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Figure 1: Realtime renderings on the RPU prototype using a single FPGA running at 66 MHz and 512×384 resolution:SPD Balls(1.2 fps,
with shadows and refractions), aConferenceroom (5.5 fps, without shadows), reflective and refractiveSpheres-RTin an office (4.5 fps), and
UT2003a scene from a current computer game (7.5 fps, precomputed illumination).

Abstract

Recursive ray tracing is a simple yet powerful and general approach
for accurately computing global light transport and rendering high
quality images. While recent algorithmic improvements and opti-
mized parallel software implementations have increased ray trac-
ing performance to realtime levels, no compact and programmable
hardware solution has been available yet.

This paper describes the architecture and a prototype implemen-
tation of a single chip, fully programmable Ray Processing Unit
(RPU). It combines the flexibility of general purpose CPUs with
the efficiency of current GPUs for data parallel computations. This
design allows for realtime ray tracing of dynamic scenes with pro-
grammable material, geometry, and illumination shaders.

Although, running at only 66 MHz the prototype FPGA implemen-
tation already renders images at up to 20 frames per second, which
in many cases beats the performance of highly optimized software
running on multi-GHz desktop CPUs. The performance and effi-
ciency of the proposed architecture is analyzed using a variety of
benchmark scenes.

CR Categories: I.3.1 [Hardware Architecture]: Graphics
processors—Parallel processing I.3.7 [Three-Dimensional Graph-
ics and Realism]: Ray Tracing—Animation

Keywords: Ray Tracing, Hardware Architecture, Programmable
Shading, Ray Processing Unit

1 Introduction

Rasterization has been the state-of-the-art technology for realtime
3D graphics for a long time and is still developing at a very fast
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pace. This success is mainly driven by the availability of low-
cost hardware support through highly parallel graphics processing
units (GPUs). The fundamental aspect of the rasterization algo-
rithm and a major reason for its efficient hardware implementation
is the purely local computation that conceptually renders a scene
sequentially one triangle after another.

Unfortunately, this aspect is also the greatest weakness of rasteriza-
tion as it does not allow for directly computing any global effects
such as shadows, reflections, transparency, or indirect illumination.
Global effects require direct access to potentially the entire scene
database. As we move to more advanced, simulation-based 3D
applications, efficient and easy to use support for these effects is
becoming increasingly important.

The ray tracing algorithm [Appel 1968] directlysimulatesthe
physics of light, based on the light transport equation [Kajiya 1986]
and can directly and accurately compute all global effects using ray
optics. As a result ray tracing is well known for its ability to render
high quality, photorealistic images. Through its simulation based
approach, ray tracing supports declarative scene descriptions that
arecompletelyevaluated within the renderer. This greatly simplifies
content creation compared to the inherently procedural interface of
rasterization, where the application must handle all global effects
(e.g. through precomputing texture maps).

Other important advantages of ray tracing are the “embarrassing”
parallelism and scalability due to the independence of rays, its av-
erage case logarithmic complexity in terms of the number of scene
primitives, and the ability to efficiently trace arbitrary rays instead
of being limited to a fixed grid of pixels.

1.1 Spatial Index Structures in Rendering

In order to better compare rasterization and ray tracing it is useful
to look at a slightly generalized description of the two algorithms:

Definition 1.1 (Rasterization Problem): Given a set of rays and
a primitive, efficiently compute the subset of rays that hit the prim-
itive.

Definition 1.2 (Ray Casting Problem): Given a ray and a set of
primitives, efficiently compute the subset of primitives that are hit
by the ray.

For rasterization the set of rays are defined by the screen pixels
and primitives are triangles. The basic operation is applied to each



triangle and a closest-triangle test (i.e. z-buffer) is performed per
ray.

However, for increased performance, both rasterization and ray
tracing require spatial index structures for quickly finding the re-
spective subset of rays or triangles. Rasterization uses the regu-
lar arrangements of pixels in a 2D grid. While the grid structure
greatly simplifies hardware it also limits the supported sets of rays
to regular samples from a planar perspective projection. However,
for advanced effects such as shadows, the set of query rays does
no longer obey this restriction. Thus resampling of visibility in-
formation is required, which is prone to errors and artifacts. Little
research has been performed on finding better 2D index structures
to avoid this issue (but see [Aila and Laine 2004; Johnson et al.
2004]).

In addition, rasterization hardware cannot efficiently handle situa-
tions that require rendering of only a small subset of the scene, e.g.
only the triangles seen through a few pixels or a particular reflec-
tion. This type of query resembles the ray tracing problem. How-
ever, rasterization hardware is missing a 3D spatial index to quickly
locate the relevant triangles. Instead, the application must provide
the missing functionality in software by using spatial index struc-
tures in conjunction with occlusion queries for instance. This split
in the rendering process adds overhead and complexity while elim-
inating the options for complete hardware acceleration.

In contrast, ray tracing is fundamentally based on a 3D spatial index
structure in object space. The traversal operation through this spa-
tial index conservatively enumerates the set of triangles hit by the
ray in front to back order. The index imposes no limits on the allow-
able set of rays and can answer even single ray queries efficiently.
In most cases the spatial indices arehierarchical in order to better
adapt to the often uneven distribution of triangles in space. Efficient
hardware support for ray queries in hierarchical indices is a prereq-
uisite for accelerated ray tracing. It would allow for fully declar-
ative scene description by integrating the entire rendering process
into hardware including any global effects.

One drawback of spatial indices in general are dynamic changes to
the scene, as this would require partial or full re-computation of the
index. This, however, applies to any rendering algorithm that uses
a spatial index, including advanced rasterization. Little research
on spatial indices for dynamic scenes has been performed in the
past [Reinhard et al. 2000; Lext et al. 2000; Wald et al. 2003a].

1.2 Hardware Support for Ray Tracing

For a long time hardware support for ray tracing has been held back
by three main issues: the large amount of floating point compu-
tations, support for flexible control flow including recursion and
branching (necessary for traversal of hierarchical index structures
and shading computations), and finally the difficulty to handle the
complex memory access patterns to an often very large scene data
base.

