before, but back-facing
polygons are rendered in wireframe mode and the depth function
is Less than or Equal’. In [Rossignac92], all the polygons are
rendered in wireframe mode after translating them backwards. If
desired, the width and color of the edges of any back-facing
polygon can be modified according to, say, the distance and
orientation with respect to the camera (or the light source),
relative importance or size of image. The line segment in the
framebuffer is usually rendered with constant thickness and at
the same depth value as that of the corresponding polygon edge.
This creates visible silhouette edges with constant thickness.
This method is very easy to implement and works well when the

Figure 1. The first layer, PI, for scene (a) is made up of parts of nearest front facing polygons (b), The second layer,
P2, is made up of parts of back facing polygons (c). The interesection of these two layers in image space creates

silhouette edges (d).

facing polygons of Ti in Figure 1 .b) or visible sub-parts of front
facing polygons that are partially visible (e.g. sub-parts of front-
facing polygons of T2 in Figure 1.b). The second layer can be
computed using the same visibility algorithm as the first after
subtracting the polygons in the first layer from the set of all
polygons. This second layer, for closed objects, is made up of
the back-facing polygons behind the visible surfaces (Figure
1 .c). If we assume the viewpoint is not inside any closed object
and interiors of polygons do not intersect, the intersection of P1
and P2 gives the desired silhouettes (Figure 1 .d).

We can render the silhouette edges by computing the projection
of P1, P2 and P1 n P2 using a depth buffer (i.e. Z-buffer)
directly in image space. The locations where depth values due
to PI and P2 are equal correspond to the projection of the set
P1 n P2. The following is a pseudo-code to render silhouette
edges in black on white background. (When the depth function
is x a pixel with depth di overwrites the current pixel in the
frame buffer with depth d2, iff f(d,,d&  = true.)

Draw background with white color
Enable back face culling, set depth function to ‘Less Than’
Render (front facing) polygons in white
Enable front face culling, set depth function ‘Equal To’
Draw (back-facing) polygons in black
Repeat for a new viewpoint

This basic method, however, has many limitations. Due to pixel
sampling and Z-buffer quantization it is possible that the depth
values in the framebuffer due to P1 and P2 may never agree
thus pixels closest to the silhouette may be missed. Further, the
created silhouette edges will be at most one pixel wide.

dihedral angles between adjacent front facing and back-facing
polygons are not large. Boundary edges (edges that belong to
only one polygon) or any pre-determined edges (such as sharp
edges) can be specified separately and rendered along with the
edges of back-facing polygons.

As the line width increases, however, one begins to see gaps
between silhouette edges made up of neighboring polygons.
Because two different types of primitives are involved, polygons
and lines, this method also has restrictions when implemented
with traditional polygon rendering pipeline.

3.2. Translated Back-facing Polygons

To increase the area of intersection, we can render front-facing
polygons as usual and then render (filled) back-facing polygons
pulled slightly forward towards the camera with the depth
function set to ‘Less than or Equal’. A larger part of the back-
facing polygons appear in front of the previously occluding
front-facing polygons and this overcomes the problem of
numerical precision of the depth buffer. This can be done in the
following ways when back-facing polygons are rendered :
. translate back-facing polygons towards the camera by a

fixed amount, t.
. translate back-facing polygons towards the camera by k*z,

where z is the average distance from polygon to the camera
and k is a scaling constant. This is a z-scaled translation
towards the camera and takes care of non-uniform
resolution of depth buffer. We can achieve it by any of the
two methods



. 

1. We can scale down (typically by 0.95 to 0.99) the 
model with respect to the camera. Back-facing 
polygons closer to camera will be translated a smaller 
distance and polygons further away will be translated 
a greater distance. 

2. We can change the depth-range of the view frustum 
by moving near or far planes i.e. either move the near 
z plane further back or move the far z plane closer. 

use an API call such as glPolygonOffset() . This allows not 
just z-dependent scaling but also takes into account the 
orientation of the polygon with respect to camera. In our 
case for example, polygons perpendicular to the camera 
need to be translated forward less than polygons that are 
viewed almost edge on so that their screen space 
contributions remain the same. 

