Springer Texts in Statistics

Advisors:
George Casella Stephen Fienberg Ingram Olkin
F.M. Dekking C. Kraaikamp
H.P. Lopuhaä L.E. Meester

A Modern Introduction to Probability and Statistics
Understanding Why and How

With 120 Figures

Springer
Preface

Probability and statistics are fascinating subjects on the interface between mathematics and applied sciences that help us understand and solve practical problems. We believe that you, by learning how stochastic methods come about and why they work, will be able to understand the meaning of statistical statements as well as judge the quality of their content, when facing such problems on your own. Our philosophy is one of how and why: instead of just presenting stochastic methods as cookbook recipes, we prefer to explain the principles behind them.

In this book you will find the basics of probability theory and statistics. In addition, there are several topics that go somewhat beyond the basics but that ought to be present in an introductory course: simulation, the Poisson process, the law of large numbers, and the central limit theorem. Computers have brought many changes in statistics. In particular, the bootstrap has earned its place. It provides the possibility to derive confidence intervals and perform tests of hypotheses where traditional (normal approximation or large sample) methods are inappropriate. It is a modern useful tool one should learn about, we believe.

Examples and datasets in this book are mostly from real-life situations, at least that is what we looked for in illustrations of the material. Anybody who has inspected datasets with the purpose of using them as elementary examples knows that this is hard: on the one hand, you do not want to boldly state assumptions that are clearly not satisfied; on the other hand, long explanations concerning side issues distract from the main points. We hope that we found a good middle way.

A first course in calculus is needed as a prerequisite for this book. In addition to high-school algebra, some infinite series are used (exponential, geometric). Integration and differentiation are the most important skills, mainly concerning one variable (the exceptions, two dimensional integrals, are encountered in Chapters 9–11). Although the mathematics is kept to a minimum, we strived
to be mathematically correct throughout the book. With respect to probability and statistics the book is self-contained.

The book is aimed at undergraduate engineering students, and students from more business-oriented studies (who may gloss over some of the more mathematically oriented parts). At our own university we also use it for students in applied mathematics (where we put a little more emphasis on the math and add topics like combinatorics, conditional expectations, and generating functions). It is designed for a one-semester course: on average two hours in class per chapter, the first for a lecture, the second doing exercises. The material is also well-suited for self-study, as we know from experience.

We have divided attention about evenly between probability and statistics. The very first chapter is a sampler with differently flavored introductory examples, ranging from scientific success stories to a controversial puzzle. Topics that follow are elementary probability theory, simulation, joint distributions, the law of large numbers, the central limit theorem, statistical modeling (informal: why and how we can draw inference from data), data analysis, the bootstrap, estimation, simple linear regression, confidence intervals, and hypothesis testing. Instead of a few chapters with a long list of discrete and continuous distributions, with an enumeration of the important attributes of each, we introduce a few distributions when presenting the concepts and the others where they arise (more) naturally. A list of distributions and their characteristics is found in Appendix A.

With the exception of the first one, chapters in this book consist of three main parts. First, about four sections discussing new material, interspersed with a handful of so-called Quick exercises. Working these—two-or-three-minute—exercises should help to master the material and provide a break from reading to do something more active. On about two dozen occasions you will find indented paragraphs labeled Remark, where we felt the need to discuss more mathematical details or background material. These remarks can be skipped without loss of continuity; in most cases they require a bit more mathematical maturity. Whenever persons are introduced in examples we have determined their sex by looking at the chapter number and applying the rule “He is odd, she is even.” Solutions to the quick exercises are found in the second to last section of each chapter.