On thesoftwareside significant research has been performed on
mapping ray tracing efficiently to parallel machines, including
MIMD and SIMD architectures [Green and Paddon 1990; Lin and
Slater 1991]. The key goal has been to optimally exploit the paral-
lelism of the hardware architecture in order to achieve high floating
point performance [Muuss 1995; Parker et al. 1999; Nebel 1997;
Andrea Sanna and Rossi 1998; Badouel and Priol 1990; Keates and
Hubbold 1995].

Realtime ray tracing performance has recently been achieved even
on single high-performance CPUs[Wald et al. 2001; Wald et al.

2003b; Wald 2004]. However, higher resolutions, complex scenes,
and advanced rendering effects still require a cluster of CPUs for
realtime performance [Wald 2004].

This large number of CPUs is also the main drawback of these soft-
ware solutions. The large size and cost of these solutions is pre-
venting a more widespread adoption of realtime ray tracing. We
speculate that the ray tracing performance needs to be increased by
up to two orders of magnitude compared to a single CPU in order
to achieve realtime, full-resolution, photorealistic rendering for the
majority of current graphics applications.

One solutions could bemulti-core CPUsannounced by all the ma-
jor manufacturers. However, based on the publically announced
roadmaps for multi-core chips, reaching the above goal will take at
least another 5 to 10 years.

On the other hand, the computational requirements of ray tracing
do not require the complexity of current CPUs. Smaller hardware
that satisfies the minimum requirements but allows for greater par-
allelism seems to be a more promising approach. First examples
are ray tracing on a DSP and the simulation for the SmartMemo-
ries architecture [Greg Humphreys 1996; Mai et al. 2000; Purcell
2001].

One particularly interesting example is the use ofprogrammable
GPUsalready available in many of today’s PCs. With more than
twenty SIMD units they offer excellent raw floating point perfor-
mance. However, the programming model of these GPUs is still
too limited and does not efficiently support ray tracing [Carr et al.
2002; Purcell 2004]. In particular, GPUs do not support flexible
control flow and only very restricted memory access.

On the other extreme, multiplecustom hardwarearchitectures have
been proposed, both for volume [Meissner et al. 1998; Pfister et al.
1999; H. Kalte and R̈uckert 2000] and surface models. Partial hard-
ware acceleration has been proposed by [Green 1991] and a dif-
ferent implementation is commercially available [Hall 2001]. In
addition a complete ray tracing hardware architectures has been
simulated [Kobayashi et al. 2002]. The first complete, fully func-
tional realtime ray tracing chipwas presented by Schmittler et
al. [Schmittler et al. 2002; Schmittler et al. 2004]. However, these
specialized hardware architectures only support a fixed functional-
ity and cannot be programmed, an essential property for advanced
rendering.

2 Design Decisions

As discussed above, ray tracing is acompute intensive, recursive,
and highly parallelalgorithm with complex control flowrequire-
ments. The raw algorithm would perform a large number of mostly
unstructured memory accesses, which can be greatly reduced by
exploiting thecoherencebetween rays. Most operations in the ray
tracing algorithm arefloating point vector operations, especially for
shading.

These properties of ray tracing result in the following basic design
decisions for our RPU architecture:

Vector Operations: Similar to current GPUs we use four compo-
nent, single precision floating point or integer vectors as the basic
data type in the coreShader Processing Unit (SPU), that is used
for geometry intersection and shading computations. The use of
4-vectors takes advantage of the available instruction level paral-
lelism, results in fewer memory requests of larger size, and signif-
icantly reduces the size of shader programs compared to a scalar



Figure 2: Multiple Shader Processing Units (SPUs) execute chunks
of M threads synchronously in SIMD fashion. Each SPU operates
on 4-component vectors as its basic data type. Multiple chunks are
executed asynchronously on the multi-threaded hardware. Custom
Traversal Processing Units (TPUs) synchronously traverse chunks
of rays through a k-D tree but operate asynchronously to the SPUs.

program. Again similar to GPUs we implement dual-issue instruc-
tions that can operate on entire 4-vectors or split them into 2/2 or
3/1 elements as required.

Threads: We take advantage of thedata parallelismin ray trac-
ing through a multi-threaded hardware design. For every primary
ray a new independent thread is started. The state of multiple of
these threads is maintained in hardware and the execution in an SPU
switches between threads as required. Multi-threading allows to in-
crease hardware utilization by filling instruction slots that would
otherwise not be used due to instruction dependencies or memory
latency.

Chunks: The raw bandwidth requirement of the unmodified ray
tracing algorithm is huge [Schmittler et al. 2002]. It can be re-
duced considerable by exploiting the high coherence between ad-
jacent rays. To this end, we create chunks ofM threads, where
all threads are executedsynchronously in SIMD modein parallel by
multiple SPUs, see Figure 2. Because all threads always execute the
same instruction, identical memory requests are highly likely for
coherent rays and can later be combined (see below). Using SIMD
mode, these SPUs can share much of their infrastructure (e.g. in-
struction scheduling, caches), which greatly reduces the hardware
complexity. The chunk sizeM and thus the number of parallel SPUs
is determined by the expected coherence within a chunk and fixed
for a concrete implementation of the architecture.

Control Flow and Recursion: In order to allow for complex
control flow even in an SIMD environment the architecture sup-
ports conditional branching and full recursion using masked exe-
cution [Slotnick et al. 1962] and a hardware-maintained register
stack [Sun Microsystems 1987]. The top most part of the regis-
ter stack is easily available through the SPU register file (see Sec-
tion 3.1). Recursively tracing rays from any location in a shader
is required to offer maximum flexibility to shader writers. Other
approaches that only allow for tail-recursion or impose other re-
strictions [Kajiya 1986] are too limiting for practical use.

A different control stack, hidden from the user, is used explicitly

through function calls/returns and through a specialtrace instruc-
tion for recursively tracing new rays. This stack is implicitly also
used for executing conditional branches, by splitting a chunk into
a sub-chunk that perform the branch and one that does not. One
of these sub-chunks is pushed onto the stack while waiting for the
other to finish its execution.

