The Characteristics of Black Liquor Sprays

Pasi Miikkulainen and Ari Kankkunen
The properties of the spray determine in which part of the furnace drying, devolatilization and char burning take place.

Too small drops → Carry-over

Too large drops → Hit the char bed without drying
MOTIVATION

BLACK LIQUOR
- Solids content 75-85%,
- Viscosity 100-500 mPas
- Temperature 125-140 °C

SPRAYING
- Nozzle diameter 18-42 mm
- Mass flow rate 2-8 kg/s
- Excess temperature 0-25°C

New challenges of spraying

Experiments & modeling necessary
Operating parameters

- Dry solids content
- Temperature
- Mass flow rate
- Nozzle geometry

Spray properties

- Velocity
- Opening angle
- Disintegration mechanisms
- Drop size and size distribution
OBJECTIVE

To study the effect of operating parameters to spray properties

Focus on:

- Atomization performance
- Velocity
- Drop size distribution
Overview

• Spraying experiments at the mill
• Sheet disintegration mechanisms
• Flashing accelerates the flow
• Resulting drop size and size distribution
• Modeling of velocity and drop size
Overview

• Spraying experiments at the mill
• Sheet disintegration mechanisms
• Flashing accelerates the flow
• Resulting drop size and size distribution
• Modeling of velocity and drop size
EXPERIMENTS

• Furnace and Test Chamber
• Softwood liquor
• Dry solids content 75 - 80 %
• Two types of mill scale nozzles, A and B
• Spraying temperature: 129 - 135 °C
• dT_b (13 - 19 °C)
• Mass flow rates: 4.3, 5.2, 6.1 kg/s
EXPERIMENTAL CONFIGURATION

- Sprayer chamber
- Drop size measurement
- Control window
- Stroboscope
- Camera
- VCR
- Endoscope
- Liquor gun hole
- Black liquor hose from the ring header
- 3.0 m
- 5.5 m

Colloquium on Black Liquor Combustion and Gasification, 2003
HORIZONTAL SPRAYING CHAMBER
FURNACE ENDOSCOPE
Nozzles

A

α

h

$d_p = 27 \text{ mm}$

B

α

h

$d_p = 28 \text{ mm}$
Overview

- Spraying experiments at the mill
- **Sheet disintegration mechanisms**
- Flashing accelerates the flow
- Resulting drop size and size distribution
- Modeling of velocity and drop size
Black liquor sheet disintegration mechanisms

The effect of excess temperature at constant mass flow rate

\(\Delta T_b = -4.1 \, ^\circ C \)

\(\Delta T_b = 4.7 \, ^\circ C \)

\(\Delta T_b = 14.8 \, ^\circ C \)
Nozzle A

\[dT_b \ [\degree C] \]

\[m [\text{kg/s}] \]

2.6 3.4 4.3 5.2 6.1
Nozzle B, 5.2 kg/s

Minor change in excess temperature can cause remarkable change in sheet disintegration

\[u = 12.2 \text{ m/s} \]
\[dT_b = 16.1 \text{ °C} \]

\[u = 8.9 \text{ m/s} \]
\[dT_b = 14.3 \text{ °C} \]
Nozzle B, 5.2 kg/s

\[
\begin{align*}
 u &= 12.2 \text{ m/s} \\
 dT_b &= 16.1 ^\circ \text{C} \\
 u &= 8.9 \text{ m/s} \\
 dT_b &= 14.3 ^\circ \text{C}
\end{align*}
\]

Minor change in excess temperature can cause remarkable change in sheet disintegration.
Overview

- Spraying experiments at the mill
- Changing disintegration mechanisms
- Flashing accelerates the flow
- Resulting drop size and size distribution
- Modeling of velocity and drop size
Velocity of the spray

- **Nozzle A**
 - Velocity of the spray vs. excess temperature (°C)
 - Data points for different flow rates: 4.3 kg/s, 5.2 kg/s, 6.1 kg/s

- **Nozzle B**
 - Same as Nozzle A, but for different spray conditions

Colloquium on Black Liquor Combustion and Gasification, 2003
DIMENSIONLESS VELOCITY

\[u^* = \frac{u_{\text{spray}}}{m} = \frac{u_{\text{spray}}}{u_{\text{pipe}}} \]

\[= \frac{u_{\text{spray}}}{A \rho_{BL}} \]

\(u^* \) = Measured velocity at the spray centerline

\(u^* \) = Calculated velocity for liquid only at A
Dimensionless velocity and drop size, Nozzle A

[Graph showing the relationship between dimensionless velocity and excess temperature for different mass flows (4.3 kg/s, 5.2 kg/s, 6.1 kg/s), with a legend indicating the data points for each mass flow rate.]
Dimensionless velocity and drop size, Nozzle B

Excess temperature, °C

Nozzle B
- 4.3 kg/s
- 5.2 kg/s
- 6.1 kg/s

Dimensionless velocity, -

Mass median diameter, mm

Excess temperature, °C

4.3 kg/s
- 5.2 kg/s
- 6.1 kg/s
The effect of mass flow rate on droplet size

![Graph showing the effect of mass flow rate on droplet size for Nozzle A and Nozzle B.](image)
Drop size and shape

$S = 76\%$
$dT_b = 14\, ^\circ C$
$m = 6.1\, kg/s$
$u^* = 1.5$

$S = 76\%$
$dT_b = 18\, ^\circ C$
$m = 4.3\, kg/s$
$u^* = 2.9$
Distribution functions were fitted to experimental data (assuming spherical droplets)

Rosin-Rammler

Normal distribution

Square-root normal distribution

Log-normal distribution
Particle size distribution

- Measured
- RR
- Normal
- Sqrt
- LogNor

Volume fraction of particles [1/mm]

D_{ekv} [mm]
Application of the results for estimating the performance of the boiler.
Overview

• Spraying experiments at the mill
• Sheet disintegration mechanisms
• Flashing accelerates the flow
• Resulting drop size and size distribution

• Modeling of velocity and drop size
\[u^* = u_c^* + \left(\Delta T_b - \Delta T_{bc} \right) \frac{a}{\dot{m}''_b} \]
DROP SIZE

\[MMD = c \Delta T_b^d u^e \]

Colloquium on Black Liquor Combustion and Gasification, 2003
Conclusions I

• Flashing accelerates the flow
• Flash-breakup is the dominating atomization process
• 2-3 °C decrease in temperature
 → long black liquor sheet
 → the mass median drop size doubles
 → more non-spherical drops
Conclusions II

- Square-root normal distribution function fits best when assuming spherical droplets
- The fraction of non-spherical particles was very high

→ Different trajectories and the differing combustion behavior must be taken into account
Conclusions III

• Drop size correlates best with spray velocity
• The application range of the developed empirical correlation models is limited
• Physical or semi-physical models are required
Acknowledgements

• National Technology Agency of Finland, TEKES
• Academy of Finland (project 53606)
• Andritz
• Kvaerner Pulping
• Mill Personnel