
183

Appendix 20: Structural Induction

The relation r defined in the previous lecture is a function, but how could we prove it? Here’s
a semi-formal argument: The relation r is defined by a pair of constraints. The first constraint
applies to a • expression that starts with f, and the result is determined uniquely by the right-
hand part of the expression. The second constraint applies to a • expression that starts with
t, and the result is determined uniquely as t. Since an expression can start with either f or t,
then only one constraint will apply, and the result is unique.

The above argument is fairly convincing because it relies on a directly observable property
of the expression: whether it is a • expression that starts with f or t. Other claims about
relations over B may not be so simple to prove. For example, it is not immediately obvious
that evalr is a function. The fundamental reason is that B is recursively defined; there is no
way to enumerate all of the interesting cases directly. To prove more general claims, we must
use induction.

Mathematical induction arguments are based on the natural numbers. A claim is proved
for 0, then for n + 1 assuming the claim for n, and then the claim follows for all n. For most
of the proofs we will consider, no natural number n is readily provided for elements of the set
(such as B), but one could be derived for an expression based on the number of steps in an
argument that the expression belongs to the set (as in §1.1).

Instead of finding appropriate numbers for set elements to enable mathematical induction,
however, we will use structural induction, which operates directly on the grammar defining
set elements. The underlying principle is the same.

20.1 Detecting the Need for Structural Induction

Structural induction applies when proving a claim about a recursively-defined set. The set
is well-founded, of course, only if there are atomic elements in the definition; those elements
constitute the base cases for induction proofs. The self-referential elements of the definition
constitute the induction cases.

For example, suppose we have the following definition:

P = α
| (β⊗P)
| (P"P)

Example members of P include α, (β ⊗ α), (α " α), and ((β ⊗ (β ⊗ α)) " (β ⊗ α)). Here is a
claim about elements of P :

Theorem 20.1: For any P , P contains an equal number of βs and ⊗s.

The truth of this claim is obvious. But since Theorem 20.1 makes a claim about all possible
instances of P , and since the set of P s is recursively defined, formally it must be proved by
structural induction.

Guideline: To prove a claim about all elements of a recursively defined set, use
structural induction.

The key property of a correctly constructed induction proof is that it is guaranteed to cover an
entire set, such as the set of P s. Here is an example, a proof of the above claim:

Proof for Theorem 20.1: By induction on the structure of P .

• Base cases:

184 Appendix 20: Structural Induction

– Case α
α contains 0 βs and 0 ⊗s, so the claim holds.

• Inductive cases:

– Case (β⊗P)
By induction, since P is a substructure of (β⊗P), P contains an equal
number—say, n—of βs and ⊗s. Therefore, (β⊗P) contains n + 1 βs and
⊗s, and the claim holds.

– Case (P1"P2)
By induction, P1 contains an equal number—say, n1—of βs and ⊗s. Sim-
ilarly, P2 contains n2 βs and ⊗s. Therefore, (P1"P2) contains n1 + n2 βs
and ⊗s, and the claim holds.

The above proof has a relatively standard shape. The introduction, “by induction on the
structure of P” encapsulates a boilerplate argument, which runs as follows:

The claim must hold for any P . So assume that an arbitrary P is provided. If P
has the shape of a base case (i.e., no substructures that are P s) then we show how
we can deduce the claim immediately. Otherwise, we rely on induction and assume
the claim for substructures within P , and then deduce the claim. The claim then
holds for all P by the principle of structural induction.

The proof for Theorem 20.1 contains a single base case because the definition of P contains
a single case that is not self-referential. The proof contains two inductive cases because the
definition of P contains two self-referential cases.

Guideline: For a structural induction proof, use the standard format. The section
for base cases should contain one case for each base case in the set’s definition. The
section for induction cases should contain one case for each remaining case in the
set’s definition.