Dedicated Traversal Units: Traversal of a ray through a k-D tree
typically requires between 50 to 100 steps with scalar floating point
operations. Using a fully programmable vector unit for these op-
erations wastes precious cycles, since every step would correspond
to several instructions. Instead, we provide a custom fixed function
Traversal Processing Unit (TPU) that greatly improves performance
and efficiency over software implementations. During traversal the
TPU invokes the SPU for executing a data dependent shader for ev-
ery entry encountered in the k-D tree. The TPUs share a dedicated
Mailboxed List Processing Unit (MPU) that significantly reduces
redundant computations by maintaining a small cache (per chunk)
of previously processed entries (e.g. intersected triangles) [Ama-
natides and Woo 1987]. After traversal the SPUs can call a material
shader for the found intersection point.

We use k-D trees as spatial index structures as they adapt very
well to the scene geometry, even if the geometry is not distributed
equally over the scene (good analysis has been performed by
Havran [Havran 2001]). The traversal decision can be computed
relatively easy by doing a substraction followed by a multiplica-
tion and some comparisons. Unfortunately, the k-D tree traversal
algorithm is recursive and requires a stack which complicates the
hardware. A k-D tree is a binary tree which simplifies the packet
handling as at most two subchunks, one going to the left and the
other one to the right of the tree, are generated.

Memory Access:Memory requests are a key problem with multi-
core designs. We assume that the synchronous execution of chunks
leads to many identical memory requests that can be combined
and thus reduce bandwidth. Nevertheless incoherent chunks are
allowed and cause no overhead but do not see improvements ei-
ther. All memory accesses go through small dedicated caches in
order to further reduce external bandwidth. Coherence and con-
sequently cache hit rates are generally very high (see Section 5).
Memory accesses refer to virtual memory which is mapped directly
to DRAM or refers to host memory that is brought in on demand
via DMA [Schmittler et al. 2003].

General Purpose Computing: The basic RPU architecture is a
general purpose design. It supports random memory read and write
operations as well as arbitrary address computations using integer
arithmetic. However, the design has been optimized for algorithms
with properties similar to those of ray tracing:high data coherence,
high instruction and data parallelism, and a large number ofshort
vector operations.

Scalable Design:The RPU architecture is a scalable multi-core
design supporting many independent RPUs working in parallel.
Each RPU contains multiple SPUs and TPUs working on coher-
ent chunks of rays. Each RPU on a chip has its own set of caches
but they all share a common memory interface. RPUs are the main
units for scaling performance. Similarly to software ray tracing on
clusters of CPUs, multiple RPUs can be combined within a chip
and across multiple chips, boards, or even clusters of PCs.

This RPU design can be understood as a mixed thread and stream
programming model for highly data parallel tasks. From a stream
programming point of view [Kapasi et al. 2002], our RPU fea-
tures much more general purpose kernels with full recursion and
branching. Instead of many small kernels operating on fine grained
streams, our kernels are more complex and execute synchronously
on small “chunks” of a single “seed” stream provided by the Thread



Generator (see Figure 3). However, more complex setups can easily
be realized. Another main difference between an RPU and a stream
processor is the support for flexible read and write memory access.

From a thread programming perspective, an RPU is simply a gen-
eral purpose parallel processor. While it would, in principal, exe-
cute arbitrary threads, best performance is achieved for threads with
high computational density, which can be partitioned into coherent
chunks that access similar memory and execute similar code syn-
chronously.

3 RPU Architecture

An general overview of the RPU hardware architecture is provided
in Figure 3. The Thread Generator injects new threads whenever
hardware threads are available by initializing some input and ad-
dress registers of all SPUs in a chunk. The initialization data can
come from DMA, memory, or may be derived from a 2D grid of
pixels in scan-line or Hilbert curve order. Finally, control is passed
to a specified primary shader code.

Chunks ofM threads are then scheduled on demand to the SPUs.
When shaders execute atrace instruction, control is transfered to
the TPUs, which synchronously traverse chunks of rays through
a spatial index. While the spawning thread is suspended during
traversal, the SPUs continue executing instructions asynchronously
from other threads.

The TPUs synchronously traverse the entire chunk through the k-D
tree. For each node in the tree the traversal decisions of all rays are
computed and the chunk is split using masking bits into sub-chunks
as necessary. For each sub-chunk a joint decision for the next node
to traverse is computed [Wald et al. 2001]. As a result TPUs can
traverse even completely incoherent chunks of rays, but would not
achieve much benefit in that case.

When traversal reaches a non-empty leaf node the MPU is called
to iterate through the list of entries stored there (object or primitive
pointers). The MPU uses a per chunk caching mechanism to ignore
entries that have been encountered before. For every remaining
entry an implicit function call is performed on all corresponding
threads and the threads are scheduled onto the SPUs again.

The SPUs, TPUs, and the MPU are each connected to separate
first level caches. These caches are fed through the Virtual Mem-
ory Management Unit (VMU), which caches pages of memory in
the DRAM [Schmittler et al. 2003]. The scene description is con-
tained in virtual memory, which may be distributed across the host’s
main memory system or other RPU boards. The Memory Interface
(MEM-IF) manages and optimizes access to external DDR memory
chips.

3.1 SPU Registers

The SPU is the central part of our programmable ray processing
unit. It supports several types of registers both for internal use and
for communicating with its environment (see Table 1).

The SPU contains 16 general registersR0 toR15, which are mapped
to the current frame on an internal hardware stack (Figure 4). The
current shader uses this stack to pass and return arguments to and
from other shaders. The stack frame is incremented by an amount
specified by thetrace or call commands and it is restored before
control flow returns. The special register, address registers, and
input registers must be saved by the calling shader as required.

Name Direction Description
R0 to R15 3r, 1w standard registers (stack frame)
C 1r constant vector(0,1,+ε,+∞)
P0 to P15 1r per shader user parameter regis-

ters
S 1r, (1w) special operation register
A 1r, 1w address base registers
I0 to I3 1r memory input registers

Table 1: General registers of the SPU with the available read (r)
and write (w) ports. All registers are 4-component single precision
floating point vectors except for the address register, which contains
four integers.

An RPU chip should contain enough on-chip memory for a stack of
at least 32 vector registers. This is sufficient for a recursion depth
of 4, when each recursion needs 4 local vector arguments and each
shader uses all 16 registers. If on-chip memory is not sufficient
to store the complete register stack, the hardware automatically and
speculatively writes and restores parts of the stack to and from main
memory as a background task. For optimizing this speculative tech-
nique the shaders provide the size of the required stack frame.

