Computer Engineering

Logic Design

EE
- Elect
- Mag
- Circuits
- Solid
- State
- Signals
- & Sys
- Program
- Probability
- Comp
- Arch

CS
- Disc
- Math
- Algor
- & Data
- Str
- Theory
- of Comp

Comp Eng
Computer Engineers

An undergrad program that hits the sweet spot between EE and CS that involves designing computers!
– i.e. Fun Stuff!

CS

Computer Engineering!

EE

Engineering and Computer Science

• Computers are Everywhere
• Create, Innovate
• Serve Humanity by Improving
 – Environment
 – Safety
 – Productivity
 – Communications
 – Energy Availability and Efficiency
 – Health
Ultimately

- **Engineering requirement**
 - what we build must work
- **Ethical requirement**
 - what we create must help
 - lots of dimensions for this responsibility
- **Skill requirements**
 - science: math, physics, chemistry, materials, CS, ...
 - engineering: state of the art, current practice, technology trends, manufacturing, testability, maintenance, life cycle costs, ...
 - art: creative component that is clearly evident in the great engineers
CE - A student perspective

• Undergraduate program
 – joint offering by ECE and SoC
 • some required courses, electives, &
 a senior project or thesis
 – details http://www.ce.utah.edu
 – numerous faculty involved in CE research
 » check the ECE & SoC web pages to explore
 further
 • Graduate programs
 – both MS and Ph.D. offered separately by
 ECE and SoC

Computer Engineering Curriculum

• Design and build computer systems
 – software and hardware design skills
• System software
 – compiler, operating system, software engineering, ...
 – as opposed to application software
 • applications are the target system “user”
 • used in design evaluation (pre- and post-build)
• Hardware: possibly many disciplines and levels
 – Basic circuit design and testing
 – VLSI chip design: analog and digital
• Courses exist to get you started in all of these
 areas
 – context can be either embedded or high performance
 systems
CS/ECE 3710: Computer Design Lab

- Taught in Fall semester, 3 credits
- Prereqs: CS/EE 3700, CS/EE 3810
 - Student groups design, build, and test their own computer system on an FPGA
 - Typically a 16bit processor designed using schematics, Verilog, and Xilinx-based prototyping boards
 - i.e. completely student-designed from the gates up to the software
 - Bread and butter for a Computer Engineer!

3710: Xilinx Spartan3-based Boards

- 500k-gate Spartan FPGA
 - 360Kbits RAM
 - 20 18x18 multipliers
 - 16-char, 2-line LCD
- 256Mbit SDRAM
- Connectors for VGA, PS/2, RS232,
Right Now in 3710...

- Processors are processing...
- Groups are extending things to use the VGA, serial, PS/2, Nintendo, dance pad, etc. ports
 - designing their own VGA controller
 - writing interactive video games in assembly using keyboard for input (or other things) and VGA display for output
 - using 3-d graphics using their own “graphics accelerator”
 - all sorts of other interesting things

- Watch for a CS/EE 3710 demo day towards the end of fall semester

Examples from Years Past
CE Senior Projects at Utah

- **Logistics**
 - Senior project is capstone project course
 - team based
 - student teams choose their own project
 - for once you get to pick your own homework assignment
 - best mechanism to demonstrate your abilities to future employers
 - CE Senior Project is a year long activity
 - Spring term of junior year: plan and propose
 - Summer: get parts and start building (optional)
 - Fall term of senior year: build and demonstrate
 - Exit interview feedback
 - rave reviews for being hard, fun, and instructive

04 Projects

- **Satellite Tracking station**
- **Weaver** – a 802.11 remote control vehicle interface
 - camera on car: image and commands to base station via wireless
 - car has autonomous anti-collision capability (infrared)
- **GPS Hummer**
 - autonomous navigation and anti-collision
 - some AI in route finding since Hummer remembers obstacles that it saw previously
- **PCI Coprocessor**
 - efficient acceleration via PCI add-on
- **Jiggawax**
 - build your own iPod
- **RVI** – remote vehicle interface
 - control via web or cell phone
 - control windows, engine, and door locks from RF base station
05 Projects

- **Carputer**
 - OBDII car data and 802.11g auto-sync to base station
 - monitor your car or your kids
- **IR tag**
 - paintball without the mess
- **Athlete monitor system**
 - real time tracking of position and heart rate to central coaching station
 - GPS, RF, and HRM on-athlete
- **Multi-carrier reflectometry**
 - finding faults in aircraft wires without tearing the plane apart
- **Glider avionics package**
 - using accelerometers, GPS, and strain sensors

06 projects

- **PEN**
 - electronic paper – the only paper you’ll ever buy!
- **Recipedia**
 - a cook book that talks and listens to you
- **GPS tracker**
 - use campus ubiquitous wireless to keep track of where things are via your cell phone or computer
- **OmegaCore**
 - a DVR that knows how to remove commercials for you
- **NoCPR**
 - bathtub drowning prevention
- **Tracking Visor**
 - virtual reality on your head

Come & watch this year’s projects!
Senior Project Synopsis

- This was just a peek
- Just remember
 - if you can imagine it you can usually build it
 - there are some things you just can't do in a year
 - all it takes is dedication and time
 - same is true in industry - time and resource constraints change however
- Huge diversity of both opportunities and problems
- You might have noticed the world isn’t perfect
 - so help fix it!

