LES of Turbulent Flows: Lecture 2 Supplement
(ME EN 7960-003)

Prof. Rob Stoll
Department of Mechanical Engineering
University of Utah

Fall 2014
Fourier Transforms are a common tool in fluid dynamics (see Pope, Appendix D-G, Stull handouts online)

Some uses:

• Analysis of turbulent flow

• Numerical simulations of N-S equations

• Analysis of numerical schemes (modified wavenumbers)

• consider a periodic function \(f(x) \) (could also be \(f(t) \)) on a domain of length \(2\pi \)

• The Fourier representation of this function (or a general signal) is:

\[
 f(x) = \sum_{k=-\infty}^{k=\infty} \hat{f}_k e^{ikx}
\]

- where \(k \) is the wavenumber (frequency if \(f(t) \))

- \(\hat{f}_k \) are the Fourier coefficients which in general are complex
Fourier Transforms

- why pick e^{ikx}?
 - answer: orthogonality
 \[\int_0^{2\pi} e^{i(k-k')x} \, dx = \begin{cases} 0 & \text{if } k \neq k' \\ 2\pi & \text{if } k = k' \end{cases} \]
 - a big advantage of orthogonality is independence between Fourier modes
 - e^{ix} is independent of e^{i2x} just like we have with Cartesian coordinates
 where i,j,k are all independent of each other.

- what are we actually doing?
 - recall from Euler’s formula that $e^{ix} = \cos(x) - i\sin(x)$
 - the Fourier transform decomposes a signal (space or time) into sine and cosine wave components of different amplitudes and wave numbers (or frequencies).
Fourier Transforms

- Fourier Transform example (from Stull, 88 see example: FourierTransDemo.m)

![Wave forms for k=8](image.png)

- Real cosine component
- Real sine component
- Sum of waves
Fourier Transforms

- The Fourier representation given by a series as a function of sine and cosine waves. It takes \(f(x) \) and transforms it into wave space.

- **Fourier Transform pair**: consider a periodic function on a domain of \(2\pi \)

\[
f_k = F\{f(x)\} \equiv \frac{1}{2\pi} \int_{0}^{2\pi} f(x)e^{-ikx} \, dx \quad \rightarrow \quad \text{forward transform}
\]

\[
f(x) = F\{\hat{f}_k\}^{-1} \equiv \sum_{k=-\infty}^{k=\infty} \hat{f}_k e^{ikx} \quad \rightarrow \quad \text{backwards transform}
\]

- The **forwards transform** moves us into Fourier (or wave) space and the **backwards transform** moves us from wave space back to real space.

- An alternative form of the Fourier transform (using Euler’s) is:

\[
f(x) = a_0 + \sum_{k=1}^{k=\infty} a_k \cos(kx) - b_k \sin(kx)
\]

Where \(a_k \) and \(b_k \) are now the real and imaginary components of \(f_k \), respectively.
Locality in real and wave space

- It is important to note that something that is non local in physical (real) space can be very local in Fourier space and something that is local in physical space can be non local in Fourier space.

- **Example 1:**
 \[f(x) = \cos^2 x = \frac{1 + \cos 2x}{2} \] (a wave, very non local in physical space)

 Fourier modes are:

 \[a_0 = 1/2, a_2 = 1/2 \text{ all other } a_k, b_k = 0 \]

- **Example 2:**
 \[f(x) = \delta(x) \] the Dirac delta function (very non local in physical space)

 \[\hat{f}_k = \frac{1}{2\pi} \int \delta(x)e^{-ikx} \, dx \]

 recall by definition \[\int \delta(x - a) f(x) \, dx = f(a) \]

 \[\Rightarrow \int = 1 \text{ for any value } k \Rightarrow \hat{f}_k = \frac{1}{2\pi} \]
1. If \(f(x) \) is real then:

\[
\hat{f}_k = \hat{f}_k^* \quad \text{(Complex conjugate)}
\]

2. Parseval’s Theorem:

\[
\frac{1}{2\pi} \int_0^{2\pi} f(x) f^*(x) dx = \sum_{k=-\infty}^{k=\infty} \hat{f}_k \hat{f}_k^*
\]

3. The Fourier representation is the best possible representation for \(f(x) \) in the sense that the error:

\[
e = \int_0^{2\pi} \left| f(x) - \sum_{k=-N}^{N} c_k e^{ikx} \right|^2 dx \quad \text{is minimum when} \quad c_k = \hat{f}_k
\]
Discrete Fourier Transform

• Consider the periodic function f_j on the domain $0 \leq x \leq L$

 $j=0$ $j=1$ $j=3$ $j=N$

 with $x_j = jh$ and $h = L/N$

 Periodicity implies that $f_0 = f_N$

• Discrete Fourier Representation:

 $f_j = \sum_{k=-N/2}^{N/2-1} \hat{f}_k e^{i2\pi k x_j} \quad \Rightarrow \quad \text{backwards (inverse) transform}$

 • we have: known: f_j at N points

 unknown: \hat{f}_k at k values (N of them)

 • Using discrete orthogonality:

 $\hat{f}_k = \frac{1}{N} \sum_{j=0}^{N-1} f_j e^{-i2\pi k x_j} \quad \Rightarrow \quad \text{forward transform}$
Discrete Fourier Transform

- Discrete Fourier Transform (DFT) example and more explanation found in handouts section of website under Stull_DFT.pdf or Pope appendix F and in example: FourierTransDemo.m
- Implementation of DFT by brute force $\mathcal{O}(N^2)$ operations
- In practice we almost always use a Fast Fourier Transform (FFT) $\mathcal{O}(N \log_2 N)$
- Almost all FFT routines (e.g., Matlab, FFTW, Intel, Numerical Recipes, etc.) save their data with the following format:

positions x_j

wavenumbers

$k = 0 \quad k = 1 \quad k = 2$

$k = \frac{N}{2} - 1 \quad k = \pm \frac{N}{2} \quad k = -\frac{N}{2} + 1$

Nyquist
Fourier Transform Applications

Autocorrelation:

• We can use the discrete Fourier Transform to speed up the autocorrelation calculation (or in general any cross-correlation with a lag).