The standard shape for a structural induction proof serves as a guide for both the proof writer
and the proof reader. The proof writer develops arguments for individual cases one by one.
The proof reader can then quickly check that the proof has the right shape, and concentrate
on each case to check its correctness separately.

Occasionally, within the section for base cases or induction cases in a proof, the case split
uses some criteria other than the structure used for induction. This is acceptable as long as
the case split merely collapses deeply nested cases, as compared to a standard-format proof. A
non-standard case split must cover all of the base or inductive cases in an obvious way.

All proofs over the structure of P , including Theorem 20.1, have the same outline:

Proof for Theorem : By induction on the structure of P .

• Base cases:

– Case α
· · ·

• Inductive cases:

– Case (β⊗P)
· · · By induction, [claim about P] . . .

– Case (P1"P2)
· · · By induction, [claim about P1] and, by induction, [claim about P2] · · ·

Only the details hidden by “· · ·” depend on the claim being proved. The following claim is also
about all P s, so it will have the same outline as above.

20.2 Definitions with Ellipses 185

Theorem 20.2: For any P , P contains at least one α.

! Exercise 20.1. Prove Theorem 20.2.

20.2 Definitions with Ellipses

Beware of definitions that contain ellipses (or asterisks), because they contain hidden recursions.
For example,

W = α
| (βWW . . .W)

allows an arbitrary number of W s in the second case. It might be more precisely defined as

W = α
| (βY)

Y = W
| Y W

Expanded this way, we can see that proofs over instances of W technically require mutual
induction proofs over Y . In practice, however, the induction proof for Y is usually so obvious
that we skip it, and instead work directly on the original definition.

Theorem 20.3: Every W contains α.

Proof for Theorem 20.3: By induction on the structure of W .

• Base case:

– Case α
The claim obviously holds.

• Inductive case:

– Case (βW0W1 . . . Wn)
Each Wi contains α, and W contains at least one Wi, so the claim holds.

The following theorem can also be proved reasonably without resorting to mutual induction.

Theorem 20.4: For any W , each β in W is preceded by an open parenthesis.

! Exercise 20.2. Prove Theorem 20.4.

20.3 Induction on Proof Trees

The following defines the set #P , read “P is pointy”:

#α [always]
#(P1"P2) if #P1 and #P2

As usual, the set of #P s is defined as the smallest set that satisfies the above rules. The first
rule defines a base case, while the second one is self-referential.

Another common notation for defining a set like #P is derived from the notion of proof
trees:

#α
#P1 #P2

#(P1"P2)

186 Appendix 20: Structural Induction

When #P appears above a line in a definition, we understand it to mean that there must
be a pointy proof tree in its place with #P at the bottom. This convention is used in the
self-referential second rule.

Both notations simultaneously define two sets: the set of pointy indications#P , and the set
of pointy proof trees. Nevertheless, both sets are simply patterns of symbols, defined recursively.
Examples of pointy proof trees include the following:

#α
#α

#α #α
#(α" α)

#(α" (α" α))

We can now write claims about #P and its pointy proof trees:

Theorem 20.5: If #P , then the pointy proof tree for #P contains an odd number
of #s.

The proof for this claim works just like the proof of a claim on P , by structural induction:

Proof for Theorem 20.5: By induction on the structure of the pointy proof of
#P .

• Base cases:
– Case #α

The complete tree contains #α, a line, and a check mark, which is one #
total, so the claim holds.

• Inductive cases:
– Case #(P1"P2)

The complete tree contains#(P1"P2), plus trees for#P1 and#P2. By in-
duction, since the tree for #P1 is a substructure of the tree for #(P1"P2),
the #P1 tree contains an odd number of #s. Similarly, the #P2 tree con-
tains an odd number of #s. Two odd numbers sum to an even number, so
the trees for #P1 and #P2 combined contain an even number of #s. But
the complete tree for #(P1"P2) adds one more, giving an odd number of
#s total, and the claim holds.