A hard-coded “constant” vectorC contains the frequently used val-
ues(0,1,+ε,+∞), while the values for the 16 parameter registers
P0 to P15 are provided by the application for each shader. Memory
requests are performed relative to one of the four address register
components and data read from memory is always written to one or
more of the input registers.

3.2 SPU Instruction Set

Because ray tracing requires the efficient execution of mostly gen-
eral purpose instructions with a flexible flow of control, the design
of the instruction set is a crucial design aspect.

Supported instructions are simple assignment; per component addi-
tion, multiplication, multiply and add, and computation of the frac-
tional part; different types of dot products; integer computation;
arbitrary memory reads and writes relative to an address register;
and 2D addressable nearest neighbor texture reads and writes. Sup-
ported source modifiers are: swizzling, negation, and multiply with
a power of 2 (0.5,1,2,4). The result of an operation can be clamped
to [0,1] while a write mask specifies which components need to be
written to the destination. Recursive function and shader calls are
supported for increased flexibility. The only ray tracing specific
instruction is atrace instruction to access the TPU.

Figure 4: Overview of the registers available to an SPU.



Figure 3: Each RPU chip is connected to external I/O and memory and maycontain multiple independent RPU units. Each RPU containsM
Shader Processing Units (SPU),M Traversal Processing Units (TPU), and one Mailboxed List Processing Unit (MPU), as well as correspond-
ing first level caches. A central Thread Generator injects new threads/rays by itself or reads them from memory or DMA. The DMA interface
can transfer data from the PCI/AGP/PCI-X interface, the Memory Interface (MEM-IF), and from neighboring RPU chips via the Fast Chip
Interconnect Unit. Virtual to physical address translation and second level caching is performed by the Virtual Memory Unit (VMU).

The instruction set of the SPUs is strongly based on that of cur-
rent GPUs [Nvidia 2004]. Functionality not supported by GPUs
are recursive function calls, memory writes, and thetrace instruc-
tion. On the other hand some GPU instructions, such asSLT,
SGT [Nvidia 2004], have not been implemented, as we offer more
flexible support for conditional branching. Except for the ability to
read 4 texels of a 2D memory array at once, we provide no special
hardware functionality for texture filtering such as anisotropic fil-
tering. This gives more space for functional RPU units on the chip
and texture filtering can of course be implemented in software.

Pairing: In order to improve the usage of hardware units, cur-
rent CPUs provide out of order, dynamic scheduling mechanisms
that submit instructions to the arithmetic units from a large instruc-
tion window. Dynamic scheduling is complex and requires signif-
icant hardware resources. Instead we choose to provide only static
scheduling with two slots per instruction. An instruction word is
divided into aprimaryand asecondarypart making the SPU a kind
of large instruction word (LIW) machine [Fisher 1983]. A few in-
structions, such as “load from texture”, require both the primary
and secondary slots, while others are restricted to the secondary
slot only, like theload instruction.

As vector SIMD units are utilized inefficiently for operations on
scalars or too short vectors, we support splitting each vector into
2/2 or 3/1 components. The two instruction slots can then be used
to execute arbitrary arithmetic operations on each sub-vector. Thus,
optimizing compilers can take advantage of instruction level paral-
lelism in shaders for improved static scheduling. An example for a
valid 3/1 pairing isdp3 R0.xy,R1,R2 + mov R4.w,R5.w. This
instruction writes the 3 component dot product of registers R1 and

Figure 5: Computing a branch condition by comparing a 4D vector
against a unit 4D hypercube.

R2 to the x and y component of R0 and moves the w component of
R5 to the w component of R4.

Branch Instruction: The branch instruction is always paired with
an arithmetic instruction. All 4 components of the arithmetic result
can contribute to the branch condition. First, each component is
compared to be smaller than 0 and smaller than 1 and both results
can optionally be inverted. Each component then forwards either
one of the results or combines them withand or or. Finally, a
mask selects a subset of all component results and performs a final
and or or reduction to derive the branch condition (see Figure 5).
Powerful branch conditions improve the performance of the archi-
tecture as otherwise more jumps are required which causes a higher
probability of splitting chunks into sub-chunks. Conditional returns
are supported to further reduce the number of branches.

This branch condition can, for instance, be used for a weak in-



triangle test by checking the barycentric coordinates against a
bounding square. Combined with amad instruction the branch con-
dition allows for comparing a 4D point against an arbitrary 4D hy-
percube.

Load Instruction: The load instruction is executed asyn-
chronously, which allows for hiding memory latency by overlap-
ping it with other instructions. Up to four independent memory re-
quest can be outstanding per thread. An auto-increment addressing
mode allows to perform a burst access of four vectors into consec-
utive input registers using a singleload4x instruction. This can
significantly reduce the instruction count when more than one vec-
tor needs to be read (e.g. a matrix or all triangle vertices).

A special texture addressing mode allows to address memory lo-
cations as a 2D array using two floating point coordinates. It can
also load 4 adjacent texels for later bilinear interpolation in soft-
ware. Texture loads support several memory formats: Full and half
precision floating point vectors as well as 8 bit fixed point data.

Scheduling: The SPU does not perform any out of order execu-
tion or control flow analysis. All arithmetic instructions can be
performed with throughput one and constant latency. Only instruc-
tions with special modifiers and theload andtrace instructions
have longer latency. The SPU continues scheduling instructions
from a thread until a specialdependency bitof the instruction indi-
cates a dependency on previous instructions. In this case, schedul-
ing switches to another thread and returns not before all previously
scheduled instructions have been retired. We expect a compiler or
assembler to automatically handle this flag.

Flexible Control Flow: It is not guaranteed, that the logical control
flow in all threads of a chunk is always identical, even though this
is required by the SIMD hardware. Rays hitting different geome-
try may execute different shaders or threads may branch to differ-
ent instructions. Whenever threads in a chunk are about to execute
different instructions the chunk is split into sub-chunks. Each sub-
chunk maintains a mask of active threads, which determines if an
SPU is actively executing instructions or simply sleeps. Only one
sub-chunk is then executed while the remaining chunks are put onto
a control stack until they have finished execution. Thus, all threads
that have been active before are implicitly synchronized upon return
of a function. This property of function calls can also be used by
programmers to explicitly synchronize threads after a certain code
segment.

