U.S. Department of Energy
Energy Efficiency and Renewable Energy
Office of the Biomass Program

U.S. Department of Energy’s
Involvement with Gasification

Daniel C. Cicero
National Energy Technology Laboratory

Colloquium on Black Liquor Combustion and Gasification
Park City, Utah
May 13, 2003

Presidential Initiative:
Focused on Results

- Drivers for Organization Change
 - Strategic Program Review
 - Focus on programs and program management
 - President’s Management Agenda
 - Flatten organization to make them more responsive
 - Focus on results, not process
 - Link budget with performance
 - End overlapping functions, inefficiencies, and turf battles
 - Make the most of our people, their knowledge, skills, and abilities
Energy Efficiency and Renewable Energy Guiding Principles

- Dramatically reduce or even end dependence on foreign oil
- Increase viability and deployment of renewable energy
- Increase reliability and efficiency of electricity generation, delivery and use
- Reduce the energy intensity of industry
- Create the new domestic bioindustry
- Lead by example through government’s own actions
- Change the way that EERE does business

A New Streamlined, Integrated, and Focused Model
Office of Biomass Programs

Mission
- To foster research and development on advanced technologies to transform our abundant biomass resources into clean, affordable, and domestically-produced biofuels, biopower, and high-value bioproducts for improving the economic development and enhancing the energy supply options of the U.S.

Goals
- Reduce U.S. dependence upon foreign sources of petroleum
- Realization of the Industrial Biorefinery

OBP Program Areas

Advanced Biomass R&D
- Biochemical R&D, Products Development
- Feedstock, SBIR/STTR
- Pretreatment, Biodiesel
- Products Development

Systems Integration & Production
- Gasification Demos F&PP
- Gasification Systems R&D, Modular Systems/Digestion
- Ag Integration
- Biodiesel Validation and Testing
- Biorefinery Solicitation
- Feedstock Infrastructure
Foreign Oil Displacement

- U.S. transportation sector is almost completely dependent on petroleum. Over half of the oil used in the U.S. is imported from abroad.
- Need to encourage use of alternative biobased fuels
 - Ethanol and biodiesel fuels
 - Gasoline production from synthesis gas
 - Hydrogen production from synthesis gas as a fuel for fuel cells

Black Liquor Gasification: Importance to Program Goals

- Pulp Biorefinery Today (Kraft Mill)
 - Purchased Energy
 - Paper Products
- Pulp Biorefinery of the Future
 - Purchased Energy
 - Paper Products
 - Electricity
 - Chemical Derivatives from Lignin and Syngas
The New Industrial Biorefinery

Biomass Feedstock
- Trees
- Grasses
- Agricultural Crops
- Agricultural Residues
- Animal Wastes
- Municipal Solid Waste

Conversion Processes
- Enzymatic Fermentation
- Gas/liquid Fermentation
- Acid Hydrolysis/Fermentation
- Gasification
- Combustion
- Co-firing

Example Uses
- Fuels: Ethanol, Renewable Diesel
- Power: Electricity, Heat
- Chemicals: Plastics, Solvents, Chemical Intermediates, Phenolics, Adhesives, Furfural, Fatty acids, Acetic Acid, Carbon black, Paints, Dyes, Pigments, and Ink, Detergents
- Food and Feed

Support Realization of the Industrial Refinery

- A biorefinery processes primary and secondary biomass into valued added product streams.
- Biorefineries are based on a number of processing platforms using mechanical, thermal, chemical and biochemical processes.
Building a worldwide Biomass-Based Industry calls for vigorous action on three fronts:

- Scientific and technological innovation across multiple disciplines to maximize the potential of biomass;
- Private investment in markets and infrastructure to lay the foundation for a substantial new U.S. biobased products and biomass energy industry; and,
- Development of supportive government policies that accelerate technological and market development.

Black Liquor Gasification

- **Outcome:** to transform 160 U.S. pulp and paper mills into energy exporting **Biorefineries**
- **Objectives:** to demonstrate
 - the energy, environmental, and safety benefits of black liquor gasification (BLG)
 - the technical performance, operating reliability, and cost-effectiveness of **commercial-scale** BLG systems that are **integrated** into an operating pulp mill environment
- Program working to resolve technology gaps through research and technology demonstrations.
Two-pronged Approach

Wide-spread Commercialization of BLG

Black Liquor Gasification Program Structure

U.S. DOE
Office of the Biomass Program

Project Management
National Energy Technology Laboratory

Technology Demonstrations
- Georgia-Pacific
- GTI/Boise Cascade

Technology Support Projects
- University of Utah
- Nat’l Energy Technology Lab (3)
- Sandia Nat’l Lab
- Argonne Nat’l Lab
- Georgia Institute of Technology
- University of Missouri-Rolla
- Oak Ridge Nat’l Lab (3)
- University of Maine
Demonstration Projects

Black Liquor Gasification at Big Island, VA
Georgia-Pacific, StoneChem

Advanced Gasification-Based Fuel Conversion and Electrical Production System at DeRidder, LA
GTI, Boise

Georgia-Pacific – Big Island, VA

- Main participants: Georgia-Pacific, Fluor-Daniel, StoneChem
- Scope: 200 tpd sodium carbonate BLG gasification using pulsed steam reformer to produce steam and (ultimately) power
- Start: 2/13/01
 Finish: 3/30/07
- DOE Budget ($ millions):
 FY01: 22.5
 FY02: 10.1
 FY03: 8.2
- Accomplishments:
 - Design/engineering/purchasing 95% complete
 - Construction 60% complete overall
GTI/Boise Cascade – DeRidder, LA

