Bonding, Packaging, and Sacrificial Processes
Dr. Bruce K. Gale
Microsystems Principles
ENGR 494C and 594C

Sacrificial Processes
• Materials
 – Photoresist
 – Silicon dioxide
 – Entire wafers
 – Metals
 – Glasses
• Problems
 – Diffusion limits
 • Geometry
 – Sticking
 • Phase change can eliminate
 • Geometry

Sacrificial Processes
• Dissolved wafer processes
 – SOI wafers
 – Membranes
 – Moving structures
• Sacrificial processes
 – Channels, cavities
 – Release moving structures
• HEXSIL
• Membranes
• Cantilevers

Bonding
• Why?
 – Create channels or cavities
 – Create isolation layers (SOI wafers)
 – Reduce complexity on each chip
 – Packaging
• Methods
 – Anodic bonding
 – Silicon fusion bonding
 – Photosigners
 – Eutectic bonding
 – Others
 • Press
 • Thermocompression metallic
 • Ultrasonic welding
 • Seam welding
 • Laser welding
 • Low-temp glass bonding

Anodic Bonding
• Also called electrostatic bonding
• Bonds glass to silicon
• Used to reduce temp to reasonable levels
• Performed at about 400 C with about 1.2 kV
• Positive ions in glass drift toward silicon causing high field at interface
• Pull silicon and glass close together
• Silicon positive, glass negative
• Use glass with similar thermal expansion coefficient
• Cleanliness critical to prevent voids
• Thin metal lines can pass through bond
• Using deposited glass (thin layers) reduce voltage significantly
• Works with e-beamed, sputtered, and spin-on glass
Silicon Fusion Bonding

- Silicon to silicon bond, oxides also work
- High physical strength
- Require hydroxyl groups on surface
- 300 to 800°C required for bond with higher anneals temps sometimes required
- Use of low-melting glass allows lower temp bond

Epoxy or Polyimide Bonding

- Both conductive and non-conductive types
- Inexpensive and simple
- Lower bond strength
- Can form insulating layer
- Potential decomposition

Eutectic Bonding

- Uses silicon metal alloy (other alloys also) such as Si-Ag, Si-Au, Si-Al
- Silicon dissolves in gold at about 370°C and up
- Relatively low temperature
- Microstructure change allows high reliability, strong bond, good heat dissipation, and thermal stability
- Problems with bonding large areas

Eutectic Point for Si - Au

Other Bonding Methods

- Hardware store methods
- Glues, silicones, etc
- UV Curable materials
- Photoresists
- Waxes
- Chemical bonding
- Hydrophilic bonding
- The simpler the better!!!