EMBEDDED SYSTEMS AND KINETIC ART: DRAWING MACHINES

CS5789: Erik Brunvand School of Computing

Art3490/4490: Paul Stout Department of Art and Art History

Logistics

- Class meets T-Th 3:40-5:00pm
- □ We'll start meeting in Art 169
 - At some point we may also meet in MEB 3133 (Merrill Engineering Building) on the north side of campus
- □ Web page is <u>www.eng.utah.edu/~cs5789</u>

Kinetic Art

Kinetic art contains moving parts

Depends on motion, sound, or light for its effect

- Kinetic aspect often controlled by microcontrollers
 Using motors, actuators, transducers, sensors
- The artwork can react to its environment
 Distinct from "computer art"
 The computer is usually behind the scenes

Embedded Systems

- Computer systems that are embedded into a complete device
 - Often small or special purpose computers/ microprocessors
 - Designed to perform one or a few dedicated functions
 - Often reactive to environmental sensors
 - Often designed to directly control output devices

Drawing Machines

□ Kinetic art that makes drawings

- Drawing is mark-making
- Mark-making can be interpreted in many ways...
- We'll explore lots of options

Embedded Systems and Kinetic Art

Cross-college collaborative course

- Brings Art students and Computer Science and Engineering (CSE) students together
- Design and build embedded-system-controlled kinetic art
 - Drawing Machines are the focus this spring
- Goal is that both groups of students benefit

Fundamental nature of **Design**

Engineering design vs. creative design?

Jim Campbell's Algorithm

How Will the Class Work?

- Good question! It's an ongoing experiment from both sides...
 - Start with some background study
 - Hands-on simple drawing machines to warm up
 - Some hands-on labs with the microcontroller
 - Build a toolkit of input sensors, output transducers and computer code to interface with them
 - Teams will eventually design a project (or two?) together
 - Class critiques, refinement, final build
 - Exhibit of the results in Spring

How Will the Class Work?

- Also: everybody should keep a sketchbook
 - At least a page a day
 - Not every page needs to be a masterpiece...
 - Design ideas, inspiration, thoughts, etc.
 - Look at Carol Sogard's "Sketch School" for inspiration

http://www.flickr.com/photos/ carolsogard/sets/ 72157627069987019/

How Will the Class Work?

Also occasional readings

- One-page responses, and class discussions
- Readings will be posted to the class web page
- First reading: "Art in the Age of Mechanical Reproduction"
 - 1936 essay by German cultural critic Walter Benjamin

Drawing Machine Survey

□ Not comprehensive!

Kinetic art as drawing machines

- Ranges from very simple to very complex
- Mark-making takes on many meanings

Very Simple Drawing Machines

http://www.youtube.com/watch?v=oQMcRvkkoO0

Very Simple Drawing Machines

http://blubee.com/theblog/?p=53

Very Simple Drawing Machines

http://www.youtube.com/watch?v=nJuVvxLeeaU

Jean Tinguely Metamatic 1959

http://www.youtube.com/watch?v=GOo5uq2fH6g

http://www.happy-pixels.com/2011/07/08/drawing-machine/

Designguide.tv

http://www.youtube.com/watch?v=5yumD0ezoVE

http://www.bitforms.com/tim-knowles-gallery.html

http://www.youtube.com/watch?v=dPZ-Mpbn37U

http://www.youtube.com/watch?v=4O8tDgYh7LY

http://www.fi.edu/learn/sci-tech/automaton/automaton.php?cts=instrumentation

http://www.youtube.com/watch?v=pokSViy6Eck

http://www.youtube.com/watch?v=Qem8FVdQ5gA

http://www.dwbowen.com/

http://www.dwbowen.com/

http://www.youtube.com/watch?v=VnwActJx2nU

http://www.youtube.com/watch?v=i5rxxGuWUo8

"SADbot" suspended drawing machine – Dustyn Roberts

http://www.youtube.com/watch?v=mDNl4pxh_dk

http://www.youtube.com/watch?v=z8V1eTA5R6E

http://www.youtube.com/watch?v=qWfUAfPWoIA

http://www.youtube.com/watch?v=uI5L42-ZY00

http://storyteller.allesblinkt.com/

http://www.youtube.com/watch?v=T0EAvqCdP2s

Whew!

A lot of variation in kinetic art drawing machines

That's just a sampling...

Random drawing machines

powered by motors, wind, mail carriers, etc.

Mechanical drawing machines

hand-cranked, motor driven, wind-up, etc.

Reactive drawing machines

use environmental sensors of some sort

Computer controlled drawing machines

range from random to precise

Pen/ink, paint, light, sand, etch-a-sketch, etc...

