Sampling

CS 6965 Fall 2011
Creative Program 3
Sampling Theory

- World: continuous
- Image: discrete samples
- Display: continuous function
- Ray tracing is a sampling process
- Result: jaggies!
- Let’s understand why
Aliasing

- Aliasing appears in several forms:
 - Jagged edges
 - Moire patterns
 - Strobe effect
Picket fences

Fence 1: 6 inch boards

Fence 2: 4 inch boards
Picket fences

Fence 1: 6 inch boards

Fence 2: 4 inch boards
Aliasing

- Aliasing is just high frequencies disguised as low frequencies

- We need to understand where the high frequencies come from and what we can do about them
Mathematical tools

- Fourier transform
- Sampling
- Shannon theorem
- Convolution
- Filtering
Fourier transform

Given a function $h(t)$:

$$F[h(t)] = H(\omega) = \int_{-\infty}^{\infty} h(t) e^{-i\omega t} dt$$

$$F^{-1}[H(\omega)] = h(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} H(\omega) e^{i\omega t} dt$$

$i = \sqrt{-1}$

$e^{ix} = \cos(x) + i \sin(x)$
Discrete Fourier Transform

Continuous Fourier Transform (FT):

\[F \left[h(t) \right] = H(\omega) = \int_{-\infty}^{\infty} h(t) e^{-i\omega t} \, dt \]

\[F^{-1} \left[H(\omega) \right] = f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} H(\omega) e^{i\omega t} \, dt \]

Discrete Fourier Transform (DFT):

\[F_n = \sum_{k=0}^{N-1} f_k e^{-2\pi i k/N} \]

\[f_k = \frac{1}{N} \sum_{n=0}^{N-1} f_n e^{2\pi i n k/N} \]

Fast Fourier Transform (FFT) is just an optimized version of DFT (using half-angle identities)
Frequencies

- Full Function
- 2 Terms
- 6 Terms
- 10 Terms
- 18 Terms
- 30 Terms
Frequency space

Time domain

Frequency domain
Frequency space

Time domain

Frequency domain
Duality

Examples of FT pairs

box

sinc

source: http://mrl.nyu.edu/~dzorin/intro-graphics/lectures/lecture2/sld013.htm
Examples of FT pairs

Gaussian

Gaussian
Dirac delta function

\[\delta(t) = \begin{cases} \infty & t = 0 \\ 0 & t \neq 0 \end{cases} \]

\[\delta(t - t_0) = \begin{cases} \infty & t = t_0 \\ 0 & t \neq t_0 \end{cases} \]

\[\int_{-\infty}^{\infty} \delta(t) \, dt = 1 \]
Sampling

\[\int \delta(t)f(t)\,dt = f(0)\]

\[\int \delta(t)f(t-t_0)\,dt = f(t_0)\]

The delta function allows us to sample the function f
Sampling

More samples: more delta functions

\[\text{comb}(t) = \sum_{-\infty}^{\infty} \delta(t - nT) \]

\[\int_{-\infty}^{\infty} \text{comb}(t) f(t) dt = ..., f(-2T), f(-T), f(0), f(T), f(2T), ... \]
Comb function

\[\text{comb} = \sum_{n=-\infty}^{\infty} \delta(t - nT) \]

FT of a comb is also a comb
Convolution

\[g, h : \text{functions} \]

\[g \ast h = c(t) = \int_{-\infty}^{\infty} g(t)h(t-\tau)d\tau \]

\[F(g(t)) \ast F(h(t)) = F(g(t)h(t)) \]

\[F(g(t)h(t)) = F(g(t) \ast h(t)) \]

Multiplication in frequency space is convolution in time
and vice-versa
Sampling

given $g(t)$:

$$F(g(t)\text{comb}(t)) = F(g(t)) \ast F(\text{comb}(t))$$

$$= F(g(t)) \ast \text{comb}(t)$$
Sampling

given \(g(t) \):

\[
F(g(t)\text{comb}(t)) = F(g(t)) \ast F(\text{comb}(t))
\]

\[
= F(g(t)) \ast \text{comb}(t)
\]
given \(g(t) \):

\[
F \left(g(t) \text{comb}(t) \right) = F \left(g(t) \right) \ast F \left(\text{comb}(t) \right)
\]

\[
= F \left(g(t) \right) \ast \text{comb}(t)
\]
Nyquist theorem
(Shannon theorem, sampling theorem)

