Today's topics:
- course logistics & motivation
- computer architecture as a profession
- market segments
- technology scaling and cost

Introductory Material
- A few tidbits on the instructor
- Pay close attention to the course web page
 - http://www.eng.utah.edu/~cs6810
 - It will change so keep up to date on what's there
- Why study computer architecture?
 - It's required for CS grad students
 - OK I get that but will try to make it interesting anyway
 - for SW types:
 - understanding the architecture → maximize code performance
 - for HW types:
 - essential understanding for the profession
 - rich area where contributions are badly needed
 - one of which might be your thesis
 - current state of the art is in a wild time
 - architecture changes directions – see “badly needed”
 - lots of job opportunities

Artifacts of Rapid Change
- Textbook
 - 4th edition is significantly more relevant than previous versions
 - BUT it's now 2-3 years old and a lot has happened
 - result: lectures will have some disagreements w/ the text
 - reading the book will be necessary
 - attending the lectures will hopefully also be valuable
 - the basic issues in the text are still important
 - bulk of course will focus on this material
 - tons of research literature
 - not a requirement in this course but helpful to clarify or deepen your understanding
 - the internet is your friend
 - as is the University's subscription to digital libraries
 - IEEE Xplore is probably the most useful
 - ACM Digital Library is a good 2nd choice

Computer Architecture
- Strictly speaking – it’s a whole system thing
 - study of the structure of computer hardware
 - requires a diverse set of systems & circuit understanding
 - languages & operating systems
 - high level organizational issues (our focus in CS6810)
 - processor, cache, main memory, IO, networking/interconnect, storage
 - analysis via tools such as simulation
 - power, performance, energy efficiency, verification
 - transistor circuits, wires, and fabrication technology
 - layout, EDA tools, cooling, packaging, ...
 - you can’t be a wizard in one of these areas
 - without understanding the constraints and interfaces imposed by the other disciplines
- The profession:
 - industry: design & build the systems of the future
 - often w/ large teams of specialized wizards
 - academic: study and explore new directions
 - few actually build things except as models via simulation
A Snippet of Modern History

- **Mechanical difference engine**
 - proposed in 1786 by J. H. Mueller
 - 2 versions built by Charles Babbage in the 1820's
 - Image at right is a replica in the computer museum in Mt. View, CA
- **Electronic computer**
 - WW2: army needed something to compute ballistics tables
 - contract w/U Penn in 1943
 - operational in 1946
 - analog machine
 - programmed by plugging cables into the right spot
 - YOW!!
 - numerous analog machines follow
 - vacuum tubes, crystal diodes, ...

Then Came Transistors ...

- **First all transistor computer**
 - MIT's Linc, TX-0, TX-2 – Wes Clark 1950’s
 - led to networks, graphics, Interactive computing
- **Integrated circuits**
 - more than one transistor on a die – 1958
 - Rob't Noyce and Gordon Moore @ Fairchild
 - later founders of Intel
 - first microprocessor Intel 4004 in 1971
 - 10 um pMOS, 92 Kbps, 740 KHz, 4-bit data-path, BCD
 - It's been a wild ride ever since

Unprecedented Improvement

- **Moore's surprising prediction in 1965 holds up**
 - reasonably well so far
CAGR Inflection Points

- **Improvement**
 - consistent technology gain
 - architecture less consistent

- **Inflection points**
 - 1st 25 years: 25% due to both
 - late 70’s microprocessors emerge
 - 35%
 - late 80’s produces more consistent growth
 - 15 years of Moore’s law growth
 - 2002 things slow to ~20%
 - 3 key hurdles: thermal, insufficient ILP, slow memory
 - DRAM Improvement trend: CAGR = 7%
 - latency hiding worked well until 2002
 - New agenda: TLP and DLP
 - enter multi-threading and multi-core architectures

Computer Classes/Market Segments

- **Note**
 - today all classes are microprocessor based
 - not all microprocessors are the same
 - even when they appear to be the same to the programmer
 - also my classes are quite different than the text’s

- **Embedded (fastest growth segment)**
 - huge range: automotive, cell phones, large internet switches → specialization
 - CISCO EP-1 already contains 192 core
 - processors vary:
 - 64-bit processors
 - price from a few cents to a few hundred dollars
 - system cost from $1 to $10K
 - typical differentiations
 - typical user tends to not be the programmer
 - provides a relatively fixed function or service
 - hard or soft real time performance often required

Segments (cont’d)

- **Netbook**
 - cheap, light, and a bigger screen than a cell phone
 - battery life is a key issue
 - processor performance compromised for energy efficiency