The last section of each chapter is devoted to exercises, on average thirteen per chapter. For about half of the exercises, answers are given in Appendix C, and for half of these, full solutions in Appendix D. Exercises with both a short answer and a full solution are marked with ⊞ and those with only a short answer are marked with ⊡ (when more appropriate, for example, in “Show that . . . ” exercises, the short answer provides a hint to the key step). Typically, the section starts with some easy exercises and the order of the material in the chapter is more or less respected. More challenging exercises are found at the end.
Much of the material in this book would benefit from illustration with a computer using statistical software. A complete course should also involve computer exercises. Topics like simulation, the law of large numbers, the central limit theorem, and the bootstrap loudly call for this kind of experience. For this purpose, all the datasets discussed in the book are available at http://www.springeronline.com/1-85233-896-2. The same Web site also provides access, for instructors, to a complete set of solutions to the exercises; go to the Springer online catalog or contact textbooks@springer-sbm.com to apply for your password.

Delft, The Netherlands
January 2005

F. M. Dekking
C. Kraaikamp
H. P. Lopuhaä
L. E. Meester
Contents

1 Why probability and statistics? 1
 1.1 Biometry: iris recognition ... 1
 1.2 Killer football .. 3
 1.3 Cars and goats: the Monty Hall dilemma 4
 1.4 The space shuttle Challenger ... 5
 1.5 Statistics versus intelligence agencies 7
 1.6 The speed of light ... 9

2 Outcomes, events, and probability 13
 2.1 Sample spaces ... 13
 2.2 Events .. 14
 2.3 Probability ... 16
 2.4 Products of sample spaces .. 18
 2.5 An infinite sample space ... 19
 2.6 Solutions to the quick exercises 21
 2.7 Exercises ... 21

3 Conditional probability and independence 25
 3.1 Conditional probability .. 25
 3.2 The multiplication rule .. 27
 3.3 The law of total probability and Bayes’ rule 30
 3.4 Independence .. 32
 3.5 Solutions to the quick exercises 35
 3.6 Exercises ... 37
8.4 Extremes .. 108
8.5 Solutions to the quick exercises 110
8.6 Exercises .. 111

9 Joint distributions and independence 115
 9.1 Joint distributions of discrete random variables 115
 9.2 Joint distributions of continuous random variables 118
 9.3 More than two random variables 122
 9.4 Independent random variables 124
 9.5 Propagation of independence 125
 9.6 Solutions to the quick exercises 126
 9.7 Exercises .. 127

10 Covariance and correlation .. 135
 10.1 Expectation and joint distributions 135
 10.2 Covariance .. 138
 10.3 The correlation coefficient 141
 10.4 Solutions to the quick exercises 143
 10.5 Exercises .. 144

11 More computations with more random variables 151
 11.1 Sums of discrete random variables 151
 11.2 Sums of continuous random variables 154
 11.3 Product and quotient of two random variables 159
 11.4 Solutions to the quick exercises 162
 11.5 Exercises .. 163

12 The Poisson process ... 167
 12.1 Random points .. 167
 12.2 Taking a closer look at random arrivals 168
 12.3 The one-dimensional Poisson process 171
 12.4 Higher-dimensional Poisson processes 173
 12.5 Solutions to the quick exercises 176
 12.6 Exercises .. 176

13 The law of large numbers ... 181
 13.1 Averages vary less ... 181
 13.2 Chebyshev’s inequality ... 183
13.3 The law of large numbers 185
13.4 Consequences of the law of large numbers 188
13.5 Solutions to the quick exercises 191
13.6 Exercises .. 191

14 The central limit theorem 195
14.1 Standardizing averages 195
14.2 Applications of the central limit theorem 199
14.3 Solutions to the quick exercises 202
14.4 Exercises .. 203

15 Exploratory data analysis: graphical summaries 207
15.1 Example: the Old Faithful data 207
15.2 Histograms .. 209
15.3 Kernel density estimates 212
15.4 The empirical distribution function 219
15.5 Scatterplot .. 221
15.6 Solutions to the quick exercises 225
15.7 Exercises .. 226

16 Exploratory data analysis: numerical summaries 231
16.1 The center of a dataset 231
16.2 The amount of variability of a dataset 233
16.3 Empirical quantiles, quartiles, and the IQR 234
16.4 The box-and-whisker plot 236
16.5 Solutions to the quick exercises 238
16.6 Exercises .. 240