This SIMD design assumes that there is enough coherence between
threads that on average sub-chunks still maintain a high number of
active threads. In the worst case performance could drop to 1/M
in which case threads would be executed sequentially. However,
for ray tracing coherence in a chunk is generally very high (see
Section 5).

Special Instructions: Two complex operations are supported as
special instruction modifiers: reciprocal and reciprocal square root.
If attaching such an instruction modifier to an arithmetic instruc-
tion, its result is first computed normally and written to the destina-
tion. Then the special operation is applied to the 4th component of
the result. The result of the special operation is replicated to all 4
components and written to the special operation destination register
Susing the write back mask of the command.

3.3 Example Shader

The following is an excerpt from a ray triangle intersection shader
used in the prototype. It nicely demonstrates the benefits of the
chosen instruction set for typical ray tracing computations. The in-
tersection test is performed by first transforming the ray from world

coordinates to a unit triangle space [Schmittler et al. 2004] where
the computation is greatly simplified.

1 load4x A.y,0 ; load triangle
; transformation

2 dp3_rcp R7.z,I2,R3 ; transform ray dir to
3 dp3 R7.y,I1,R3 ; unit triangle space
4 dp3 R7.x,I0,R3
5 dph3 R6.x,I0,R2 ; transform ray origin to
6 dph3 R6.y,I1,R2 ; unit triangle space
7 dph3 R6.z,I2,R2
8 mul R8.z,-R6.z,S.z ; compute hit distance d
+ if z <0 return ; and exit if negative

9 mad R8.xy,R8.z,R7,R6 ; compute barycentric
; coordinates u and v

+ if or xy ; and return if
(<0 or >=1) ; hit is outside
return ; the bounding square

10 add R8.w,R8.x,R8.y ; compute u+v and test
+ if w >=1 return ; against triangle diagonal

11 add R8.w,R8.z,-R4.z ; terminate if last hit
+ if w >=0 return ; distance in R4.z is

; closer than the new one
12 mov SID,I3.x ; set shader ID

+ mov MAX,R8.z ; and update MAX value
13 mov R4.xyz,R8 ; overwrite old hit data

+ return ; and return

The usage of arithmetic units is particularly high for the first part
of the shader during transformation and intersection. The later tests
are mostly scalar operations but take perfect advantage of the two
instruction slots. Once a new hit is found, the dual issue feature is
again used to quickly and efficiently update the hit information.

3.4 Programming Model

The shading model necessary for ray tracing has some fundamental
differences to GPU programming, due to the fact that GPUs only
perform local shadingwhile RPUs can computeglobal shading
effectsby querying the scene with secondary rays. Most shading
effects possible with GPUs can be performed with the RPU archi-
tecture as well.

An important advantage of our programming model is that it com-
pletely separates geometry from shading as well as different shaders
from each other. Information is transfered along rays using clearly
defined interfaces. This allows us to support fully declarative scene
descriptions that can be completely evaluated in hardware. Techni-
cally, this is possible through tracing rays that indirectly call other
shaders based on information both from the calling shader as well
as from data associated with the objects found in the scene. If call-
ing a material shader, a shader table is specified that is indexed by
the shader ID derived from the scene. Different types of rays (e.g.
primary or shadow rays) would use different shader tables in order
to compute different effects.

Procedural Lighting: In addition full support of recursive func-
tion calls allows for separating common functionality into addi-
tional shaders. One particularly interesting example is the sepa-
rate computation of global illumination that can be called from any
material shader [Slusallek and Seidel 1995; Slusallek et al. 1995].
Instead of computing illumination itself by tracing rays directly, a
global lighting shaderis called that iteratively computes any inci-
dent light contribution at the point of interest. This allows for eas-
ily modifying the lighting scenario without having to change any
material shaders. Another good example areBRDF shadersthat
encapsulate the evaluation of BRDFs and separate it from normal



appearance shaders that simply specify BRDF parameters [Pharr
and Humphreys 2004].

Procedural Geometry: Geometry shadersare shaders called for
any k-D tree entry encountered during traversal. This allows to
render any geometric representation that has a ray intersection pro-
cedure and can be put into a spatial index structure. This would, for
instance, allow for directly ray tracing of quadrics, bilinear patches,
and bi-cubic splines [Benthin et al. 2004] in hardware.

Having the option of evaluating procedural geometry on demand
during the rendering process offers a number of benefits. For in-
stance, it allows for increasing the computational density [Buck
et al. 2004] by reducing the amount of memory required to rep-
resent complex surfaces while increasing the amount of data par-
allel computation. As the gap between computational power and
memory bandwidth continues to increase, such representations will
become more and more important for high performance graphics.

To a limited degree these shaders can also implement the function-
ality of vertex shaderby modifying input vertices. This is possible
as long as all possible positions have been taken into account when
building the spatial index.

Dynamic Scenes:The concept of geometry shaders also allows to
elegantly implement support for dynamic scenes as suggested by
[Wald et al. 2003a]. In this approach a scene is divided into objects
that each have their own spatial index. These objects can then be
instantiated multiple times at any position simply by providing an
affine transformation. Only the top-level index structure built over
the bounding boxes of all instantiated objects is dynamically up-
dated whenever any instance is transformed. The leaf nodes of the
top-level k-D tree then only contain references to object instances
and their respective transformations.

A primary ray is then first traced through the top-level k-D tree
while specifying ashader tablethat lists specificgeometry shaders.
Each object encountered during traversal of the top-level k-D tree
contains ashader ID, that is used to lookup the shader table. The
object shaders use its affine transformation to transform the ray into
the local coordinate system of the object. The shader then spawns a
new ray starting at the root of the object’s k-D tree. The leaf nodes
of the object’s k-D tree finally contains shader IDs for geometry
shaders.

The RPU architecture provides no special support for building spa-
tial index structures. This task has to be performed by the host CPU
which is possible if the number if instantiated objects is in the range
of several hundreds. Supporting full dynamic scenes using position
shaders for triangle vertices would require fast hardware support
for building spatial index structures. Future research is needed here
as naively building these spatial index structures would result in a
high computational overhead.

Programmable Materials: Of course, the RPU architecture also
allows for the implementation of typical material shaders, that lo-
cally compute reflected light but can take the global environment
into account. These shaders are similar to previous shading sys-
tems.