- Any function g can be represented by samples of frequency F iff the function g is band-limited to a frequency of $F/2$
Fourier series

\[f(t) = a_0 + \sum_{n=1}^{\infty} \left(a_0 \cos \pi n + b_0 \sin \pi n \right) \]
Band-limiting

- How do we prevent aliasing?
- Band-limited functions
Fix 1: Band-limiting

Examples of FT pairs

source: http://mrl.nyu.edu/~dzorin/intro-graphics/lectures/lecture2/sld013.htm
CS 6965
Band limiting in graphics

- No silver bullet:
 - Lines, polygon edges: analytical formulations (doesn’t handle lines crossing)
 - Textures: mip-maps, other filters
 - Objects: level of detail
 - Fonts?
Fix 2: Increase sampling frequency

Examples of FT pairs

- box
- sinc

© 1999, Denia Zane
Fix 3: Non-delta function samples

- Beam tracing
- Cone tracing
- Not always possible
Fix 4: Non-uniform samples

- Idea 1: Use a few samples to estimate the frequencies to decide the sampling rate
 - May miss some high frequencies
 - Works pretty well for edges
- Idea 2: Use random instead of uniform samples
 - \(F(\text{white noise}) = \text{white noise} \)
 - Can potentially recover all frequencies
 - May not always recover some frequencies
 - Lost frequencies “masked” by visual system
Reconstruction

- Nyquist/Shannon: Any function g can be represented by samples of frequency F iff the function g is band-limited to a frequency of $F/2$
- How?
Reconstruction

Connect the dots?

\[f(t) = \sum_{s=1}^{n} a_s T(t) \]

\[T(t) = \begin{cases}
-t & -1 \leq t < 0 \\
0 & \text{otherwise} \\
t & 0 \leq t \leq 1
\end{cases} \]
Reconstruction

Connect the dots?

\[F(f(t)) = \sum_{s=1}^{n} a_s F(T(t)) \]
Triangle reconstruction
Better reconstruction

- Ideal reconstruction filter: sinc function (infinite in time)
- Bad news: ALL filters that have finite frequency response have infinite time response and vice-versa

- For a detailed discussion of some of the tradeoffs:
Filter responses

Ken Turkowski, Apple Computer, “Filters for Common Resampling Tasks”
Windowed Sinc

Lanczos-windowed Sinc function
Filter compromises

- User study with over 500 subjects

- Identified a new filter with good properties (now called the Mitchell filter)
Sampling 2
Supersampling pipeline

- World (continuous)
- Fine Samples (discrete)
- Reconstructed world (continuous)
- Image Samples (discrete)
- Reconstructed image (continuous)
Resampling

- To move from one sample rate to another, we use the same filters
- Interpolation: increasing resolution
- Decimation: decreasing resolution
- Pre-aliasing: undersampling
- Post-aliasing: errors in reconstruction
Filtering details (decimation)

\[\sum \text{filter}(x) f(x) \]

\[\sum \text{filter}(x) \]
Filtering details (non-uniform sampling)

Fine samples

\[\sum \text{filter}(x)f(x) \]

Coarse sample

\[\sum \text{samples} \]
2D Fourier transform
2D filtering

2D Filtering:

\[\sum_{\text{samples}} \text{filter}(x,y) f(x,y) \]

\[\sum_{\text{samples}} \text{filter}(x,y) \]

2D Separable filter:

\[\text{filter}(x,y) = \text{filter}_x(x) \text{filter}_y(y) \]

\[\sum_{\text{samples}} \text{filter}_x(x) \text{filter}_y(y) f(x,y) \]

\[\sum_{\text{samples}} \text{filter}_x(x) \text{filter}_y(y) \]

General

Separable
Sampling patterns

Random

Uniform
Sampling patterns

Stratified

n-rooks
Aliasing

Source: Physically Based Rendering, Pharr & Humphreys
Aliasing

1 spp, stratified

4 spp, stratified
\[f(x, y) = \frac{\sin(500\pi (x^2 + y^2)) + 1}{2} \]
Fourier transform
Box filter
9 uniform samples, box filter
9 jittered samples, box filter
9 spp, triangle filter
Perfect filter
Overlapping pixels