- **Laptop**
 - a bit heavier and more expensive
 - more diversity in performance and energy efficiency than netbook
 - processor and system cost: 2-5x netbook

- **Desktop**
 - market rapidly slowing due to netbook, laptop, and server expansion
 - with a network, the screen, keyboard, and compute gizmo’s need not be co-located
 - diverse motherboard capability (performance, memory, etc.)
 - $50 - $1000 processor, 5-10x more for system

Big Iron Segments

- **Key additional difference**
 - high enhanced
 - interconnect, main memory, and storage subsystems

- **Compute servers**
 - usually a cluster of racks
 - holding blades
 - similar to desktop motherboard
 - lots of choices for storage subsystem

- **Datacenter/Warehouse**
 - very large cluster of racks
 - system cost from $100K to $10’sM
 - redundant everything for high availability
 - e.g. Google or the “Cloud”

- **Supercomputer (single customer type, FPU focus)**
 - check out the top 500 list: http://top500.org
 - system cost $10-100M
Addendum: Complex Embedded Systems

- Key characteristic
 - some things programmable and some things not
 » not: ASIC or IP blocks
- Example: iPhone
 - Single programmable ARM core
 » integrated with ~50 IP blocks
 - each block is highly specialized (multiple blockarship)
 » ~100x improvement in energy-delay product

Source: Anandtech

Intent of the Course

- Provide a foundation for future professional activity
 - at least 3 possible goals
 » understanding the compute platform that you use
 » key to achieving highly efficient code for SW types
 » ISA and organization are what you care about
 » research into new architectural options
 » key academic role & possible thesis area preparation
 » ISA, organization, and high level understanding of hardware constraints will be needed
 » design of new systems
 » perhaps the ultimate relevance
 » further courses will be needed to finish this process
 » VLSI & embedded systems courses will be your next step
 » all 3 will be important
 » is much greater depth
- OK that's the sales pitch
 - for why you should care

Computer Architecture

- Focus issues for CS6810
 - 3 key components
 » ISA (2 lectures from now – Appendix B)
 » Organization
 - high level structural aspects of various subsystems
 » pipeline structure
 » function unit structure
 » processor structure
 » cache hierarchy structure
 » main memory structure
 » IO & network interface
 » note there are other subsystems that we'll get to in the 2nd half
 » interconnect structure
 » storage structure and technologies
 » Hardware (only light coverage here)
 » logic design, process, packaging, cooling, timing, wires ...
 » this is an almost endless list
 » VLSI courses in analog and digital IC design should be next
 » if you intend to live on the HW side of architecture

- Tracking Trends
 - Fast moving arena & lengthy design process
 » typical 5-year design schedule
 » typical design team ~500 engineers
 » year 1: architectural concept and simulation infrastructure development
 » year 2: architectural optimization, validation
 » architecture freeze at the end of year 2
 » year 3 & 4: circuit design, floor-planning, and packaging
 » tape out at the end of year 4
 » year 5
 » refine process to achieve acceptable yields
 » test and validate fielded chips
 » build inventory since volume sales commence
 » Note
 » you need to design for a technology that doesn't exist when the design phase starts
 » need to accurately predict what will be available
Technology Trends

- **VLSI**
 - transistor density improves 35%/yr
 - due to process shrink
 - there are some hidden dragons here
 - die size increases by 10-20%/yr
 - transistor budget/chip increases 40-55%/yr
 - today the limit is power rather than # of T's (more on this later)
- **DRAM**
 - capacity increases 40%/yr
 - access latency increases at only 7%/yr however
- **Disks get better in steps:**
 - capacity CAGR ranges from 30% - 60%
 - we're back to 30% now
 - latency virtually unchanged (for MHD's ~10ms)
 - bandwidth significantly better however
 - SSD's now on the scene with much better latency than MHD's

Performance

- **Bandwidth vs. Latency**
 - bandwidth is associated with throughput
 - latency is the response time for a single transaction
 - Usually you care about how fast your job runs
 - for any job that takes more than a few seconds
 - also depends on market segment
 - latency critical for real time constraints
 - throughput critical for data-center or supercomputer apps
 - but your personal computer runs lots of processes too
 - tends to bias throughput importance
 - Power wall has changed the industry to throughput
 - killer is now dead as is single thread performance
 - Intel cancels Tejas in 2004
 - TLP, DLP, and multi-core
 - throughput centric will persist (exception is embedded segment)
 - but your personal computer runs lots of processes too
 - tends to bias throughput importance
 - Throughput-centric will persist (exception is embedded segment)