Technically, materials are determined during traversal by geome-
try shaders that update a material shader ID, which is to be called
after traversal has terminated. Before shooting a ray this material
ID is set to a default shader that is called if no intersection has
been found. Again geometry shaders and material shaders can eas-
ily communicate with each other through the common stack and/or
preallocated thread local storage. Shaders simply need to agree on
parameter passing conventions similar to traditional programming
standards. All the commonly used features of programmable shad-
ing systems can easily be realized on top of this infrastructure.

Unit fadd fmul frac rcp/rsq mem
Shader 16 16 4 4 173.6 kB

Cache - - - - 15.0 kB
Traversal 4 4 0 0 44.5 kB

Cache - - - - 11.0 kB
Mailboxed List - - - - 0.8 kB

Cache - - - - 7.0 kB
Total 20 20 4 4 251.9 kB

Table 2: Hardware complexity of the RPU prototype with a chunk
size of 4, 32 hardware threads, and 512 entries for each direct
mapped cache. For each unit the number of specific floating point
units and the required on-chip memory is given. Dual ported mem-
ory bits are counted twice.

4 Prototype and Implementation

A fully functional prototype of the RPU architecture described
above has been implemented using FPGA technology. Our proto-
type platform uses a Xilinx Virtex-II 6000-4 FPGA [Xilinx 2003],
that is hosted on the Alpha Data ADM-XRC-II PCI-board [Alpha-
Data 2003]. The FPGA has access to four 16 bit wide DDR mem-
ory chips used in parallel for a 64 bit wide memory interface. This
memory interface delivers a peak memory bandwidth of 1 GB/s at
66 MHz. However, we can currently utilize only about 352 MB/s
due to a very simple DRAM interface with no support for bursts,
auto-precharge, and other possible optimizations. The DMA capa-
bilities of the PCI bridge are used to upload scene data to DRAM
and to download frame buffer contents to the application for storage
or display via standard graphics APIs. The entire scene representa-
tion including k-D trees, shader code, and any shader parameters is
downloaded from the host via DMA.

We were able to fit a single RPU onto the FPGA chip, with four
SPUs (chunk size ofM = 4) and 32 concurrent hardware threads.
The MPU remembers the first 4 intersected objects and triangles
the chunk has been intersected with, to prevent further intersection
with them. This simple mechanism is sufficient for our test scenes.
This design uses almost all FPGA logic slices (99%), about 88% of
the on-chip block memories, and 20 of the block multipliers (13%).
Almost all of the 48 floating point units are in the SPU unit with the
remaining dedicated to the TPU (see Table 2). On the FPGA we
are limited to a 24 bit floating point representation, because we had
to use the custom 18 bit fixed point multipliers already available
on the chip. Fully synthesizing all floating point units would have
used too much FPGA logic. This limited floating point accuracy is
sufficient for most scenes.

However, due to the limited size of the FPGA not all features could
be enabled for the prototype: Integer operations are not included,
which limits memory reads to offsets of precomputed addresses.
Write support is limited to a single vector per shader (similar to
GPUs). Shader length is currently limited to 512 instructions of 80
bit each, which must be resident in the RPU. Ideally, the on-chip
instruction memory would just be an instruction cache. Currently,
only 4 parameter registers per shader and a total of 16 different
shaders are supported. A fixed register stack of 16 entries is pro-
vided with no automatic spilling to memory. Only floating point
textures and 32 bit frame buffers are implemented.

Table 2 shows the number of floating point units and memory avail-
able in the prototype. Only the memory bits actually used are shown
and dual ported memories are counted twice. With this configura-
tion the hardware provides a theoretical peak performance of 2,9
GFlops at 66 MHz.



RPU / RPU /
Scene triangles objects SaarCOR RPU OpenRT OpenRTSaarCOR

Scene6 806 1 44.6 fps 20.8 fps 12.9 fps 1.6 0.46
Office 34 312 1 35.9 fps 14.6 fps 10.4 fps 1.4 0.40

Quake3 39 424 1 24.6 fps 12.5 fps 11.1 fps 1.1 0.51
Quake3-p 52 790 17 19.6 fps 9.7 fps 7.9 fps 1.2 0.49

UT2003 52 479 1 18.6 fps 7.5 fps 8.0 fps 0.9 0.40
Conference 282 805 54 16.2 fps 5.5 fps 8.1 fps 0.7 0.34

Castle 20 891 8 17.5 fps 2.8 fps 9.2 fps 0.3 0.16
Terrain 10 469 866 264 11.6 fps 2.2 fps 3.5 fps 0.6 0.18

SunCOR 187 145 136 5 622 23.5 fps 4.0 fps 7.5 fps 0.5 0.17
Spheres-RT 2 spheres + 15 653 4 - 4.5 fps -

SPD Balls 820 spheres + 12 821 - 1.2 fps -

Table 3: Performance of the RPU prototype for a number of benchmark scenes of varying complexity regarding the number of triangles and
dynamic objects. We compare the results by providing performance numbers (frames per second) for three different platforms: the fixed
function SaarCOR implementation [Schmittler et al. 2004] (performance scaled down to match the lower frequency of the RPU prototype),
the fully programmable RPU (running at 66 MHz), and the highly optimized OpenRT software ray tracer running on an Intel Pentium-4
2.66 GHz [Schmittler et al. 2004]. All numbers are for an image resolution of 512×384 pixels using primary rays only (in the upper half)
and with advanced shading effects (as seen in the images on the first page). All measurements include fully textured shading with sample
nearest filtering.