- Any filter with support > 1 overlaps multiple pixels
- You can reuse samples, but it muddies the architecture
- If you don’t, it limits use of high order filters
- Alternatively: generate samples with a distribution
Implementation notes:

• Draw graphs of your filters before using them
• Try a box filter first
• Hardest part: get subpixel coordinates right
Pixel coordinate clarification
Pixel coordinate clarification
Box filter support

```
    1
   --|--
   |  |
-.75 | .75
   |  |
    1
```

Values:

-1 -0.75 -0.25 0 0.25 0.75 1
1 spp
9 spp jittered triangle
Adaptive supersampling

- Images look better with more samples
- More samples take longer
- Can we put the samples where we need them?
Statistical approach

• Compute variance of samples
• Add more samples if variance is too large
• Confidence interval: 90% sure that average is within some range (+/- 1 lsb)
• Theoretically, you must throw away old samples
• You can still miss things
Improved statistical approach

- Discontinuity of sampling rate introduces artifacts
- Two pass algorithm:
 - Normal statistical supersampling
 - Go back over pixels near pixels with high sample rates
- Could repeat
Geometric approach

- 4 samples: corners + center
- Recursively subdivide pixels: (add three more)
- Final color: area weighted average
- Duplicates on edges?
Geometric approach

- 4 samples: corners + center
- Recursively subdivide pixels: (add three more)
- Final color: area weighted average
- Duplicates on edges?
Geometric approach

- 4 samples: corners + center
- Recursively subdivide pixels: (add three more)
- Final color: area weighted average
- Duplicates on edges?
Anti-aliasing review

- Nyquist limit requires sampling rate of 2F
- Graphics uses infinitely large frequencies
- Can get reasonably close with good filters
- Simple filters do a poor job, even at low frequencies (just above the Nyquist limit)
Packet Traversal
BVH traversal

Child B

Child A
BVH packet traversal

![Diagram showing BVH packet traversal with Child B and Child A, with rays originating from the left and heading towards the right, indicating traversal through the BVH structure.](image-url)
BVH packet traversal

![Diagram of BVH packet traversal]
BVH packet traversal
Instancing
Instancing

• Increase geometric complexity through creating multiple copies of similar objects

http://www.cs.utah.edu/~angell/cs6620/assignment6/
Instances

- Instances may affect position and material properties.

http://www.cs.utah.edu/~bigler/classes/cs6620/final.html
Pre-transformation

Simplest way: transform objects as they are read in
+ No additional overhead in ray tracing objects
- Requires a lot of memory for complex objects
Transform

More efficient way: transform ray at intersection time

+ Transform must be computed for each ray

- Scenes with billions of polygons are possible with modest memory requirements
Translational instances

- Simplest instance: translation vector
- Create a TInstance class as a subclass of Primitive
- Contains a translation vector and a pointer to an underlying object
- Intersect method subtracts translation vector from origin and calls intersect on underlying object
- Similar for call to normal()
General instances

• General linear transformations are more powerful

\[\mathbf{P'} = \mathbf{O} + t\mathbf{V} \]

\[
\begin{bmatrix}
M_{00} & M_{01} & M_{02} & T_x \\
M_{10} & M_{11} & M_{12} & T_y \\
M_{20} & M_{21} & M_{22} & T_z
\end{bmatrix}
\begin{bmatrix}
P_x \\
P_y \\
P_z \\
1
\end{bmatrix}
\]
General transformations

\[\overrightarrow{P} = \overrightarrow{O} + t\overrightarrow{V} \]

\[\overrightarrow{P'} = \begin{bmatrix} M_{00} & M_{01} & M_{02} & T_x \\ M_{10} & M_{11} & M_{12} & T_y \\ M_{20} & M_{21} & M_{22} & T_z \end{bmatrix} \begin{bmatrix} P_x \\ P_y \\ P_z \\ 1 \end{bmatrix} \]

\[\overrightarrow{P'} = M\overrightarrow{P} + \overrightarrow{T} \]
\[= M\overrightarrow{O} + M\overrightarrow{V} + \overrightarrow{T} \]
\[= \overrightarrow{O'} + t\overrightarrow{V'} \]

where:

\[\overrightarrow{O'} = M\overrightarrow{O} + \overrightarrow{T} \]
\[\overrightarrow{V'} = M\overrightarrow{V} \]
Instances

