Example: ANSYS and 3D element (solid45)

In this example, we revisit problem \#3 of homework 5a. This problem will now be solved using a 8 -node 3D element (solid45) rather than the beam (beam3) element. Input commands for this problem are show below. Students are encouraged to consult the ANSYS online help on solid45 element for its features and limitations.
/prep7
et, 1,45
mp,ex, 1,66e9
mp,prxy,1,0.3
k,1,0,0,0 !keypoints
k,2,0.025/2,0,0
k,3,0.075/2,0,0
k,4,0.075/2,0.025,0
k,5,0.025/2,0.025,0
k,6,0.025/2,0.1,0
k,7,0,0.1,0
k,8,0,0.025,0
1,1,2,1 !create lines from 2 keypoints.
1,3,4,2
1,4,5,2
1,5,6,8
1,6,7,1
1,7,8,8
1,8,1,2
1,5,8,1
1,2,5,2
a, 1,2,5,8
a,2,3,4,5
a,5,6,7,8
esize,,30 !define number of division for the depth.
vmesh,all
nsel,s,loc,x, 0,0
dsym,symm,x
nsel,s,loc, z, 0,0
nsel,,r,loc,y, 0,0
d,all,all,0
nsel,,s,loc,, , 3,3
nsel,,,loc,y, 0,0
d,all,ux,0
d,all,uy,0
nsel,s,loc,z,1.2,1.2
nsel,,r,loc, x, 0,0
nsel,,r,loc, y, 0.1,0.1
f,all,fy,-5400/2
nsel,all
fini
!esize command must be issued prior to vext command
vext, $1,3,1,, 3$!extruding the areas parallel to global z -axis to create volumes
!vext,first area, last area,increment, $\mathrm{x}, \mathrm{y}, \mathrm{z}$!mesh all volumes
!select a new set of nodes from $\mathrm{x}=0$ to $\mathrm{x}=0$
!apply symmetry
!select a new set of nodes from $\mathrm{z}=0$ to $\mathrm{z}=0$
!select nodes from the previous set from $\mathrm{y}=0$ to $\mathrm{y}=0$
!constain ux, uy, uz
!select nodes on the other end of the beam
!constrain ux
! constrain uy
!select node on the top of the beam
!create areas using 4 keypoints. Keypoints must be in either !clockwise or counter clockwise order.
!extruding the areas parallel to global z -axis to create volumes
-
!apply load
!reselect all nodes

1,2,3,2 !third number represent the number of divisions along the line.
!solid45: 8-node 3D element
!modulus of elasticity
!poisson ratio
/solu
solve
fini
/post1
lpath,1,7
pdef,sigbot,s,z
lpath,381,397
pdef,sigtop,s,z
plpath,sigtop
plpath,sigbot
fini
!create path between node 1 and 7
!store sz under sigbot for this path
!create path between node 381 and 397
!store sz under sigtop for this path
!plot sigtop
!plot sigbot

STEP=1
TIME=1
PATH PLOT
NOD1=1
$\operatorname{NOD} 2=7$