usage efficiency cache hit rate external bandwidth
Scene fps RPP TPU SPU combining chunking TPU MPU SPU absolute usage
Scene6 20.8 1.0 46.7% 70.4% 90.7% 99.1% 98.4% 98.6% 89.8% 51.4 MB/s 16.2%
Office 14.5 1.0 40.5% 66.8% 86.7% 97.8% 95.6% 92.8% 81.4% 83.4 MB/s 24.8%
Quake3 12.5 1.0 52.4% 52.0% 84.9% 96.7% 94.0% 93.6% 81.0% 83.5 MB/s 24.5%
Quake3-p 9.7 1.0 66.4% 46.0% 85.9% 96.5% 86.7% 94.4% 81.7% 133.2 MB/s 35.4%
UT2003 7.5 1.0 39.4% 58.9% 88.0% 96.3% 88.3% 89.1% 82.2% 105.6 MB/s 30.4%
Conference 5.5 1.0 44.9% 53.7% 90.3% 95.5% 88.8% 89.4% 83.6% 100.0 MB/s 31.1%
Castle 2.8 1.0 70.3% 51.5% 94.9% 98.2% 91.9% 98.1% 92.7% 76.1 MB/s 25.1%
Terrain 2.2 1.0 30.7% 24.8% 84.0% 88.5% 57.8% 62.7% 50.1% 193.4 MB/s 60.8%
SunCOR 4.0 1.0 24.9% 20.4% 79.0% 82.1% 47.8% 31.6% 23.6% 198.6 MB/s 64.4%
Spheres-GL 11.1 1.0 57.8% 61.6% 91.4% 98.5% 96.3% 98.3% 90.1% 53.9 MB/s 16.9%
Spheres-RT 4.5 2.2 50.8% 62.7% 83.3% 96.2% 95.4% 97.5% 84.3% 136.9 MB/s 20.3%
SPD Balls 1.2 3.2 34.8% 58.2% 77.3% 79.8% 85.4% 82.1% 93.7% 73.0 MB/s 27.6%

Table 4: Detailed statistics of the RPU prototype for all benchmark scenes.From left to right it shows the overall performance in frames
per second, the number of rays per pixel (RPP), and the usage values for the TPU and SPU. The chunking efficiency is the average number
of threads that are expected to be active in a chunk. The memory combining efficiency is the percentage of threads active in the memory
requests after the combining circuit. Cache hit rates are given for eachcache in the design. Finally we provide the absolute external memory
bandwidth and its usage (including control cycles). The upper 10 scenes are measured with standard shading using nearest neighbor texture
lookup, whileSpheres-RTandSPD Ballsalso use shadows and refractions on triangles and spheres.

5 Results

We have chosen a number of benchmark scenes in order to compare
the performance of the RPU architecture with other approaches.
The test scenes of Figures 1, 6, and Table 3 have been chosen to
cover a large fraction of possible scene characteristics.

TheScene6andOfficescenes are both closed room scenes of low
complexity. More realistic examples are taken from computer
games [Scenes 1999–2003], such asCastle, UT2003, andQuake3.
The latter one is used for two benchmarks: as a single object, and
again with several moving players. The Conference scene shows a
conference room with several instantiated chairs. The highly com-
plexTerrainandSunCORscenes use even more instantiated geom-
etry resulting in scenes with millions of triangles. TheSpheresand
the SPD Ballsscenes combine triangles and spheres as geometric
primitives and additionally show advanced shading effects such as
reflection and refraction on curved surfaces.

5.1 Performance Comparison

Table 3 compares the performance of the RPU prototype against
different hardware and software ray tracing implementations. First
of all its interesting to compare a programmable ray tracing hard-
ware to the fixed function SaarCOR prototype [Schmittler et al.
2004]. This allows us to estimate the overhead imposed by pro-
grammability. Looking at the measurements we see that the RPU
prototype delivers between 20% to 50% of the total frame rate.
However, one has to keep in mind that a reduced performance is
well balanced by much greater functionality and flexibility.

A detailed analysis shows that the peak floating point perfor-
mance of the RPU prototype is similar to that of the fixed func-
tion SaarCOR prototype. Furthermore, the fixed function design
allows for better utilization as the hardware directly corresponds
to the implemented algorithm. Similar to other programmable
designs like CPUs and GPUs we see reduced utilization and ef-
ficiency because not all available arithmetic units can be kept
busy all the time. For instance, we can only schedule instruc-
tions to a subset of all units per clock and SIMD units must



Figure 6: Some of the scenes used for benchmarking the prototype:
Castle, Terrain, Quake3-p, Office, Scene6, andSunCOR(from left
to right and top to bottom). More images are shown in Figure 1 and
details on the complexity are given in Table 3.

sometime be used for scalar data only.

Similar to fixed function units on GPUs we see significantly in-
creased efficiency and performance due to the fixed function TPU.

Another major difference is the much less efficient DRAM inter-
face resulting in greatly reduced memory bandwidth for random
accesses (352 MB/s) compared to the fast SRAM (1 GB/s) used
in [Schmittler et al. 2004]. Different implementations of the traver-
sal and intersection algorithms also reduce performance.

When comparing the RPU hardware to the highly optimized
OpenRT software ray tracer we see similar performance levels,
varying between 50% and 160% depending on the scene. Note that
this performance is achieved at a 40 times slower clock rate while
offering essentially the same flexibility in implementing extensions
and advanced rendering features. Performance drops mainly to-
wards more complex scenes due to the limited memory perfor-
mance.

It has long been shown that realtime ray tracing in software scales
extremely well to tens and even hundreds of CPUs [Wald et al.
2003b; Parker et al. 1999] even for complex shaders. Current raster-
ization graphics cards implement up to 16 fragment shading units
that are more complex than our RPUs. As these chips are running
at about 450 MHz and provide more than 30 times the external
memory bandwidth than our maximal memory bandwidth one can
imagine that building a chip with 27x times (16/4× 450/66) the
performance of our prototype should be possible using today’s chip
technology. The use of multithreading and the transfer of complete
cachelines from DDR memory to the caches allows to efficiently
utilize the available external memory bandwidth.

A careful analysis of the usage values for the prototype show that
the balancing between the TPUs and SPUs is near to optimal for

small shaders. If writing complex shaders, such as the sphere shad-
ing of theSPD Ballsscene, the more complex SPU unit becomes
the bottleneck, see Table 3. Computing a finer k-d tree can fix this
issue, by avoiding object intersections for the cost of more traversal
operations.

5.2 Scalability

Because all pixels are independent, the number of rays and shading
computations are linear in the number of pixels in an image. Higher
resolution images take advantage from better coherence between
rays [Schmittler et al. 2002] which improves performance. The cost
of tracing rays is mostly independent of the ray type (e.g. primary or
shadow ray) but shading costs can differ significantly. Increased im-
age quality through antialiasing currently still requires super sam-
pling. But adaptive sampling, filtered texture samples [Igehy 1999],
and advanced sampling and reconstruction techniques can reduce
the overhead considerably.