First Assignment

- Look around on the web and find something interesting related to kinetic art and drawing machines
 - Think about other definitions of "draw"
 - Think about pure drawing ideas that might inspire mechanical drawing
 - Think about non-mark-making kinetic art pieces that might inspire something that makes marks
 - Think about some engineering artifact that might inspire an art piece
 - Think about other interaction modes
 - Think about other presentations and contexts

Come on Thursday ready to (quickly) share it

Jim Campbell's Algorithm

Output Transducers

Motion

- Motors DC, Stepper
- Servos
- Light
 - LED, bulbs, etc.
- Sound
 - Generated, recorded, physical, etc.

Input Sensors

- Switches
- Resistive sensors
 - Get analog values based on sensing input
 - light, temperature, knobs, flex, etc
- Proximity/motion sensing
 PIR, distance, etc.

Electronic Glue

Power supplies

Transistors

used as electronic switches for medium power devices

Relays

used as electronic switches for high power devices

resistors, capacitors, wires, etc.

Computer Control

□ Microprocessor

- receive inputs
- do some computation
 - You'll have to write some programs...
- send signals to the outputs

Other Resources

- Wood and metal shop in Art department
- Metal shop in the Engineering building
 - We'll schedule orientations...
- Laser cutter in the Art department
 - VERY cool machine can cut many things like plastic, paper, and plywood
- Water jet cutter in Engineering
 - VERY cool machine that can cut almost anything
 - Requires training costs \$10 for training class
 - Costs \$47/hour (but most jobs take only minutes)

Complete Art Piece

- Kinetic concept in a well-conceived and constructed artifact
- For this semester, think about making marks
 Traditional 3d materials
 - Wood, metal, plastic, wiring, and other structural materials
 - Unattended functioning (i.e. in gallery)
 - Consider maintenance and support issues too...

Hylozoic Veil at The Leonardo

Hylozoic Veil at The Leonardo

http://www.youtube.com/watch?v=0cdOFIkoZso

Microcontroller

The "brains" that coordinates the kinetics

- Small computers
- Typically with special support for sensors and actuators
 - Analog-digital converters on inputs
 - pulse-width modulation on outputs
- We'll use one called Arduino

What is Arduino?

The word "Arduino" can mean 3 things

A physical piece of hardware

A programming environment

\varTheta 🕙 🕙 Ardu	ino - 0010 Alpha	
00 D220	2	
Sink 5	6	5]
* The basic Anduino example. * then off for one econg, an * depending on your Anduino b * or # built-in resistor so t * ritips//www.orduino.cc/en/Tu */	Turne on an LED on far one second, d ac on We use pin 13 because, ocard, it has either a Luit-In LED fort you need only on LED. torial/Diink	Ċ
ink ladPin = 43;	β LED convected to digital pix 13	
void astap()	$\ensuremath{\mathcal{U}}$ run once, when the electric stories	
<pre>binhode(ledPin, OUTPUT); }</pre>	$\ensuremath{\mathcal{M}}$ sets the digital pin as cutput	
votd Loop()	// run over and over seally	
<pre>{ digitalWrite(ledPin, HIGH); delay(1800); digitalWrite(ledPin, LGV); delay(1880);</pre>	<pre>// sets the LED on // valts for a second // sets the LED off // valts for a second</pre>	
	*)	

A community & philosophy

Arduino Community

Open source physical computing platform

- "open source" hardware
- open source software environment
- physical computing means sensing and controlling the physical world

Community

- Examples wiki (the "playground")
- Forums with helpful people

Arduino Hardware

- Similar to Basic Stamp (if you know of it)
 - but cheaper, faster, & open
- Uses AVR ATmega328p microcontroller chip
 - chip was designed to be used with C language

Arduino Hardware Variety

many different variations to suite your needs

Arduino

Arduino

Based on the AVR ATmega328p chip

- 8 bit microcontroller (RISC architecture)
- 32k flash for programs
- 2k RAM, 2k EEPROM, 32 registers
- 14 digital outputs (PWM on 6)
- 6 analog inputs
- Built-in boot loader
- Powered by USB or by external power

ATmega328P

8-bit RISC CPU – 16MHz
32 registers
32k Flash, 2k SRAM, 1k EEPROM
3 8-bit I/O ports
6 ADC inputs
2 8-bit timers
1 16-bit timer
USART
SPI/TWI serial interfaces

Arduino Software

Like a text editor

- View/write/edit sketches
- But then you program them into hardware

Programming Arduino

- Open-source
 programming
 environment
- Arduino language is
 based on C
 - Actually, it *is* C/C++
 - Hiding under the hood is gcc-avr
 - But, the Ardiuino environment has lots of nice features to make programming less scary...

More Arduino Info?

- www.arduino.cc/
 - Main Arduino project web site
- www.arduino.cc/playground/Main/HomePage
 - "playground" wiki with lots of users and examples
- www.freeduino.org/
 - "The world famous index of Arduino and Freeduino knowledge"
- www.eng.utah.edu/~cs5789
 - our class web site

Resources for this class

We have some supplies for the class

- Arduino boards
- sensors of various different types
- motors and servos
- LEDs and LED controllers
- You should expect to have to buy a few more parts on your own to complete your project though...

