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Scale SeparaMon 

•  We discussed LES in a very generic way to this point: 

-  Resolve only the largest energy containing scales 
-  Model the small “universal” scales 

•  Formally, how is this accomplished? 

- Using a low-pass filter (i.e.,  removes small scale motions) 

•   Our goal for the low pass filter: 

- Attenuate (smooth) high frequency (high wavenumber/small 
scale) turbulence smaller than a characteristic scale Δ while leaving 
low frequency (low wavenumber/large scale) motions unchanged.  
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Filtering 

•  Filtering (Saguat chapter 2; Pope chapter 13.2): 

- The formal (mathematical) LES filter is a convolution filter defined 
for a quantity              in physical space as 

-  G     the convolution kernel of the chosen filter 
-  G is associated with a characteristic cutoff scale Δ (also called the 
filter width) 

-  Taking the Fourier transform of          (dropping the t for simplicity)    

Here we will use Pope’s notation for the Fourier transform:  
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ConvoluMon 

-  we can define a new variable:                    and change the order 
of integration 

Note that                    because                    and addition of 
exponents is multiplication => 

Sagaut writes this as: 

where the hat (    ) denotes a Fourier coefficient. 
-      is the transfer function associated with the filter kernel  
Recall that a transfer function is the wavespace (Fourier) 
relationship between the input and output of a linear system. 
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DecomposiMon into resolved and subfilter 
components  

•  Just as     is associated with a filter scale Δ (filter width),      is 
associated with a cutoff wavenumber      . 

•  In a similar manner to Reynold’s decomposition, we can use the filter 
function to decompose the velocity field into resolved and unresolved 
(or subfilter) components 

•  Fundamental properties of “proper” LES filters:  

- The filter shouldn’t change  
  the value of a constant (a): 

-  Linearity: 
(this is satisfied automatically for a convolution filter) 

- Commutation with differentiation: 

total resolved subfilter 
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•  In the general case, LES filters that verify these properties are not Reynolds 
operators 

- Recall for a Reynolds operator (average) defined by 

•   

•    

•   

•  For our LES filter, in general (using Sagauts shorthand                                  ): 

•   
•   

•  For an LES filter a twice filtered variable is not equal to a single filtered variable 
as it is for a Reynolds average. 

•  Likewise, the filtered subfilter scale component is not equal to zero  

LES and Reynold’s Operators 

•   

•   
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DifferenMal Filters 

•  Differential filters are a subclass of convolution filter 

-  The filter kernel is the Green’s function associated to an inverse linear 
differential operator 

-  Recall, the Green’s function of a linear differential operator L satisfies 
                                        and can be used to find the solution of 
inhomogeneous differential equations subject to certain boundary 
conditions.  

•  The inverse linear differential operator J is defined by: 

which can be expanded to: 

Effectively we need to invert the above equation to define the filter kernel G.  See 
Sagaut pgs 20-21 and the references contained therein for more information. 

•  Differential filters are not used in practice and can be considered an “advanced” 
topic in LES 
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Typical LES filters 
Common (or classic) LES filters: 

•  Box or top‐hat filter: (equivalent to a local average) 

•  Gaussian filter: (    typically = 6) 

•  Spectral or sharp cutoff filter: 

(recall that kc is our characterisMc wavenumber cutoff) 

transfer funcMon 

transfer funcMon 

transfer funcMon 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LES Filters and their transfer funcMons 

Real Space Filters  Filter Transfer FuncMon 

Only the Gaussian filter is local in both real and wave space 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ConvoluMon Example 

•  We defined convoluMon of two funcMons as: 

•  How can we interpret this relaMon? 
‐ G, our filter kernel ‘moves’ along our funcMon ϕ smoothing it out (provided 
it is a low-pass filter): 
‐  Example using a box filter applied in real space (see mfile conv_example.m): 

smoothed  original 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Filtering Turbulence (real space, cutoff filter) 

Note: here (and throughout the 
presentaMon) we are using DNS 
data from Lu et al. (InternaMonal 
Journal of Modern Physics C, 2008). 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Filtering Turbulence (real space, Gaussian filter) 

Note: here (and throughout the 
presentaMon) we are using DNS 
data from Lu et al. (InternaMonal 
Journal of Modern Physics C, 2008). 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Filtering Turbulence (real space, box filter) 

Note: here (and throughout the 
presentaMon) we are using DNS 
data from Lu et al. 
(InternaMonal Journal of 
Modern Physics C, 2008). 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Filtering Turbulence (real space) 

See mfile: 
Spectra_comparison.m 

Note: here (and throughout the 
presentaMon) we are using DNS 
data from Lu et al. (InternaMonal 
Journal of Modern Physics C, 2008). 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Filtering Turbulence (wave space) 

π/Δ2 

π/Δ1 

π/Δ2 

π/Δ1 

π/Δ2 

π/Δ1 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Filtering Turbulence (wave space) 

π/Δ1  π/Δ2 

Comparison between different filters 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The LES filter can be used to decompose the velocity field into resolved and subfilter scale 
(SFS) components 

We can use our filtered DNS fields to look at how the choice of our filter kernel affects this 
separaMon in wavespace 

The Gaussian filter (or box filter) does not have as compact of support in wavespace as the 
cutoff filter.  This results in ahenuaMon of energy at scales larger than the filter scale.  The 
scales affected by this ahenuaMon are referred to as Resolved SFSs.  

DecomposiMon of Turbulence for real filters 

π/Δ   π/Δ  

Resolved scales  SGS scales 

Resolved SFS 

Resolved scales  SGS scales 


