Detecting Danger at Nanoscale

Organic Nanowires for Trace Vapor Sensing of Explosives and Other Threatening Chemicals

Optical and Electrical Sensing

- **Enhanced sensitivity**
- **1D self-assembly through molecular π–π stacking**

Ideal sensor for vapor detection

- **Long-range exciton migration enables amplification of fluorescence quenching**
- **Electron delocalization leads to a sensor for reducing reagents**
- **Materials covering both n-type and p-type**:
 - **n-type**: electron accepting → sensing for reductive (e-donating) molecules, e.g., amines.
 - **p-type**: electron donating → sensing for oxidative (e-accepting) molecules, e.g., nitro-aromatics.

Ultrathin nanowires for increased surface area and more confined exciton diffusion and charge transport

Efficient fluorescence sensing of explosives vapor

Selectivity against ambient interference

High stability for repeated use

Quenching efficiency independent on film thickness

Quenching (%)

- **Enhanced sensitivity**

- **1E-3 0.01 0.1 1 10 100 1000**

Vapor concentration (ppb)

- **5 ppt 0.1 ppb 1 ppb**

Efficient fluorescence sensing of amines vapor

Potential interference from Cosmetics (10 s exposed to sat. vapor)

Detection limit down to few ppt

Freshly deposited nanobelt

Broken after high current

Electrical sensing of hydrazine vapor

Quenching efficiency (1-I/Io)

- **Accounts of Chemical Research, 41 (2008) 1596-1608.**

Acknowledgments

The Zang Research Group, Department of Materials Science and Engineering
Tel. 801-587-1551, Email: LZang@eng.utah.edu, Web: www.eng.utah.edu/~lzang