- **Main participants:** Gas Technology Inst., Boise, DB Riley, Nexant, Carbona, UNDEERC
- **Scope:** low pressure 185tpd (wet) wood waste and sludge gasifier integrated with existing stoker boiler to generate steam and power
- **Start:** 8/8/01
 Finish: 6/30/07
- **DOE Budget ($ millions):**
 - FY01: 1.0
 - FY02: -0-
 - FY03: 0.2
- **Accomplishments:**
 - Gasification island and stoker-boiler air heater designs are complete
 - Another turbine provider is being sought

Technology Support Projects
-- Scope --

- To conduct cost-shared applied research awarded through competitive solicitations that address the technology gaps associated with BBLG
- Manage and coordinate research with a *programmatic* approach
Planned Objective/Outcome of Technology Support Projects

- **Objective:** to resolve specific, well-defined technology gaps that have been identified by experts in the field

- **Outcome:** to make the technology demonstrations successful and robust so that they can be **commercially replicated** in other pulp mills and biopower applications

Five Technical Gap Areas Identified by Industry

- Fuels Chemistry and Reactor Kinetics
- Containment (Materials)
- Mill Integration (steam, power, pulping, and causticizing)
- Process Control and Optimization
- Assurance and Education
Support Projects Currently Address Three Technology Gap Areas

<table>
<thead>
<tr>
<th>Research Area</th>
<th>Technology Gaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuels Chemistry and Reactor</td>
<td>• formation and destruction of tars and their impacts</td>
</tr>
<tr>
<td>Optimization</td>
<td>• optimizing carbon conversion without bed agglomeration</td>
</tr>
<tr>
<td></td>
<td>• managing contaminants in the product gas</td>
</tr>
<tr>
<td></td>
<td>• modeling for use in reactor design and process control</td>
</tr>
<tr>
<td>Containment/</td>
<td>• metals used for reactor shells</td>
</tr>
<tr>
<td>Gasifier Materials</td>
<td>• refractory materials</td>
</tr>
<tr>
<td></td>
<td>• reactor designs that provide acceptable operating up-time</td>
</tr>
<tr>
<td></td>
<td>• modeling internal reactions and circulation</td>
</tr>
<tr>
<td>Mill Integration</td>
<td>• minimizing or eliminating the causticizing load increase</td>
</tr>
<tr>
<td></td>
<td>• sulfur recovery</td>
</tr>
<tr>
<td></td>
<td>• hot gas cleanup</td>
</tr>
<tr>
<td></td>
<td>• integration with innovative pulping processes</td>
</tr>
<tr>
<td></td>
<td>• emissions control</td>
</tr>
<tr>
<td></td>
<td>• turbine design and integration</td>
</tr>
</tbody>
</table>

Fuels Chemistry and Reactor Optimization Projects

- CFD Modeling of Boise Biomass Gasifier, Argonne National Laboratory
- Investigation of Fuel Chemistry and Bed Performance in a Steam Reformer, Univ. of Utah
- Chemical Kinetics Analysis of Black Liquor Steam Reforming, NETL
- Modeling of the G-P Big Island Gasifier, NETL
- Optimization of High-Temp Black Liquor Gasifiers, Sandia National Laboratory
- Catalysts for the Destruction of Tars, Georgia Institute of Technology
Containment/Gasifier Materials Projects

- Refractory for Black Liquor Gasifiers, *University of Missouri-Rolla*
- Pulsed Black Liquor Reformer Materials Evaluation, *ORNL*
- Materials Evaluation for Black Liquor and Biomass Gasifiers, *ORNL*
- Refractory Structural Materials for Black Liquor Gasification, *ORNL*
- Ceramic Coatings for Use in High Temp., High Pressure Black Liquor Gasifiers, *ORNL*
- Chromium-Rich Alloys for Gasifier and Kraft Recovery Boilers, *ORNL*

Mill Integration Projects

- Direct Causticization for Black Liquor Gasifiers, *University of Maine*
- Causticizing for Black Liquor Gasifiers, *Institute of Paper Science and Technology*
- Evaluation of RVS-1Sorbent for Removal of Sulfur from Black Liquor Gasification, *NETL*
BLGCC Cost-Benefit Analysis

- **Study Purpose:** to assess the costs and benefits of BLGCC technology at the mill, regional and national levels, including an examination of utility-scale concepts
- **Analytical Team:** key members include Princeton University, Navigant Consulting, Fluor-Daniel, and Nexant
- **Industry/Government Steering Committee:** US Department of Energy, Georgia-Pacific, International Paper, MeadWestvaco, Weyerhaeuser, Southern Companies, and Tennessee Valley Authority
- **Schedule:** a final report is expected to be available by July, 2003

Future of Our Partnership

- Will continue to build on existing industry partnerships
- Program Review recommendations recognize need to “increase industry involvement” in OBP-sponsored research
- OBP using competitive solicitations to help build partnerships and increase industry participation
Applications of CVX Gasifier include:

- 72 plants worldwide
- Tampa Electric Polk Power Plant
- Delaware Clean Power pet-coke
- Kansas El Dorado IGCC
- Italy... 3 refinery plants
- China... 11 fertilizer & chemical
- Bilboa, Spain
- Indonesia Thermal Power
- Sumatra oil recovery

Applications of E-Gas Gasifier include:

- Indiana, Wabash River

Provided by Global Energy, Inc.
KRW Fluidized Bed Gasifier

Applications of KRW Gasifier include:

- Piñon Pine Power Project

Provided by Kellogg Brown & Root

Transport Reactor Flow Diagram

Advantages of Pressurized Transport Reactor

- Excellent Gas-Solids Contact
- Low Mass Transfer Resistance Between Gas and Solids
- Highly Turbulent Atmosphere
- High Coal Throughput
- High Heat Release Rate
- Designed without expansion joints

Provided by Southern Companies
Please visit the new EERE website for information on the Biomass program.

www.eren.doe.gov