- Create an Instance class as a subclass of Primitive
- Contains a transform object and a pointer to an underlying object
- Intersect method transforms origin and direction and then calls intersect on underlying object with the transformed ray
- Two gotchas:
 - Unit length ray directions
 - Normals
Unit length ray directions

• Transformation may change length of a unit vector
• If your implementation relies on normalized ray directions, then ray must be “re-normalized”
• This involves a square root, in general
 – Can be optimized for uniform scale factors

\[l = v \text{normalize()} \]

intersect child

\[t_{\text{parent}} = t_{\text{child}} * l \]
Consider a plane:
\[\vec{N} \cdot \vec{P} = 0 \]

and a transform:
\[\vec{P}' = M \vec{P} \]

Find a plane with normal \(\vec{N}' \) such that \(\vec{N}' \cdot \vec{P}' = 0 \)
\[\vec{N} \cdot \vec{P} = 0 \]
\[NP^T = 0 \]
\[N(M^{-1}M)^T = 0 \]
\[(NM^{-1})(MP^T) = 0 \]
\[(NM^{-1})P' = 0 \]
\[\vec{N}' = (NM^{-1}) = (M^{-1})^T N = (M^T)^{-1} N \]

If \(M \) is a rotation matrix, \(M^{-1} = M^T \), so \((M^T)^{-1} = M \)
Transformed normals

• Normal must be transformed
 \[\mathbf{N}' = \left(M^{-1} \right)^T \mathbf{N} \]
 \[\mathbf{N}' = \frac{\mathbf{N'}}{\|\mathbf{N'}\|} \]

• Easy with normals computed at intersection time

• Deferred normals (scratchpad) require a little more thought
Transformed deferred normals

• Method 1: Use scratchpad to defer transformation but compute untransformed normal at intersection time

intersect:
 HitInfo subhit
 transform ray
 length = normalize ray direction
 intersect child with subhit
 if(subhit.wasHit())
 && hit.hit(t*length, this, subhit.matl)
 Put normal in scratchpad
Transformed deferred normals

- Method 2: Extend scratchpad to allow a “stack” of objects
- Normal is transformed only if object is actually closest
- Good for nested transformations

<table>
<thead>
<tr>
<th>Hit object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transform 1</td>
</tr>
<tr>
<td>Transform 2</td>
</tr>
</tbody>
</table>
Nested transformations

• Multiple transformations can be combined by nesting instance objects
• Must be careful with deferred computation (i.e. scratchpad) mechanisms
 – All of the above solutions work fine, others may not
Nested acceleration structures

- Using nested structures you can create enormously complex scenes (millions of bunnies)
- Acceleration structures can be mixed/matched (BVH on top, Grid on bottom, etc.)
Bounding box computation

• To use acceleration structures you will need the bounding box of the transformed object

• Simplest method:
 – Transform each vertex of the child bounding box (8 of them)
 – Compute the min/max of each of these vertices
 – Doesn’t always result in tight bound

• Complex method:
 – Transform underlying model
 – Easy for polygonal objects
 – Not always possible for general objects
Instance optimizations

• Precompute matrix inverse
 – Perhaps store only inverse
• Specialized methods and/or storage for special cases:
 – Pure translation
 – Pure rotation
 – Rotation + translation
 – Uniform scale
 – Uniform scale plus translation, rotation, or both
 – General case
Changing materials

intersect:
HitInfo subhit
transform ray
length = normalize ray direction
intersect child with subhit
if(subhit.wasHit())
 && hit.hit(t*length, this, \texttt{override_matl})
Put normal in scratchpad

Similar for other mechanisms
Other instancing tricks

- Implicitly defined fractals
- Uses a graph structure instead of an instance tree

Figure 5: The 3-D fractal pound sign.

CS6620 Spring 07

graphics.cs.uiuc.edu/~jch/papers/paradigm.pdf
Hart instancing paper

Trees and other complex objects can be specified with a few bytes.