17 Basic statistical models 245
17.1 Random samples and statistical models 245
17.2 Distribution features and sample statistics 248
17.3 Estimating features of the “true” distribution 253
17.4 The linear regression model 256
17.5 Solutions to the quick exercises 259
17.6 Exercises .. 259
18 The bootstrap .. 269
 18.1 The bootstrap principle ... 269
 18.2 The empirical bootstrap .. 272
 18.3 The parametric bootstrap 276
 18.4 Solutions to the quick exercises 279
 18.5 Exercises .. 280

19 Unbiased estimators ... 285
 19.1 Estimators .. 285
 19.2 Investigating the behavior of an estimator 287
 19.3 The sampling distribution and unbiasedness 288
 19.4 Unbiased estimators for expectation and variance 292
 19.5 Solutions to the quick exercises 294
 19.6 Exercises .. 294

20 Efficiency and mean squared error 299
 20.1 Estimating the number of German tanks 299
 20.2 Variance of an estimator ... 302
 20.3 Mean squared error ... 305
 20.4 Solutions to the quick exercises 307
 20.5 Exercises .. 307

21 Maximum likelihood .. 313
 21.1 Why a general principle? .. 313
 21.2 The maximum likelihood principle 314
 21.3 Likelihood and loglikelihood 316
 21.4 Properties of maximum likelihood estimators 321
 21.5 Solutions to the quick exercises 322
 21.6 Exercises .. 323

22 The method of least squares .. 329
 22.1 Least squares estimation and regression 329
 22.2 Residuals .. 332
 22.3 Relation with maximum likelihood 335
 22.4 Solutions to the quick exercises 336
 22.5 Exercises .. 337
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Confidence intervals for the mean</td>
<td>23.1 General principle 341, 23.2 Normal data 345, 23.3 Bootstrap confidence intervals 350, 23.4 Large samples 353, 23.5 Solutions to the quick exercises 355, 23.6 Exercises 356</td>
</tr>
<tr>
<td>24</td>
<td>More on confidence intervals</td>
<td>24.1 The probability of success 361, 24.2 Is there a general method? 364, 24.3 One-sided confidence intervals 366, 24.4 Determining the sample size 367, 24.5 Solutions to the quick exercises 368, 24.6 Exercises 369</td>
</tr>
<tr>
<td>25</td>
<td>Testing hypotheses: essentials</td>
<td>25.1 Null hypothesis and test statistic 373, 25.2 Tail probabilities 376, 25.3 Type I and type II errors 377, 25.4 Solutions to the quick exercises 379, 25.5 Exercises 380</td>
</tr>
<tr>
<td>26</td>
<td>Testing hypotheses: elaboration</td>
<td>26.1 Significance level 383, 26.2 Critical region and critical values 386, 26.3 Type II error 390, 26.4 Relation with confidence intervals 392, 26.5 Solutions to the quick exercises 393, 26.6 Exercises 394</td>
</tr>
<tr>
<td>27</td>
<td>The t-test</td>
<td>27.1 Monitoring the production of ball bearings 399, 27.2 The one-sample t-test 401, 27.3 The t-test in a regression setting 405, 27.4 Solutions to the quick exercises 409, 27.5 Exercises 410</td>
</tr>
</tbody>
</table>
28 Comparing two samples .. 415
 28.1 Is dry drilling faster than wet drilling? 415
 28.2 Two samples with equal variances 416
 28.3 Two samples with unequal variances 419
 28.4 Large samples ... 422
 28.5 Solutions to the quick exercises 424
 28.6 Exercises ... 424

A Summary of distributions .. 429

B Tables of the normal and t-distributions 431

C Answers to selected exercises 435

D Full solutions to selected exercises 445

References .. 475

List of symbols ... 477

Index ... 479