20.4 Multiple Structures

Many useful claims about recursively-defined sets involve a connection between two different
sets. For example, consider the following claim:

Theorem 20.6: For all #P , P contains no βs.

Should this claim be proved by structural induction on P , or on #P? We can find the answer
by looking closely at what the theorem lets us assume. The theorem starts “for all #P”, which
means the proof must consider all possible cases of #P . The proof should therefore proceed
by induction on the structure of #P . Then, in each case of #P , the goal is to show something
about a specific P , already determined by the choice of #P .

Guideline: A leading “for all” in a claim indicates a candidate for structural
induction. An item in the claim that appears on the right-hand side of an implication
is not a candidate.

In contrast to Theorem 20.6, Theorem 20.5 was stated “if #P , then . . . ”. This “if . . . then”
pattern is actually serving as a form of “for all”. When in doubt, try to restate the theorem in
terms of “for all”.

20.5 More Definitions and More Proofs 187

Proof for Theorem 20.6: By induction on the structure of the proof of #P .

• Base cases:

– Case #α
In this case, P is α, and the claim holds.

• Inductive cases:

– Case #(P1"P2)
By induction, P1 and P2 each contain no βs, so (P1"P2) contains no βs.

Here is a related, but different claim:

Theorem 20.7: For all P , either 1) P contains a β, or 2) #P .

! Exercise 20.3. Prove Theorem 20.7. The theorem must be proved over a different structure
than Theorem 20.6.

20.5 More Definitions and More Proofs

We can define more sets and make claims about their relationships. The proofs of those claims
will follow in the same way as the ones we have seen above, differing only in the structure used
for induction, and the local reasoning in each case.

Here is a new set:

((β ⊗ α)" α) $ (β ⊗ α)
(α" (β ⊗ α)) $ α
(α" α) $ α
(P1"P2) $ (P ′

1"P2) if P1$P ′
1

(P1"P2) $ (P1"P ′
2) if P2$P ′

2

Like our original definition for #P , P$P is defined by the least set satisfying the above rules.
Examples for this set include ((β⊗α)"α)$(β⊗α) and (((β⊗α)"α)β(α"α))$((β⊗α)β(α"α)).
The atomic elements of the definition in this case are the first three rules, and the self-reference
occurs in the last two rules.

Theorem 20.8: For all P$P ′, P contains more "s than P ′.

Proof for Theorem 20.8: By induction on the structure of P$P ′.

• Base cases:

– Case ((β ⊗ α)" α) $ (β ⊗ α)
In this case, P is ((β⊗α)"α), which has one ", and P ′ is (β⊗α), which
has zero "s, so the claim holds.

– Case (α" (β ⊗ α)) $ α
In this case, P is (α" (β ⊗ α)), which has one ", and P ′ is α, which has
zero "s, so the claim holds.

– Case (α" α) $ α
In this case, P is (α " α), which has one ", and P ′ is α, which has zero
"s, so the claim holds.

• Inductive cases:

188 Index

– Case (P1"P2) $ (P ′
1"P2)

In this case, P is (P1"P2), which means it has as many "s as P1 and P2

combined. P ′ is (P ′
1"P2), which means it has as many "s as P ′

1 and P2

combined. By induction, P1 has more "s than P ′
1, so P has more "s than

P ′, and the claim holds.
– Case (P1"P2) $ (P1"P ′

2)
Analogous to the previous case.

Here is one last definition:

V = α
| (β⊗V)

Theorem 20.9: Every V is in P .

Theorem 20.10: If #P and P is not a V , then P$P ′ for some P ′

Theorem 20.11: If #P and P$P ′, then #P ′.

! Exercise 20.4. Prove Theorem 20.9.

! Exercise 20.5. Prove Theorem 20.10.

! Exercise 20.6. Prove Theorem 20.11. The proof can proceed in two different ways, since the
implicit “for all” applies to both #P and P$P ′.