If the scaling factor used in translation is sufficiently large, this 
method creates smooth and continuous silhouette edges. 
Depending on the dihedral angle between adjacent front facing 
and back-facing polygons, artistic line drawings with varying 
line widths are rendered. This looks tine if dihedral angles 
between adjacent faces are similar e.g. in highly tessellated 
smooth curved objects. But the width of rendered silhouette 
edges can become overly large at sharp edges. 

It is easy to see why translation of back-facing polygons will 
not create uniform line width silhouettes. The width of the 
resulting silhouette is dependent on the orientation of the back- 
facing polygon and also the orientation of the corresponding 
occluding front facing polygon. 

If V is the view direction, and for silhouette edge E, NF is the 
normal of the front facing polygon F and Na is the normal for 
back-facing polygon B, then the part of B, that will be ‘pushed 
in front of the adjacent front facing polygon, F, is dependent on 
V*Ns and V*NF, as shown in Fig 2. 

~ Nifil back-face visi;+ 

B Translation 

Figure 2. Projection width of visible part of back-face depends 
on normal of adjacent front facing polygon and back facing 
PolYW~ 

Depending on taste, the non-uniform width can be considered a 
feature or a problem. The non-uniform width may provide a 
pleasing hand drawn appearance, and thus the simple translation 
approach may be suitable for many applications. On the other 
hand, if uniform line width is desired, then adjacency 
information is needed to use the translation methods. This is a 
requirement we would like to avoid. 

3.3. View-dependent Modification of 
Back-facing Polygons 

projection of extra area in the image plane is of constant width. 
The back-facing polygon is fattened by pushing outwards each 
edge by a distance proportional to d(V*NB) normal to the edge, 
where, z is the distance of the midpoint of the edge from the 
camera. 

I Part of fattened backface visible 

orientations 

Figure 3. Fattening is dependent only on the orientation 
of back facing polygon 

However, the required fattening is also dependent on the 
orientation of the edges of the back-facing polygon (i.e., 
fattening is different in different directions for the same 
polygon). If E is the edge vector so that cos(a) = Vd? for a back- 
facing polygon with normal Ns and distance to the camera z, then 
the required fattening for the edge E is proportional to 
z*sin(a)/(V*NB) in the direction E XNB. (In general, z and V can 
be approximated and calculated only once for the centroid of the 
polygon.) 

Figure 4. The backfacing polygon in (a) is fattened by 
pushing the edges outwards and creating a triangle fan (b). 

When rendered in black, they appear as silhouettes (c). 

After fattening, an n-sided polygon has Zn vertices connected 
with the n original edges and small gaps between the split 
vertices. Completing the fattened polygon involves connecting 
the shifted vertices and triangulating. The triangulation is 
achieved by connecting all the new vertices to the midpoint of 
the polygon. Thus a single polygon is subdivided into 2n 
triangles in the form of a triangle fan (Figure 4). 

Assuming polygons are convex, constant width silhouette edges 
can be drawn using ‘fat’ back-facing polygons so that the 

137 



To fatten a polygon at run time involves shifting the vertices of 
the polygon for every new view. Further, the silhouette edge is 
drawn outside the projection of front facing polygon, instead of 
on top of existing edges. 

This method produces better results than the wireframe method 
because the rendering involves only polygons. No adjacency 
information is required. There are no gaps between silhouette 
edges of neighboring polygons. This method also allows us to 
use anti-aliasing, transparency and other traditional effects. The 
silhouette edges can be rendered at different widths using a 
parameter to control fattening of back-facing triangles. 
Interesting patterns of silhouette edges can be rendered using 
texture mapping for back-facing polygons. 

4. MODIFICATIONS 

The fattening method uses traditional polygon rendering 
process and can be extended to create many interesting effects. 
Figure 7 and 8 show a charcoal-like rendering. When the 
models are finely tessellated, front facing polygons with normal 
almost perpendicular to the view direction (0 c V*N c 0.1) are 
also fattened. These fattened parts appear in front of the 
neighboring front facing polygons creating charcoal-like 
strokes. The colors are manipulated using a simple lighting 
method. A gray color I = (1 + VeN)/3 in [0,0.66] is assigned for 
a vertex with normal N. The nonphotorealistic lighting model 
suggested by [Gooch98] can also be used for front-facing 
polygons. 

