Application

Benefits

A higher level of visual complexity in a scene, without
adding more geometry.

Simplified content authoring, because you can encode
surface detail in textures as opposed to requiring
artists to design highly detailed 3D models.

The ability to apply different bump maps to different
instances of the same model to give each instance a
distinct surface appearance. For example, a building
model could be rendered once with a brick bump map
and a second time with a stucco bump map.

“Shading

Fake surface detail with lighting

. .
wriangle T

Orily the first normal of the triangle is used | The light intensity is computed at each

1o compute lighting in the sntire trangle. vetex and nterpolated acioas the suface

Bump mapping

[]

|Normals are interpolated scross the | Normals are stored in 8 bumpmap texture,
|surtace. and the light is computed at each | and used instead of Phang normals.
| fragment.

Normal Map

* Normal vector encoded as rgb
[-1,1]3 —>[0,1]3: rgb = n*0.5 + 0.5
© RGB decoding in fragment shaders
vec3 n = texture2D(NormalMap, texcoord.st).xyz * 2.0 - 1.0

* In tangent space, the default (unit) normal points in
the +z direction.

Hence the RGB color for the straight up normal is (0.5,
0.5, 1.0). This is why normal maps are a blueish color

* Normals are then used for shading computation
Diffuse: n-1
Specular: (neh)shininess
Computations done in tangent space

; ity
Base texture (RGB)

Normal map
(normal encoded RGB) &

heightfichd \/

texe] values

Cg Book: Normalization CubeMap

° What is it?
* Why do it?

13,15, 0.9

® (3,15, 0.9) >

(0.93, 0.72, 0.63)
Expand (scale/bias)
Bias=-0.5, scale =2
Bias: (0.43, 0.22, 0.13)
Scale: (0.86, 0.44, 0.26)
Approximate normalization of (3, 1.5, 0.9)

Brick Wall

© Render wall in X-Y plane (Z is normal direction)
* What's the normal?

© When rendering, perturb the normal with a normal
map.

* How?

Demo

What about 2 planes?

CAELv_bumpkall &
COEZE_BumpSurt

@'.

Wall Lit Carrectly
Fhoor Lit Incorreetly [Too Darkh
and Inconsistently

Tangent Space

* Do the lighting to take advantage of the normal map

* Consider a floor, normals are (o, 1, 0), normal map
expects (0, 0, 1)

© Need to rotate floor normals into texture-space

1 0o
oo 1=0100 01
0 ~1 0

* Lights too!

1
0
0

.

00
veli b = b b=l L]0 0
-1 0

Tangent Space
° Tangent, Bi-tangent and Normal can form a rotation
matrix too:
I, B, N,
I, B, N,
T, B N,
* Orthonormal matrix:
B=NxT
N=TxB
I'=B~N

Tangent Space

© Each vertex has a Normal and a Tangent

2 planes
CBESv_bumphny & CBElv_bumpWall &

CBE2f_bumpSurf CBE2E_bumpSurf

Wall and Floor Lit Wiall Lit Correctly
Consistently and Correctly Floor Lit Incorrectly (Too Dark)
and Inconsistently

* Demo

Torus

© Use differential geometry to compute Tangent

* Torus: x=(M + Ncos(2r 1)) cos(275)
y={(M + Ncos(2r1))sin(27 5)
z=Nsin(27r)
« M is the radius from the center of the hole to the center of
the torus tube,
« Nis the radius of the tube.
« The torus lies in the z=o plane and is centered at the origin.
« Parametric in [s, t]

Torus

© Use differential geometry to compute Tangent

© Torus: x=(M + Ncos(2 1)) cos(2rs)
¥ =(M + Ncos(2r1))sin(2rs)
z=Nsin(271)

& = —27(M + N cos(271))sin(27s) [= =2Nrsin(2n1)cos(27s)
is ar

& =27(M + N cos(271))cos(2ms) & = —2Nwcos(2ai)sin(27s)
s ar

dz iz

E_u o 2NTeos(2rt)

Torus
ax . [.
— ==27(M + Ncos(2mt))sin(27s) — =—2Nwsin(27/)cos(27s)
s at
dy

) =27(M + N cos(2m))cos(27s) -(% =—2Nwcos(2mr)sin(27s)
s {

iz dz
E:U E:2Nﬁcm(2m)
wo[0x oy 02\ fox oy o

as s osf \ot o ot

N= (cm(.s']-.:f.]s{!],sin{s)ct)s“), sin(f))

Torus

& _2n(M + Neosat)sin@rs) 25 = _2Nzsin@rf)cos(2s)
s 7]}
iy dy .
Y 27(M + N cos(2m1))cos(2ms) i —2Nmeos(2ni)sin(27s)
o8 C
dz dz
E,o 572!\’,.(.‘%(2,.:)
po (0 B 02
s’ ds” ds
B=N=T
_ (2 v 22\ [ox oy B
ds" s ds) \oe o o

What about polygons?

* Don’t have equations for differential geometry

* Need local tangent space frame
Align bump-map coordinate system with frame
+ S with Tangent and T with Bi-Tangent
* Not that hard (the Cg book is less clear than Lengyel’s
Method)

e

Torus

117

2D Grid Over (s, t) € (0, 1) Tessellated Torus

Lengyel’s Method

* For some point Q in a triangle (Po, P, P2):
Q-Po=(u—uo)T+(v-vo)B

T = tangent vector

B = bitangent vector

Po = 1% vertex

uo = s texture coordinate
vo = t texture coordinate

Lengyel’s Method

¢ Triangle: (using his notation, (s,t) = (u,v)
Vertex attributes are defined by OpenGL:
Po (uo,vo) P1 (u1,v1) P2 (uz,v2)

Qi1=P1-Po (s1, 1) = (u1 — uo, vi — vo)
Q2=P2-Po (s2, t2) = (u2 — uo, v2 — vo)
So:

Qi=s1T + 1B

Q2 =s2T + 2B

Need to solve for T and B

e

Lengyel’s Method
set up a linear system:
Q=sT+B
Q=sT+B
Write in matrix form:

Mo
lco._z‘ @), mg:}

= Mgy My

‘! J| ?x rj r:
s t||8 B B
FR Y | B

©), @) @),

Lengyel’s Method

Write in matrix form:
MQIQZ = MST Mg

@), @), @), rrr
lm_), @) @), l{ 5, {‘
Multiply each side by Mg
MST, Mo, =M'gp*Mgr Mg
Mp = MST . My,

LLT 1 LT Q) @), @y,
B omon | LT s || @), (@) @)

B4

5

LI

Lengyel’s Method

LLT 1 LT Q) @),
B omoa | ahTe s |l @) @)

LI

© This is for the triangle. What wrong with that?

Lengyel’s Method

LLT 1 Loh | e, Q) @,
B omoa | ahTe s ||), (@) @)

LI

¢ This is for the triangle. What wrong with that?
Not normalized vectors
Same across the triangle

What about GluSphere?

* Your next assignment