- Discretely \(R_{ff}(s_l) = \sum_{j=0}^{N-1} f(x_j) f(x_j + s_l) \) this is \(O(N^2) \) operations

 - if we express \(R_{ff} \) as a Fourier series

 \[
 R_{ff}(s_l) = \sum_k \hat{R}_{ff} e^{iks_l} \Rightarrow R_{ff}(0) = \sum_k \hat{R}_{ff} \quad \text{and we can show that} \quad R_{ff}(0) = \sum_k N \left| \hat{f}_k \right|^2
 \]

 - how can we interpret this??

 - In physical space

 \[
 R_{ff}(0) = \sum_{j=0}^{N-1} f_j^2 \quad \text{(i.e. the mean variance)} \Rightarrow \sum_{j=0}^{N-1} f_j^2 = \sum_{k=-N/2}^{N/2-1} N \left| \hat{f}_k \right|^2
 \]

 total contribution to the variance

energy spectral density
Fourier Transform Applications

Energy Spectrum: (power spectrum, energy spectral density)

- If we look at specific k values from our autocorrelation function we have:

$$E(k) = N |\hat{f}_k|^2$$

where $E(k)$ is the energy spectral density.

- Typically (when written as) $E(k)$ we mean the contribution to the turbulent kinetic energy (tke) $= \frac{1}{2}(u^2+v^2+w^2)$ and we would say that $E(k)$ is the contribution to tke for motions of the scale (or size) k. For a single velocity component in one direction we would write $E_{11}(k)$.

- This means that the energy spectrum and the autocorrelation function form a Fourier Transform pair (see Pope for details).

Example energy spectrum
Sampling Theorem

Band-Limited function: a function where \(\hat{f}_k = 0 \) for \(|k| > k_c \)

Theorem: If \(f(x) \) is band limited, i.e., \(\hat{f}_k = 0 \) for \(|k| > k_c \), then \(f(x) \) is completely represented by its values on a discrete grid, \(x_n = \frac{n\pi}{k_c} \) where \(n \) is an integer \((-\infty < n < \infty)\) and \(k_c \) is called the Nyquist frequency.

Implication:
- If we have \(x_j = j \frac{\pi}{k_c} = jh \Rightarrow h = \frac{\pi}{k_c} \) with a domain of \(2\pi \): \(h = \frac{2\pi}{N} = \frac{\pi}{k_c} \Rightarrow k_c = \frac{N}{2} \)

\(\Rightarrow \) If the number of points is \(\geq 2k_c \) then the discrete Fourier Transform=exact solution

E.g., for \(f(x) = \cos(6x) \) we need \(N \geq 12 \) points to represent the function exactly
Sampling Theorem

- What if f(x) is not band-limited?

- or \(f(x) \) is band limited but sampled at a rate < \(k_c \), for example \(f(x) = \cos(6x) \) with 8 points.

- **Result:** **Aliasing** \(\Rightarrow \) contamination of resolved energy by energy outside of the resolved scales.

\[E(k) \]

\[e^{-k^2} \] (e.g., a Gaussian distribution)

\(k \)
Aliasing

- Consider: $e^{ik_1x_j}$ and $e^{ik_2x_j}$ and let $k_1 = k_2 + 2mk_c$

where $k_c = \text{Nyquist frequency}$, $m = \pm$ any integer value and $x_j = j\frac{\pi}{k_c}$

$$e^{ik_1x_j} = e^{i(k_2 + 2mk_c)x_j}$$

$$= e^{ik_2x_j}e^{2mk_cx_j} = e^{ik_2x_j}e^{2mk_cj\frac{\pi}{k_c}}$$

$$= e^{ik_2x_j}e^{i2\pi mj}$$

$$= 1 \text{ (integer function of } 2\pi)$$

$$e^{ik_1x_j} = e^{ik_2x_j} \Rightarrow \text{ result is that we can't tell the difference between } k_2 \text{ and}$$

$k_1 = k_2 + 2mk_c$ on a discrete grid. k_1 is aliased onto k_2

What does this mean for spectra?

- $E(k)$
- aliased
- exact

What is actually happening to $E(k)$?

- $E(k)$
- $E(k)$
- $E(k)$

Negative wavenumbers folded to here
Consider a function: \(f(x) = \cos(x) + \frac{1}{2}\cos(3x) + \frac{1}{4}\cos(6x) \)

Fourier coefficients (all real since only cosine)

Consider \(N=8 \Rightarrow k_c = N/2 = 4 \)

Aliasing \(\Rightarrow k_1 = k_2 + 2mk_c = k_2 + 8m \Rightarrow -6 \) gets aliased to 2

and if \(m = -1 \Rightarrow k_1 = k_2 - 8 \Rightarrow 6 \) gets aliased to -2

For more on Fourier Transforms see Pope Ch. 6, online handout from Stull or Press et al., Ch 12-13.