Many applications do not create polygonal models with 
consistent order of vertices to indicate front-facing or back- 
facing polygons. In such cases, the polygons in the nearest layer 
are found by rendering all polygons with a color id and then 
reading back the framebuffer. Next, all the pixels are set to 
white without clearing the depth buffer. To render black 
silhouette edges, it is sufficient to simply render all the 
remaining polygons in black using any of the methods above. 
The additional cost of computing the first layer by reading back 
the framebuffer is dependent only on the size of the framebuffer 
and independent of scene complexity. 

Although, we have focused primarily on rendering visible 
silhouette edges of polygonal models, the concepts can be 
extended to other models that can be represented by multiple 
primitives such as image samples (layered depth images) or 
analytically defined surfaces for which the two nearest layers 
can be computed. 

5. PERFORMANCE 

We tested the three algorithms on polygonal models with a 
renderer written in OpenGL running on SGI Indigo2 with 
MaxImpact. The Venus model shown in Figure 9,10 and 11 has 
5672 triangles. Without silhouette edges, the rendering frame 
rate was 66 frames/second (fps). When it is rendered with 
silhouette edges, the frame rates were: for wireframe method 40 
fps, z-scaled translation method 50 fps and with view dependent 
fattening method 11.5 fps. The face model has 13408 triangles. 
Without silhouette edges, the rendering frame rate was 30 fps. 
For charcoal-like fattened polygon rendering, the frame rate 
was 5 fps. For polygon fattening method the reduction of 
performance factor is large because each back-facing triangle is 

subdivided into six new triangles. The performance values above 
include the time to subdivide the triangles. 

The auxiliary machine room (arm) model (Figure 5 and 6) has 
252,000 triangles. It was rendered at 6 fps using SGI 
InfiniteReality graphics board. When silhouette edges were 
rendered using wireframe method, the frame rate drops to 4.2 
fps. On an average, a factor of two reduction in performance is 
noticed. More pictures and image-sequences are available at 
http://www.cs.unc.edu/-raskar/SiU 

6. CONCLUSION 

We have described a robust real time technique to render 
silhouette edges using a traditional polygonal rendering setup. 
Once a depth buffer has been filled, silhouette edges can be 
rendered by simply drawing the back-facing polygons in wire- 
frame mode or by translating the back-facing polygons towards 
the camera. A more sophisticated method has been described, 
which allows more flexibility with view-dependent fattening of 
back-facing edges. None of the methods require pre-processing 
or adjacency information and hence are ideally suited for 
dynamic scenes. If the models respond to level-of-detail changes, 
the silhouette rendering will continue to operate without changes. 
The method is also robust to inconsistencies in vertex ordering. 
Shading can also be included with the silhouette rendering to 
enhance the final look of the model. 

There are a few limitations in the silhouette rendering methods 
discussed. A complete scene traversal is necessary, so all the 
primitives are processed. The number of back-facing polygons 
rendered in the case of static models can be reduced by either (a) 
finding potential silhouette edges using more efficient method 
such as tracing out silhouette curves [Markosian97] or (b) using 
normal masks suggested by [Zhang97] to eliminate large number 
of pairs of polygons that are both front-facing or both back- 
facing. 

As objects move away from the camera, the density of silhouette 
edges will increase. This may result in a lot of clutter. This can 
be ameliorated by scaling the fattening according to the average 
distance of the object from the camera. 

The methods outlined above can provide much more meaningful 
illustrations of complex models than can traditional polygon 
renderings. The efficiency of the techniques allows them to be 
seamlessly blended with current methods. This should prove 
very useful for 3D technical illustration fly-throughs and to 
create non-photorealistic animations. 
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From top left: Figure 5 and 6 show machine room with and without silhouette edges. Using polygon fattening method
charcoal-like rendering shown in Figure 7 and 8 can be achieved. Figure 9,10 and 11 show results of wireframe,  z-scaled

translation and polygon fattening methods.
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charcoal-like rendering shown in Figure 7 and 8 can be achieved. Figure 9, 10 and 11 show results of wireframe, z-scaled
From top left: Figure 5 and 6 show machine room with and without silhouette edges. Using polygon fattening method

translation and polygon fattening methods.
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