Bandwidth Optimization Results

IC Scaling

- **As feature size \(\lambda \) goes down**
 - transistor speed scales as \(1/\lambda \)
 - wire speed scales as \(\sqrt{\alpha RC} \)
 - as wires get smaller – cross section decreases, \(R \) increases
 - aspect ratio changing somewhat to compensate
 - wires do not shrink as much as T's
 - \(C \) goes down but not linearly
 - plate \(C \) improves but sidewall is an issue
 - sidewall \(C \) can be improved with process
 - low-K dielectric and hot-wire air gap today
 - wire speed for unrepeated wires is quadratic with length
 - proper repeater spacing makes wire delay roughly linear
 - at the expense of increased power for the repeaters

- **Key result**
 - wires are the problem (Ron Ho's PhD thesis is a great read)
 - increasing contribution to power
 - scaling poorly w.r.t. transistors
IC Process

• ITRS is a predictor
 • Industry consortium
 • articulate what’s needed to stay on Moore's curve
 2x transistor count improvement every 2 years
 \(\text{leg(i)=} .707 \)
 • look for the 2008 update
 • it’s not strictly accurate but a good predictor
 • Intel has recently pushed up the pace
• History (check out that .7 factor)
 • 1997: 250nm
 • 1999: 180nm
 • 2001: 130nm
 • 2003: 90 nm
 • now: 45 nm

The End of Silicon

• When is the question
 • nothing lasts forever
 • at some point the shrink will mean a transistor’s components
 will be smaller than a silicon atom
 • clearly this can’t work
 • glass half full or empty predictions vary
 • some see the sky falling now
 • others say we can get to 6 or 7 nm
 • but only if some current "unsolvables" get solved
• What’s the alternative
 • DNA soup
 • quantum computing
 • bigger problems or a solution – you choose
 • For now and the foreseeable future
 • silicon and CMOS
 • several silicon varieties: strained, SOI, ...

Power Fundamentals

• 2 components:
 • active – power consumed when something is happening
 • leakage – power consumed independent of activity
 \(P_{\text{total}} = P_{\text{active}} + P_{\text{leakage}} \)
 • \(P_{\text{active}} = C V^2 \)
 • hence linear with frequency
 • \(P_{\text{leakage}} \) goes up 10x with every process step
 • process & circuit tricks have mitigated this significantly
 • additional –2x w/ every 10 C temperature dependence
 • also dependent on Vdd-Vth
 • actual equation is quite hairy
• Voltage scaling
 • quadratic benefit for \(P_{\text{active}} \)
 • problem for \(P_{\text{leakage}} \)
 • today there is little room for Vdd scaling

Cost

• Affected by market, technology, and volume
 • WCT (whole cost transfer) varies w/ volume
 • tooling and fabrication set up is very expensive
 • fab line cost scales as \(\lambda^2 \)
 • Not that simple – what kind of cost?
 • cost to buy – this is really price
 • cost to maintain
 • cost to upgrade – never known at purchase price
 • cost to learn to use – Apple won this one for awhile
 • cost of ISV software
 • cost to change platforms – vendor lock not dominant today
 • cost of a failure – Pandora’s box
 • see availability cost table Fig. 1.3 in your text
 • Let’s focus on hardware costs
 • it’s simpler
Learning Curve: Process Matures

Cost of an IC

- More integration → IC is bigger piece of the total
 \[
 \text{IC-cost} = \frac{\text{Die-cost} - \text{Die-test-cost} - \text{Die-package-cost}}{\text{Final-test-yield}}
 \]

- DRAM prices have very small margins
 - range from $20/die until end of life at ~$2
 - DRAM dies are put on DIMMs (8-19/Dimm)
 - you buy DIMMs

- IC's traditionally 25-50% of WCT for desktop box
 - monitors and external disks may actually dwarf this cost
 - depends on system

Wafers vs. Chips

Die Cost

- \(\alpha\) depends on process
 - good estimate for \(\alpha\) in 2006 is 4.0
- defects are very rare these days
 - yield is very near 100% on a mature process
Concluding Remarks

- It's important to keep several things in mind when a design decision is made
 - cost and area issues
 - totally new means new verification tactics
 - an increasing component of design cost
 - power and performance trade-off
- What's the right metric
 - depends on what you care about
 - ideally you want more performance & less power for the work that you care about
- Note
 - power is an instantaneous, work independent metric
 - consider
 - $Q = \text{energy} \times \text{delay}\#\text{ (more realistic measure of design quality)}$
 - adjust n for your bias
 - embedded $n=1$ typical, $n=2$ often used for performance oriented systems