We can scale the parallel computation for ray tracing arbitrarily as
long as we can supply the parallel units with the required band-
width to the scene data. A major limitation of the current prototype
is the suboptimal DRAM interface that does not take advantage of
the burst capabilities. This would greatly increase performance for
loading triangle data, which accounts for significantly more than
50% of the bandwidth compared to the traversal and list units. It
needs exactly four 128-bit memory transfers from consecutive ad-
dresses, which perfectly aligns with DRAM burst requirements. In
particular, this would significantly help with the large test scenes
that currently show lower performance and hit rates. We believe
that similar results are achievable for the other types of memory
accesses as well.

Doing inter chip parallelization, as shown in Figure 3, is possible
for scenes with a reasonable number of visible triangles as the RPU
units are fed from primary caches. Simulations have shown that dis-
tributing the scene to memory connected independently to several
FPGA chips is easily possible, when we use this memory mainly
as caches [Schmittler et al. 2003]. Of course, due to the caching
approach we still depend on the working set fitting into the caches.
Mostly, only small changes in the set of visible scene parts must be
transfered per frame, unless the camera abruptly changes the view
(e.g. by walking around a corner). Still pre-fetching can be used to
reduce this effect to some degree. As these virtual memory tech-
niques always work on larger block sizes a key issue here is the
spatial locality of mapping objects from 3D into memory.

We have already tested the scalability of the prototype by simulta-
neously using two FPGAs on separate PCI boards in the same PC.
In this simple setup, each one board holds a complete copy of the
scene. Similar to distributed processing on clusters of PCs [Wald
et al. 2003b], this approach scales mostly independent of any scene
characteristics and is only limited by the available PCI bandwidth
to upload scene changes and download final pixel values.

5.3 Chunking Efficiency

As can be seen from the detailed performance analysis in Table 4,
chunking is very efficient for our test scenes. Even for the complex
SunCORandSPD Ballsscene the average number of active threads
per clock is only reduced to about 80%. TheSunCORscene con-
tains many small triangles which might suggest that rays would of-
ten be traversing and intersecting different scene components. Sim-
ilarly, the SPD Ballsscene has many adjacent pixels showing dif-
ferent materials resulting in the need to execute different material



shaders within one chunk. Both potential problems have only a
small impact on the overall performance showing that coherence
between rays is sufficiently high for these complex scenes and a
chunk size of 4 even on a relatively low image resolution.

The efficiency of combining memory requests of synchronously ex-
ecuted threads is slightly lower than the chunking efficiency since
different data is read more often than different instructions are exe-
cuted. For most scenes we see an efficiency between 95% and 99%,
when measured as the average number of threads that participate on
an external memory request (after combining).

Chunks have been used to decrease the hardware complexity, espe-
cially for the memory interface and the SPU. The usage of larger
chunks, that are possibly processed sequentially, can decrease the
complexity of the memory interface further. Unfortunately, this
causes increasing inefficiency for incoherent computations, as then
chunking and memory combining efficiency drops, limiting peak
floating point performance and/or memory bandwidth. We consider
a chunk size of 4 to be a good trade-off.

6 Conclusion and Future Work

The RPU architecture as presented above aims at combining the
best features of CPUs, GPUs, and custom hardware in order to im-
plement a fully programmable, parallel processor that can acceler-
ate the entire ray tracing algorithm in hardware to achieve realtime
rendering performance. The RPU’s programming model closely
resembles that of current GPUs but extends it significantly towards
general purpose computing. This includes full support for recur-
sion, branching, and much more general memory operations. These
features are implemented in an efficient multi-level SIMD design,
where SIMD is used both at the instruction level (short 4-vectors)
as well as on the thread level where synchronously executed, coher-
ent threads can significantly increase memory efficiency. Finally,
each general purpose SPU has been extended by a custom k-D tree
traversal unit accessible through a special SPU instruction.

With this approach we have been able to create the first fully pro-
grammable hardware for ray tracing which already achieves real-
time frame rates. Although the prototype hardware is implemented
using only FPGA technology and runs at a rather low clock rate of
66 MHz, it provides about the same ray tracing performance as run-
ning essentially the same algorithm on a high-performance, multi-
GHz, general purpose processor. It is this high efficiency of the
programmable units tightly coupled with a fixed function TPU that
allows realtime performance even at very low clock rates.

Our programmable hardware maintains an efficient high utiliza-
tion for its functional units through a combination of an extended
SIMD execution model and a strongly multi-threaded design. The
extended SIMD model combines the efficiency of SIMD with the
flexibility for threads to deviate from the fixed control flow where
necessary with very low overhead and still high utilization.

Multi-threading is sometimes perceived to be inefficient due to the
need to maintain state for all threads in costly on-chip memory.
However, our memory requirements are reasonable. Furthermore,
this memory is implemented in many small and local register files
distributed across the architecture, which supports efficient memory
designs.

The programming model made possible by the RPU architec-
ture offers many advantages over rasterization, directly and accu-
rately supporting many advanced global rendering features includ-
ing shadows, reflections, and refraction effects. Even more impor-
tantly, the design allows for a declarative approach to scene descrip-

tion, where geometry and different shaders are fully orthogonal to
each other. This type of scene description greatly simplifies con-
tent creation and can be evaluated with full acceleration entirely in
hardware without any support from the application.

Of course many open questions still remain. Creating spatial in-
dex structures and maintaining them across scene changes is still a
challenge for highly dynamic scenes. Efficiently computing glossy
reflections and performing anti-aliasing (beyond simple but costly
super-sampling) is still a largely unsolved problem. We also plan to
evaluate the potential of a full ASIC implementation of the RPU ar-
chitecture for comparing it with today’s GPUs in terms of chip area,
speed, and power consumption. Finally, we want to explore the use
of fast, hardware accelerated ray tracing for other applications than
rendering, including general visibility queries, collision detection,
and the simulations of non-optical global transport problems.

In summary, our RPU architecture demonstrates that realtime ray
tracing can efficiently be implemented by a hardware architec-
ture that is fundamentally very similar to current GPUs. We hope
that fast, hardware accelerated ray tracing will eventually become
widely available, as it provides a robust, easy to use, and powerful
basis for advanced 3D graphics and enables interesting new appli-
cations.
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