CE and Sustainability

- Power is a major issue in computer design
 - High performance chips need a lot of power
 - High performance computing takes a lot of chips
 - The amount of electricity used for the world’s computers is pretty amazing...
 - Think before you Google?
Intel Core2 Duo

- 65nm process, 75W, 144 mm² die
- 291,000,000 total transistors

That’s a LOT of transistors

- **Where are they used?**
 - Mostly for memory!
 - Around 6 transistors per bit of memory
 - Intel Core2 Duo: 4MB shared L2 cache, 32K Icache 32K Dcache on each core
 - \(4 \times 1024^2 \times 8 + 2 \times (64 \times 1024 \times 8) = 34,603,008 \text{ bits} \)
 - \(35,000,000 \text{ bits} \times 6 = 210,000,000 \text{ transistors} \)
 - Core2 Duo has around 291,000,000 total transistors...
 - Quad Core has around 820,000,000
Issues

- That's a LOT of transistors!
 - Need CAD tools and hierarchy to help

- That's also a LOT of power
 - $V=IR$, $P = I^2R$
 - $75W @ 1.5v = 50A$ going into your chip...

Power Dissipation

- Lead microprocessor power continues to increase

- Power delivery and dissipation will be prohibitive

Source: Borkar, De Inte10
Heat Dissipation

- 100 W light bulb has surface area of 120 cm²
- Pentium4 die dissipates 110 W over ~1.5 cm²
- Nvidia GTX280 – 236 W over ~1.5cm² (105°C)
 - Chips have enormous power densities
 - Cooling is a serious challenge
- Package spreads heat to larger surface area
 - Heat sinks may increase surface area further
 - Fans increase airflow rate over surface area
 - Liquid cooling used in extreme cases ($$$)

GPUs and Power

Highly customized processing for graphics
- Lots of matrix/vector floating point pipelines
- Lots of on-chip memory bandwidth
 - NVIDIA GeForce FX5900 (2004): 53 GFLOPS
 - 128 FP units in parallel at 450MHz
 - 192 FP units at 550 MHz, 80 watts
 - NVIDIA GeForce GTX 280 (2008): 933GFLOPS
 - 240 cores, 1.3GHz, 3 flops/sec/core, 236 watts... 105°C
 - 1GB GDDR3, 512bit interface, 141.7 GB/sec
Chip Power Density

![Graph showing power density over years from 1970 to 2010]

- **Heat sink** – Mounted on processor package
- **Passive cooling** – Remote system fan
- **Active cooling** – Fan mounted on sink
- **Heat spreaders** – Increase surface area
 - Example: Metal plate under laptop keyboard

\[P=VI: \quad 75W \times 1.5V = 50\ A! \]

Source: Borkar, Intel Technology Journal, Q3 2000

Thermal Solutions

- **Heat sink**
- **Passive cooling**
- **Active cooling**
- **Heat spreaders**

"Thermal Challenges during Microprocessor Testing", Intel Technology Journal, Q3 2000
Environmental burden of CPUs!

- Total power consumption of CPUs in world’s PCs:
 - 1992: 160 MWatts (87M CPUs)
 - 2001: 9,000 MWatts (500M CPUs)
- That’s 4 Hoover Dams!

Andy’s vision: 1 Billion Connected PCs!

Old News!
Consider...

- **June 2009**
 - Random sample showed 66,000 online players on Call of Duty Xbox live
 - Equivalent to the entire city of Muncie Indiana...

 Source: NYT Magazine, June 2009

- **What do big data centers look like?**
 - Microsoft, Google, Yahoo, Facebook, etc...
 - Thousands and Thousands of servers!
 - 365/24
 - Total cost in US alone in 2006 just for electricity (not equipment) was around $4.5 Billion
 - ~2% of total electricity usage in the US
 - AND, that's old news! (2006)

 Source: EnergyStar Report to Congress, 2007

Old Data Centers

- **Racks of machines on raised flooring**

- **Cool air flowing up through the floor and out the ceiling**
Google: First Production Server

There were 30 of these in their first data center in 1999
More recent data centers

An overhead view of a Quality Technology Services data center in the Atlanta area.

New Data Centers: Wow

- Servers are crammed into standard 35ft cargo containers
- Each container has power (up to 250 KWatts), networking, cooling, and over 1000 servers
- Self-contained and stackable...
One Google data center might have 45 containers
That's over 60,000 servers, and power in megawatts!
Lots of Data Centers!

• Data centers are multiplying!
• Starting to consume a noticeable fraction of the world’s electricity output!

 – Are Facebook and Twitter worth the energy?
 – Is this growth in power and resources used for computing sustainable?
 – Does YouTube give back value to offset the carbon costs of downloading all those videos?
On the other hand...
- Each Google search “costs” roughly 0.2g of CO2
- In the time it takes you to do one Google search, your own computer uses more energy than Google does answering your query.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Google searches</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2 emissions of an average daily newspaper (100% recycled paper)</td>
<td>850</td>
</tr>
<tr>
<td>A glass of orange juice</td>
<td>1,000</td>
</tr>
<tr>
<td>One load of dishes in an EnergyStar dishwasher</td>
<td>6,100</td>
</tr>
<tr>
<td>A five mile trip in the average U.S. automobile</td>
<td>10,000</td>
</tr>
<tr>
<td>A cheeseburger</td>
<td>15,000</td>
</tr>
<tr>
<td>Electrically consumed by the average US household in one month</td>
<td>3,100,000</td>
</tr>
</tbody>
</table>

Source: http://www.google.com/corporate/green/datacenters/

No easy answers!
Not exactly related to the Computer Engineering program at the U either...

But, Interesting stuff to think about!

Lots of research by Computer Engineering faculty that addresses issues of power use in computers
- Architecture, circuits, software, etc.
- Not necessarily directly related to reducing data center energy costs, but it’s all related at some level
• **Exciting Opportunities in Computer Engineering**
 - Challenging Curriculum
 - Science, Engineering and Math plus Creativity
 - Financial Rewards
 - Job Satisfaction

• **Help Solve the World’s Grand Challenges**
 - Energy
 - Environment
 - Safety
 - Productivity
 - Communications