Overview of Factors Affecting Fouling in Recovery Boilers

Honghi Tran
University of Toronto

Colloquium on Black Liquor combustion and Gasification,
Park City, May 12-16, 2003
Three Principal Parameters Determining the Rate of Fouling

- Particle Concentration
- Particle Stickiness
- Sootblowing Efficiency

Deposition

- Low Conc.
- Less Sticky
Types of Particles

- Fume: 0.5 µm (0.1 - 1 µm)
- ISP: 20 µm (1 - 100 µm)
- Carryover: 500 µm (100 µm - 3 mm)
ISP Covered with Fume
Three Principal Parameters Determining the Rate of Fouling

- Particle Concentration
- Particle Stickiness
- Sootblowing Efficiency

Factors Affecting Carryover Concentration

- Firing load
- Air flow rate and distribution
- Black liquor properties
- Black liquor sprays
 - Nozzle design
 - Liquor temperature and pressure
 - Liquor properties
Liquor Spray Study at Domtar Espanola
May 2, 2003

Three Principal Parameters Determining the Rate of Fouling

- Particle Concentration
- Particle Stickiness
- Sootblowing Efficiency
Factors Affecting Carryover Stickiness (Liquid Content)

- Particle composition
 - Black liquor composition (Cl, K)
 - Black liquor droplet size
- Particle temperature
 - Flue gas temperature
 - Retention time
 - All burning particles are sticky!

U of T Entrained Flow Reactor
Effect of Particle Size on Deposition

Mill “A” Black Liquor
EFR Temp. = 800°C
Prediction of Sticky Temperature

Black Liquor Composition

Particle Composition

Sticky Temperature
Carryover Particle Composition Continuously Changes

- Cl, K and carbonate contents are lower than previous thought
- S (sulphate and sulphide) content is higher
- Changes depend strongly on particle size, temperature and excess O₂
Factors Affecting Sootblowing Efficiency

- Sootblower nozzle design
- Blowing sequence and frequency
- Deposit adhesion strength
 - Composition
 - Tube temperature
- Tube arrangement
Three Principal Parameters Determining the Rate of Fouling

- Particle Concentration
- Particle Stickiness
- Sootblowing Efficiency

Deposit Removal Studies

- Laboratory studies
 - Composition
 - Tube surface temperature
 - Particle size
- Numerical simulation
 - Free jet
 - Jet-deposit interaction
- Field studies
 - Sootblowing efficiency
Effect of Chloride on Removal

![Graph showing the effect of chloride on removal with probe temp. = 400°C, 0% K, and % CO₃.](image)

Effect of Potassium on Removal

![Graph showing the effect of potassium on removal with probe temp. = 400°C, 0% CO₃, 5 mole% Cl/(Na+K), and 2 mole% Cl/(Na+K).](image)
Air Jet Impingement Apparatus

Sootblowing Efficiency Studies at Domtar Espanola
May 2, 2003
Conclusions

- Particle Concentration
- Particle Stickiness
- Deposition

- Fouling/Plugging
 - Low Conc.
 - Less Sticky

- Sootblowing Efficiency
 - High Efficiency
Deposition

Particle Concentration

Particle Stickiness

Sootblowing Efficiency

Low Conc. → Less Sticky

Fouling

Acknowledgements

Research Consortium on “Increasing Recovery Boiler Throughput and Reliability of Recovery Boilers and Lime Kilns”

- Alstom Power
- Andritz
- Aracruz Celulose
- Babcock & Wilcox
- Boise Paper Solutions
- Bowater
- Canfor
- Clyde-Bergemann
- Daishowa-Marubeni
- Domtar
- Georgia Pacific
- International Paper
- Irving Pulp & Paper
- Kvaerner Pulping
- MeadWestvaco
- Stora-Enso Research
- Votorantim Celulose E Papel
- Weyerhaeuser Paper
- NSERC